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sets of desirable gambles

No precisely known probability distribution!

A set D of desirable gambles

We model a subject’s beliefs regarding the
possible outcomes Q of an experiment by
looking at the gambles he is willing to accept

(Peter M. Williams & Peter Walley )



sets of desirable gambles

No precisely known probability distribution!

A set D of desirable gambles

Rationality criteria:

Cl. if f=0 then f ¢ D
C2. if f >0 then f €D
C3. if f €D then A\f € D for A >0

C4. if f1,fo € D then f1 + fo € D
(f>0ifff>0andf #0)



Coherent sets of desirable gambles

No precisely known probability distribution!
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For any gamble f on the outcome of the sequence,
we are willing to exchange it for any permuted
version of this gamble, in which the order of the

variables in the argument has been changed.
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Exchangeability (defining property)

We assess X;, X,, ..., X, to be exchangeable

Motivation: For precise binomial

processes, exchangeability is
implied by the IID property

How to impose this property?
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Exchangeability and sets of desirable gambles

Gert de Cooman  Erik Quaeghebeur
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Bn")-1 HOW DO WE
( ) FINDH,,?
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Identical marginal models

For every Bernoulli f(T)
experiment X in the
sequence X, ..., X,
we have the same Dl

given marginal £(H)
model Dl >

A coherent set D1 of
desirable gambles on 2
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Epistemic independence (defining property)

We assess X,, X,, ..., X, to be
epistemically independent

Ly dpet,

cH,

(degree < n-1)

SetH,, of polynomial functions (of degree < n) ?
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An imprecise Bernoulli process

Exchangeability: BL ifp=0 then p & X
U p= en p n

. . B2. ifpe V', thenp € H,
Set H.,, of polynomial functions B3, 10 7 them Mo € M for A >0

Bernstein coherent: B4. if pi,p, € Huthen py + ps € H

Epistemic independence:

The linear
RS 'Hn& 9p € 7in Hl — polynomials
(degreeSn—1)§ (1" g)p & Hn in H’I’L

We are looking for the smallest such set ,,

(most conservative inferences)
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An imprecise Bernoulli process

deg(p) <n

H,=< p: p(d)>0
Vo € [0, 0]

(Bn")! Exchangeability

Dn Coherent set of desirable gambles on 2"
(exchangeable and epistemic independent)

= IMPRECISE BERNOULLI PROCESS
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A setD,, of desirable gambles on 2™
mm) associated lower prevision Pp

For every gamble fon 2" :

Pp (f)=sup{p €R: f—peDy

suppremum acceptable buying price
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Lower (and upper) prevision

IMPRECISE BERNOULLI PROCESS
associated lower prevision and upper prevision

For every gamble fon 2" :

infimum acceptable selling price

Py (f)=max{Bn(f)0): 0 € |
Py (f)= min{Bn"(f)©®): 0 € |

suppremum acceptable buying price

B
D]

B
)
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IMPRECISE BERNOULLI PROCESS

associated lower prevision and upper prevision
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1
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IMPRECISE BERNOULLI PROCESS

associated lower prevision and upper prevision

E(f ) sensitivity analysis !

Pp,, (f)=max{Bn"(f)0): 6 € |
Pp, (f)=min{Bn"(f)@): 0 € |

] |
E(f) precise expected value E(f)

| ——

H_J



Link with sensitivity analysis

Lower and upper prevision associated with an
IMPRECISE BERNOULLI PROCESS
MAIN RESULT: I I I

@

Lower and upper expectation obtained by

applying SENSITIVITY ANALYSIS to a classical,
precise bernoulli process
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Why is this important?

= Strong mathematical assumption:
our series of experiments is described by an
underlying true probability mass function
(satisfying the |ID property)

= This model is imprecise only because we do
not know which precise model is correct

Lower and upper expectation obtained by

applying SENSITIVITY ANALYSIS to a classical,
precise bernoulli process




Why is this important?

Lower and upper prevision associated with an
IMPRECISE BERNOULLI PROCESS

= Behavioural assessments:
our series of experiments is described by a
set of desirable gambles, satisfying
exchangeability and epistemic independence
(can be expressed in terms of behaviour)

= This model is inherently imprecise



Why is this important?

Lower and upper prevision associated with an

IMPRECISE BERNOULLI PROCESS

MAIN RESULT: I I | surprisING |
@ @

Lower and upper expectation obtained by

applying SENSITIVITY ANALYSIS to a classical,
precise bernoulli process




Conclusion



Conclusion

EXCHANGEABILITY

-
EPISTEMIC INDEPENDENCE

!

SENSITIVITY ANALYSIS

BERNOULLI PROCESSES



