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Abstract— We develop an efficient algorithm that calculates the maximal
state sequences in an imprecise hidden Markov model by means of co-
herent lower previsions. Initial results show that this algorithm is able to
robustify the inferences made by a classical precise model.
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I. INTRODUCTION

WE present an efficient exact algorithm for estimating state
sequences from outputs (or observations) in imprecise

hidden Markov models (iHMM), where both the uncertainty
linking one state to the next, and that linking a state to its output,
are represented using coherent lower previsions. The notion of
independence we associate with the credal network representing
the iHMM is that of epistemic irrelevance. We consider as
best estimates for state sequences the (Walley–Sen) maximal
sequences [1] for the posterior joint state model (conditioned on
the observed output sequence), associated with a gain function
that is the indicator of the state sequence.

Our algorithm corresponds to (and generalises) finding the state
sequence with the highest posterior probability in HMMs with
precise transition and output probabilities, for wich the exist-
ing Viterbi-algorithm [2] provides an efficient sollution. How-
ever, for imprecise-probabilistic local models, such as coherent
lower previsions, we know of no algorithm in the literature for
which the computational complexity comes even close to that
of Viterbi. We solve this problem by developping an algorithm
which has a computational complexity that is at worst quadratic
in the length of the Markov chain, cubic in the number of states,
and essentially linear in the number of maximal state sequences.

II. COHERENT LOWER PREVISIONS

The theory of coherent lower previsions was the most important
mathematical tool to develop this algorithm. We refer to [3] for
an in-depth study of this theory.

Coherent lower previsions are a way of working with impre-
cise probabilities. Whereas classical probability theory assumes
that a model can be represented by a single probability mass
function, the theory of imprecise probabilities works with a sets
of possible probability mass functions and therefore allows for
imprecision to be modelled. For people who have never heard
of this notion, looking at it as a way of robustifying the classical
theory is perhaps the most useful interpretation.

Consider a set M of probability mass functions on X. With
each p ∈M , we can associate a linear prevision Pp, defined
on the set L (X) of all real-valued maps on X. For every
f ∈L (X), Pp( f ) is the expected value of f , according to the
probability mass function p. We then define the lower prevision
PM that corresponds with M as follows:

PM ( f ) = min
{

Pp( f ) : p ∈M
}
.

If M is closed and convex (which makes it a credal set), it can
be shown [3] that PM satisfies a set of interesting mathematical
properties and we call PM a coherent lower prevision. Futher-
more, it is proven in [3] that such coherent lower previsions are
completely equivalent with their corresponding credal set. This
implies that we can use the theory of coherent lower previsions
as a tool for reasoning with closed convex sets of probability
mass functions. From now on, we will not indicate the credal
set M anymore and we will simply talk about coherent lower
previsions P, but one should keep in mind that there is always a
credal set that corresponds with such a coherent lower prevision.

In a similar way, we can also define conditional lower previsions,
which are an extension of the classical conditional expectation
functional. More information about these conditional lower
previsions can be found in [3].

III. IMPRECISE HIDDEN MARKOV MODELS

An imprecise hidden Markov model can be depicted using the
following probabilistic graphical model:

X1 X2 Xk Xn

O1 O2 Ok On

The state variables X1, . . . , Xn assume values in the respective
finite sets X1, . . . , Xn, and the output variables O1, . . . , On
assume values in the respective finite sets O1, . . . , On. We denote
generic values of Xk by xk or x̂k and generic values of Ok by
ok. If we talk about complete sequences of variables, we will
use the index 1 : n instead of k. For example, O1:n is the output
sequence, which takes values o1:n in the set O1:n.

The local uncertainty models associated with the nodes of the
network are (conditional) coherent lower previsions, and the
independence notion used to interpret the graphical structure is
that of epistemic irrelevance [3], [4].

We show how we can use the ideas in [5] (independent natural
extension and marginal extension) to construct a most conser-
vative joint model P1 from the imprecise local transition and
emission models, and derive a number of interesting and useful
formulas from that construction.

IV. THE PROBLEM TO BE SOLVED

In a hidden Markov model, the states are not directly observable,
but the outputs are, and the general aim is to use the outputs to
estimate the states. We concentrate on the following problem:
Suppose we have observed the output sequence o1:n, estimate
the state sequence x1:n.



The first step in our approach consists in updating (or condition-
ing) the joint model P1 on the observed outputs O1:n = o1:n. We
do this by using the so-called regular extension [3]:

P1( f |o1:n) = max
{

µ ∈ R : P1(I{o1:n}[ f −µ])≥ 0
}
,

for all f ∈L (X1:n).

The next step consists in using the posterior model P1(·|o1:n) to
find best estimates for the state sequence x1:n. On the Bayesian
approach, this is usually done by solving a decision-making, or
optimisation, problem: we associate a gain function I{x1:n} with
every candidate state sequence x1:n, and select as best estimates
those state sequences x̂1:n that maximise the expected gain,
resulting in state sequences with maximal posterior probability.

Here we generalise this decision-making approach towards
working with imprecise probability models. The criterion we
use to decide which estimates are optimal for the given gain
functions is that of (Walley–Sen) maximality [1], [3].

We prove (for the specific case of our interpretation of an iHMM)
that the collection opt(X1:n|o1:n) of all optimal state sequences
x̂1:n can be defined as follows:

x̂1:n ∈ opt(X1:n|o1:n)

⇔ (∀x1:n ∈X1:n)P1(I{o1:n}[I{x1:n}− I{x̂1:n}])≤ 0.

In summary then, we develop an efficient algorithm for finding
the set of maximal estimates opt(X1:n|o1:n).

V. THE ESTIHMM-ALGORITHM

Finding all maximal state sequences in opt(X1:n|o1:n) seems
a daunting task at first: it has a search space that grows expo-
nentially in the length of the Markov chain. However, we have
been able to use the basic formulas mentioned in the section
on iHMMs to derive an appropriate version of Bellman’s [6]
Principle of Optimality, which allows for an exponential reduc-
tion of the search space. By using a number of additional tricks,
we are then able to devise an algorithm for finding all maximal
state sequences that is essentially linear in the number of such
maximal sequences, quadratic in the length of the chain, and
cubic in the number of states. We have given this algorithm
the name EstiHMM: Estimation in imprecise Hidden Markov
Models.

We perceive the complexity of the EstiHMM algorithm to be
comparable to that of the Viterbi algorithm, especially after
realising that the latter makes the simplifying step of resolving
ties more or less arbitrarily in order to produce only a single
optimal state sequence. This is something we will not allow our
algorithm to do, as this would completely remove the advantage
of robustness our algorithm offers.

VI. SOME EXPERIMENTS

Using the EstiHMM algorithm, we have calculated the number
of maximal sequences corresponding to a precise model that has
been contaminated to make it imprecise. The degree of impreci-
sion is expressed by the parameter ε . In the figures below, the
number of maximal sequences is depicted as a function of the
precise transition probabilities p and q for two different degrees
of imprecision. Darker areas correspond to more maximal se-
quences. We observe that the areas with more than one maximal

sequence enlarge as the imprecision grows and show that they
are expanded versions of the lines of indifference that occur in
the precise case.
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VII. AN APPLICATION

As a first and simple application, we use the EstiHMM algorithm
to try and correct mistakes in words that have been processed
by Optical Character Recognition software (OCR). We compare
our results with those of the Viterbi algorithm and show that our
algorithm offers a more robust solution.

For example, the word CHE was wrongfully read as CNE by
the OCR software. Using a precise model, the Viterbi algorithm
could not correct this mistake, as it suggested that the original
correct word was ONE. The EstiHMM algorithm on the other
hand, using an imprecise model, concluded that it was not sure
enough to offer a single solution and suggested CBE, CHE,
CNE, CZE and ONE as possible solutions, thereby including
the correct one.

VIII. CONCLUSIONS

Interpreting the graphical structure of an imprecise hidden
Markov model as a credal network under epistemic irrelevance,
leads to an efficient algorithm for finding the maximal state
sequences for a given output sequence. Preliminary experiments
and a first simple application show that this algorithm extends
the well-known Viterbi algorithm in such a way that it allows for
imprecision and that it can be used to robustify the inferences
made by a classical precise model.
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