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ABSTRACT. We generalise the randomness test definitions in the literature for both the
Martin-Löf and Schnorr randomness of a series of binary outcomes, in order to allow for
interval-valued rather than merely precise forecasts for these outcomes, and prove that
under some computability conditions on the forecasts, our definition of Martin-Löf test
randomness is related to Levin’s uniform randomness. We also show that these new ran-
domness notions are, under some computability and non-degeneracy conditions on the
forecasts, equivalent to the martingale-theoretic versions we introduced in earlier papers.
In addition, we prove that our generalised notion of Martin-Löf randomness can be char-
acterised by universal supermartingales and universal randomness tests.

1. INTRODUCTION

In a number of recent papers [4, 9, 10], two of us (De Cooman and De Bock) have
shown how to associate various notions of algorithmic randomness with interval—rather
than precise—forecasts for a sequence of binary outcomes, and argued why that is useful
and interesting. Providing such interval forecasts for binary outcomes is a way to allow for
imprecision in the resulting probability models. Still more recent papers [19–21] by the
three of us explore these ideas further, and identify interesting relations between random-
ness associated with imprecise (interval) and precise forecasts.

All of this work follows the martingale-theoretic approach to randomness, where a
sequence of outcomes is considered to be random if there’s some specific type of super-
martingale that becomes unbounded on that sequence in some specific way. How a super-
martingale is defined in this context, is closely related to the interval forecasts involved,
and how they can be interpreted.

There are, of course, other ways to approach and define algorithmic randomness, be-
sides the martingale-theoretic one [2]: via randomness tests [14, 18, 24], via Kolmogorov
complexity [14, 17, 18, 24, 25], via order-preserving transformations of the event tree as-
sociated with a sequence of outcomes [24], via specific limit laws (such as Lévy’s zero-one
law) [15, 44], and so on.

Here, we consider one of these alternatives, the randomness test approach, and we show
how we can define specific tests involving interval forecasts that allow us to introduce two
new flavours of test(-theoretic) randomness for imprecise forecasts: one reminiscent of
the original Martin-Löf approach, and another of the original Schnorr approach. We then
proceed to show that these test-theoretic notions of randomness are, under some computab-
ility and non-degeneracy conditions on the forecasts, equivalent to the martingale-theoretic
notions introduced in our earlier papers [4, 9, 10]. We thus succeed in extending, to our
more general imprecise probabilities context, earlier results by Schnorr [24] and Levin [16]
showing that the test and martingale-theoretic randomness notions are essentially equival-
ent for precise forecasts.1

Given the state of the art in algorithmic randomness, it may seem unsurprising that there
should be a connection between martingale-theoretic and randomness test approaches to
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1Schnorr proves this for fair-coin forecasts only.
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randomness for imprecise (interval-valued) forecasting systems, as they are known to be
there for their precise (point-valued) special cases; indeed, our suspicion that there might
be such a connection in more general contexts is what made us look for it, initially. That
is not to say, however, that proving that there is such a link is a straightforward matter,
especially since a number of the techniques used for additive probabilities and linear ex-
pectations become unworkable, or need a fundamentally different approach, when dealing
with imprecise or game-theoretic probabilities and expectations, which are typically non-
additive and non-linear. The fact that we can identify new ways of establishing the connec-
tion between martingale-theoretic and randomness test approaches in a more general and
arguably more abstract setting would argue in favour of our method of approach.

How have we structured our argumentation? When we work with precise forecasts,
there are suitable notions of corresponding supermartingales and of corresponding meas-
ures on the set of all outcome sequences. These allow us to formulate randomness defini-
tions that follow, respectively, a martingale-theoretic and a randomness test approach. Un-
surprisingly therefore, we’ll need to suitably extend such notions of supermartingale and
measure to allow for interval forecasts, in order to help us broaden the existing randomness
definitions on both approaches. In Section 2 we present an overview of the mathematical
tools required to achieve this generalisation: we deal with generalised supermartingales
in Section 2.3, and we extend the notion of a measure to that of an upper expectation in
Section 2.4. All of these results are by now well established in the field of imprecise prob-
abilities [1, 5, 37, 41] and game-theoretic probability [26, 27], so this section is intended
as a basic overview of relevant results in that literature.

The basic ideas and results from computability theory that we’ll need to rely on, are
summarised briefly in Section 3.

In Section 4, we summarise the main ideas in our earlier paper [4], which allowed us to
extend the existing martingale-theoretic versions of Martin-Löf randomness and Schnorr
randomness to deal with interval forecasts. Extending, on the other hand, the existing
randomness test definitions of Martin-Löf randomness and Schnorr randomness to deal
with interval forecasts is the subject of Section 5.

In Section 6 we provide sufficient conditions for the martingale-theoretic and random-
ness test approaches to Martin-Löf randomness to be equivalent, and we do the same for
Schnorr randomness in Section 8.

In Section 7 we prove that our notion of Martin-Löf test randomness for a(n interval-
valued) forecasting system can be reinterpreted as an application of Levin’s [3, 16] notion
of Martin-Löf test randomness—also known as uniform randomness—to effectively com-
pact classes of measures.

As a bonus, we use our argumentation in the earlier sections to prove in Section 9 that
there are universal test supermartingales and universal randomness tests for our general-
isations of Martin-Löf randomness.

This paper unites results from two distinct areas of research, imprecise and game-
theoretic probabilities on the one hand and algorithmic randomness on the other. We realise
that the intersection of both research communities is fairly small, and we’ve therefore tried
to make the introductory discussion in Sections 2 and 3 as self-contained as possible, by
including relevant results and even proofs from both research fields, in order to make it
serve as a footbridge between them.

In order not to interrupt the flow of the discussion too much, we’ve moved all proofs to
appendices: the proofs for the introductory discussion, which are based on material in the
literature, to Appendix A, and the proofs of new results to Appendix B.
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2. FORECASTING SYSTEMS, SUPERMARTINGALES AND UPPER EXPECTATIONS

2.1. Forecast for a single outcome. Let’s begin by describing a single forecast as a game
played by two players, a Forecaster and a Sceptic.2

We consider a variable X that may assume any of the two values in the doubleton {0,1},
and whose actual value is initially unknown.

A Forecaster specifies an interval bound I = [p, p] ⊆ [0,1] for the expectation of X—
or equivalently, for the probability that X = 1. This interval forecast I is interpreted as a
commitment for Forecaster to adopt p as his maximum acceptable buying price and p as
his minimum acceptable selling price for the uncertain reward (also called gamble) X—
expressed in units of some linear utility scale, called utiles.3

We take this to imply that Forecaster commits to offering to some Sceptic (any combin-
ation of) the following gambles, whose uncertain pay-offs are also expressed in utiles:

(i) for all real q ≤ p and all real α ≥ 0, Forecaster offers the gamble α[q−X] to Sceptic;
(ii) for all real r ≥ p and all real β ≥ 0, Forecaster offers the gamble β [X− r] to Sceptic.

Sceptic can then pick any combination of the gambles offered to him by Forecaster, or in
other words, she accepts the gamble (with reward function)

α[q−X]+β [X− r] for some choice of q ≤ p, r ≥ p and α,β ≥ 0.

Then finally, when the actual value x of the variable X in {0,1} becomes known to both
Forecaster and Sceptic, the corresponding reward α[q− x]+β [x− r] is paid by Forecaster
to Sceptic.

This game already allows us to introduce some of the terminology, definitions and nota-
tion that we’ll use further on. We call elements x of {0,1} outcomes, and elements p
of the real unit interval [0,1] serve as precise forecasts. We denote by I the set of all
imprecise, or interval, forecasts I: non-empty and closed subintervals of the real unit inter-
val [0,1]. Any interval forecast I has a smallest element min I and a greatest element max I,
so I = [min I,max I]. We’ll also use the generic notations p := min I and p := max I for its
lower and upper bound, respectively. Clearly, an interval forecast I = [p, p] is precise when
p = p =: p, and we then make no distinction between a singleton interval forecast {p} ∈I
and the corresponding precise forecast p ∈ [0,1]; this also means we’ll consider the set of
precise forecasts [0,1] to be a subset of the set of imprecise forecasts I .

Any gamble on the variable X is completely determined by its reward (in utiles) when
X = 1 and when X = 0. It can therefore be represented as a map f : {0,1} → R, or equi-
valently, as a point ( f (1), f (0)) in the two-dimensional linear space R2. We denote the set
of all such maps f : {0,1}→ R by G ({0,1}). The gamble f (X) is then the corresponding
(possibly negative) increase in Sceptic’s capital, as a function of the variable X. As we
indicated above, the gambles f (X) that Forecaster actually offers to Sceptic as a result of
his interval forecast I constitute a closed convex cone AI in R2:

AI :=
{

α[q−X]+β [X− r] : q ≤ p, r ≥ p and α,β ∈ R≥0
}
, (1)

where we use R≥0 to denote the set of non-negative real numbers.
It turns out that this cone is quite easily characterised by an upper expectation func-

tional, as we’ll now explain. It won’t surprise the reader if we associate with any precise
forecast p ∈ [0,1] the expectation (functional) Ep, defined by

Ep( f ) := p f (1)+(1− p) f (0) for any gamble f : {0,1}→ R.

But it so happens that we can just as well associate (lower and upper) expectation func-
tionals with an interval forecast I ∈ I . The lower expectation (functional) EI associated

2The names Sceptic and Forecaster are borrowed from Shafer and Vovk’s work [26, 27].
3Our exposition here uses maximum rather than the more common [41] supremum acceptable buying prices,

and minimum rather the more common infimum acceptable selling prices. We show in Ref. [4, App. A] that the
difference is of no consequence.
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with I is defined by

EI( f ) := min
p∈I

Ep( f ) = min
p∈I

[
p f (1)+(1− p) f (0)

]
=

{
Ep( f ) if f (1)≥ f (0)
Ep( f ) if f (1)≤ f (0)

for any gamble f ∈ G ({0,1}),

and similarly, the upper expectation (functional) EI is defined by

EI( f ) := max
p∈I

Ep( f ) =

{
Ep( f ) if f (1)≥ f (0)
Ep( f ) if f (1)≤ f (0)

=−EI(− f )

for any gamble f ∈ G ({0,1}), (2)

where the last equality identifies the conjugacy relationship between the lower and up-
per expectations EI and EI . If we now combine the characterisation (1) of the gambles
available to Sceptic with the properties of the upper expectation EI , listed in Proposition 1
below, then it is easy to see that4

f (X) ∈ AI ⇔ EI( f )≤ 0, for all f ∈ G ({0,1}).

In fact, the condition EI( f ) ≤ 0 is equivalent to (∀p ∈ I)Ep( f ) ≤ 0, so the convex cone
of all available gambles is the intersection of all half-planes determined by Ep( f ) ≤ 0 for
all p ∈ I.

The functionals EI and EI have the following fairly immediate coherence properties,
typical for the more general lower and upper expectation functionals defined on arbitrary
gamble spaces [37, 41]; see also Proposition 2 further on.

Proposition 1. Consider any interval forecast I ∈I . Then for all gambles f ,g∈G ({0,1}),
all µ ∈ R and all λ ∈ R≥0:
C1. min f ≤ EI( f )≤ EI( f )≤ max f ; [bounds]
C2. EI(λ f ) = λEI( f ) and EI(λ f ) = λEI( f ); [non-negative homogeneity]
C3. EI( f +g)≤ EI( f )+EI(g) and EI( f +g)≥ EI( f )+EI(g); [sub/super-additivity]
C4. EI( f +µ) = EI( f )+µ and EI( f +µ) = EI( f )+µ; [constant additivity]
C5. if f ≤ g then EI( f )≤ EI(g) and EI( f )≤ EI(g); [monotonicity]
C6. if the sequence fn of gambles in G ({0,1}) converges uniformly to the gamble f , then

EI( fn)→ EI( f ) and EI( fn)→ EI( f ). [uniform continuity]

2.2. Forecasting for a sequence of outcomes: event trees and forecasting systems.
In a next step, we extend this set-up by considering a sequence of repeated versions of
the forecasting game in the previous section. The ideas behind this extension are rather
straightforward and can be sketched as follows. At each successive stage k ∈N, Forecaster
presents an interval forecast Ik = [pk, pk] for the unknown variable Xk. This effectively
allows Sceptic to choose any gamble fk(Xk) such that EIk( fk) ≤ 0. When the value xk
for Xk becomes known, this results in a gain in capital fk(xk) for Sceptic at stage k. This
gain fk(xk) can, of course, be negative, resulting in an actual decrease in Sceptic’s capital.
Here and in what follows, N denotes the set of all natural numbers, without zero. We’ll
also use the notation N0 := N∪{0} for the set of all non-negative integers.

Let’s now describe the formal framework that will allow us to better investigate several
interesting aspects of this extended forecasting set-up.

We call (x1,x2, . . . ,xn, . . .) an outcome sequence, and collect all such outcome sequences
in the set Ω := {0,1}N. Finite outcome sequences x1:n := (x1, . . . ,xn) are collected in the
set S := {0,1}∗ =

⋃
n∈N0

{0,1}n. Such finite outcome sequences s in S and infinite outcome
sequences ω in Ω constitute the nodes—called situations—and paths in an event tree with
unbounded horizon, partially depicted below.

4The proof is straightforward; see also Refs. [9] and [21, Prop. 2].
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The empty sequence x1:0 =: □ is also called the initial situation. Any path ω ∈ Ω is an
infinite outcome sequence, and can therefore be identified with (the binary expansion of) a
real number in the unit interval [0,1].

For any path ω ∈ Ω, the initial sequence that consists of its first n elements is a situation
in {0,1}n that is denoted by ω1:n. Its n-th element belongs to {0,1} and is denoted by ωn.
As a convention, we let its 0-th element be the initial situation ω1:0 = ω0 :=□.

For any situation s ∈ S and any path ω ∈ Ω, we say that ω goes through s if there’s
some n∈N0 such that ω1:n = s. We denote by JsK the so-called cylinder set of all paths ω ∈
Ω that go through s. More generally, if S ⊆ S is some set of situations, then we denote
by JSK :=

⋃
s∈SJsK the set of all paths that go through some situation in S.

We write that s ⊑ t, and say that the situation s precedes the situation t, when every path
that goes through t also goes through s—so s is a precursor of t. An equivalent condition
is of course that JtK ⊆ JsK. We may then also write t ⊒ s and say that t follows s.

We say that the situation s strictly precedes the situation t, and write s ⊏ t, when s ⊑ t
and s ̸= t, or equivalently, when JtK ⊂ JsK.

Finally, we say that two situations s and t are incomparable, and write s ∥ t, when
neither s ⊑ t nor t ⊑ s, or equivalently, when JsK∩ JtK = /0, so there’s no path that goes
through both s and t.

For any situation s = (x1, . . . ,xn) ∈ S, we call n = |s| its depth in the tree, so |s| ≥
|□|= 0. We use a similar notational convention for situations as for paths: we let sk := xk
and s1:k := (x1, . . . ,xk) for all k ∈ {1, . . . ,n}, and s1:0 = s0 := □. Also, for any x ∈ {0,1},
we denote by sx the situation (x1, . . . ,xn,x).

A subset K of S is called a partial cut—the term ‘prefix free set’ is also commonly
used in the algorithmic randomness literature—if its elements are mutually incomparable,
or in other words constitute an anti-chain for the partial order ⊑, meaning that s ∥ t, or
equivalently, JsK∩ JtK = /0, for all s, t ∈ K with s ̸= t. With such a partial cut K, there
corresponds a set JKK :=

⋃
s∈KJsK, which contains all paths that go through (some situation

in) K, and the corresponding collection of cylinder sets {JsK : s ∈ K} constitutes a partition
of JKK.

For any situation s and any partial cut K, there are a number of possibilities. We say that
s precedes K, and write s ⊑ K, if s precedes some situation in K: (∃t ∈ K)s ⊑ t. Similarly,
we say that s strictly precedes K, and write s ⊏ K, if s strictly precedes some situation
in K: (∃t ∈ K)s ⊏ t. We say that s follows K, and write s ⊒ K, if s follows some—then
necessarily unique—situation in K: (∃t ∈K)s⊒ t. Similarly for s strictly follows K, written
as s ⊐ K. Of course, the situations in K are the only ones that both precede and follow K.
And, finally, we say that s is incomparable with K, and write s ∥ K, if s neither follows nor
precedes (any situation in) K: (∀t ∈ K)s ∥ t.

In the set-up described above, Forecaster only provides interval forecasts Ik after ob-
serving an actual sequence (x1, . . . ,xk−1) of outcomes, and a corresponding sequence of
available gambles ( f1, . . . , fk−1) that Sceptic has chosen. This is the essence of prequential
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forecasting [6–8]. In our present discussion, it will be advantageous to consider an altern-
ative setting where, before the start of the game, Forecaster specifies a forecast Is in each
of the possible situations s in the event tree S; see the figure below.
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This leads us to the notion of a forecasting system.

Definition 1 (Forecasting system). A forecasting system is a map ϕ : S→ I that associ-
ates an interval forecast ϕ(s) ∈I with every situation s in the event tree S. With any fore-
casting system ϕ we can associate two maps ϕ,ϕ : S→ [0,1], defined by ϕ(s) := minϕ(s)
and ϕ(s) := maxϕ(s) for all s ∈ S. A forecasting system ϕ is called precise if ϕ = ϕ . We
denote by Φ the set I S of all forecasting systems and by Φpr its subset [0,1]S of all precise
forecasting systems.

We use the notation ϕ ⊆ ϕ∗ to express that the forecasting system ϕ∗ is at least as
conservative as ϕ , meaning that ϕ(s)⊆ ϕ∗(s) for all s ∈ S.

In each situation s ∈ S, the interval forecast ϕ(s) corresponds to a so-called local upper
expectation Eϕ(s). These forecasts and their associated upper expectations allow us to turn
the event tree into a so-called imprecise probability tree, with associated supermartingales
and global upper (and lower) expectations. In the next two sections, we give a brief outline
of how to do this. For more details, we refer to earlier papers [5, 12, 13], inspired by Shafer
and Vovk’s work [26–28, 39].

As an example, consider the following forecasting system borrowed from the imprecise
probabilities literature, based on the imprecise Dirichlet model [11, 42, 43]:

ϕ(s) :=
[ n1(s)

n0(s)+n1(s)+ τ
,

n1(s)+ τ

n0(s)+n1(s)+ τ

]
for all s ∈ S,

where τ is some strictly positive constant, n0(s) is the number of observations of outcome 0
in situation s, and n1(s) is the number of observations of outcome 1 in s. It starts with the
vacuous forecast ϕ(□) = [0,1], becomes more precise as more observations are made, and
converges to the observed relative frequency of ones in the long run.

2.3. Supermartingales. Recall that we use a forecasting system ϕ to identify Forecaster’s
forecasts ϕ(s) in each of the possible situations s ∈ S. In a similar way, we can introduce a
strategy as a way to identify Sceptic’s choice of gamble in each of the situations.

Definition 2 (Strategy). A strategy is a map σ : S→ G ({0,1}). It allows us to associate
a gamble σ(s) ∈ G ({0,1}) with each situation s in the event tree S. We call a strategy σ

compatible with a forecasting system ϕ if it only selects gambles that are offered by the
(Forecaster with) forecasting system ϕ in the sense that Eϕ(s)(σ(s))≤ 0 for all s ∈ S.

We infer from the example of strategies and forecasting systems above that it can be
useful to associate objects with situations, or in other words, to consider maps on S. We’ll
call any map F defined on S a process. We now discuss other useful special cases besides
forecasting systems and strategies.

A real process is a real-valued process: it associates a real number F(s) ∈R with every
situation s ∈ S. Similarly, a rational process is a process that assumes values in the set Q
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of all rational numbers, and is therefore a special real process. A real process is called
non-negative if it is non-negative in all situations, and a positive real process is (strictly)
positive in all situations.

With any real process F , we can associate a process ∆F , called its process difference,
defined as follows: for every situation s ∈ S, ∆F(s) is the gamble on {0,1} defined by

∆F(s)(x) := F(sx)−F(s) for all x ∈ {0,1},

or in shorthand, with obvious notations, ∆F(s) = F(s ·)−F(s), where the ‘·’ in ‘s ·’ is a
placeholder for any element x of {0,1}. The initial value of a process F is its value F(□)
in the initial situation □. Clearly, a real process is completely determined by its initial
value and its process difference, since

F(x1, . . . ,xn) = F(□)+
n−1

∑
k=0

∆F(x1, . . . ,xk)(xk+1) for all (x1, . . . ,xn) ∈ S.

Now, if we consider any strategy σ for Sceptic, then for any s ∈ S,

Fσ (s) := Fσ (□)+
|s|−1

∑
k=0

σ(s1:k)(sk+1)

is the capital she has accumulated in situation s by starting in the initial situation □ with
initial capital Fσ (□) and selecting the gamble σ(s1:k) in each of the situations s1:k strictly
preceding s. This tells us that, as soon as we fix the initial values F(□), there’s a one-
to-one correspondence between real processes F and strategies σ by letting σ 7→ Fσ and,
conversely, F 7→ σF := ∆F . Any real process F can therefore be seen as a capital process
for Sceptic, generated by a suitably chosen strategy σ := ∆F and initial capital F(□).

We now turn to the special case of the capital processes for those strategies that are
compatible with a given forecasting system ϕ . A supermartingale M for ϕ is a real process
such that

Eϕ(s)(∆M(s))≤ 0, or equivalently, Eϕ(s)(M(s ·))≤ M(s), for all s ∈ S, (3)

or in other words, such that the corresponding strategy σM := ∆M is compatible with ϕ .
Supermartingale differences have non-positive upper expectation, so roughly speaking su-
permartingales are real processes that Forecaster expects to decrease.

A real process M is a submartingale for ϕ if −M is a supermartingale, meaning that
Eϕ(s)(∆M(s)) ≥ 0 for all s ∈ S. Submartingale differences have non-negative lower ex-
pectation, so roughly speaking submartingales are real processes that Forecaster expects
to increase. We denote the set of all supermartingales for a given forecasting system ϕ

by Mϕ
, and Mϕ :=−Mϕ

denotes the set of all submartingales for ϕ .
We call test supermartingale for ϕ any non-negative supermartingale M for ϕ with

initial value M(□) = 1. These test supermartingales will play a crucial part further on in
this paper. They correspond to the capital processes that Sceptic can build by starting with
unit capital and selecting, in each situation, a gamble that is offered there as a result of
Forecaster’s specification of the forecasting system ϕ , and that make sure that she never
needs to resort to borrowing.

2.4. Upper expectations. A gamble on Ω, also called a global gamble, is a bounded real-
valued map defined on the so-called sample space, which is the set Ω of all paths. We
denote the set of all global gambles by G (Ω). A global event G is a subset of Ω, and its
indicator IG is the gamble on Ω that assumes the value 1 on G and 0 elsewhere.

The super(- and sub)martingales for a forecasting system ϕ can be used to associate
so-called global conditional upper and lower expectation functionals—defined on global
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gambles—with the forecasting system ϕ:5

Eϕ(g|s) := inf
{

M(s) : M ∈Mϕ
and liminfM≥s g

}
(4)

Eϕ(g|s) :=sup
{

M(s) : M ∈Mϕ and limsupM≤s g
}

(5)

for all gambles g on Ω and all situations s ∈ S. In these expressions, we use the notations

liminfM(ω) := liminf
n→∞

M(ω1:n) and limsupM(ω) := limsup
n→∞

M(ω1:n) for all ω ∈ Ω,

and take g≥s h to mean that the global gamble g dominates the global gamble h on the
cylinder set JsK—in all paths through s—or in other words that (∀ω ∈ JsK)g(ω) ≥ h(ω).
Similarly, g≤s h means that (∀ω ∈ JsK)g(ω) ≤ h(ω). Thus, for instance, Eϕ(g|s) is the
infimum capital that Sceptic needs to start with in situation s in order to be able to hedge
the gamble g on all paths that go through s.

In the particular case that s =□, we find the (so-called unconditional) upper and lower
expectations Eϕ := Eϕ(·|□) and Eϕ := Eϕ(·|□).

Upper and lower expectations are clearly related to each other through conjugacy:

Eϕ(g|s) =−Eϕ(−g|s) for all gambles g on Ω and all situations s ∈ S. (6)

These upper and lower expectations satisfy a number of very useful properties, which
we list below. We’ll make repeated use of them in what follows, and we provide most of
their proofs in the Appendix A for the sake of completeness and easy reference, even if
proofs for similar results can also be found elsewhere [5, 26, 27, 31, 34, 36].

For any global gamble g and any situation s ∈ S, we’ll use the notations inf(g|s) :=
inf{g(ω) : ω ∈ JsK} and sup(g|s) := sup{g(ω) : ω ∈ JsK}. Observe that then inf(g|□) =
infg and sup(g|□) = supg. Also, with any so-called local gamble f on {0,1} and any
situation s ∈ S, we associate the global gamble fs, defined by

fs(ω) :=

{
f (x) if ω ∈ JsxK with x ∈ {0,1}
0 otherwise, so if ω /∈ JsK

for all ω ∈ Ω.

Proposition 2 (Properties of upper/lower expectations). Consider any forecasting sys-
tem ϕ ∈ Φ. Then for all gambles g,gn,h on Ω, with n ∈ N0, for all gambles f on {0,1},
all λ ∈ R≥0, and all situations s ∈ S:
E1. inf(g|s)≤ Eϕ(g|s)≤ Eϕ(g|s)≤ sup(g|s); [bounds]
E2. Eϕ(λg|s) = λEϕ(g|s)) and Eϕ(λg|s) = λEϕ(g|s); [non-negative homogeneity]
E3. Eϕ(g|s) +Eϕ(h|s) ≤ Eϕ(g+ h|s) ≤ Eϕ(g|s) +Eϕ(h|s) ≤ Eϕ(g+ h|s) ≤ Eϕ(g|s) +

Eϕ(h|s); [mixed sub/super-additivity]
E4. Eϕ(g+h|s) = Eϕ(g|s)+hs and Eϕ(g+h|s) = Eϕ(g|s)+hs if h assumes the constant

value hs on JsK; [constant additivity]
E5. Eϕ(g|s) = Eϕ(gIJsK|s) and Eϕ(g|s) = Eϕ(gIJsK|s); [restriction]
E6. if g≤s h then Eϕ(g|s)≤ Eϕ(h|s) and Eϕ(g|s)≤ Eϕ(h|s); [monotonicity]
E7. Eϕ( fs|s) = Eϕ(s)( f ) and Eϕ( fs|s) = Eϕ(s)( f ); [locality]
E8. Eϕ(s)(Eϕ(g|s ·)) = Eϕ(g|s) and Eϕ(s)(Eϕ(g|s ·)) = Eϕ(g|s); [sub/super-martingale]
E9. if gn ↗ g point-wise on JsK, then Eϕ(g|s) = supn∈N0

Eϕ(gn|s). [convergence]

5Several related expressions appear in the literature, the domain of which typically also includes unbounded
and even extended real-valued functions on Ω; see for example Refs. [36, Def. 3] and [35, p. 12]. These expres-
sions are similar, but require supermartingales to be bounded below and submartingales to be bounded above,
and often allow both to be extended real-valued. When applied to gambles, however, all of these expressions are
equivalent; see Refs. [5, Prop. 10] and [36, Prop. 36]. This allows us to apply properties that were proved for
these alternative expressions in our context as well. In particular, we’ll make use of Ref. [36, Thm. 23] in our
proof of Proposition 2, Ref. [35, Prop. 10 and Thm. 6] in our proof of Proposition 7 and Ref. [32, Thm. 13] in
our proof of Theorem 19.
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Property E7 essentially shows that the global models are extensions of the local ones.
Property E8 shows in particular that for any global gamble g, the real process Eϕ(g|•) is a
supermartingale for ϕ .

Extensive discussion in related contexts about why expressions such as (4) and (5) are
interesting as well as useful, can be found in Refs. [5, 13, 26, 27, 31–36].6 We mention
explicitly that for precise forecasting systems, they result in models that coincide with the
ones found in measure-theoretic probability theory; see Refs. [31, 35], and the brief discus-
sion in Section 2.5 further on. Related results can also be found in Refs. [26, Ch. 8] and [27,
Ch. 9]. In particular, for the precise fair-coin forecasting system ϕ1/2, where all local fore-
casts equal 1/2, these models coincide on all measurable global gambles with the usual
uniform (Lebesgue) expectations. More generally, for an interval-valued forecasting sys-
tem ϕ , the upper and lower expectation Eϕ and Eϕ provide tight upper and lower bounds
on the measure-theoretic expectation of measurable global gambles for every precise fore-
casting system ϕpr that is compatible with ϕ , in the sense that ϕpr ⊆ ϕ; see Refs. [31, 32]
for related discussion and, in particular, Theorem 13 in Ref. [32] and Theorem 5.5.10 in
Ref. [31].

For any global event G ⊆ Ω and any situation s ∈ S, the corresponding (conditional) up-
per and lower probabilities are defined by Pϕ(G|s) := Eϕ(IG|s) and Pϕ(G|s) := Eϕ(IG|s).
The following conjugacy relationship for global events follows at once from E4:

Pϕ(G|s) = 1−Pϕ(Gc|s) for all G ⊆ Ω and s ∈ S,
where Gc := Ω\G is the complement of the global event G.

We’ll have occasion to use the following direct corollary a number of times.

Corollary 3. Consider any forecasting system ϕ , any partial cut K ⊆ S, and any s ∈ S.
Then the following statements hold for the real process Pϕ(JKK|•):

(i) Pϕ(JKK|s) = Eϕ(s)(Pϕ(JKK|s ·));
(ii) Pϕ(JKK|•) is a supermartingale for ϕ;

(iii) 0 ≤ Pϕ(JKK|s)≤ 1;
(iv) s ⊒ K ⇒ Pϕ(JKK|s) = 1 and s ∥ K ⇒ Pϕ(JKK|s) = 0;
(v) liminfPϕ(JKK|•)≥ IJKK.

It will also prove useful to have expressions for the upper and lower probabilities of the
cylinder sets. Unlike those for more general global events, they turn out to be particularly
simple and elegant.

Proposition 4. Consider any forecasting system ϕ ∈ Φ and any situation s ∈ S, then

Pϕ(JsK) =
|s|−1

∏
k=0

ϕ(s1:k)
sk+1 [1−ϕ(s1:k)]

1−sk+1

Pϕ(JsK) =
|s|−1

∏
k=0

ϕ(s1:k)
sk+1 [1−ϕ(s1:k)]

1−sk+1 .

The idea for the following elegant and powerful inequality, in its simplest form, is due
to Ville [38].

Proposition 5 (Ville’s inequality [26, 27]). Consider any forecasting system ϕ , any non-
negative supermartingale T for ϕ , and any C > 0, then

Pϕ

({
ω ∈ Ω : sup

n∈N0

T (ω1:n)≥C
})

≤ 1
C

T (□).

Finally, we can see that more conservative forecasting systems lead to more conservative
(larger) upper expectations.

6See footnote 5 for more details.
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Proposition 6. Consider any two forecasting systems ϕ,ψ ∈ Φ such that ϕ ⊆ ψ . Then
(i) any supermartingale for ψ is also a supermartingale for ϕ , so Mψ ⊆Mϕ

;
(ii) Eϕ( f |s)≤ Eψ( f |s) for all global gambles g ∈ G (Ω) and all situations s ∈ S.

2.5. Precise forecasting systems and probability measures. Let’s consider any forecast-
ing system ϕ and any situation s ∈ S. It’s an immediate consequence of E1–E3 that the
set

Gϕ,s(Ω) := {g ∈ G (Ω) : Eϕ(g|s) = Eϕ(g|s)}
of all global gambles g whose (conditional) lower expectation Eϕ(g|s) and (conditional)
upper expectation Eϕ(g|s) in s coincide, is a real linear space; we refer to Ref. [37, Chs. 8
and 9] for a closer study of such linear spaces.

For any such gamble g ∈ Gϕ,s(Ω), we call the common value

Eϕ(g|s) := Eϕ(g|s) = Eϕ(g|s)
the (precise conditional) expectation of the global gamble g in the situation s. Similarly,
for any global event G ⊆ Ω such that IG ∈ Gϕ,s(Ω), we call the common value

Pϕ(G|s) := Pϕ(G|s) = Pϕ(G|s)
the (precise conditional) probability of the global event G in the situation s.

It’s then again an immediate consequence of E1–E3 that

Eϕ(λ f +µg|s) = λEϕ( f |s)+µEϕ(g|s) for all f ,g ∈ Gϕ,s(Ω) and λ ,µ ∈ R,
so the expectation Eϕ(•|s) is a real linear functional on the linear space Gϕ,s(Ω), which, by
the way, contains all constant global gambles, by E1. That Eϕ(•|s) is bounded in the sense
of E1, normalised as a consequence of E1, and monotone in the sense of E6, also justifies
our calling it an ‘expectation’.

It’s not hard to see that ϕ ⊆ ψ implies that Gϕ,s(Ω) ⊇ Gψ,s(Ω), so we gather that the
more precise ϕ , the larger Gϕ,s(Ω). The linear space Gϕ,s(Ω) will be maximally large when
ϕ is precise, or in other words when ϕ = ϕ .

Let’s now assume that the forecasting system ϕ = ϕpr ∈ Φpr is indeed precise, and take
a better look at the linear space Gϕpr,□(Ω) of those global gambles g that have a precise
(unconditional) expectation Eϕpr(g) = Eϕpr(g|□). As is quite often done, we provide the
set of all paths Ω with the Cantor topology, whose base is the collection of all cylinder
sets {JsK : s ∈ S}; see for instance Ref. [14, Sec. 1.2]. All these cylinder sets JsK are clopen
in this topology. The corresponding Borel algebra B(Ω) is the σ -algebra generated by this
Cantor topology.

We’ll need the following proposition further on in Section 5.2 (and in particular Propos-
ition 13) to show that our newly proposed notion of a Schnorr test for a forecasting system
properly generalises Schnorr’s original notion of a totally recursive sequential test for the
fair-coin forecasting system ϕ1/2, and in Section 7 to relate our version of Martin-Löf test
randomness to uniform randomness.

Proposition 7. Assume that the forecasting system ϕ =ϕpr ∈Φpr is precise. Then Gϕpr,□(Ω)
includes the linear space of all Borel measurable global gambles, and Eϕpr corresponds on
that space with the usual expectation of the countably additive probability measure given
by Ionescu Tulcea’s extension theorem [30, Thm. II.9.2]. In particular, for any partial
cut K ⊆ S, we have that IJKK ∈ Gϕpr,□(Ω) and

Pϕpr(JKK) = ∑
s∈K

|s|−1

∏
k=0

ϕpr(s1:k)
sk+1 [1−ϕpr(s1:k)]

1−sk+1 .

As a direct consequence, we can associate with any precise forecasting system ϕpr ∈Φpr
a probability measure µϕpr on the measurable space (Ω,B(Ω)) defined by restricting the
probability Pϕpr to the Borel measurable events:

µ
ϕpr(G) := Pϕpr(G) = Eϕpr(IG) for all G ∈ B(Ω). (7)
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If we consider any Borel measurable gamble g, then the result above tells us that

Eϕpr(g) =
∫

Ω

g(ω)dµ
ϕpr(ω).

3. NOTIONS OF COMPUTABILITY

Computability theory studies what it means for a mathematical object to be implement-
able, or in other words, achievable by some computation on a machine. It considers as
basic building blocks partial recursive natural maps φ : N0 → N0, which are maps that
can be computed by a Turing machine. This means that there’s some Turing machine that
halts on the input n ∈ N0 and outputs the natural number φ(n) ∈ N0 if φ(n) is defined,
and doesn’t halt otherwise. By the Church–Turing (hypo)thesis, this is equivalent to the
existence of a finite algorithm that, given any input n ∈ N0, outputs the non-negative in-
teger φ(n) ∈ N0 if φ(n) is defined, and never finishes otherwise; in what follows, we’ll
often use this equivalence without mentioning it explicitly. If the Turing machine halts for
all inputs n ∈ N0, that is, if the Turing machine computes the non-negative integer φ(n) in
a finite number of steps for every n ∈ N0, then the map φ is defined for all arguments and
we call it total recursive, or simply recursive [14, Ch. 2].

Instead of N0, we’ll also consider functions with domain or codomain {0,1}, N, S, S×
N0, Q or any other countable set D whose elements can be encoded by the natural numbers;
the choice of encoding isn’t important, provided we can algorithmically decide whether a
natural number is an encoding of an object and, if this is the case, we can find an encoding
of the same object with respect to the other encoding [29, p. xvi]. A function φ : D → D ′

is then called partial recursive if there’s a Turing machine that, when given the natural-
valued encoding of any d ∈ D , outputs the natural-valued encoding of φ(d) ∈ D ′ if φ(d)
is defined, and never halts otherwise. By the Church–Turing thesis, this is equivalent to the
existence of a finite algorithm that, when given the input d ∈ D , outputs the object φ(d) ∈
D ′ if φ(d) is defined, and never finishes otherwise. If the Turing machine halts on all
natural numbers that encode some element d ∈ D , or equivalently, if the finite algorithm
outputs an element φ(d) ∈ D ′ for every d ∈ D , then we call φ total recursive, or simply
recursive. When D ′ = Q, then for any rational number α ∈ Q and any two recursive
rational maps q1,q2 : D → Q, the following rational maps are clearly recursive as well:
q1 + q2, q1 · q2, q1/q2 with q2(d) ̸= 0 for all d ∈ D , max{q1,q2}, αq1 and ⌈q1⌉. Since
a finite number of finite algorithms can always be combined into one, it follows from the
foregoing that the rational maps min{q1,q2} and ⌊q1⌋ are also recursive.

We’ll also consider notions of implementability for sets of objects. For any countable
set D whose elements can be encoded by the natural numbers, a subset D ⊆ D is called
recursively enumerable if there’s a Turing machine that halts on every natural number that
encodes an element d ∈ D, but never halts on any natural number that encodes an ele-
ment d ∈D \D [14, Def. 2.2.1]. If both the set D and its complement D \D are recursively
enumerable, then we call D recursive. This is equivalent to the existence of a recursive
indicator ID : D → {0,1} that outputs 1 for all d ∈ D, and outputs 0 otherwise [14, p. 11].
For any indexed family (Dd′)d′∈D ′ , with Dd′ ⊆ D for all d′ ∈ D ′ and D ′ a countable set
whose elements can be encoded by the natural numbers, we say that Dd′ is recursive(ly
enumerable) effectively in d′ ∈ D ′ if there’s a recursive(ly enumerable) set D ⊆ D ′×D
such that Dd′ = {d ∈ D : (d′,d) ∈D} for all d′ ∈ D ′.

Countably infinite sets can also be used to come up with a notion of implementability
for uncountably infinite sets of objects. Consider, as an example, a set of paths G ⊆ Ω. It’s
called effectively open if there’s some recursively enumerable set A ⊆ S such that G = JAK.
For any indexed family (Gd)d∈D , with Gd ⊆ Ω for all d ∈ D , we say that Gd is effectively
open, effectively in d ∈ D if there’s some recursively enumerable set D⊆ D ×S such that
Gd =

⋃
{JsK ⊆ Ω : (d,s) ∈D} for all d ∈ D .
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Recursive functions and recursively enumerable sets can also be used to define notions
of implementability for maps whose codomain is uncountably infinite, such as real-valued
maps. For any countable set D whose elements can be encoded by the natural numbers,
a real map r : D → R is called lower semicomputable if there’s some recursive rational
map q : D ×N0 →Q such that q(d,n+1)≥ q(d,n) and r(d) = limm→∞ q(d,m) for all d ∈
D and n ∈ N0. Equivalently, a real map r : D → R is lower semicomputable if and only if
the set {(d,q)∈D×Q : r(d)> q} is recursively enumerable [14, Sec. 5.2]; in this case, we
also say that the set {(d,x) ∈ D ×R : r(d)> x} is effectively open.7 A real map r : D →R
is called upper semicomputable if −r is lower semicomputable. If a real map r : D → R
is both lower and upper semicomputable, then we call it computable; we then also say
that r(d) is a computable real effectively in d ∈ D . This is equivalent to the existence of
a recursive rational map q : D ×N0 → Q such that |r(d)− q(d,N)| ≤ 2−N for all d ∈ D
and N ∈ N0 [4, Props. 3 and 4]. It is also equivalent to the existence of two recursive
maps q : D ×N0 →Q and e : D ×N0 →N0 such that |r(d)−q(d, ℓ)| ≤ 2−N for all d ∈ D ,
N ∈N0 and ℓ≥ e(d,N) [4, Prop. 3]. A real number α ∈R is then called computable if it is
computable as a real map on a singleton. For any computable real number α ∈ R and any
two computable real maps r1,r2 : D →R, the following real maps are computable as well:
r1 + r2, r1 · r2, r1/r2 with r2(d) ̸= 0 for all d ∈ D , max{r1,r2}, αr1, exp(r1) and log2(r1)
with r1(d)> 0 for all d ∈D [23, Sec. 0.2]. Moreover, a forecasting system ϕ ∈ Φ is called
computable if the two real processes ϕ,ϕ are computable.

Computable real maps can also be used to show that another real map r : D → R is
computable or lower semicomputable. If there’s some computable real map q : D ×N0 →
R such that |r(d)− q(d,N)| ≤ 2−N for all d ∈ D and N ∈ N0, then the real map r is
computable and we say that q converges effectively to r [23, Sec 0.2]. Equivalently, the
real map r is computable if and only if there’s some computable real map q : D ×N0 → R
and some recursive map e : D ×N0 → N0 such that |r(d)− q(d, ℓ)| ≤ 2−N for all d ∈ D ,
N ∈N0 and ℓ≥ e(d,N), and we then also say that q converges effectively to r [23, Sec 0.2].
Finally, if there’s some computable real map q : D×N0 →R such that q(d,n+1)≥ q(d,n)
and r(d) = limm→∞ q(d,m) for all n ∈ N0, then the real map r is lower semicomputable;
since we haven’t found an explicit proof for this last property in the relevant literature, we
provide one in Appendix A.

Proposition 8. Consider any countable set D whose elements can be encoded by the nat-
ural numbers. Then a real map r : D →R is lower semicomputable if there’s a computable
real map q : D ×N0 → R such that q(d,n+ 1) ≥ q(d,n) and r(d) = limm→∞ q(d,m) for
all d ∈ D and n ∈ N0.

4. RANDOMNESS VIA SUPERMARTINGALES

We now turn to the martingale-theoretic notions of Martin-Löf and Schnorr randomness
associated with an interval-valued forecasting system ϕ , which we borrow from our earlier
paper on randomness and imprecision [4]. We limit ourselves here to a discussion of the
definitions of these randomness notions, and refer to that earlier work for an extensive
account of their properties, relevance and usefulness.

Definition 3 (Martin-Löf randomness [4]). Consider any forecasting system ϕ : S → I
and any path ω ∈ Ω. We call ω Martin-Löf random for ϕ if all lower semicomputable test
supermartingales T for ϕ remain bounded above on ω , meaning that there’s some BT ∈ R
such that T (ω1:n)≤ BT for all n ∈ N0, or equivalently, that supn∈N0

T (ω1:n)< ∞. We then
also say that the forecasting system ϕ makes ω Martin-Löf random.

7This is the second time we encounter the term ‘effectively open’ in this section. Both definitions, the one
for effectively open subsets of Ω and the one for effectively open subsets of D ×R, are instances of a general
definition of effective openness; see for instance the appendix on Effective Topology in Ref. [40].
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In other words, Martin-Löf randomness of a path means that there’s no strategy leading to
a lower semicomputable capital process that starts with unit capital and avoids borrowing,
and that allows Sceptic to increase her capital without bounds by exploiting the bets on the
outcomes along the path that are made available to her by Forecaster’s specification of the
forecasting system ϕ .

When the forecasting system ϕ is non-degenerate,8 precise and computable, our defini-
tion reduces to that of Martin-Löf randomness on the Schnorr–Levin martingale-theoretic
account.9 We propose to continue speaking of Martin-Löf randomness also when ϕ is no
longer precise, computable, or non-degenerate. We’ll adopt the same proposal for the other
randomness notions in this paper, and choose to do so because some of our results continue
to hold under these weakened conditions; see in particular Propositions 14 and 20 further
on.

We provide a clear motivation for allowing for non-computable forecasting systems
ϕ ∈ Φ in this way—that is, without providing them as oracles—in Ref. [22], where we
show that a path ω ∈ Ω is Martin-Löf random for a stationary forecasting system ϕ ∈ Φ if
and only if it is Martin-Löf random for at least one (possibly non-computable) compatible
precise forecasting system ϕpr ⊆ ϕ; a forecasting system ϕ ∈ Φ is called stationary if
there’s some interval forecast I ∈ I such that ϕ(s) = I for all s ∈ S, and then we also
denote it by ϕI . That ϕ’s non-computability is an essential ingredient for this result is made
obvious by our Theorem 37 in Ref. [4], as that implies that for any stationary forecasting
system ϕI with min I < max I, there is at least one path ω ∈ Ω that is Martin-Löf random
for ϕ , but not for any computable compatible precise forecasting system ϕpr ⊆ ϕ .

We can also use the ideas in our earlier paper on randomness and imprecision [4]
to extend Schnorr’s original randomness definition [24, Ch. 9] for the afore-mentioned
fair-coin forecasting system ϕ1/2 to more general—not necessarily precise nor necessarily
computable—forecasting systems. We begin with a definition borrowed from Schnorr’s
seminal work; see Refs. [24, Ch. 9] and [25].

Definition 4 (Growth function). We call a map ρ : N0 → N0 a growth function if
(i) it is recursive;

(ii) it is non-decreasing: (∀n1,n2 ∈ N0)(n1 ≤ n2 ⇒ ρ(n1)≤ ρ(n2));
(iii) it is unbounded.

We say that a real-valued map µ : N0 →R is computably unbounded if there’s some growth
function ρ such that limsupn→∞[µ(n)−ρ(n)]> 0.

Clearly, if a real-valued map µ : N0 → R is computably unbounded, it is also unbounded
above [4, Prop. 13]. Similarly to before, we choose to continue speaking of Schnorr ran-
domness also when ϕ is no longer the precise, computable, and non-degenerate fair-coin
forecasting system ϕ1/2.

Definition 5 (Schnorr randomness [4]). Consider any forecasting system ϕ : S→ I and
any path ω ∈ Ω. We call ω Schnorr random for ϕ if no computable test supermartingale T
for ϕ is computably unbounded on ω , or in other words, if limsupn→∞[T (ω1:n)−ρ(n)]≤ 0
for all computable test supermartingales T for ϕ and all growth functions ρ . We then also
say that the forecasting system ϕ makes ω Schnorr random.

Clearly, Schnorr randomness is implied by Martin-Löf randomness. Furthermore, without
any loss of generality, we can focus on recursive positive and rational test supermartingales
in the definition above.

8Further on, we will define non-degenerate as never assuming the precise ‘degenerate’ values {0} or {1}.
9For an historical overview with many relevant references, see Ref. [2]. Schnorr’s martingale-theoretic defin-

ition focuses on the fair-coin forecasting system ϕ1/2; see Ref. [24, Ch. 5]. Levin’s approach [16, 45] works for
computable probability measures (equivalent with computable precise forecasting systems), and uses semimeas-
ures (equivalent with supermartingales). In these discussions, supermartingales may be infinite-valued, whereas
we only allow for real-valued supermartingales, but this difference in approach has no consequences as long as
the forecasting systems involved are non-degenerate; see also the discussion in Ref. [4, Sec. 5.3].
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Proposition 9. Consider any forecasting system ϕ and any path ω ∈Ω. Then ω is Schnorr
random for ϕ if and only if no recursive positive rational test supermartingale for ϕ is
computably unbounded on ω .

5. RANDOMNESS VIA RANDOMNESS TESTS

Next, we turn to a ‘measure-theoretic’, or randomness test, approach to defining Martin-
Löf and Schnorr randomness for (interval-valued) forecasting systems, which will be in-
spired by the existing corresponding notions for fair-coin, or more generally, computable
precise forecasts [14, 16, 18, 24, 45].

To this end, we consider a forecasting system ϕ and the upper and lower expectations
for global gambles associated with the corresponding imprecise probability tree, given by
Equations (4) and (5).

5.1. Martin-Löf tests. Let’s begin our discussion of Martin-Löf tests with a few nota-
tional conventions that will prove useful for the remainder of this paper. With any subset A
of N0 ×S, we can associate a sequence An of subsets of S, defined by

An := {s ∈ S : (n,s) ∈ A} for all n ∈ N0.

With each such An, we can associate the set of paths JAnK. If the set A is recursively
enumerable, then we’ll say that the JAnK constitute a computable sequence of effectively
open sets.10

The following definition trivially generalises the idea of a randomness test, as intro-
duced by Martin-Löf [18], from the fair-coin forecasting system—and more generally from
a computable precise forecasting system—to our present context. It will lead in Section 5.3
further on to a suitable generalisation of Martin-Löf’s randomness definition that allows for
interval-valued forecasting systems. Here too, we’ll continue to speak of Martin-Löf tests
also when ϕ is no longer precise, computable, or non-degenerate.

Definition 6 (Martin-Löf test). We call a sequence of global events Gn ⊆ Ω a Martin-Löf
test for a forecasting system ϕ if there’s some recursively enumerable subset A of N0 ×S
such that for the associated computable sequence of effectively open sets JAnK, we have
that Gn = JAnK and Pϕ(JAnK)≤ 2−n for all n ∈ N0.

We may always—and often will—assume without loss of generality that the subsets An
of the event tree S that constitute the Martin-Löf test are partial cuts. Moreover, we can
even assume the set A to be recursive rather than merely recursively enumerable, because
there’s actually a single algorithm that turns any recursively enumerable set B ⊆ S into
a recursive partial cut B′ ⊆ S such that JBK = JB′K. We refer to Ref. [14, Sec. 2.19] for
discussion and proofs; see also the related discussions in Refs. [24, Korollar 4.10, p. 37]
and [29, Lemma 2, Section 5.6].

Corollary 10. A sequence of global events Gn is a Martin-Löf test for a forecasting sys-
tem ϕ if and only if there’s some recursive subset A of N0 × S such that An is a partial
cut, Gn = JAnK and Pϕ(JAnK)≤ 2−n for all n ∈ N0.

In what follows, we’ll also use the term Martin-Löf test to refer to a subset A of N0×S that
represents the Martin-Löf test Gn in the specific sense that Gn = JAnK for all n ∈ N0. Due
to Corollary 10, we can always assume such subsets A of N0 ×S to be recursive, and the
corresponding An to be partial cuts.

10We’ve borrowed this terminology from Ref. [40]. For a justification of the term ‘computable’, we also refer
to the discussion in Ref. [14, Sec. 2.19].
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5.2. Schnorr tests. In order to propose a suitable generalisation of Schnorr’s definition
of a totally recursive sequential test [24, Def. (8.1), p. 63] for the fair-coin forecasting
system ϕ1/2, we need a few more notations. Starting from any subset A of N0 ×S, we let

A<ℓ
n := An ∩{t ∈ S : |t|< ℓ}

A≥ℓ
n := An ∩{t ∈ S : |t| ≥ ℓ}

}
for all n, ℓ ∈ N0. (8)

In the important special case that An is a partial cut, the global event JAnK is the disjoint
union of the global events JA<ℓ

n K and JA≥ℓ
n K, implying that IJAnK = IJA<ℓ

n K + IJA≥ℓ
n K.

Here as well, we’ll continue to speak of Schnorr tests also when ϕ is no longer the
precise, computable and non-degenerate ϕ1/2.

Definition 7 (Schnorr test). We call a sequence of global events Gn ⊆ Ω a Schnorr test for
a forecasting system ϕ if there’s some recursive subset A of N0 ×S—called its representa-
tion—such that Gn = JAnK and Pϕ(JAnK)≤ 2−n for all n ∈ N0, and additionally, if there’s
some recursive map e : N2

0 → N0—called its tail bound—such that

Pϕ
(
JAnK\ JA<ℓ

n K
)
≤ 2−N for all (N,n) ∈ N2

0 and all ℓ≥ e(N,n). (9)

As for the case of Martin-Löf tests, we can assume without loss of generality that the
representation A is such that the An are partial cuts, at which point JAnK\ JA<ℓ

n K = JA≥ℓ
n K in

Equation (9). Moreover, we can assume without loss of generality that there’s no depend-
ence of the tail bound e on the index n of the JA≥ℓ

n K. The proposition below also shows that
these simplifications can be implemented independently.

Proposition 11. Consider any Schnorr test Gn for a forecasting system ϕ with represent-
ation C ⊆ N0 ×S. Then

(i) it also has a representation A such that An is a partial cut for all n ∈ N0;
(ii) it has a tail bound e that does not depend on the index n of the JCnK\JC<ℓ

n K, meaning
that e(N,n) = e(N,n′) =: e(N) for all N,n,n′ ∈ N0, and that moreover is a growth
function.

We’ll also use the term Schnorr test to refer its representation A. So, a Schnorr test
is a Martin-Löf test with the additional property that it is always assumed to be recursive
rather than merely recursively enumerable, and that the upper probabilities of its ‘tail global
events’ converge to zero effectively. As indicated above, we can, and often will, assume
that the sets An are partial cuts and that the tail bound is a univariate growth function. But
we’ll never assume that these simplifications are in place without explicitly saying so.

Let’s now investigate our notion of a Schnorr test in some more detail. First of all,
we study how it relates to Schnorr’s definition of a totally recursive sequential test [24,
Def. (8.1), p. 63] for the (precise) fair-coin forecasting system ϕ1/2 that associates a constant
precise forecast ϕ1/2(s) := 1/2 with each situation s ∈ S.

Recall that Schnorr calls a recursive subset A of N0 ×S a totally recursive sequential
test provided that Pϕ1/2(JAnK) ≤ 2−n for all n ∈ N0, and additionally, that the sequence
of real numbers Pϕ1/2(JAnK) is computable. Our additional condition (9) in Definition 7
above therefore seems somewhat more involved than Schnorr’s additional computability
requirement for the sequence Pϕ1/2(JAnK).

Let’s now show, by means of Propositions 12 and 13 below, that that is only an illusion.
Indeed, in Proposition 12 we show that our additional condition (9) implies the Schnorr-
like additional computability requirement, even in the case of more general computable
interval-valued forecasting systems. And in Proposition 13, we prove that for general
computable but precise forecasting systems the Schnorr-like additional requirement im-
plies our additional effective convergence condition.

Proposition 12. If A ⊆ N0 ×S is a Schnorr test for a computable forecasting system ϕ ,
then the Pϕ(JAnK) constitute a computable sequence of real numbers.
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The next proposition is concerned with the special case of precise forecasting sys-
tems ϕpr. We recall from Proposition 7 [with s =□] that the martingale-theoretic approach
of defining global upper and lower expectations through Eqs. (4) and (5) then recovers the
standard probability measure Pϕpr associated with the local mass functions implicit in ϕpr,
and that for each partial cut K, the corresponding set of paths JKK is Borel measurable, so
Pϕpr(JKK) = Pϕpr(JKK) = Pϕpr(JKK). We’ll use this fact implicitly and freely in the formu-
lation and proof (in Appendix B) of the result below.

Proposition 13. Consider a Martin-Löf test Gn for a computable precise forecasting sys-
tem ϕpr. If the Pϕpr(Gn) constitute a computable sequence of real numbers, then Gn is a
Schnorr test.

5.3. Defining Martin-Löf and Schnorr test randomness. With the definitions of Martin-
Löf and Schnorr tests for a forecasting system at hand, we are now in a position to gen-
eralise both Martin-Löf’s and Schnorr’s definition for randomness using randomness tests,
from fair-coin to interval-valued forecasting systems.

Definition 8 (Test randomness). Consider a forecasting system ϕ . Then we call a se-
quence ω ∈ Ω

(i) Martin-Löf test random for ϕ if ω ̸∈
⋂

m∈N0
JAmK, for all Martin-Löf tests A for ϕ;

(ii) Schnorr test random for ϕ if ω ̸∈
⋂

m∈N0
JAmK, for all Schnorr tests A for ϕ .

We want to show in the next two sections that for forecasting systems that are comput-
able and satisfy a simple additional non-degeneracy condition, our ‘test’ and ‘martingale-
theoretic’ notions of both Martin-Löf and Schnorr randomness are equivalent.

6. EQUIVALENCE OF MARTIN-LÖF AND MARTIN-LÖF TEST RANDOMNESS

Let’s start by considering Martin-Löf randomness. Our claim, in Theorem 16 further
on, that the ‘test’ and ‘martingale-theoretic’ versions for this type of randomness are equi-
valent, follows the spirit of a reasonably similar proof in a paper on precise prequential
Martin-Löf randomness by Vovk and Shen [40, Proof of Theorem 1]. It allows us to
extend Schnorr’s line of reasoning for this equivalence [24, Secs. 5–9] from fair-coin to
computable interval-valued forecasting systems.

We begin with the more easily proved side of the equivalence, the actual proof of which
in Appendix B relies rather heavily on Ville’s inequality.

Proposition 14. Consider any path ω in Ω and any forecasting system ϕ . If ω is Martin-
Löf test random for ϕ then it is also Martin-Löf random for ϕ .

For the converse result, whose proof in Appendix B is definitely more involved, the
following definition introduces a useful additional condition.

Definition 9 (Non-degeneracy). We call a forecasting system ϕ non-degenerate when
ϕ(s)< 1 and ϕ(s)> 0 for all s ∈ S, and degenerate otherwise.

So, a forecasting system ϕ is degenerate as soon as there’s some situation s for which
either ϕ(s) = ϕ(s) = 0, or ϕ(s) = ϕ(s) = 1, meaning that according to Forecaster, after
observing s, the next outcome will be almost surely 1, or almost surely 0.

With this definition, we are now ready to state a converse to Proposition 14.

Proposition 15. Consider any path ω in Ω and any non-degenerate computable forecast-
ing system ϕ . If ω is Martin-Löf random for ϕ then it is also Martin-Löf test random
for ϕ .

Compared to the classical (precise) setting, non-degeneracy is required in the above pro-
position, as the following counterexample reveals. This is, essentially, a consequence of
our preferring not to allow for extended real-valued test supermartingales; see also the
discussion in Section 5.3 of our Ref. [4].
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Counterexample. Consider any non-degenerate computable forecasting system ϕ ∈ Φ and
any path ω ∈ Ω that is Martin-Löf random for ϕ; that there always is such a path follows
from our Corollary 20 in Ref. [4]. Let the degenerate forecasting system ϕo ∈ Φ be defined
by letting ϕo(□) := 1−ω1 and ϕo(s) := ϕ(s) for all s ∈ S \ {□}. We’ll show that ω is
Martin-Löf random but not Martin-Löf test random for ϕo.

To show that ω isn’t Martin-Löf test random for ϕo, consider the recursive set A :=⋃
n∈N0

{(n,ω1)} ⊆ N0 ×S, for which An = {ω1} for all n ∈ N0, and therefore, obviously,
ω ∈

⋂
n∈N0

JAnK. A is moreover a Martin-Löf test for ϕo, because, by Proposition 4,
Pϕo(JAnK) = Pϕo(Jω1K) = (1−ω1)

ω1ω1
1−ω1 = 0 for all n ∈N0. Hence, ω can’t be Martin-

Löf test random for ϕo.
To show that ω is Martin-Löf random for ϕo, assume towards contradiction that there’s

some lower semicomputable test supermartingale To for ϕo such that limsupn→∞ To(ω1:n)=
∞. Fix any M ∈N for which max{To(1),To(0)}<M, and define the real process T : S→R
by letting T (□) := 1 and T (s) := M−1To(s) for all s ∈ S \ {□}; it is easy to check that
T is a lower semicomputable test supermartingale for ϕ . Clearly, limsupn→∞ T (ω1:n) =
limsupn→∞ M−1To(ω1:n) = ∞, which is the desired contradiction.

When reading the proof of Proposition 15, you’ll see that it is one by contradiction:
we fix a path ω ∈ Ω, assume that it fails a Martin-Löf test A, and then show the existence
of a lower semicomputable test supermartingale W that becomes unbounded on ω . We
want to draw attention to the interesting fact that the test supermartingale W constructed
in this proof not only becomes unbounded but actually converges to ∞ on every path in the
global event

⋂
n∈N0

JAnK associated with the Martin-Löf test A. We’ll come back to this in
Section 9, where we’ll show that Martin-Löf randomness for a non-degenerate computable
forecasting system can be checked using a single (universal) lower semicomputable su-
permartingale, or equivalently, using a single (universal) Martin-Löf test; see in particular
Corollary 24.

If we now combine Propositions 14 and 15, we find the desired equivalence result.

Theorem 16. Consider any path ω in Ω and any non-degenerate computable forecasting
system ϕ . Then ω is Martin-Löf random for ϕ if and only if it is Martin-Löf test random
for ϕ .

7. THE RELATION BETWEEN UNIFORM AND MARTIN-LÖF TEST RANDOMNESS

Alexander Shen has recently pointed out to us that the idea of testing randomness for a
set of measures has been explored before. In 1973, Levin [3, 16] defined a uniform ran-
domness test that depends uniformly on all probability measures, leading to a test-theoretic
randomness notion nowadays known as uniform randomness. This randomness notion
turns out to nicely allow for testing randomness for even more general sets of measures
than ours—effectively compact classes of measures: a path is random for an effectively
compact class of measures if and only if it is uniformly random for at least one probability
measure in the class.

Below, we give a brief account of how uniform randomness allows for testing a path’s
randomness w.r.t. effectively compact sets of probability measures, and explain how our
notion of Martin-Löf test randomness, when restricted to computable forecasting systems,
fits into that framework. To introduce this specific application of uniform randomness, we
need to define a notion of effective compactness for sets of probability measures.

7.1. Effectively compact classes of probability measures. We denote by M (Ω) the set
of all probability measures over the measurable space (Ω,B(Ω)), and recall from the dis-
cussion in Section 2.5 that every precise forecasting system ϕpr ∈ Φpr leads to a probability
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measure µϕpr ∈ M (Ω). Conversely, for any measure µ ∈ M (Ω), there’s at least one pre-
cise forecasting system ϕpr ∈ Φpr such that µ = µϕpr , for instance the one defined by

ϕpr(s) :=

{
µ (Js1K)
µ (JsK) if µ (JsK)> 0

1/2 if µ (JsK) = 0
for all s ∈ S.

This tells us that we can essentially identify probability measures and precise forecasting
systems (although forecasting systems are slightly more informative, as they provide full
conditional information):

M (Ω) = {µ
ϕpr : ϕpr ∈ Φpr}. (10)

With any b ⋐Q×S×Q, where ‘⋐’ is taken to mean ‘is a finite subset of’, we associate
a so-called basic open set in the set of probability measures M (Ω), denoted by b(Ω), and
given by

b(Ω) :=
{

µ ∈ M (Ω) : u < µ(JsK)< v for all (u,s,v) ∈ b
}

;

we collect all generators b of basic open sets b(Ω) in the set Pfin(Q×S×Q). The basic
open set b(Ω) consists of all probability measures that satisfy the finite collection of con-
ditions characterised by b. A subset C ⊆ M (Ω) is then called effectively open if there
is a recursively enumerable set B ⊆ Pfin(Q× S×Q) such that

⋃
b∈B b(Ω) = C .11 A

subset C ⊆ M (Ω) is called effectively closed if M (Ω) \C is effectively open. A sub-
set C ⊆ M (Ω) is called effectively compact if it is compact and if the set{

B : B ⋐ Pfin(Q×S×Q) and
⋃
b∈B

b(Ω)⊇ C

}
is recursively enumerable.

With any forecasting system ϕ , we can associate a collection of compatible precise fore-
casting systems {ϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ}, and therefore also, falling back on Equa-
tion (7), a collection of probability measures {µϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ}. We begin
by uncovering a sufficient condition on ϕ for the corresponding collection of probability
measures to be effectively compact.12

Proposition 17. Consider a computable forecasting system ϕ for which ϕ is lower semi-
computable and ϕ is upper semicomputable. Then the collection of probability meas-
ures {µϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ} is effectively compact.

On the other hand, not every effectively compact set of probability measures is a collec-
tion that corresponds to a (computable) forecasting system. Consider, as a counterexample,
the set Ber := {µϕpr : ϕpr ∈ Φpr and (∃p ∈ [0,1])(∀s ∈ S)ϕpr(s) = p} that consists of all
Bernoulli (iid) probability measures. As is mentioned by Bienvenu et al. [3, Sec. 5.3], this
set Ber is an example of an effectively compact set of measures.

But, there is no forecasting system ϕ for which Ber = {µϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ}.
Indeed, consider any forecasting system ϕ for which Ber ⊆{µϕpr : ϕpr ∈Φpr and ϕpr ⊆ϕ},
then necessarily p ∈ ϕ(s) for all p ∈ (0,1) and all s ∈ S, which implies that ϕ(s) = [0,1]
for all s ∈ S. This means that ϕ can only be the so-called vacuous forecasting system ϕ[0,1],
for which, by Equation (10), {µϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ[0,1]}= M (Ω) ̸= Ber.

We conclude in particular that the collections of probability measures that correspond
to computable forecasting systems constitute only a strict subset of the effectively compact
sets of probability measures.

11This is a third instance in this paper of the general definition of effective openness; see for instance the
appendix on Effective Topology in Ref. [40].

12This serves as a warning that our argument to show that Martin-Löf test randomness associated with fore-
casting systems ϕ fits into the uniform randomness framework needn’t work when these forecasting systems ϕ

aren’t in some sense effectively describable.
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7.2. The connection with uniform randomness. Using this notion of effective compact-
ness, we now work towards a randomness notion that allows for testing randomness w.r.t.
a class of probability measures, by associating tests with effectively compact classes of
probability measures.

Definition 10. We call a map τ : Ω → [0,+∞] a C -test for an effectively compact class
of probability measures C ⊆ M (Ω) if the set {ω ∈ Ω : τ(ω) > r} is effectively open,
effectively in r ∈Q and if

∫
τ(ω)dµ (ω)≤ 1 for all µ ∈ C .

A few clarifications are in order here. The conditions for a C -test τ require in particular
that {ω ∈ Ω : τ(ω)> r} should be open, and therefore belong to B(Ω), for all rational r,
implying that the map τ is Borel measurable. This implies that the integral

∫
τ(ω)dµ (ω),

which we’ll also denote by µ (τ), exists.
Going from tests to the corresponding randomness notion is now but a small step.

Definition 11. Consider an effectively compact class of probability measures C ⊆M (Ω).
Then a path ω ∈ Ω is C -random if τ(ω)< ∞ for every C -test τ .

This is considered an interesting randomness notion, because it allows for a sensitivity
analysis interpretation through the well-known notion of uniform randomness.

Proposition 18 ([3, Defs. 5.2&5.22, Thm. 5.23]). Consider an effectively compact class
of probability measures C ⊆ M (Ω). Then a path ω ∈ Ω is C -random if and only if it is
uniformly random for a probability measure µ ∈ C .

With this interpretation in terms of uniform randomness in place, we now show that
our definition of Martin-Löf test randomness for a forecasting system ϕ is a special case
of C -randomness, where the effectively compact class C takes the specific form C ϕ :=
{µϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ}. Observe, by the way, that Proposition 7 and the properties
of integrals guarantee that

µ
ϕpr(τ) = sup

n∈N
µ

ϕpr(min{τ,n}) = sup
n∈N

Eϕpr(min{τ,n}) (11)

for every C ϕ -test τ and all precise forecasting systems ϕpr ⊆ ϕ compatible with ϕ .

Theorem 19. Consider any computable forecasting system ϕ . Then a path ω ∈ Ω is
Martin-Löf test random for ϕ if and only if it is C ϕ -random for the effectively compact
class of probability measures C ϕ .

8. EQUIVALENCE OF SCHNORR AND SCHNORR TEST RANDOMNESS

Next, we turn to Schnorr randomness. Our argumentation that the ‘test’ and ‘martingale-
theoretic’ versions for this type of randomness are equivalent, in Theorem 22 below, adapts
and simplifies a line of reasoning in Downey and Hirschfeldt’s book [14, Thm. 7.1.7], in
order to still make it work in our more general context. Here too, it allows us to extend
Schnorr’s argumentation [24, Secs. 5–9] for this equivalence from fair-coin to computable
and non-degenerate interval forecasts.

As was the case for Martin-Löf randomness, we begin with the implication that is easier
to prove.

Proposition 20. Consider any path ω in Ω and any forecasting system ϕ . If ω is Schnorr
test random for ϕ then it is Schnorr random for ϕ .

Non-degeneracy and computability of the forecasting system are enough to guarantee
that the converse implication also holds. That non-degeneracy is a necessary condition
can be shown by essentially the same simple counter-example as in the case of Martin-Löf
randomness.

Proposition 21. Consider any path ω in Ω and any non-degenerate computable forecast-
ing system ϕ . If ω is Schnorr random for ϕ then it is Schnorr test random for ϕ .
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If we now combine Propositions 20 and 21, we find the desired result.

Theorem 22. Consider any path ω in Ω and any non-degenerate computable forecasting
system ϕ . Then ω is Schnorr random for ϕ if and only if it is Schnorr test random for ϕ .

9. UNIVERSAL MARTIN-LÖF TESTS AND UNIVERSAL LOWER SEMICOMPUTABLE
TEST SUPERMARTINGALES

In our definition of Martin-Löf randomness of a path ω , all lower semicomputable test
supermartingales T must remain bounded on ω . Similarly, for ω to be Martin-Löf test
random, we require that ω /∈

⋂
n∈N0

JAnK for all Martin-Löf tests A.
In his seminal paper [18], Martin-Löf proved that test randomness of a path can also

be checked using a single, universal, Martin-Löf test. A few years later, Schnorr proved
in his doctoral thesis on algorithmic randomness for fair-coin forecasts that Martin-Löf
randomness can also be checked using a single, universal, lower semicomputable test su-
permartingale.

Let’s now prove that something similar is still possible in our more general context. We
begin by proving the existence of a universal Martin-Löf test.

Proposition 23. Consider any computable forecasting system ϕ . Then there’s a universal
Martin-Löf test U for ϕ such that a path ω ∈ Ω is Martin-Löf test random for ϕ if and only
if ω /∈

⋂
n∈N0

JUnK.

We continue by proving the existence of a universal lower semicomputable supermartin-
gale that, as mentioned in the discussion in Section 6, tends to infinity on every non-Martin-
Löf random path ω ∈ Ω, instead of merely being unbounded.

Corollary 24. Consider any non-degenerate computable forecasting system ϕ . Then
there’s a universal lower semicomputable test supermartingale T for ϕ such that any
path ω ∈ Ω is not Martin-Löf (test) random for ϕ if and only if limn→∞ T (ω1:n) = ∞.

10. CONCLUSION AND FUTURE WORK

The conclusion to be drawn from our argumentation is straightforward: Martin-Löf
and Schnorr randomness for binary sequences can also be associated with interval, or im-
precise, forecasts, and they can furthermore—like their precise forecast counterparts—be
defined using a martingale-theoretic and a randomness test approach; both turn out to lead
to the same randomness notions, at least under computability and non-degeneracy con-
ditions on the forecasts. In addition, our Martin-Löf randomness notion for computable
interval-valued forecasting systems can be characterised by a single universal lower semi-
computable test supermartingale, or equivalently, for forecasting systems that are moreover
non-degenerate, by a single universal Martin-Löf-test, as is the case for precise forecasts.

Why do we believe our results to merit interest?
Our study of randomness notions for imprecise forecasts aims at generalising martingale-

theoretic and measure-theoretic randomness notions, by going from global probability
measures to the global upper expectations—or equivalently, sets of global probability
measures—that can be associated with interval-valued forecasting systems; see Section 2.4.
We have already argued extensively elsewhere [4] why we believe this generalisation to be
useful and important, so let’s focus here on other arguments, specifically related to the
results in this paper.

We have shown in Section 7 that computable imprecise forecasting systems correspond
to at least a subset of effectively compact classes of measures, and that for this subset, the
Martin-Löf test randomness we have introduced above coincides with an existing measure-
theoretic randomness notion: a path is Martin-Löf (test) random for a computable impre-
cise forecasting system ϕ ∈ Φ if and only if it is C ϕ -random for the effectively compact
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class of probability measures C ϕ . In this sense, our results here provide this measure-
theoretic notion with a martingale-theoretic account, at least for this subset of effectively
compact classes of measures.

In addition to the fact that our martingale-theoretic and this measure-theoretic notion of
randomness coincide for computable non-degenerate forecasting systems, they also carry
similar interpretations. Indeed, one of our earlier results, Corollary 11 in Ref. [22], indic-
ates that a path is martingale-theoretically random for a stationary forecasting system if and
only if it is martingale-theoretically random for some probability measure compatible with
it. We are furthermore convinced that this result can be extended to non-stationary forecast-
ing systems as well. On the other hand, as we’ve seen in Proposition 18, C -randomness
for an effectively closed class of probability measures C tests whether a path is uniformly
random with respect to some probability measure compatible with it. So, not only do both
notions define randomness with respect to a set of probability measures, they also test
whether a path is random with respect to some compatible measure.

In our work so far, we have focused on extending martingale-theoretic and randomness
test definitions of randomness to deal with interval forecasts. As a final remark, we’d like to
point out that in the precise-probabilistic setting, there are also other approaches to defining
the classical notions of Martin-Löf and Schnorr randomness, besides the randomness test
and martingale-theoretic ones: via Kolmogorov complexity [14, 17, 18, 24, 25], order-
preserving transformations of the event tree associated with a sequence of outcomes [24],
or specific limit laws (such as Lévy’s zero-one law) [15, 44]. It remains to be investigated
whether our interval forecast extensions can also be arrived at via such alternative routes.
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APPENDIX A. PROOFS OF RESULTS IN SECTIONS 2 AND 3

For some of the proofs below, we’ll need the following version of a well-known basic
result a number of times; see also Refs. [28, Lemma 2] and [5, Lemma 1] for related but
slightly stronger statements.

Lemma 25. Consider any supermartingale M for ϕ and any situation s ∈ S, then there’s
some path ω ∈ JsK such that M(s)≥ supn≥|s| M(ω1:n).

Proof. Since M is a supermartingale, we know that Eϕ(s)(M(s ·)) ≤ M(s), and therefore,
by C1, that minM(s ·)≤ Eϕ(s)(M(s ·))≤ M(s), implying that there’s some x ∈ {0,1} such
that M(sx) ≤ M(s). Repeating the same argument over and over again13 leads us to con-
clude that there’s some ω ∈ JsK such that M(ω1:|s|+n)≤ M(s) for all n ∈N0, whence indeed
supn≥|s| M(ω1:n)≤ M(s). □

Proof of Proposition 2. We’ll give proofs for E1–E8, in the interest of making this paper as
self-contained as possible. The proof of E9 would take us too far afield, however; we refer
the interested reader to Ref. [36, Thm. 23], which is applicable in our context as well.14

We begin by proving that inf(g|s)≤Eϕ(g|s)≤ sup(g|s). Conjugacy will then imply that
also inf(g|s) ≤ Eϕ(g|s) ≤ sup(g|s), and therefore that both Eϕ(g|s) and Eϕ(g|s) are real
numbers. This important fact will be used a number of times in the remainder of this proof.
The remaining inequality in E1 will be proved further on below. Since all constant real
processes are supermartingales [by C1], we infer from Equation (4) that, almost trivially,

Eϕ(g|s)≤ inf{α ∈ R : α ≥ g(ω) for all ω ∈ JsK}= sup(g|s).
For the other inequality, consider any supermartingale M ∈ Mϕ

such that liminfM ≥s g
[there clearly is such a supermartingale since g is bounded]. We derive from Lemma 25
that there’s some path ω ∈ JsK such that M(s) ≥ M(ω1:|s|+n) for all n ∈ N0, and therefore
also that M(s)≥ liminfM(ω)≥ g(ω)≥ inf(g|s). Equation (4) then guarantees that, indeed,

Eϕ(g|s) = inf
{

M(s) : M ∈Mϕ
and liminfM≥s g

}
≥ inf(g|s).

In particular, we then find for g = 0 that

Eϕ(0|s) = Eϕ(0|s) = 0. (12)

E2. We prove the first equality; the second equality then follows from conjugacy. It
follows from Equation (12) that we may assume without loss of generality that λ > 0. The

13This argument requires the axiom of dependent choice.
14See footnote 5 for an explanation and more details.
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desired equality now follows at once from Equation (4) and the equivalences M ∈Mϕ ⇔
λ−1M ∈Mϕ

and liminfM≥s λg ⇔ liminfλ−1M≥s g.
E3. We prove the third and fourth inequalities; the remaining inequalities will then fol-

low from conjugacy. For the fourth inequality, we consider any real α and β such that α >
Eϕ(g|s) and β > Eϕ(h|s). Then it follows from Equation (4) that there are supermartin-
gales M1,M2 ∈ Mϕ

such that liminfM1 ≥s g, liminfM2 ≥s h, α > M1(s) and β > M2(s).
But then M := M1 +M2 is a supermartingale for ϕ [use C3] with

liminfM = liminf(M1 +M2)≥s liminfM1 + liminfM2 ≥s g+h,

and we therefore infer from Equation (4) that

Eϕ(g+h|s)≤ M(s) = M1(s)+M2(s)< α +β .

Since this inequality holds for all real α > Eϕ(g|s) and β > Eϕ(h|s), and since we’ve
proved above that (conditional) upper expectations of global gambles are real-valued, we
find that, indeed, Eϕ(g+h|s)≤ Eϕ(g|s)+Eϕ(h|s).

For the third inequality, observe that h = (g+ h)− g, so we infer from the inequality
we’ve just proved that

Eϕ(h|s) = Eϕ((g+h)−g|s)≤ Eϕ(g+h|s)+Eϕ(−g|s) = Eϕ(g+h|s)−Eϕ(g|s),

whence, indeed, Eϕ(g+h|s)≥ Eϕ(g|s)+Eϕ(h|s), since we’ve already proved above that
(conditional) upper and lower expectations of global gambles are real-valued.

E1. It’s only left to prove that Eϕ(g|s)≤ Eϕ(g|s). Since g−g= 0, we infer from E3 and
Equation (12) that 0 = Eϕ(g−g|s) ≤ Eϕ(g|s)+Eϕ(−g|s) = Eϕ(g|s)−Eϕ(g|s). The de-
sired inequality now follows from the fact that (conditional) upper and lower expectations
of global gambles are real-valued, as proved above.

E4. We prove the first equality; the second will then follow from conjugacy. Infer
from E1 that Eϕ(h|s) = Eϕ(h|s) = hs, and then E3 indeed leads to

Eϕ(g|s)+hs = Eϕ(g|s)+Eϕ(h|s)≥ Eϕ(g+h|s)≥ Eϕ(g|s)+Eϕ(h|s) = Eϕ(g|s)+hs.

E5. We prove the first equality; the second will then follow from conjugacy. Since the
global gambles g and gIJsK coincide on the global event JsK, we see that liminfM ≥s g is
equivalent to liminfM≥s gIJsK for all supermartingales M for ϕ , and therefore the desired
equality follows readily from Equation (4).

E6. We prove the first implication; the second will then follow from conjugacy. Assume
that g≤s h, then sup(g−h|s)≤ 0, so we infer from E1 and E3 that,

0 ≥ sup(g−h|s)≥ Eϕ(g−h|s)≥ Eϕ(g|s)+Eϕ(−h|s) = Eϕ(g|s)−Eϕ(h|s).

The desired inequality now follows from the fact that (conditional) upper and lower ex-
pectations of global gambles are real-valued, as proved above.

E7. We prove the first equality; the second will then follow from conjugacy.
First of all, it follows from C4 and E4 that we may assume without loss of generality

that f ≥ 0, and therefore also fs ≥ 0. Now consider any supermartingale M for ϕ such
that liminfM ≥s fs. An argument similar to the one involving Lemma 25 near the begin-
ning of this proof allows us to conclude that there’s some ω ∈ Js1K such that M(s1) ≥
liminfM(ω), and similarly, that there’s some ϖ ∈ Js0K such that M(s0) ≥ liminfM(ϖ).
Since liminfM ≥s fs, this implies that M(s1) ≥ f (1) and M(s0) ≥ f (0), and therefore
M(s ·)≥ f . But then we find that ∆M(s)≥ f −M(s), and therefore also, using C5 and C4,
that

0 ≥ Eϕ(s)(∆M(s))≥ Eϕ(s)( f −M(s)) = Eϕ(s)( f )−M(s),

whence M(s)≥ Eϕ(s)( f ). Equation (4) then leads to Eϕ( fs|s)≥ Eϕ(s)( f ).
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To prove the converse inequality, consider the real process Mo defined by

Mo(t) :=


f (1) if s1 ⊑ t
f (0) if s0 ⊑ t
Eϕ(s)( f ) otherwise.

It’s clear that ∆Mo(t) = 0 for all t ̸= s. To check that Mo is a supermartingale for ϕ , it is
therefore enough to observe that, using C4,

Eϕ(s)(∆Mo(s)) = Eϕ(s)(Mo(s ·)−Mo(s))

= Eϕ(s)(Mo(s ·))−Mo(s) = Eϕ(s)( f )−Eϕ(s)( f ) = 0.

Since clearly also liminfMo ≥s fs, Equation (4) allows us to conclude that, indeed, also
Eϕ( fs|s)≤ Mo(s) = Eϕ(s)( f ).

E8. We prove the first equality; the second equality will then follow from conjugacy.
Consider any supermartingale M for ϕ such that liminfM≥s g. Then also liminfM≥sx

g, and therefore, using Equation (4), M(sx)≥ Eϕ(g|sx), for all x ∈ {0,1}. Hence, M(s ·)≥
Eϕ(g|s ·) and therefore,

M(s)≥ Eϕ(s)(M(s ·))≥ Eϕ(s)(E
ϕ(g|s ·)),

where the first inequality follows from the supermartingale condition, and the second one
from C5. Equation (4) then guarantees that Eϕ(g|s)≥ Eϕ(s)(Eϕ(g|s ·)).

For the converse inequality, fix any real ε > 0. For any x ∈ {0,1}, we infer from E1 that
Eϕ(g|sx) is real, and therefore Equation (4) tells us that there’s some Mx ∈Mϕ

such that
liminfMx ≥sx g and Mx(sx)≤ Eϕ(g|sx)+ ε . We now define the real process M by letting

M(t) :=

{
Mx(t) if t ⊒ sx with x ∈ {0,1}
Eϕ(s)(M(s ·)) otherwise

for all t ∈ S.

On the one hand, observe that, in particular, by construction,

M(sx) = Mx(sx)≤ Eϕ(g|sx)+ ε for all x ∈ {0,1},

and therefore also

M(s) = Eϕ(s)(M(s ·))≤ Eϕ(s)(E
ϕ(g|s ·)+ ε) = Eϕ(s)(E

ϕ(g|s ·))+ ε, (13)

where the inequality follows from C5 and the second equality from C4. On the other hand,
a straightforward verification shows that M is a supermartingale for ϕ . Moreover, again by
construction,

liminfM(ω) = liminfMx(ω)≥ g(ω) for all ω ∈ JsxK with x ∈ {0,1},

and therefore liminfM≥s g, so we infer from Equation (4) that M(s)≥ Eϕ(g|s). Combined
with the inequality in Equation (13), this leads to Eϕ(g|s) ≤ Eϕ(s)(Eϕ(g|s ·))+ ε . Since
this holds for all ε > 0, we find that, indeed also, Eϕ(g|s)≤ Eϕ(s)(Eϕ(g|s ·)). □

Proof of Corollary 3. Statements (i) and (ii) follow at once from E8.
Statement (iii) follows from E1, taking into account that 0 ≤ IJKK ≤ 1.
For (iv), observe on the one hand that s ⊒ K implies that the global gamble IJKK assumes

the constant value 1 on JsK, and use E1. If, on the other hand, s ∥ K, then IJKK assumes the
constant value 0 on JsK, and the desired result again follows from E1.

For (v), observe that it follows from E1 that Pϕ(JKK|•) ≥ 0. It therefore suffices to
consider any ω ∈ JKK and to prove that then liminfPϕ(JKK|ω) = 1. But if ω ∈ JKK, then
there must be some s ∈ K such that ω ∈ JsK. Hence, ω1:n ⊒ K and therefore, by (iv), also
Pϕ(JKK|ω1:n) = 1 for all n ≥ |s|. □
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Proof of Proposition 4. We give the proof for the upper probability. The proof for the
lower probability is completely similar.

First of all, fix any ℓ ∈ {0,1, . . . , |s|−1}. For any x ∈ {0,1},

Pϕ(JsK|s1:ℓ x) = Eϕ(IJsK|s1:ℓ x) = Eϕ(IJsKIJs1:ℓ xK|s1:ℓ x) = Eϕ(IJsKI{sℓ+1}(x)|s1:ℓ x)

= Eϕ(IJsK|s1:ℓ x)I{sℓ+1}(x) = Eϕ(IJsK|s1:ℓ+1)I{sℓ+1}(x)

= Pϕ(JsK|s1:ℓ+1)I{sℓ+1}(x),

where I{sℓ+1} is the indicator (gamble) on {0,1} of the singleton {sℓ+1}, and where the
second equality follows from E5 and the fourth equality from E2. Hence,

Pϕ(JsK|s1:ℓ ·) = Pϕ(JsK|s1:ℓ+1)I{sℓ+1}, (14)

so we can infer from the recursion equation in Corollary 3(i) that

Pϕ(JsK|s1:ℓ) = Eϕ(s1:ℓ)

(
Pϕ(JsK|s1:ℓ ·)

)
= Eϕ(s1:ℓ)

(
Pϕ(JsK|s1:ℓ+1)I{sℓ+1}

)
= Pϕ(JsK|s1:ℓ+1)Eϕ(s1:ℓ)(I{sℓ+1}),

where the second equality follows from Equation (14) and the third equality from C2 and
the fact that Pϕ(JsK|s1:ℓ+1)≥ 0 [use E1]. Since Equation (2) now tells us that

Eϕ(s1:ℓ)(I{sℓ+1}) =

{
ϕ(s1:ℓ) if sℓ+1 = 1
1−ϕ(s1:ℓ) if sℓ+1 = 0

= ϕ(s1:ℓ)
sℓ+1 [1−ϕ(s1:ℓ)]

1−sℓ+1 ,

this leads to

Pϕ(JsK|s1:ℓ) = Pϕ(JsK|s1:ℓ+1))ϕ(s1:ℓ)
sℓ+1 [1−ϕ(s1:ℓ)]

1−sℓ+1 .

A simple iteration on ℓ now shows that, indeed,

Pϕ(JsK) = Pϕ(JsK|□) = Pϕ(JsK|s)
|s|−1

∏
k=0

ϕ(s1:k)
sk+1 [1−ϕ(s1:k)]

1−sk+1

=
|s|−1

∏
k=0

ϕ(s1:k)
sk+1 [1−ϕ(s1:k)]

1−sk+1 ,

where the last equality follows from Pϕ(JsK|s) = 1, as is guaranteed by E1, or alternatively,
by Corollary 3(iv). □

The proof of Proposition 5 is based on Shafer and Vovk’s work on game-theoretic prob-
abilities [26, 27].

Proof of Proposition 5. Let GC := {ω ∈ Ω : supn∈N0
T (ω1:n)≥C}. Consider any 0 < ε <

C, and let Tε be the real process given for all s ∈ S by

Tε(s) :=

{
T (t) if there’s some first t ⊑ s such that T (t)≥C− ε

T (s) if T (t)<C− ε for all t ⊑ s,

so Tε is the version of T that mimics the behaviour of T but is stopped—kept constant—
as soon as it reaches a value of at least C − ε . Observe that Tε(□) = T (□), and that

1
C−ε

Tε is still a non-negative supermartingale for ϕ . For any ω ∈ GC, we have that
supn∈N0

T (ω1:n)≥C >C−ε , so there’s some n ∈N0 such that T (ω1:n)>C−ε , implying
that Tε(ω1:m) = Tε(ω1:n)>C− ε for all m ≥ n, and therefore liminfn→∞

1
C−ε

Tε(ω1:n)≥ 1.
Hence

liminf
n→∞

1
C− ε

Tε(ω1:n)≥ IGC(ω) for all ω ∈ Ω,

and therefore Equation (4) tells us that Pϕ(GC)≤ 1
C−ε

Tε(□) = 1
C−ε

T (□). Since this holds
for all 0 < ε <C, we are done. □
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Proof of Proposition 6. For (i), consider any supermartingale M for ψ , which means that
Eψ(s)(M(s ·))≤ M(s) for all s ∈ S. Now simply observe that also

Eϕ(s)(M(s ·)) = sup
p∈ϕ(s)

Ep(M(s ·))≤ sup
p∈ψ(s)

Ep(M(s ·)) = Eψ(s)(M(s ·))≤ M(s),

where the first inequality holds because ϕ(s)⊆ ψ(s).
For (ii), we use Equation (4):

Eϕ(g|s) = inf
{

M(s) : M ∈Mϕ
and liminfM≥s g

}
≤ inf

{
M(s) : M ∈Mψ

and liminfM≥s g
}
= Eψ(g|s),

where the inequality holds because we have just shown that Mψ ⊆Mϕ
. □

Proof of Proposition 7. The first statement follows from combining Proposition 10 and
Theorem 6 in Ref. [35], which are applicable in the present context as well.15 The second
statement involving the partial cuts then follows from the first, as any cut K is necessarily
countable, as a subset of the countable set S. This implies that JKK is a countable union of
clopen sets, and therefore belongs to the Borel algebra.

To make this paper more self-contained, we nevertheless provide an alternative and
more direct proof for the last statement involving partial cuts K, which is all we’ll really
need for the purposes of this paper. Let, for ease of notation,

p(s) :=
|s|−1

∏
k=0

ϕpr(s1:k)
sk+1 [1−ϕpr(s1:k)]

1−sk+1 , for all s ∈ S.

First of all, let’s assume that K is finite, then it follows from E3 and Proposition 4 that

Pϕpr(JKK)≤ ∑
s∈K

p(s)≤ Pϕpr(JKK),

and then E1 guarantees that

Pϕpr(JKK) := Pϕpr(JKK) = Pϕpr(JKK) = ∑
s∈K

p(s). (15)

Next, let’s consider the more involved (and only remaining) case that K is countably
infinite. Let K≤n := {s ∈ K : |s| ≤ n}, for all n ∈ N, then K≤n is an increasing nested
sequence of finite partial cuts, with K =

⋃
n∈N K≤n, and similarly JKK =

⋃
n∈NJK≤nK. It

now follows from E9 and the non-negativity of the p(s) that

Pϕpr(JKK) = sup
n∈N

Pϕpr(JK≤nK) = sup
n∈N

Pϕpr(JK≤nK) = sup
n∈N

∑
s∈K≤n

p(s) = ∑
s∈K

p(s). (16)

On the other hand, it follows from E1, E3 and Equation (15) that, for all n ∈ N,

0 ≤ Pϕpr(JKK\ JK≤nK) = Eϕpr
(
IJKK − IJK≤nK

)
≤ Eϕpr

(
IJKK

)
+Eϕpr

(
−IJK≤nK

)
= Eϕpr

(
IJKK

)
−Eϕpr

(
IJK≤nK

)
= Pϕpr(JKK)−Pϕpr(JK≤nK)

= Pϕpr(JKK)− ∑
s∈K≤n

p(s),

and therefore ∑s∈K≤n p(s)≤ Pϕpr(JKK). Taking the supremum over n ∈ N on both sides of
this inequality leads to

∑
s∈K

p(s) = sup
n∈N

∑
s∈K≤n

p(s)≤ Pϕpr(JKK),

which, together with Equation (16) and E1, leads to

Pϕpr(JKK) := Pϕpr(JKK) = Pϕpr(JKK) = ∑
s∈K

p(s). □

15See footnote 5 for an explanation and more details.
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Proof of Proposition 8. Suppose there’s a computable real map q : D ×N0 → R such that
q(d,n+ 1) ≥ q(d,n) and r(d) = limm→∞ q(d,m) for all d ∈ D and n ∈ N0. Since q is
computable, there’s some recursive rational map p : D ×N2

0 →Q such that

|q(d,m)− p(d,m,n)| ≤ 2−n for all d ∈ D and m,n ∈ N0. (17)

Let q′ : D ×N0 → Q be defined as q′(d,n) := maxn
k=0[p(d,k,k)− 2−k] for all d ∈ D and

n ∈ N0. This map is clearly rational and recursive. Furthermore,

q′(d,n+1) =
n+1
max
k=0

[p(d,k,k)−2−k]≥ n
max
k=0

[p(d,k,k)−2−k] = q′(d,n)

and

q′(d,n) =
n

max
k=0

[p(d,k,k)−2−k]≤ sup
k∈N0

[p(d,k,k)−2−k]≤ sup
k∈N0

q(d,k) = r(d)

for all d ∈ D and n ∈ N0, where the last inequality holds by Equation (17). We end
this proof by showing that limn→∞ q′(d,n) = r(d). To this end, assume towards contra-
diction that there’s some N ∈ N0 such that limn→∞ q′(d,n)+ 2−N < r(d). Since r(d) =
limm→∞ q(d,m), there’s some natural M > N +1 such that q(d,M)> r(d)−2−(N+1). As a
consequence, we have that, also taking into account Equation (17),

q′(d,M)< r(d)−2−N < q(d,M)−2−N +2−(N+1) = q(d,M)−2−(N+1)

≤ p(d,M,M)+2−M −2−(N+1) ≤ p(d,M,M)−2−M ≤ q′(d,M),

which is clearly a contradiction. □

APPENDIX B. PROOFS OF NEW RESULTS

B.1. Proofs of results in Section 4.

Proof of Proposition 9. Since any recursive positive supermartingale is also computable
and non-negative, it clearly suffices to prove the ‘if’ part. So suppose that no recursive
positive and rational test supermartingale for ϕ is computably unbounded on ω . To prove
that ω is Schnorr random, consider any computable test supermartingale T for ϕ , and as-
sume towards contradiction that T is computably unbounded on ω , so there’s some growth
function ρ such that limsupn→∞[T (ω1:n)−ρ(n)]> 0. If we consider the map ρ ′ : N0 →N0
defined by ρ ′(n) := ⌊ 1

4 ρ(n)⌋ for all n ∈N0, then it is clear that ρ ′ is a growth function too,
and that ρ ≥ 4ρ ′. Now observe that, for all n ∈ N0,

T (ω1:n)−ρ(n) = T (ω1:n)−4R(ω1:n)+4R(ω1:n)−ρ(n)≤ 4 ·2−n +4[R(ω1:n)−ρ
′(n)],

where R is the recursive positive rational test supermartingale R for ϕ constructed in
Lemma 26. Hence also limsupn→∞[R(ω1:n)−ρ ′(n)] > 0, so R is computably unbounded
on ω , a contradiction. □

The proof above makes use of the following lemma, which is a simplified—to fit our
present purpose—version of one we proved earlier in Ref. [19, Lemma 24]. We include it
and its proof in the interest of making this paper as self-contained as possible.

Lemma 26. For any computable test supermartingale T for ϕ , there’s a recursive positive
rational test supermartingale R for ϕ such that |4R(s)−T (s)| ≤ 4 ·2−|s| for all s ∈ S.

Proof. Consider any computable test supermartingale T . Since T is computable, there’s
some recursive rational map q : S×N0 →Q such that

|T (s)−q(s,N)| ≤ 2−N for all s ∈ S and N ∈ N0. (18)

Observe that, since T (□) = 1, we can assume without loss of generality that q(□,0) = 1.
Define the rational process R by letting

R(s) :=
q(s, |s|)+3 ·2−|s|

4
for all s ∈ S.
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Since the maps |•| and q are recursive, so is the rational process R. Furthermore, it follows
from Equation (18) that

q(sx, |sx|)≤ T (sx)+
1
2
·2−|s|

T (s)≤ q(s, |s|)+2−|s|

 for all s ∈ S and x ∈ {0,1}. (19)

Moreover, R(□)= q(□,0)+3
4 = 1, and the bottom inequality in Equation (19) also guarantees

that R is positive:

R(s) =
q(s, |s|)+3 ·2−|s|

4
≥ T (s)+2 ·2−|s|

4
≥ 2 ·2−|s|

4
> 0 for all s ∈ S.

Next, we show that R is a supermartingale. By combining the inequalities in Equation (19),
we find that for all s ∈ S,

q(s ·, |s ·|)−q(s, |s|)≤ T (s ·)−T (s)+
3
2
·2−|s|,

and therefore also, again using the inequalities in Equation (19),

∆R(s) = R(s ·)−R(s) =
q(s ·, |s ·|)+3 ·2−|s ·|

4
− q(s, |s|)+3 ·2−|s|

4

=
q(s ·, |s ·|)−q(s, |s|)− 3

2 ·2
−|s|

4

≤
T (s ·)−T (s)+ 3

2 ·2
−|s|− 3

2 ·2
−|s|

4
=

∆T (s)
4

.

This implies that, indeed,

Eϕ(s)(∆R(s))≤ Eϕ(s)

(
∆T (s)

4

)
=

1
4

Eϕ(s)(∆T (s))≤ 0 for all s ∈ S,

where the first inequality follows from C5, the equality follows from C2, and the last
inequality follows from the supermartingale inequality Eϕ(s)(∆T (s))≤ 0.

This shows that R is a recursive positive rational test supermartingale for ϕ . For the rest
of the proof, consider that, by Equation (18), indeed

|4R(s)−T (s)|=
∣∣q(s, |s|)+3 ·2−|s|−T (s)

∣∣≤ 3 ·2−|s|+
∣∣q(s, |s|)−T (s)

∣∣
≤ 3 ·2−|s|+2−|s| = 4 ·2−|s| for all s ∈ S.□

B.2. Proofs of results in Section 5. We begin by proving the following general and
powerful lemma, various instantiations of which will help us through many a complicated
argument further on.

Lemma 27 (Workhorse Lemma). Consider any computable forecasting system ϕ , any
countable set D whose elements can be encoded by the natural numbers, and any recursive
set C ⊆D ×N0×S such that |s| ≤ p for all (d, p,s)∈C. Then Pϕ(JCp

d K|s) is a computable
real effectively in d, p and s, with Cp

d := {s ∈ S : (d, p,s) ∈C} for all p ∈ N0 and d ∈ D .

Proof. We start by observing that Cp
d is a finite recursive set of situations, effectively in d

and p. Similarly,
Cp

d
′ := {t ∈ S : |t|= p and Cp

d ⊑ t}
is clearly also a finite recursive set of situations, effectively in d and p. Moreover, it is a
partial cut.

Another important observation is that there are, in principle, three mutually exclusive
possibilities for any of the sets Cp

d and any t ∈ S. The first possibility is that Cp
d ⊑ t, which

can be checked recursively. In that case, we know from Corollary 3(iv) that Pϕ(JCp
d K|t)= 1.

The second possibility is that t ∥Cp
d , which can be checked recursively as well. In that case,
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we know from Corollary 3(iv) that Pϕ(JCp
d K|t) = 0. The third, final, and most involved

possibility is that t ⊏Cp
d , which can also be checked recursively.

It’s clear from this discussion that the computability of Pϕ(JCp
d K|s) is trivial when Cp

d ⊑ s
or s ∥Cp

d , so we’ll from now on only pay attention to the case that s ⊏Cp
d . Since, obviously,

JCp
d
′K= JCp

d K and in this case also s⊏Cp
d
′, we’ll focus on the computability of Pϕ(JCp

d
′K|s).

For any t ⊒ s with |t| = p, we infer from the discussion above that Pϕ(JCp
d
′K|t) = 1

if t ∈ Cp
d
′ and Pϕ(JCp

d
′K|t) = 0 otherwise. Clearly then, Pϕ(JCp

d
′K|t) is a computable real

effectively in d, p and t with |t|= p.
In a next step, we find by applying Corollary 3(i) that, for any t ⊒ s with |t|= p−1,

Pϕ(JCp
d
′K|t) = Eϕ(t)

(
Pϕ(JCp

d
′K|t ·)

)
= max

{
ϕ(t)Pϕ

(
JCp

d
′K
∣∣t1)+[1−ϕ(t)]Pϕ

(
JCp

d
′K
∣∣t0),

ϕ(t)Pϕ
(
JCp

d
′K
∣∣t1)+[1−ϕ(t)]Pϕ

(
JCp

d
′K
∣∣t0)},

which is clearly a computable real effectively in d, p and t with |t|= p−1, simply because
ϕ is computable.

By applying Corollary 3(i) to situations t ⊒ s with successively smaller |t|, we eventually
end up in the situation s after a finite number of steps, which implies that Pϕ(JCp

d K|s) is a
computable real, effectively in d, p and s. □

Proof of Proposition 11. By assumption, the representation C is a recursive subset of N0×
S such that Gn = JCnK and Pϕ

(
JCnK

)
≤ 2−n for all n ∈ N0, and such that there’s some

recursive map e′ : N2
0 → N0 such that Pϕ

(
JCnK \ JC<ℓ

n K
)
≤ 2−N for all (N,n) ∈ N2

0 and
all ℓ≥ e′(N,n).

For the proof of the first statement, consider for any n ∈ N0, the set of situations

An := {s ∈Cn : (∀t ⊏ s)t /∈Cn} ⊆Cn,

which is clearly a partial cut and recursive effectively in n. Of course, the correspond-
ing A := {(n,s) : n ∈ N0 and s ∈ An} ⊆ C is then recursive. It follows readily from our
construction that JAnK = JCnK and JA<ℓ

n K = JC<ℓ
n K for all n, ℓ ∈ N0.

For proof of the second statement, define e : N0 → N0 by letting

e(N) := N +
N

max
m=0

N
max
n=0

e′(m,n) for all N ∈ N0.

Clearly, the map e is recursive because e′ is. It’s non-decreasing because

e(N +1) = N +1+
N+1
max
m=0

N+1
max
n=0

e′(m,n)≥ N +
N

max
m=0

N
max
n=0

e′(m,n) = e(N) for all N ∈ N0,

and it is unbounded because e(N) ≥ N for all N ∈ N0. We conclude that e is a growth
function. Now, fix any N ∈ N0 and n ∈ N0, then there are two possibilities. The first is
that n ≤ N, and then for all ℓ≥ e(N) also ℓ≥ e′(N,n), and therefore, as we know from the
beginning of this proof,

Pϕ(JCnK\ JC<ℓ
n K)≤ 2−N .

The other possibility is that n > N, and then trivially for all ℓ≥ e(N)

Pϕ(JCnK\ JC<ℓ
n K)≤ Pϕ(JCnK)≤ 2−n ≤ 2−N .

where the first inequality follows from E6, and the penultimate one, as explained at the
beginning of this proof, follows from the assumption. □

Proof of Proposition 12. Given the assumptions, an appropriate instantiation of our Work-
horse Lemma 27 [with D → N0, d → n, p → ℓ and C → {(n, ℓ,s) ∈ N2

0 × S : s ∈ A<ℓ
n },

and therefore Cp
d → A<ℓ

n ] guarantees that the real map (n, ℓ) 7→ Pϕ(JA<ℓ
n K) is computable.

Moreover, the following line of reasoning tells us that for all n, ℓ ∈ N0,∣∣Pϕ(JAnK)−Pϕ(JA<ℓ
n K)

∣∣= ∣∣Eϕ
(
IJAnK

)
−Eϕ

(
IJA<ℓ

n K
)∣∣= Eϕ

(
IJAnK

)
−Eϕ

(
IJA<ℓ

n K
)
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≤ Eϕ
(
IJAnK − IJA<ℓ

n K
)
= Pϕ(JAnK\ JA<ℓ

n K), (20)

where the second equality follows from E6, and the inequality follows from E3. Since A is
a Schnorr test, we know that it has a tail bound, so there’s some recursive map e : N2

0 →N0
such that Pϕ

(
JAnK\JA>ℓ

n K
)
≤ 2−N for all (N,n)∈N2

0 and all ℓ≥ e(N,n), and if we combine
this with the inequality in Equation (20), this leads to∣∣Pϕ(JAnK)−Pϕ(JA<ℓ

n K)
∣∣≤ 2−N for all (N,n) ∈ N2

0 and all ℓ≥ e(N,n).

Since this tells us that the computable real map (n, ℓ) 7→ PϕJA<ℓ
n K converges effectively

to the sequence of real numbers Pϕ(JAnK), we conclude that Pϕ(JAnK) is a computable
sequence of real numbers. □

Proof of Proposition 13. By Corollary 10, we may assume without loss of generality that
there’s a recursive A ⊆N0×S such that An is a partial cut, Gn = JAnK and Pϕpr(JAnK)≤ 2−n

for all n ∈ N0. Assume that the Pϕpr(JAnK) constitute a computable sequence of real num-
bers. Then, by Definition 7, it suffices to prove that there’s some recursive map e : N2

0 →N0
such that Pϕpr(JA≥ℓ

n K)≤ 2−N for all (N,n) ∈ N2
0 and all ℓ≥ e(N,n).

To do so, we start by proving that the real map (n, ℓ) 7→ Pϕpr(JA≥ℓ
n K) is computable and

that limℓ→∞ Pϕpr(JA≥ℓ
n K) = 0 for all n ∈ N0. First of all, observe that the computability

of the forecasting system ϕpr, the recursive character of the finite partial cuts A<ℓ
n and an

appropriate instantiation of our Workhorse Lemma 27 [with D → N0, d → n, p → ℓ and
C → {(n, ℓ,s) ∈ N2

0 ×S : s ∈ A<ℓ
n }, and therefore Cp

d → A<ℓ
n ] allow us to infer that the real

map (n, ℓ) 7→ Pϕpr(JA<ℓ
n K) is computable. Since the forecasting system ϕpr is precise, and

since IJAnK = IJA<ℓ
n K + IJA≥ℓ

n K for all (n, ℓ) ∈ N2
0 due to An being a partial cut, we infer from

Proposition 7 that
Pϕpr

(
JA≥ℓ

n K
)
= Pϕpr

(
JAnK

)
−Pϕpr

(
JA<ℓ

n K
)
. (21)

Since Pϕpr(JAnK) is a computable sequence of real numbers and (n, ℓ) 7→ Pϕpr(JA<ℓ
n K) is a

computable real map, it follows from Equation (21) that (n, ℓ) 7→ Pϕpr(JA≥ℓ
n K) is a comput-

able real map. Furthermore, since IJA<ℓ
n K ↗ IJAnK point-wise as ℓ→ ∞, it follows from E9

that limℓ→∞ Pϕpr(JA<ℓ
n K) = Pϕpr(JAnK), and therefore also that Pϕpr(JA≥ℓ

n K)↘ 0 as ℓ→ ∞,
for all n ∈ N0.

We are now ready to prove that there’s some recursive map e : N2
0 → N0 such that

Pϕpr(JA≥ℓ
n K) ≤ 2−N for all (N,n) ∈ N2

0 and all ℓ ≥ e(N,n). Since (n, ℓ) 7→ Pϕpr(JA≥ℓ
n K)

is a computable real map, there’s some recursive rational map q : N3
0 →Q such that∣∣Pϕpr

(
JA≥ℓ

n K
)
−q(n, ℓ,N)

∣∣≤ 2−N for all (n, ℓ,N) ∈ N3
0. (22)

Define the map e : N2
0 → N0 by

e(N,n) := min
{
ℓ ∈ N0 : q(n, ℓ,N +2)< 2−(N+1)} for all (N,n) ∈ N2

0. (23)

Clearly, if we can prove that the set of natural numbers in the definition above is always
non-empty, then the map e will be well-defined and recursive. To do so, fix any (N,n)∈N2

0,
and observe that since Pϕpr(JA≥ℓ

n K) ↘ 0 as ℓ → ∞, there always is some ℓo ∈ N0 such
that Pϕpr(JA≥ℓo

n K) < 2−(N+2). For this same ℓo, it then indeed follows from Equation (22)
that

q(n, ℓo,N +2)≤ Pϕpr(JA≥ℓo
n K)+2−(N+2) < 2−(N+2)+2−(N+2) = 2−(N+1).

To complete the proof, consider any n,N ∈ N0 and any ℓ≥ e(N,n). Then, indeed,

Pϕpr
(
JA≥ℓ

n K
)
≤ Pϕpr

(
JA≥e(N,n)

n K
)
≤ q(n,e(N,n),N +2)+2−(N+2)

< 2−(N+1)+2−(N+2) < 2−N ,

where the first inequality follows from ℓ ≥ e(N,n) and E6, the second inequality follows
from Equation (22), and the third inequality follows from Equation (23). □
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B.3. Proofs of results in Section 6.

Proof of Proposition 14. We give a proof by contraposition. Assume that ω isn’t Martin-
Löf random for ϕ , which implies that there’s some lower semicomputable test supermartin-
gale T for ϕ that becomes unbounded on ω , so supn∈N0

T (ω1:n) = ∞. Now, let us consider
the following set

A := {(n,s) ∈ N0 ×S : T (s)> 2n} ⊆ N0 ×S.
That T is a lower semicomputable test supermartingale implies, by Lemma 28(iii)&(i), that
A is a Martin-Löf test for ϕ with JAmK := {ϖ ∈ Ω : supn∈N0

T (ϖ1:n)> 2m} for all m ∈N0.
That supn∈N0

T (ω1:n) = ∞ then implies that ω ∈ JAmK for all m ∈N0, so ω isn’t Martin-Löf
test random for ϕ either. □

Lemma 28. Consider any lower semicomputable test supermartingale T for ϕ , and let A :=
{(n,s) ∈ N0 ×S : T (s)> 2n}. Then

(i) JAmK = {ϖ ∈ Ω : supn∈N0
T (ϖ1:n)> 2m} for all m ∈ N0;

(ii) Pϕ(JAmK)≤ 2−m for all m ∈ N0;
(iii) A is a Martin-Löf test.

Proof. We begin with the proof of (i). Since, by its definition, JAmK=
⋃
{JsK : s ∈ Am}, we

have the following chain of equivalences for any ϖ ∈ Ω:

ϖ ∈ JAmK ⇔ (∃s ∈ Am)(ϖ ∈ JsK)⇔ (∃s ∈ S)(ϖ ∈ JsK and (m,s) ∈ A)

⇔ (∃s ∈ S)(ϖ ∈ JsK and T (s)> 2m)⇔ (∃n ∈ N0)T (ϖ1:n)> 2m,

proving (i).
Next, we turn to the proof of (ii). If we recall that T is a nonnegative supermartingale

for ϕ with T (□) = 1 and let C := 2m > 0 in Ville’s inequality [Proposition 5], then we find,
also taking into account (i) and E6, that indeed,

Pϕ(JAmK) = Pϕ

({
ϖ ∈ Ω : sup

n∈N0

T (ϖ1:n)> 2m
})

≤ Pϕ

({
ϖ ∈ Ω : sup

n∈N0

T (ϖ1:n)≥ 2m
})

≤ 1
2m T (□) = 2−m.

For (iii), it now only remains to prove that the set A = {(n,s) ∈ N0 ×S : T (s) > 2n} is
recursively enumerable. The argument is a standard one. That T is lower semicomputable
means that there’s some recursive map qT : N0 ×S→Q such that qT (m+1,s)≥ qT (m,s)
and T (s) = supℓ∈N0

qT (ℓ,s) for all m ∈ N0 and all s ∈ S. Now observe the following chain
of equivalences, for any (n,s) ∈ N0 ×S:

(n,s) ∈ A ⇔ T (s)> 2n ⇔ sup
m∈N0

qT (m,s)> 2n ⇔ (∃m ∈ N0)qT (m,s)> 2n.

Since qT is rational-valued and recursive, the inequality qT (m,s)> 2n is decidable, which
makes it clear that A is indeed recursively enumerable. □

With any non-degenerate forecasting system ϕ , we can associate the (clearly) positive
real processes cϕ and Cϕ , defined by

cϕ(s) := min
{

1−ϕ(s),ϕ(s)
}

and Cϕ(s) :=
|s|−1

∏
k=0

cϕ(s1:k)
−1 for all s ∈ S.

Observe that Cϕ(□) = 1, and that 0 < cϕ(s)≤ 1 and therefore also Cϕ(s)≥ 1 for all s ∈ S.
Also, if ϕ is computable, then so are cϕ and Cϕ .

Interestingly, the map Cϕ can be used to bound non-negative supermartingales for non-
degenerate forecasting systems.

Proposition 29. Consider any non-degenerate forecasting system ϕ and any non-negative
supermartingale M for ϕ . Then 0 ≤ M(s)≤ M(□)Cϕ(s) for all s ∈ S.
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Proof of Proposition 29. Fix any situation s ∈ S and simply observe that

M(s)≥ Eϕ(s)(∆M(s ·)) =

{
ϕ(s)M(s1)+ [1−ϕ(s)]M(s0) if M(s1)≤ M(s0)
ϕ(s)M(s1)+ [1−ϕ(s)]M(s0) if M(s1)> M(s0)

≥

{
[1−ϕ(s)]M(s0) if M(s1)≤ M(s0)
ϕ(s)M(s1) if M(s1)> M(s0)

= maxM(s ·)

{
1−ϕ(s) if M(s1)≤ M(s0)
ϕ(s) if M(s1)> M(s0)

≥ min
{

1−ϕ(s),ϕ(s)
}

maxM(s ·),

where the first inequality holds because M is a supermartingale for ϕ , and the other in-
equalities hold because M is non-negative. Hence, maxM(s ·) ≤ cϕ(s)−1M(s). A simple
induction argument now leads to the desired result. □

Proof of Proposition 15. Again, we give a proof by contraposition. Assume that ω isn’t
Martin-Löf test random for ϕ . This implies that there’s some Martin-Löf test A such that
ω ∈

⋂
n∈N0

JAnK. The idea behind the proof is an altered, much simplified and stripped-
down version of an argument borrowed in its essence from a different proof in a paper by
Vovk and Shen about precise prequential Martin-Löf randomness [40, Proof of Theorem 1].
It’s actually quite straightforward when we ignore its technical complexities: we’ll use the
Martin-Löf test A to construct a lower semicomputable test supermartingale W for ϕ that
becomes unbounded on ω . Although it might not appear so at first sight from the way
we go about it, this W is essentially obtained by summing the non-negative supermartin-
gales Pϕ(JAnK|•), each of which is ‘fully turned on’ as soon as the partial cut An is reached.
The main technical difficulty will be to prove that this W is lower semicomputable, and
we’ll take care of this task in a roundabout way, in a number of lemmas [Lemmas 30–32
below].

Back to the proof now. Recall from Corollary 10 that we may assume without loss of
generality that the set A is recursive and that the corresponding An are partial cuts. We
also recall the definition of the partial cuts A<ℓ

n := {s ∈ S : (n,s) ∈ A and |s|< ℓ} ⊆ An, for
all n, ℓ∈N0, with JAnK=

⋃
ℓ∈N0

JA<ℓ
n K. These same partial cuts also appear in Equation (8),

where we prepared for the definition of a Schnorr test.
We begin by considering the real processes W ℓ

n := Pϕ(JA<ℓ
n K|•), where n, ℓ ∈ N0. By

Lemma 30, each W ℓ
n is a non-negative computable supermartingale. We infer from E6 that

Pϕ(JAnK) = Eϕ(IJAnK)≥ Eϕ(IJA<ℓ
n K) =W ℓ

n (□), and therefore, also invoking Lemma 30(ii)
and the assumption that Pϕ(JAnK)≤ 2−n, we get that

0 ≤W ℓ
n (□)≤ 2−n. (24)

Next, fix any s ∈ S and any ℓ ∈ N0, and let W ℓ(s) := 1
2 ∑

∞
n=0 W ℓ

n (s). Observe that, since
all its terms W ℓ

n (s) are non-negative by Lemma 30(ii), the series W ℓ(s) = 1
2 ∑

∞
n=0 W ℓ

n (s)
converges to some non-negative extended real number. We first check that it is real-valued,
as in principle, the defining series might converge to ∞. Combine Equation (24) and Pro-
position 29 to find that:

0 ≤W ℓ
n (s)≤W ℓ

n (□)Cϕ(s)≤Cϕ(s)2−n for all n ∈ N0, (25)

whence also

0 ≤W ℓ(s) =
1
2

∞

∑
n=0

W ℓ
n (s)≤Cϕ(s), (26)

which shows that W ℓ(s) is bounded above, and therefore indeed real. Moreover, it now
follows from Lemma 30(ii) that W ℓ(s) ≤ W ℓ+1(s) for all ℓ ∈ N0, which guarantees that
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the limit W (s) := limℓ→∞ W ℓ(s) = supℓ∈N0
W ℓ(s) exists as an extended real number. It’s

moreover real-valued, because we infer from taking the limit in Equation (26) that also

0 ≤W (s)≤Cϕ(s). (27)

We’ve thus defined a non-negative real process W , and we infer from Lemma 31 that W
is a non-negative lower semicomputable supermartingale for ϕ . In addition, we infer from
Equation (27) that 0 ≤W (□)≤ 1.

Moreover, since ω ∈
⋂

n∈N0
JAnK, we see that W is unbounded on ω . Indeed, consider

any n ∈ N0, then since ω ∈ JAnK, there is some mn ∈ N0 such that W ℓ
n (ω1:m) = 1 for

all m, ℓ ≥ mn [To see this, observe that ω ∈ JAnK first of all implies that there is some
(unique) Mn ∈N0 for which ω1:Mn ∈ An, and secondly that then ω1:Mn ∈ A<ℓ

n ⇔ ℓ > Mn; so
if ℓ≥ Mn+1 then ω1:m ⊒ A<ℓ

n for all m ≥ Mn; now use Lemma 30(iii) to find that then also
W ℓ

n (ω1:m) = 1 for all m ≥ Mn]. So, if we consider any N ∈N0 and let MN := max{mn : n ∈
{0,1, . . . ,N}}, then

W ℓ(ω1:m)≥
1
2

N

∑
n=0

W ℓ
n (ω1:m) =

1
2
(N +1) for all m, ℓ≥ MN ,

and therefore also

W (ω1:m)≥
1
2
(N +1) for all m ≥ MN ,

which shows that, in fact,
lim

m→∞
W (ω1:m) = ∞. (28)

The relevant condition being Eϕ(□)(W (□ ·)) ≤ W (□), we see that replacing W (□) ≤ 1
by 1 does not change the supermartingale character of W , and doing so leads to a lower
semicomputable test supermartingale for ϕ that is unbounded on ω . This tells us that,
indeed, ω isn’t Martin-Löf random for ϕ . □

Lemma 30. For any n, ℓ ∈ N0, consider the real process W ℓ
n , defined in the proof of Pro-

position 15 by W ℓ
n := Pϕ(JA<ℓ

n K|•). Then the following statements hold:
(i) W ℓ

n (s) = Eϕ(s)(W ℓ
n (s ·)) for all s ∈ S;

(ii) 0 ≤W ℓ
n (s)≤W ℓ+1

n (s)≤ 1 for all s ∈ S;
(iii) W ℓ

n (s) = 1 for all s ⊒ A<ℓ
n ;

(iv) the real map (n, ℓ,s) 7→W ℓ
n (s) is computable.

In particular, for all n, ℓ ∈ N0, W ℓ
n := Pϕ(JA<ℓ

n K|•) is a non-negative computable super-
martingale for ϕ .

Proof. Statement (i) follows from Corollary 3(i), since A<ℓ
n is a partial cut.

The first and third inequalities in (ii) follow from Corollary 3(iii). The second inequality
is a consequence of A<ℓ

n ⊆ A<ℓ+1
n and the monotone character of the conditional lower

expectation Eϕ(•|s) [use E6].
Statement (iii) is an immediate consequence of Corollary 3(iv).
For the proof of (iv), consider that the partial cut A is recursive and that the forecast-

ing system ϕ is computable, and apply an appropriate instantiation of our Workhorse
Lemma 27 [with D → N0, d → n, p → ℓ and C → {(n, ℓ,s) ∈ N2

0 × S : s ∈ A<ℓ
n }, and

therefore Cp
d → A<ℓ

n ].
The rest of the proof is now immediate. □

Lemma 31. The real process W, defined in the proof of Proposition 15, is a non-negative
lower semicomputable supermartingale for ϕ .

Proof. First of all, recall from Equation (27) in the proof of Proposition 15 that W is indeed
non-negative.

Next, define, for any m, ℓ ∈N0, the real process V ℓ
m by letting V ℓ

m(s) := 1
2 ∑

m
n=0 W ℓ

n (s) for
all s ∈ S. It follows from Lemma 30(ii) that V ℓ

m is non-negative. By Lemma 30(iv), the real
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map (n, ℓ,s) 7→ W ℓ
n (s) is computable, so we see that so is (m, ℓ,s) 7→ V ℓ

m(s). Moreover, it
is clear from the definition of the processes V ℓ

m and W ℓ that V ℓ
m(s)↗W ℓ(s) as m → ∞, and

that∣∣W ℓ(s)−V ℓ
m(s)

∣∣= 1
2

∞

∑
n=m+1

W ℓ
n (s)≤

1
2

Cϕ(s)
∞

∑
n=m+1

2−n =
1
2

Cϕ(s)2−m ≤ 2−m+LCϕ (s)−1

for all ℓ,m ∈ N0 and all s ∈ S,

where the first inequality follows from Equation (25), and the second inequality is based on
Lemma 32 and the notations introduced there. If we now consider the recursive map e : N0×
S→ N0 defined by e(N,s) := N +LCϕ

(s)− 1 [recall that LCϕ
is recursive by Lemma 32],

then we find that |W ℓ(s)−V ℓ
m(s)| ≤ 2−N for all (N,s) ∈ N0 ×S and all m ≥ e(N,s), which

guarantees that the real map (ℓ,s) 7→W ℓ(s) is computable.
Now, consider that for any s ∈ S, W ℓ(s) ↗ W (s) as ℓ → ∞. Since we’ve just proved

that (ℓ,s) 7→ W ℓ(s) is a computable real map, we conclude that the process W is indeed
lower semicomputable, as a point-wise limit of a non-decreasing sequence of computable
processes [invoke Proposition 8].

To complete the proof, we show that W is a supermartingale. It follows from C2, C3
and the supermartingale character of the W ℓ

n [Lemma 30] that

Eϕ(s)(∆V ℓ
m(s)) = Eϕ(s)

(
1
2

m

∑
n=0

∆W ℓ
n (s)

)
≤ 1

2

m

∑
n=0

Eϕ(s)(∆W ℓ
n (s))≤ 0 for all s ∈ S,

so V ℓ
m is also a supermartingale. Since V ℓ

m(s)→W ℓ(s), we also find that ∆V ℓ
m(s)→ ∆W ℓ(s)

for all s ∈ S. Since the gambles ∆V ℓ
m(s) are defined on the finite domain {0,1}, this point-

wise convergence also implies uniform convergence, so we can infer from C6 that

Eϕ(s)(∆W ℓ(s)) = Eϕ(s)

(
lim

m→∞
∆V ℓ

m(s)
)
= lim

m→∞
Eϕ(s)(∆V ℓ

m(s))≤ 0 for all s ∈ S.

This shows that W ℓ is also a supermartingale. And, since W ℓ(s) → W (s), we find that
also ∆W ℓ(s) → ∆W (s) for all s ∈ S. Since the gambles ∆W ℓ(s) are defined on the finite
domain {0,1}, this point-wise convergence also implies uniform convergence, so we can
again infer from C6 that

Eϕ(s)(∆W (s)) = Eϕ(s)

(
lim
ℓ→∞

∆W ℓ(s)
)
= lim

ℓ→∞
Eϕ(s)(∆W ℓ(s))≤ 0 for all s ∈ S.

This shows that W is indeed a supermartingale. □

Lemma 32. If the real process F is computable and F ≥ 1, then there’s some recursive
map LF : S→ N such that LF ≥ log2 F, or equivalently, F ≤ 2LF .

Proof. That F is computable implies that the non-negative process log2 F is computable
as well. That the non-negative real process log2 F is computable means that there’s some
recursive map qF : N0×S→Q such that |log2 F(s)−qF(n,s)| ≤ 2−n for all (n,s)∈N0×S,
and therefore in particular that |log2 F −qF(0, •)| ≤ 1. Hence, 0 ≤ log2 F ≤ 1+qF(0, •)≤
1+ ⌈qF(0, •)⌉ and LF := 1+ ⌈qF(0, •)⌉ is a recursive and N-valued process. □

B.4. Proofs of results in Section 7.

Proof of Proposition 17. Proposition 5.5 in Ref. [3] tells us that every effectively closed
subset of M (Ω) is effectively compact, so it suffices to prove that {µϕpr : ϕpr ∈Φpr and ϕpr ⊆
ϕ} is effectively closed, which we’ll do by establishing the existence of a recursively enu-
merable set B⊆Pfin(Q×S×Q) such that

⋃
b∈B b(Ω)=M (Ω)\{µϕpr : ϕpr ∈Φpr and ϕpr ⊆

ϕ}.
Since ϕ is lower semicomputable and ϕ is upper semicomputable, there are two recurs-

ive rational maps q,q : S×N0 → Q such that, for all s ∈ S, q(s,n)↗ ϕ(s) and q(s,n)↘
ϕ(s) as n → ∞. Let
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B :=
⋃

r∈Q∩(0,2),s∈S,n∈N0

{
{(−1,s,r),(rq(s,n),s1,2)},{(−1,s,r),(r(1−q(s,n)),s0,2)}

}
.

This set is clearly recursively enumerable.
To show that M (Ω)\{µϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ} ⊆

⋃
b∈B b(Ω), we start by proving

that for any measure µ ∈ M (Ω)\{µϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ} there must be some t ∈
S such that µ (JtK) > 0 and µ (Jt1K)/µ (JtK) /∈ ϕ(t). To this end, consider the precise (not
necessarily computable) forecasting system ϕ ′

pr defined by

ϕ
′
pr(s) :=

{
µ (Js1K)
µ (JsK) if µ (JsK)> 0

ϕ(s) if µ (JsK) = 0
for all s ∈ S.

By construction, µ = µ
ϕ ′

pr . Since µ ∈ M (Ω)\{µϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ} by assump-
tion, there is some t ∈ S such that ϕ ′

pr(t) /∈ ϕ(t). Since, for all s ∈ S, ϕ ′
pr(s) = ϕ(s)⊆ ϕ(s)

if µ (JsK) = 0, we infer that, indeed, µ (JtK)> 0 and µ (Jt1K)/µ (JtK) /∈ ϕ(t).
There are now two possible and mutually exclusive cases.
The first case is that µ (Jt1K)/µ (JtK) > ϕ(t), and then there is some ε ∈ (0,1) such that

µ (Jt1K)> ϕ(t)µ (JtK)+ε . Then there are r ∈Q∩ (0,2) and n ∈N0 such that µ (JtK)< r <
µ (JtK)+ ε/4 and ϕ(t)≤ q(t,n)< ϕ(t)+ ε/4, and we then find that

0 ≤ rq(t,n)<
(

µ (JtK)+
ε

4

)(
ϕ(t)+

ε

4

)
= µ (JtK)ϕ(t)+µ (JtK)

ε

4
+ϕ(t)

ε

4
+

ε2

16

≤ µ (JtK)ϕ(t)+
ε

4
+

ε

4
+

ε2

16
< µ (JtK)ϕ(t)+ ε < µ (Jt1K)< 2,

implying that µ ∈
⋃

b∈B b(Ω).
The second possible case is that µ (Jt1K)/µ (JtK) < ϕ(t), and then there is some ε ∈ (0,1)

such that µ (Jt1K)< ϕ(t)µ (JtK)−ε , and for which then also µ (Jt0K) = µ (JtK)−µ (Jt1K)>
µ (JtK)(1−ϕ(t))+ ε . Then there are r ∈ Q∩ (0,2) and n ∈ N0 such that µ (JtK) < r <
µ (JtK)+ ε/4 and ϕ(t)− ε/4 < q(t,n)≤ ϕ(t), and then we find that

0 ≤ r
(
1−q(t,n)

)
<
(

µ (JtK)+
ε

4

)(
1−ϕ(t)+

ε

4

)
= µ (JtK)

(
1−ϕ(t)

)
+µ (JtK)

ε

4
+
(
1−ϕ(t)

)ε

4
+

ε2

16

≤ µ (JtK)
(
1−ϕ(t)

)
+

ε

4
+

ε

4
+

ε2

16
< µ (JtK)

(
1−ϕ(t)

)
+ ε < µ (Jt0K)< 2,

also implying that µ ∈
⋃

b∈B b(Ω), so M (Ω)\{µϕpr : ϕpr ∈Φpr and ϕpr ⊆ϕ}⊆
⋃

b∈B b(Ω).
To prove that

⋃
b∈B b(Ω)⊆M (Ω)\{µϕpr : ϕpr ∈ Φpr and ϕpr ⊆ ϕ}, consider any ϕpr ⊆

ϕ . For any s ∈ S, n ∈ N0 and r > µϕpr(JsK) it follows from Proposition 7 that

µ
ϕpr(Js1K) = µ

ϕpr(JsK)ϕpr(s)≤ rϕ(s)≤ rq(s,n)

and
µ

ϕpr(Js0K) = µ
ϕpr(JsK)

(
1−ϕpr(s)

)
≤ r

(
1−ϕ(s)

)
≤ r

(
1−q(s,n)

)
,

implying that µϕpr /∈
⋃

b∈B b(Ω). □

Proof of Theorem 19. For the ‘only if’-direction, assume that there’s some C ϕ -test τ such
that τ(ω) = ∞. Then we must show that ω isn’t Martin-Löf test random for ϕ . First
of all, that τ is a C ϕ -test implies in particular that {ϖ ∈ Ω : τ(ϖ) > r} is effectively
open, effectively in r ∈ Q, meaning that there’s some recursively enumerable subset B ⊆
Q×S such that, with obvious notations, JBrK = {ϖ ∈ Ω : τ(ϖ) > r} for all r ∈ R. This
in turn implies that A := {(n,s) ∈ N0 ×S : (2n,s) ∈ B} is a recursively enumerable subset
of N0 × S such that JAnK = {ϖ ∈ Ω : τ(ϖ) > 2n} for all n ∈ N0. If we fix any n ∈ N0,
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then by assumption τ(ω) > 2n and therefore ω ∈ JAnK. Hence, ω ∈
⋂

n∈N0
JAnK, so we

are done if we can prove that A is a Martin-Löf test for ϕ . We already know that A is
recursively enumerable. Suppose towards contradiction that there is some m ∈ N0 such
that Pϕ(JAmK) > 2−m. By Theorem 13 in Ref. [32], and footnote 5 which explains why
this theorem applies to our context, it holds that Pϕ(JAmK) = supϕpr⊆ϕ Pϕpr(JAmK), and
hence, there is some precise ϕpr ⊆ ϕ for which

1 < 2mPϕpr(JAmK) = Eϕpr(2mIJAmK)
Prop. 7
= µ

ϕpr(2mIJAmK)≤ µ
ϕpr(τ),

a contradiction.
For the ‘if’-direction, assume that ω ∈

⋂
n∈N0

JAnK for some Martin-Löf test A for ϕ . If
we let Cn :=

⋃
m>n Am for all n ∈ N0, then clearly the set

C :={(n,s) ∈ N0 ×S : s ∈Cn}

={(n,s) ∈ N0 ×S : (∃m > n)s ∈ Am}=
⋃

(m,s)∈A,m>n∈N0

{(n,s)}

is recursively enumerable because A is, and the JCnK therefore constitute a computable
sequence of effectively open sets. Moreover, clearly JC0K ⊇ JC1K ⊇ . . ., and

ω ∈
⋂

n∈N0

JAnK ⊆
⋂

n∈N
JAnK ⊆

⋂
n∈N0

⋃
m>n

JAmK =
⋂

n∈N0

JCnK. (29)

Now define the map τ : Ω → [0,+∞] as τ(ω) := ∑n∈N IJCnK(ω) for all ω ∈ Ω. It follows
from Equation (29) that τ(ω) = ∞, so we’re done if we can show that τ is a C ϕ -test.

It follows from the nestedness JC0K ⊇ JC1K ⊇ . . . that {ω ∈ Ω : τ(ω)> n}= JCn+1K for
all n ∈ N0. Therefore, since the JCnK constitute a computable sequence of effectively open
sets, so do the {ω ∈ Ω : τ(ω)> n}. By observing that

{ω ∈ Ω : τ(ω)> r}=

{{
ω ∈ Ω : τ(ω)> ⌊r⌋

}
= JC⌊r⌋+1K if r ≥ 0

Ω = JSK if r < 0
for all r ∈Q,

we infer that {ω ∈ Ω : τ(ω)> r} is effectively open, effectively in r ∈Q. Furthermore, it
holds for any ϕpr ⊆ ϕ that

µ
ϕpr(τ) = µ

ϕpr

(
∑

n∈N
IJCnK

)
≤ µ

ϕpr

(
∑

n∈N
∑

m>n
IJAmK

)
≤ ∑

n∈N
∑

m>n
µ

ϕpr

(
IJAmK

)
= ∑

n∈N
∑

m>n
Eϕpr

(
IJAmK

)
≤ ∑

n∈N
∑

m>n
Eϕ

(
IJAmK

)
≤ ∑

n∈N
∑

m>n
2−m = ∑

n∈N
2−n = 1,

where the first two inequalities follow from the properties of integrals, the second equality
follows from Proposition 7, and the third inequality follows from Proposition 6. □

B.5. Proofs of results in Section 8.

Proof of Proposition 20. We give a proof by contraposition. Assume that ω isn’t Schnorr
random for ϕ , which implies that there’s some computable test supermartingale T that is
computably unbounded on ω , meaning that there’s some growth function ρ such that

limsup
n→∞

[T (ω1:n)−ρ(n)]> 0. (30)

By Proposition 9, we may also assume without loss of generality that T is recursive and
rational-valued. Drawing inspiration from Schnorr’s proof [24, Satz (9.4), p. 73] and
Downey and Hirschfeldt’s simplified version [14, Thm. 7.1.7], we let

A := {(n, t) ∈ N0 ×S : T (t)≥ ρ(|t|)≥ 2n}. (31)

Then A is a recursive subset of N0 ×S [because the inequalities in the expressions above
are decidable, as all numbers involved are rational]. We also see that, for any ϖ ∈ Ω,

ϖ ∈ JAnK ⇔ (∃m ∈ N0)ϖ1:m ∈ An ⇔ (∃m ∈ N0)
(
T (ϖ1:m)≥ ρ(m)≥ 2n). (32)
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Hence, JAnK ⊆ {ϖ ∈ Ω : supm∈N0
T (ϖ1:m)≥ 2n}, so we infer from Ville’s inequality [Pro-

position 5] and E6 that

Pϕ(JAnK)≤ Pϕ

({
ϖ ∈ Ω : sup

m∈N0

T (ϖ1:m)≥ 2n
})

≤ 2−n for all n ∈ N0.

This shows that A is a Martin-Löf test for ϕ . It also follows from Equations (30) and (32)
that ω ∈

⋂
m∈N0

JAmK. So we’ll find that ω isn’t Schnorr test random for ϕ , provided we
can prove that A is a Schnorr test.

To this end, we’ll show that it has a tail bound. Define the map e : N2
0 → N0 by letting

e(N,n) := min{k ∈ N0 : ρ(k) ≥ 2N}, for all N,n ∈ N0. Fix any N,n ∈ N0, then we infer
from Equation (31) that

ϖ ∈ JA≥ℓ
n K ⇔ (∃m ≥ ℓ)T (ϖ1:m)≥ ρ(m)≥ 2n), for all ℓ ∈ N0.

Hence, for all ℓ≥ e(N,n) and all ϖ ∈ JA≥ℓ
n K, there’s some m ≥ ℓ such that

T (ϖ1:m)≥ ρ(m)≥ ρ(ℓ)≥ ρ(e(N,n))≥ 2N ,

which implies that JA≥ℓ
n K ⊆ {ϖ ∈ Ω : supm∈N0

T (ϖ1:m)≥ 2N}. Ville’s inequality [Propos-
ition 5] and E6 then guarantee that, for all ℓ≥ e(N,n), since JAnK\ JA<ℓ

n K ⊆ JA≥ℓ
n K,

Pϕ
(
JAnK\ JA<ℓ

n K
)
≤ Pϕ

(
JA≥ℓ

n K
)
≤ Pϕ

({
ϖ ∈ Ω : sup

m∈N0

T (ϖ1:m)≥ 2N
})

≤ 2−N . □

Proof of Proposition 21. For this converse result too, we give a proof by contraposition.
Assume that ω isn’t Schnorr test random for ϕ , which implies that there’s some Schnorr
test A for ϕ such that ω ∈

⋂
n∈N0

JAnK. It follows from Proposition 11 that we may assume
without loss of generality that the sets of situations An are partial cuts for all n ∈ N0.
We’ll now use this A to construct a computable test supermartingale that is computably
unbounded on ω .

We infer from Lemma 34 that there’s some growth function ς such that
∞

∑
n=0

2kPϕ
(q

A≥ς(k)
n

y)
≤ 2−k for all k ∈ N0. (33)

We use this growth function ς to define the following maps, all of which are non-negative
supermartingales for ϕ , by Corollary 3 and C2, because the A≥ς(k)

n are partial cuts:

Zn,k : S→ R : s 7→ 2kPϕ
(q

A≥ς(k)
n

y∣∣s), for all n,k ∈ N0.

Since the forecasting system ϕ was assumed to be non-degenerate, Proposition 29 now
implies that

0 ≤ Zn,k(s)≤ Zn,k(□)Cϕ(s) = 2kPϕ
(q

A≥ς(k)
n

y)
Cϕ(s) for all s ∈ S. (34)

If we also define the (possibly extended) real process Z := 1
2 ∑n,k∈N0

Zn,k, then we infer
from Equations (33) and (34) that

0 ≤ Z(s) =
1
2 ∑

n,k∈N0

Zn,k(s)≤
1
2

Cϕ(s)∑
n,k∈N0

2kPϕ
(q

A≥ς(k)
n

y)
≤Cϕ(s)

1
2 ∑

k∈N0

2−k =Cϕ(s)

for all s ∈ S. (35)

This guarantees that Z is real-valued, and that, moreover, Z(□)≤ 1.
Now, fix any s ∈ S. Then we readily see that 1

2 ∑
N
n=0 ∑

L
ℓ=0 Zn,ℓ(s)↗ Z(s) and therefore

also 1
2 ∑

N
n=0 ∑

L
ℓ=0 ∆Zn,ℓ(s) → ∆Z(s) as N,L → ∞. Since the gambles ∆Zn,ℓ(s) and ∆Z(s)

are defined on the finite domain {0,1}, this point-wise convergence also implies uniform
convergence, so we can infer from C6 and

Eϕ(s)

(
1
2

N

∑
n=0

L

∑
ℓ=0

∆Zn,ℓ(s)
)
≤ 1

2

N

∑
n=0

L

∑
ℓ=0

Eϕ(s)(∆Zn,ℓ(s))≤ 0,
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which is implied by C2, C3 and the supermartingale character of the Zn,ℓ, that also

Eϕ(s)(∆Z(s)) = lim
N,L→∞

Eϕ(s)

(
1
2

N

∑
n=0

L

∑
ℓ=0

∆Zn,ℓ(s)
)
≤ 0. (36)

This tells us that Z is a non-negative supermartingale for ϕ . It follows from Lemma 35 that
Z is also computable.

The relevant condition being Eϕ(□)(Z(□ ·)) ≤ Z(□), we see that replacing Z(□) ≤ 1
by 1 does not change the supermartingale character of Z, and doing so leads to a comput-
able test supermartingale Z′ for ϕ .

To show that this Z′ is computably unbounded on ω , we take two steps.
In a first step, we fix any n∈N0. Since ω ∈

⋂
m∈N0

JAmK, and since the Am were assumed
to be partial cuts, there’s some (unique) ℓn ∈ N0 such that ω1:ℓn ∈ An. This tells us that if
ℓ ≤ ℓn, then also ω1:ℓn ∈ A≥ℓ

n , and therefore, by Corollary 3(iv), that Pϕ(JA≥ℓ
n K|ω1:ℓn) = 1

for all ℓ≤ ℓn. Hence,

Pϕ
(q

A≥ς(k)
n

y∣∣ω1:ℓn

)
= 1 for all k ∈ N0 such that ς(k)≤ ℓn.

Let’s now define the map ς ♯ : N0 → N0 such that ς ♯(ℓ) := sup{k ∈ N0 : ς(k) ≤ ℓ} for
all ℓ∈N0, where we use the convention that sup /0= 0. It’s clear that ς ♯ is a growth function.
Moreover, as soon as ℓn ≥ ς(0), we find that, in particular, ς(k)≤ ℓn for k = ς ♯(ℓn). Hence,

Pϕ
(q

A≥ς(k)
n

y∣∣ω1:ℓn

)
= 1 for k = ς

♯(ℓn), if ℓn ≥ ς(0).

This leads us to the conclusion that for all n ∈ N0, there’s some ℓn ∈ N0 such that

Z′(ω1:ℓn)≥ Z(ω1:ℓn)≥
1
2

Zn,ς ♯(ℓn)
(ω1:ℓn) = 2ς ♯(ℓn)−1 if ℓn ≥ max{ς(0),1}. (37)

Since ς ♯ is a growth function, so is the map ρ : N0 → N0 defined by

ρ(m) := max
{

2ς ♯(m)−1 −1,1
}

for all m ∈ N0.

We will therefore be done if we can now show that the sequence ℓn is unbounded as n → ∞,
because the inequality in Equation (37) will then guarantee that

limsup
m→∞

[Z′(ω1:m)−ρ(m)]> 0,

so the computable test supermartingale Z′ is computably unbounded on ω .
Proving that ℓn is unbounded as n → ∞ is therefore our second step. To accomplish

this, we use the assumption that ϕ is non-degenerate. Assume, towards contradiction,
that there’s some natural number B such that ℓn ≤ B for all n ∈ N0. The non-degenerate
character of ϕ implies that min{ϕ(s),1−ϕ(s)}> 0 for all s∈ S, which implies in particular
that there’s some real 1 > δ > 0 such that min{ϕ(ω1:k),1− ϕ(ω1:k)} ≥ δ for all non-
negative integers k ≤ B, as they are finite in number. But this implies that, for any n ∈ N0,

2−n ≥ Pϕ(JAnK)≥ Pϕ(Jω1:ℓnK) =
ℓn−1

∏
k=0

ϕ(ω1:k)
ωk+1 [1−ϕ(ω1:k)]

1−ωk+1 ≥ δ
ℓn ≥ δ

B,

where the first inequality follows from the properties of a Schnorr test, the second inequal-
ity from Jω1:ℓnK ⊆ JAnK and E6, the equality from Proposition 4, and the fourth inequal-
ity from 1 > δ > 0 and ℓn ≤ B. However, since 1 > δ > 0 and B ∈ N, there’s always
some n ∈ N0 such that 2−n < δ B, which is the desired contradiction. □

Lemma 33. Consider any Schnorr test A for a non-degenerate computable forecasting
system ϕ , such that the corresponding An are partial cuts for all n ∈N0. Then there’s some
recursive map ẽ : N0 ×S→ N0 such that its partial maps ẽ(•,s) are growth functions for
all s ∈ S, and such that

Pϕ
(
JA≥ℓ

n K
∣∣s)≤ 2−N for all (N,n,s) ∈ N2

0 ×S and all ℓ≥ ẽ(N,s).
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Proof. Proposition 11(ii) guarantees that there’s a growth function e : N0 → N0 such that

Pϕ
(
JA≥ℓ

n K
)
= Pϕ

(
JAnK\ JA<ℓ

n K
)
≤ 2−M for all M,n ∈ N0 and all ℓ≥ e(M),

where the equality holds because the An are assumed to be partial cuts. Since the real
process Pϕ

(
JA≥ℓ

n K
∣∣•) is a non-negative supermartingale by Corollary 3, we infer from the

non-degeneracy of ϕ , Proposition 29 and Lemma 32 [where we recall that Cϕ ≥ 1 is com-
putable] that

0 ≤ Pϕ
(
JA≥ℓ

n K
∣∣s)≤ Pϕ

(
JA≥ℓ

n K
)
Cϕ(s)≤ 2−MCϕ(s)≤ 2−M+LCϕ (s)

for all (M,n) ∈ N2
0 and all ℓ≥ e(M).

It’s therefore clear that if we let

ẽ(N,s) := e
(
N +LCϕ

(s)
)

for all (N,s) ∈ N0 ×S,

then
Pϕ

(
JA≥ℓ

n K
∣∣s)≤ 2−N for all (N,n,s) ∈ N2

0 ×S and all ℓ≥ ẽ(N,s).

This ẽ is recursive because e and LCϕ
are [recall that LCϕ

is recursive by Lemma 32]. For
any fixed s in S, ẽ(•,s) is clearly non-decreasing and unbounded, because e is. □

Lemma 34. Consider any Schnorr test A for a computable forecasting system ϕ , such
that the corresponding An are partial cuts for all n ∈ N0. Then there’s some growth func-
tion ς : N0 → N0 such that

∞

∑
n=0

2kPϕ
(q

A≥ς(k)
n

y)
≤ 2−k for all k ∈ N0.

Proof. Proposition 11(ii) guarantees that there’s a growth function e : N0 → N0 such that

Pϕ
(
JA≥ℓ

n K
)
= Pϕ

(
JAnK\ JA<ℓ

n K
)
≤ 2−N for all N,n ∈ N0 and all ℓ≥ e(N),

where the equality holds because the An are assumed to be partial cuts. Let ς : N0 →N0 be
defined by ς(k) := max2k+1

n=0 e(2k+2+n) for all k ∈N0. Clearly, ς is recursive because e is.
It follows from the non-decreasingness and unboundedness of e that ς is non-decreasing,
since

ς(k+1) =
2k+3
max
n=0

e(2k+4+n)≥ 2k+1
max
n=0

e(2k+2+n) = ς(k) for all k ∈ N0,

and that ς is unbounded, since ς(k)≥ e(2k+2) for all k ∈ N0. So we conclude that ς is a
growth function.

Now, for any k ∈ N0, we find that, indeed,

∞

∑
n=0

2kPϕ
(q

A≥ς(k)
n

y)
= 2k

2k+1

∑
n=0

Pϕ
(q

A≥ς(k)
n

y)
+2k

∞

∑
n=2k+2

Pϕ
(q

A≥ς(k)
n

y)
≤ 2k

2k+1

∑
n=0

Pϕ
(q

A≥e(2k+2+n)
n

y)
+2k

∞

∑
n=2k+2

Pϕ
(
JAnK

)
≤ 2k

2k+1

∑
n=0

2−(2k+2+n)+2k
∞

∑
n=2k+2

2−n = 2−(k+1)
2k+1

∑
n=0

2−(n+1)+2−(k+1)

≤ 2−(k+1)+2−(k+1) = 2−k,

where the first inequality follows from E6. □

Lemma 35. The non-negative supermartingale Z in the proof of Proposition 21 is com-
putable.
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Proof. We use the notations in the proof of Proposition 21. We aim at obtaining a comput-
able real map that converges effectively to Z. First of all, for any p ∈ N0,

Z(s) =
1
2

∞

∑
k=0

∞

∑
n=0

Zn,k(s) =
1
2

p

∑
k=0

∞

∑
n=0

Zn,k(s)+
1
2

∞

∑
k=p+1

∞

∑
n=0

Zn,k(s)︸ ︷︷ ︸
R1(p,s)

,

where

|R1(p,s)|= R1(p,s) =
1
2

∞

∑
k=p+1

∞

∑
n=0

Zn,k(s)

≤ 1
2

∞

∑
k=p+1

∞

∑
n=0

2kPϕ
(q

A≥ς(k)
n

y)
Cϕ(s) =

1
2

Cϕ(s)
∞

∑
k=p+1

(
∞

∑
n=0

2kPϕ
(q

A≥ς(k)
n

y))
≤Cϕ(s)

1
2

∞

∑
k=p+1

2−k =Cϕ(s)2−(p+1) ≤ 2−(p+1−LCϕ (s)).

In this chain of (in)equalities, the first inequality follows from Equation (34) and the second
inequality follows from Equation (33). The last inequality is based on Lemma 32 and
the notations introduced there. If we therefore define the recursive map e1 : N0 ×S→ N0
by e1(N,s) :=N+LCϕ

(s) for all (N,s)∈N0×S [recall that LCϕ
is recursive by Lemma 32],

then we find that

|R1(p,s)| ≤ 2−(N+1) for all (N,s) ∈ N0 ×S and all p ≥ e1(N,s).

Next, we consider any p,q ∈ N0 and look at

1
2

p

∑
k=0

∞

∑
n=0

Zn,k(s) =
1
2

p

∑
k=0

q

∑
n=0

Zn,k(s)+
1
2

p

∑
k=0

∞

∑
n=q+1

Zn,k(s)︸ ︷︷ ︸
R2(p,q,s)

,

where

|R2(p,q,s)|= R2(p,q,s) =
1
2

p

∑
k=0

∞

∑
n=q+1

Zn,k(s)

≤ 1
2

p

∑
k=0

∞

∑
n=q+1

2kPϕ
(q

A≥ς(k)
n

y)
Cϕ(s)≤

1
2

Cϕ(s)2p
p

∑
k=0

(
∞

∑
n=q+1

Pϕ
(
JAnK

))
≤Cϕ(s)2p−1(p+1)

∞

∑
n=q+1

2−n =Cϕ(s)2p−q−1(p+1)≤ 22p−q−1+LCϕ (s).

In this chain of (in)equalities, the first inequality follows from Equation (34), the second
inequality follows from E6 since JA≥ς(k)

n K ⊆ JAnK for all k,n ∈ N0, and the third inequality
follows from the assumption that A is a Schnorr test. The fourth inequality is based on
Lemma 32 and the notations introduced there, and the fact that p+1 ≤ 2p for all p ∈ N0.
If we therefore define the recursive map e3 : N2

0×S→N0 by e3(p,N,s) :=N+2p+LCϕ
(s)

for all (p,N,s) ∈ N2
0 ×S [recall that LCϕ

is recursive by Lemma 32], then we find that

|R2(p,q,s)| ≤ 2−(N+1) for all (p,N,s) ∈ N2
0 ×S and q ≥ e3(p,N,s).

Now, consider the recursive map e2 : N0 ×S→N0 defined by e2(N,s) := e3(e1(N,s),N,s)
for all (N,s) ∈ N0 ×S, and let

VN(s) :=
1
2

e1(N,s)

∑
k=0

e2(N,s)

∑
n=0

Zn,k(s) for all N ∈ N0 and s ∈ S.

Since the real map (n,k,s) 7→ Zn,k(s) is computable by Lemma 36, it follows that the real
map (N,s) 7→VN(s) is computable as well, since by definition each VN(s) is a finite sum of
a real numbers that are computable effectively in N and s, and all terms that are included
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in the sum are defined recursively as a function of N and s. From the argumentation above,
we infer that

|Z(s)−VN(s)|= |R1(e1(N,s),s)+R2(e1(N,s),e2(N,s),s)|
≤ |R1(e1(N,s),s)|+ |R2(e1(N,s),e2(N,s),s)|

≤ 2−(N+1)+2−(N+1) = 2−N for all s ∈ S and N ∈ N0,

proving that Z is indeed computable. □

Lemma 36. For the non-negative supermartingales Zn,k defined in the proof of Proposi-
tion 21, the real map (n,k,s) 7→ Zn,k(s) is computable.

Proof. We use the notations and assumptions in the proof of Proposition 21. Clearly, it
suffices to prove that the real map (n,k,s) 7→ Zn,k(s)2−k = Pϕ

(q
A≥ς(k)

n
y∣∣s) is computable.

If we let
Ak,ℓ

n := A<ℓ
n ∩A≥ς(k)

n = {s ∈ An : ς(k)≤ |s|< ℓ},
then JAk,ℓ

n K⊆
q

A≥ς(k)
n

y
and the global events JAk,ℓ

n K and JA≥ℓ
n K are disjoint for all ℓ,n,k∈N0,

because the An have been assumed to be partial cuts. Moreover,

q
Ak,ℓ

n
y
⊆

q
A≥ς(k)

n
y
{

= JAk,ℓ
n K∪ JA≥ℓ

n K if ℓ > ς(k)

⊆ JA≥ℓ
n K = JAk,ℓ

n K∪ JA≥ℓ
n K if ℓ≤ ς(k)

}
⊆ JAk,ℓ

n K∪ JA≥ℓ
n K, (38)

where the last equality holds because then JAk,ℓ
n K= /0. By Lemma 33, there’s some recursive

map ẽ : N0 ×S → N0 such that Pϕ
(
JA≥ℓ

n K
∣∣s) ≤ 2−N for all (N,n,s) ∈ N2

0 ×S and all ℓ ≥
ẽ(N,s). This allows us to infer that

Pϕ
(
JAk,ℓ

n K
∣∣s)≤ Pϕ

(q
A≥ς(k)

n
y∣∣s)≤ Pϕ

(
JAk,ℓ

n K∪ JA≥ℓ
n K

∣∣s)
≤ Pϕ

(
JAk,ℓ

n K
∣∣s)+Pϕ

(
JA≥ℓ

n K
∣∣s)

≤ Pϕ
(
JAk,ℓ

n K
∣∣s)+2−N for all N,k,n ∈ N0 and s ∈ S and ℓ≥ ẽ(N,s), (39)

where the first two inequalities follow from Equation (38) and E6, and the third inequality
follows from E3, because JAk,ℓ

n K and JA≥ℓ
n K are disjoint. Now, the sets Ak,ℓ

n are recursive
effectively in n, k and ℓ, and it also holds that |s|< ℓ for all s ∈ Ak,ℓ

n and n,k, ℓ∈N0. Hence,
the real map (n,k, ℓ,s) 7→ Pϕ(JAk,ℓ

n K|s) is computable by an appropriate instantiation of our
Workhorse Lemma 27 [with D →N2

0, d → (n,k), p → ℓ and C 7→ {(n,k, ℓ,s)∈N3
0×S : s ∈

Ak,ℓ
n }, and therefore Cp

d → Ak,ℓ
n ], because the forecasting system ϕ is computable as well.

The inequalities in Equation (39) tell us that this computable real map converges effectively
to the real map (n,k,s) 7→ Pϕ(JA≥ς(k)

n K|s), which is therefore computable as well. □

B.6. Proofs of results in Section 9.

Proof of Proposition 23. It’s a standard result in computability theory that the countable
collection φi : N0 →N0, with i ∈N0, of all partial recursive maps is itself partial recursive,
meaning that there’s some partial recursive map φ : N2

0 → N0 such that φ(i,n) = φi(n) for
all i,n ∈ N0; see for instance Ref. [14, Prop. 2.1.2]. Consequently, via encoding, we can
infer that there’s a recursively enumerable set A ⊆N2

0×S that contains all recursively enu-
merable sets C ⊆N0×S, in the sense that for every recursively enumerable set C ⊆N0×S
there’s some M ∈ N0 such that C = MA, with mA := {(n,s) ∈ N0 × S : (m,n,s) ∈ A} for
all m ∈ N0. With every such mA, we associate as usual the sets of situations mAn, defined
for all n ∈ N0 by mAn := {s ∈ S : (n,s) ∈ mA}. For reasons explained after Definition 6,
we can and will assume, without changing the map of global events (m,n) 7→ JmAnK, that
all these sets mAn are partial cuts and recursive effectively in m and n; again, see Ref. [14,
Sec. 2.19] for more discussion and proofs. For this A, we then have that for every re-
cursively enumerable set C ⊆ N0 ×S there’s some mC ∈ N0 such that JCnK = JmCAnK for
all n ∈ N0.
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As a first step in the proof, we show that there’s a single finite algorithm for turning, for
any given m ∈ N0, the corresponding recursive set mA into a Martin-Löf test mB for ϕ . Let
mA<ℓ

n := {s ∈ S : (m,n,s) ∈ A, |s| < ℓ} for all m,n, ℓ ∈ N0. It’s clear from the construction
that the finite sets mA<ℓ

n are recursive effectively in m, n and ℓ. Observe that the comput-
ability of the forecasting system ϕ , the recursive character of the finite partial cuts mA<ℓ

n
and an appropriate instantiation of our Workhorse Lemma 27 [with D → N2

0, d → (m,n),
p → ℓ and C → {(m,n, ℓ,s) ∈ N3

0 ×S : s ∈ mA<ℓ
n }, and therefore Cp

d → mA<ℓ
n ] allow us to

infer that the real map (m,n, ℓ) 7→ Pϕ(JmA<ℓ
n K) is computable, meaning that there’s some

recursive rational map q : N4
0 →Q such that∣∣Pϕ(JmA<ℓ

n K)−q(m,n, ℓ,N)
∣∣≤ 2−N for all m,n, ℓ,N ∈ N0.

Observe that q(m,n, ℓ,n+ 2) is a rational approximation for Pϕ(JmA<ℓ
n K) up to 2−(n+2),

since ∣∣Pϕ(JmA<ℓ
n K)−q(m,n, ℓ,n+2)

∣∣≤ 2−(n+2) for all m,n, ℓ ∈ N0. (40)

Now consider the (obviously) recursive map λ : N3
0 → N0, defined by

λ (m,n, ℓ) :=max
{

p∈{0, . . . , ℓ} : (∀k∈{0, . . . , p})q(m,n,k,n+2)≤ 2−(n+1)+2−(n+2)
}

for all m,n, ℓ ∈ N0. (41)

Observe that λ (m,n,0) = 0, because

q(m,n,0,n+2)≤ Pϕ(JmA<0
n K)+2−(n+2) = Pϕ( /0)+2−(n+2) = 2−(n+2),

where the inequality follows from Equation (40), and the last equality from E1; this ensures
that the map λ is indeed well-defined. Consequently, by construction,

q(m,n,λ (m,n, ℓ),n+2)≤ 2−(n+1)+2−(n+2) for all m,n, ℓ ∈ N0. (42)

Also, the partial maps λ (m,n, •) are obviously non-decreasing.
Now let mBℓ

n := mA<λ (m,n,ℓ)
n for all m,n, ℓ ∈ N0. It follows from Equations (40) and (42)

that

Pϕ
(
JmBℓ

nK
)
= Pϕ

(
JmA<λ (m,n,ℓ)

n K
)
≤ q(m,n,λ (m,n, ℓ),n+2)+2−(n+2)

≤
(
2−(n+1)+2−(n+2))+2−(n+2) = 2−n.

We now use the sets mBℓ
n in the obvious manner to define

mBn :=
⋃
ℓ∈N0

mBℓ
n and mB :=

⋃
n∈N0

{n}×mBn, for all m,n ∈ N0,

so the set mB ⊆ N0 ×S is recursively enumerable as a countable union of finite sets {n}×
mBℓ

n that are recursive effectively in n and ℓ. Moreover, it follows from E9 and the non-
decreasing character of the partial map λ (m,n, •) that

Pϕ
(
JmBnK

)
= sup

ℓ∈N0

Pϕ
(
JmBℓ

nK
)
≤ 2−n, for all m,n ∈ N0,

and therefore each mB is a Martin-Löf test for ϕ .
As a second step in the proof, we now show that any path ω ∈ Ω is Martin-Löf test

random for ϕ if and only if ω /∈
⋂

n∈N0
JmBnK for all m ∈ N0. Since each mB is a Martin-

Löf test for ϕ , it suffices to show by Lemma 37 that for every recursively enumerable
subset C ⊆ N0 × S for which Pϕ(JCnK) ≤ 2−(n+1) for all n ∈ N0, there’s some mC ∈ N0
such that JCnK = JmCBnK for all n ∈ N0; this is what we now set out to do.

Since we assumed that C is recursively enumerable, we know there’s some mC ∈N0 such
that JCnK = JmCAnK for all n ∈N0. This implies that Pϕ(JmCAnK) = Pϕ(JCnK)≤ 2−(n+1) for
all n ∈ N0, so we see that for this mC:

q(mC,n, ℓ,n+2)≤ Pϕ(JmCA<ℓ
n K)+2−(n+2) ≤ Pϕ(JmCAnK)+2−(n+2) ≤ 2−(n+1)+2−(n+2)

for all n, ℓ ∈ N0,
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where the first inequality follows from Equation (40), and the second inequality follows
from E6. If we now look at the definition of the map λ in Equation (41), we see that
λ (mC,n, ℓ) = ℓ for all n, ℓ ∈ N0. Consequently,

mCAn =
⋃
ℓ∈N0

mCA<ℓ
n =

⋃
ℓ∈N0

mCA<λ (mC ,n,ℓ)
n =

⋃
ℓ∈N0

mCBℓ
n =

mCBn for all n ∈ N0,

and therefore, indeed, JCnK = JmCAnK = JmCBnK for all n ∈ N0.
As a third step in the proof, we show that we can combine the Martin-Löf tests mB for ϕ ,

with m ∈ N0, into a single Martin-Löf test U for ϕ . To this end, let Un :=
⋃

m∈N0
mBn+m+1

for all n ∈ N0. Then U :=
⋃

n∈N0
{n}×Un is clearly recursively enumerable as a countably

infinite union of finite sets {n}×mBl
n+m+1 that are recursive effectively in m, n and ℓ, given

the construction in the first step of the proof. It is clear that

Pϕ
(
JUnK

)
= Pϕ

( ⋃
m∈N0

JmBn+m+1K
)
= sup

k∈N0

Pϕ

( k⋃
m=0

JmBn+m+1K
)

≤ sup
k∈N0

k

∑
m=0

Pϕ
(
JmBn+m+1K

)
≤ sup

k∈N0

k

∑
m=0

2−(n+m+1) =
∞

∑
m=0

2−(n+m+1) = 2−n,

where the second equality follows from E9 and the first inequality from E6 and E3, given
that I⋃k

m=0JmBn+m+1K ≤ ∑
k
m=0 IJmBn+m+1K. We conclude that U is indeed a Martin-Löf test

for ϕ .
We finish the argument, in a fourth and final step, by proving that any path ω ∈ Ω

is Martin-Löf test random for ϕ if and only if ω /∈
⋂

n∈N0
JUnK. To this end, consider

any path ω ∈ Ω. For necessity, assume that ω is Martin-Löf test random for ϕ . Then
clearly also ω /∈

⋂
n∈N0

JUnK by Definition 8, since we’ve just proved that U is a Martin-
Löf test for ϕ . For sufficiency, assume that ω /∈

⋂
n∈N0

JUnK. To prove that ω is Martin-
Löf test random, we must prove, as argued above, that ω /∈

⋂
n∈N0

JmBnK for all m ∈ N0.
Assume towards contradiction that there’s some mo ∈ N0 such that ω ∈

⋂
n∈N0

JmoBnK. By
construction, clearly, JmoBn+mo+1K ⊆ JUnK for all n ∈ N0. This implies that ω ∈ JUnK for
all n ∈ N0, a contradiction. □

In the above proof, we’ve used the following alternative characterisation of Martin-Löf
test randomness.

Lemma 37. A path ω ∈ Ω is Martin-Löf test random for a forecasting system ϕ if and only
if ω ̸∈

⋂
m∈N0

JCmK for all recursively enumerable subsets C of N0×S such that Pϕ(JCnK)≤
2−(n+1) for all n ∈ N0.

Proof. It clearly suffices to prove the ‘if’ part. So assume towards contradiction that ω

isn’t Martin-Löf test random, meaning that there’s some Martin-Löf test A for ϕ such that
ω ∈

⋂
m∈N0

JAmK. Consider the recursively enumerable set C ⊆ N0 ×S defined by

C := {(n,s) ∈ N0 ×S : (n+1,s) ∈ A},

then Cn = An+1, and therefore also Pϕ(JCnK) = Pϕ(JAn+1K)≤ 2−(n+1) for all n ∈N0. Since⋂
n∈N0

JAnK ⊆
⋂

n∈N0
JAn+1K =

⋂
n∈N0

JCnK, we see that also ω ∈
⋂

n∈N0
JCnK, a contradic-

tion. □

Proof of Corollary 24. Consider the universal Martin-Löf test U in Proposition 23, and the
corresponding computable sequence of effectively open sets JUnK. The argumentation in
the proof of Proposition 15 can now be used to construct the lower semicomputable test
supermartingale T defined by T (□) := 1 and T (x1:n) := 1

2 limℓ→∞ ∑
∞
m=0 Pϕ(JU<ℓ

m K|x1:n) for
all x1:n ∈ S with n ∈ N, which we claim does the job.

Indeed, consider any path ω ∈ Ω. Suppose that ω isn’t Martin-Löf (test) random for ϕ ,
then we know from (Theorem 16 and) Proposition 23 that ω ∈

⋂
n∈N0

JUnK, and therefore
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the argumentation in the proof of Proposition 15 guarantees that limn→∞ T (ω1:n)=∞. Con-
versely, suppose that limn→∞ T (ω1:n) = ∞. This tells us that ω isn’t Martin-Löf random
for ϕ , and therefore, by Proposition 14, not Martin-Löf test random for ϕ either. □
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