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THE LOGIC BEHIND DESIRABLE SETS OF THINGS, AND ITS FILTER

REPRESENTATION

GERT DE COOMAN, ARTHUR VAN CAMP, AND JASPER DE BOCK

ABSTRACT. We identify the (filter representation of the) logic behind the recent theory of

coherent sets of desirable (sets of) things, which generalise coherent sets of desirable (sets

of) gambles as well as coherent choice functions, and show that this identification allows

us to establish various representation results for such coherent models in terms of simpler

ones.

1. INTRODUCTION

A very important aspect of the theory of imprecise probabilities [2, 18, 27, 29] is that

it allows for partial specification of probability models (such as probability measures) and,

equally importantly, that it enables us to do conservative inference. To give an example,

if we specify bounds on the probabilities of a number of events, then the theory is con-

cerned with, amongst other things, inferring the implied bounds on the probabilities of

other events.

Such conservative probabilistic inference can be represented quite intuitively and effect-

ively by considering simple desirability statements [23, 30]: if some uncertain rewards—

also called gambles—are considered desirable to a subject, what does that imply about the

desirability (or otherwise) of other gambles? That a subject considers a given gamble to

be desirable is then considered as a simple statement, very much like her asserting a pro-

position in a propositional logic context. Inferring from a collection of such desirability

statements which other gambles are desirable, is then effectively a matter of deductive in-

ference based on a number of so-called coherence rules, very much like logical inference

is based on the conjunction and modus ponens rules. This observation has led to a theory

of coherent sets of desirable gambles [5, 7, 15, 16, 19, 20, 30]: sets of gambles that are

deductively closed under the inference based on the coherence rules.

There’s, however, a further complication to be dealt with. Indeed, a desirability state-

ment for a gamble is tantamount to a pairwise comparison, and more specifically a strict

preference, between this gamble and the zero gamble—the status quo. It was recognised by

Isaac Levi [18] quite early on in the development of the theory that certain aspects of con-

servative probabilistic inference demand looking further than merely pairwise preferences

between gambles. This has led to the introduction of choice functions, a tool from social

choice theory [26], into the field of imprecise probabilities [17, 21, 24, 28]. In a number of

recent papers [8, 11, 12, 14], we showed that working with the resulting so-called coherent

choice functions is mathematically equivalent to doing inferences with desirable sets of

gambles, rather than with desirable gambles, where a set of gambles is judged to be desir-

able as soon as at least one of its elements is: coherent choice functions can be seen as a

special case of coherent—deductively closed—sets of desirable sets of gambles. Choosing

between gambles can also be usefully generalised to choosing between options that live in

a linear space, as was done in Refs. [14, 28].

In very recent work [9, 10], Jasper De Bock has taken the idea of moving from desirable

gambles to desirable sets of gambles a significant step further, by recognising that it can
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be applied to any context involving conservative inference based on a closure operator.

In his abstract generalisation step, gambles are replaced by abstract objects, called things,

and it’s assumed that some abstract property of things, called their desirability, can be

inferred from the desirability of other things through inference rules that are summarised

by the action of some closure operator. This leads to a theory of coherent—deductively

closed—sets of desirable sets of things.

At about the same time, Catrin Campbell–Moore [3] showed that statements about, and

the inference behind, the desirability of gambles, and to some extent also the desirability

of sets of gambles,1 can be represented by filters of (sets of) probability measures. This

established that the conservative inference mechanism behind these desirability models can

also be interpreted as that of propositional logic involving statements about some ‘ideal

unknown’ probability measure.2

In the present paper, we combine ideas from both these recent developments, by show-

ing how the conservative inference mechanism behind coherent—deductively closed—sets

of desirable sets of things is related to that of a propositional logic involving statements

about some ‘ideal unknown’ coherent set of desirable things. We do this by showing that

the collection of all coherent sets of desirable sets of things is an intersection structure

that’s order isomorphic to the set of all proper filters on a specific distributive lattice of

events, where the events are appropriately chosen collections of coherent sets of desirable

things.

Besides identifying the nature of the inference mechanism behind coherent sets of de-

sirable sets of things (and in particular, coherent sets of desirable sets of gambles and there-

fore also coherent choice functions), our results also allow us to prove (or provide simple

alternative proofs for) powerful, interesting as well as useful representation theorems for

such models in terms of simpler, so-called conjunctive, models.

We’ll freely use basic concepts and results from order theory, and we’ll assume the

reader to be familiar with most of them, so especially in the context of proofs, we’ll mostly

limit ourselves to pointers to the literature. For a nice introduction, we refer to Davey and

Priestley’s book [6].

Our argumentation is structured as follows.

In Section 2, we summarise the basic ideas behind coherent sets of desirable sets of

things, and identify the order-theoretic underpinnings of the inference mechanism behind

them. We distinguish between the standard coherence notion, which connects the desirab-

ility of arbitrary sets of things, and the less restrictive finite coherence notion, which essen-

tially only focuses on the consequences of the desirability of finite sets of things. We show

that the coherent sets of desirable things can be embedded into the (finitely) coherent sets

of desirable sets of things, in the form of conjunctive models.

In order to provide a more direct link with our earlier work on desirable gamble and

option sets [8, 9, 11, 12, 14], we introduce and discuss yet another model, finitely coherent

sets of desirable finite sets of things, in Section 3.

In Section 4, we explain how each desirability statement for a given set of things can be

identified with a so-called event: the specific subset of the collection of all coherent sets of

desirable things it’s compatible with.

In Section 5, we identify the order-theoretic nature of the collection of all finitary events

as a bounded distributive lattice, and for the collection of all events as a completely dis-

tributive complete lattice.

Section 6 is a very short primer on order-theoretic and set-theoretic filters, and the prime

filter representation theorem.

1More specifically, the desirability of sets of gambles then needs to satisfy a so-called mixingness requirement;

see also the discussion in Section 12.
2She has since [4] extended this idea to representations by filters of sets of coherent sets of desirable gambles,

along the lines of, but independently from, what we’ll achieve for the more general coherent sets of things in

Section 7.
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After setting up all this background material, we show in Section 7 that the collection

of all finitely coherent sets of desirable sets of things is order-isomorphic to the collection

of all proper filters of finitary events, and then explain how this order isomorphism leads

in a straightforward manner to a representation of finitely coherent sets of desirable sets of

things as limits inferior of conjunctive ones, providing a simple alternative proof to, and

extending, similar representation results by Catrin Campbell–Moore [3].

Similarly, we show in Section 8 that the collection of all coherent sets of desirable

sets of things is order-isomorphic to the collection of all proper principal filters of events,

and then explain how this order isomorphism can be used to a prove a representation of

coherent sets of desirable sets of things as intersections of conjunctive ones, leading to a

simple alternative proof for related results by Jasper De Bock [9].

We pay extra attention to the finitely coherent models in Section 9, where we use the

prime filter representation theorem to show that under some extra conditions, a so-called

finitary subclass of them can also be represented as intersections of conjunctive ones.

All this work allows us to show in Section 10 that the finitely coherent sets of desirable

finite sets of things introduced in Section 3 are in a one-to-one-relationship with the finitary

and finitely coherent sets of desirable sets of things that Section 10 is devoted to. This

connection allows us to prove representation results that generalise our earlier results on

desirable gamble sets [11, 12, 14], and also leads to a simple alternative proof for a similar

result in Ref. [9].

Sections 11 and 12 contain discussions of two important special cases, where desir-

able things take the more concrete form of asserted propositions and desirable gambles,

respectively.

We have moved most of the technical details and arguments that, taken by themselves,

wouldn’t add to the flow of the narrative, to Appendix A, organised by the sections they

appear in. All claims in this paper either find a proof there if they are new, or are given

a proper reference to the existing literature. To help the reader find his way through the

many notions and notations we need in this paper, Appendix B provides of list of the most

common ones, with a short hint at their meaning, and where they are introduced.

2. SETS OF DESIRABLE (SETS OF) THINGS: AN OVERVIEW

Let’s begin by giving a brief overview of (a version of) Jasper De Bock’s theory of

desirable things [9] that’s sufficient for the purposes of this paper. We use somewhat dif-

ferent notations, and our overview differs in a few technical details, but the ideas and the

conclusions we draw from them are essentially the same.3

2.1. Desirable things. We begin by considering a non-empty set T of things t that may or

may not have a certain property. Having this property makes a thing desirable.

You, our subject, may entertain ideas about which things are desirable, and You rep-

resent these ideas by providing a (not necessarily exhaustive) set of things that You find

desirable. We’ll call such a subset S ⊆ T a set of desirable things, or SDT for short (plural:

SDTs): a set with the property that You think each of its elements desirable. We denote by

P(T) the set of all subsets S of T, or in other words, the collection of all candidate SDTs.

Such SDTs can be ordered by set inclusion. We interpret S1 ⊆ S2 to mean that S1 is less

informative, or more conservative, than S2, simply because a subject with an SDT S1 finds

fewer things desirable than a subject with SDT S2.

Our basic assumption is that, mathematically speaking, there are a number of rules that

underlie the notion of desirability for things, and that the net effect of these rules can be

captured by a closure operator and a set of forbidden things. Let’s explain.

3To be more precise, and adopting already here some of the notation introduced further on, De Bock assumes

that ClT( /0) = /0 and that the set T+ is added explicitly to the theory, with the requirement that ClT(T+)∩T− = /0,

instead of being inferred from the closure operator by letting T+ := ClT( /0) as we do here. He also doesn’t make

use of selection maps to formulate the coherence axioms for the various types of sets of desirable sets of things.



4 GERT DE COOMAN, ARTHUR VAN CAMP, AND JASPER DE BOCK

We recall that a closure operator on a non-empty set G is a map Cl : P(G) → P(G)
satisfying:

C1. A ⊆ Cl(A) for all A ⊆ G;

C2. if A ⊆ B then Cl(A)⊆ Cl(B) for all A,B ⊆ G;

C3. Cl(Cl(A)) = Cl(A) for all A ⊆ G.

Again, P(G) denotes the set of all subsets of the set G. A closure operator Cl is called

finitary4 if it’s enough to know the closure of finite sets, in the following sense:

Cl(A) =
⋃

{Cl(F) : F ∈ P(G) and F ⋐ A} for all A ∈ P(G),

where we use the notation ‘⋐’ to mean ‘is a finite subset of’, and agree to call the empty

set /0 finite.

First of all, as already suggested above, we’ll assume that there’s some inference mech-

anism that allows us to infer the desirability of a thing from the desirability of other things.

This inference mechanism is represented by a closure operator ClT : P(T)→P(T), in the

following sense:

D1. if all things in S are desirable, then so are all things in ClT(S).

We collect all sets of things that are closed under the inference mechanism in the set D, so

D := {S ∈ P(T) : ClT(S) = S}.

The following result is then a standard conclusion in order theory; see Ref. [6, Chapter 7]

for the argumentation.

Proposition 1. The partially ordered set 〈D,⊆〉 is a complete lattice. For any non-empty

family Si, i ∈ I of elements of D, we have for its infimum and its supremum that, respect-

ively, infi∈I Si =
⋂

i∈I Si and supi∈I Si = ClT(
⋃

i∈I Si).

The bottom (smallest element) 0D :=
⋂

D of this complete lattice of closed sets will also

be denoted by T+; it is the set of those things that are always desirable, regardless of what

You may think. The top (largest element) 1D := ClT(
⋃

D) is clearly the set of all things T.

Secondly, we assume that there’s a set of so-called forbidden things T−, which are never

desirable:

D2. no thing in T− is desirable, so if all things in S are desirable, then S∩T− = /0.

Of course, because we assume that all things in an SDT are desirable, it can never intersect

the set T−, so this leaves us with the collection

D := {S ∈ P(T) : ClT(S) = S and S∩T− = /0}= {S ∈ D : S∩T− = /0} (1)

of the closed SDTs that we’ll call coherent.5 We’ll use the generic notation D for such

coherent SDTs. It’s a standard result in order theory, and easy to check, that they constitute

an intersection structure: the intersection of any non-empty family Di, i ∈ I 6= /0 of them is

still coherent:
(

(∀i ∈ I)Di ∈ D
)

⇒
⋂

i∈I

Di ∈ D. (2)

Clearly, an SDT S ⊆ T can be extended to a coherent one if and only if ClT(S) ∈ D, or

equivalently, if ClT(S)∩T− = /0, and in that case we’ll call this S consistent.

For any consistent SDT S, it’s easy to see that

ClT(S) =
⋂

{D ∈ D : S ⊆ D}, (3)

4Davey and Priestley [6, Definition 7.12] use the term ‘algebraic’, but ‘finitary’ seems to be the more common

name for this concept, so we’ll stick with that.
5It’s of course perfectly possible that T− = /0, and in that case coherence and closedness coincide: D = D.
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so ClT(S) is the smallest, or most conservative, or least informative, coherent SDT that the

consistent S can be extended to.6

Incidentally, the set T+ := ClT( /0) =
⋂

D is the smallest closed SDT. If T+ is coherent, or

in other words if the empty set /0 is consistent, then T+ is the smallest, or most conservative,

coherent SDT. This will be the case if and only if

D3. T+∩T− = /0, or equivalently, D 6= /0.

We’ll from now on also always assume that this ‘sanitary’ condition is verified. As already

mentioned, all things in T+ are always implicitly desirable, regardless of any of the de-

sirability statements You might make. For this reason, we can also call T+ the vacuous set

of desirable things.

2.2. Desirable sets of things. When You claim that a set of things S ⊆ T is a set of de-

sirable things, this is tantamount to a conjunctive statement: You state that “all things in S

are desirable”. In the formalism described above, there’s no way to deal with disjunctive

statements of the type “at least one of the things in S is desirable”. Let’s now look for a

way to also allow for dealing with such disjunctive statements.

We’ll say that You consider a set of things S to be desirable if You consider at least

one thing in S to be. In other words, in a set of desirable things (an SDT), all things are

desirable, whereas in a desirable set of things, at least one thing is. As with the desirability

of things, You can make many desirability statements for sets of things, and we then collect

all of these in a set of desirable sets of things—or for short SDS, plural SDSes—W⊆P(T).
So W is an SDS for You if all sets of things S ∈ W are desirable to You, in the sense You

deem each of them to contain at least one desirable thing.

Sets of desirable sets of things can be ordered by set inclusion too. We take W1 ⊆W2 to

imply that W1 is less informative, or more conservative, than W2, simply because a subject

with SDS W1 finds fewer sets of things desirable than a subject with SDS W2.

The inference mechanism for the desirability of things also has its consequences for

the desirability of sets of things, as we’ll now make clear. Consider any set of sets of

things W ⊆ P(T), then we denote by ΦW the set of all so-called selection maps

σ : W → T : S 7→ σ(S) such that σ(S) ∈ S for all S ∈W.

Each such selection map σ ∈ ΦW selects a single thing σ(S) from each set of things S in W,

and we use the notation

σ(W) := {σ(S) : S ∈W} ∈ P(T)

for the corresponding set of all these selected things.

We now call an SDS K ⊆ P(T) coherent if it satisfies the following conditions:

K1. /0 /∈ K;

K2. if S1 ∈ K and S1 ⊆ S2 then S2 ∈ K, for all S1,S2 ∈ P(T);
K3. if S ∈ K then S \T− ∈ K, for all S ∈ P(T);
K4. {t+} ∈ K for all t+ ∈ T+;

K5. if tσ ∈ ClT(σ(W)) for all σ ∈ ΦW, then {tσ : σ ∈ ΦW} ∈ K, for all /0 6=W ⊆ K.

The first condition K1 takes into account that the empty set of things can’t be desirable, as

it contains no desirable thing. The second condition K2 reminds us that if a set of things

contains a desirable thing, then of course so do all its supersets. The third condition K3

reflects that things in T− can never be desirable, by D2, and can therefore safely be removed

from any set of things without affecting the latter’s desirability. And, to conclude, we’ll see

further on that the last two conditions K4 and K5 do a very fine job of lifting the effects of

inferential closure from the desirability of things to the desirability of sets of things. They

6As one reviewer remarked, there may be things that aren’t forbidden but also never desirable: all things in

the set To := T\ (T− ∪
⋃

D). Clearly, since no element of To can belong to a consistent or a coherent SDT, we can

safely remove all of them from the set of things T, or alternatively, add them to the set of forbidden things T−,

without affecting the essence of the inference mechanism.
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can be justified as follows. For K4, recall from the discussion above that any element of T+
is always implicitly desirable, and so therefore will be any set that contains it. For K5, recall

that /0 6=W ⊆ K means that each set of things S ∈ W contains at least one desirable thing,

and therefore there must be some selection map σo ∈ ΦW such that σo(S) is a desirable

thing for all S ∈ W. This implies that all things in σo(W) are desirable, and therefore so

are all things in ClT(σo(W)), by D1. Whatever tσo we chose in ClT(σo(W)) will therefore

be desirable, which guarantees that the set of things {tσ : σ ∈ ΦW} must also be desirable,

because it contains the necessarily desirable thing tσo .

Interestingly, Axioms K4 and K5 can be replaced by a single axiom, obtained from K5

by also allowing W ⊆ K to be empty:

K4,5. if tσ ∈ ClT(σ(W)) for all σ ∈ ΦW, then {tσ : σ ∈ ΦW} ∈ K, for all W ⊆ K.

We denote the set of all coherent SDSes by K, and we let K := K ∪{P(T)}. Observe

that P(T) is never coherent, by K1. Since each of the axioms K1–K5 is preserved under

taking arbitrary non-empty intersections, the set K of all coherent SDSes constitutes an

intersection structure: the intersection of any non-empty family of coherent SDSes is still

coherent, or in other and more formal words, for any non-empty family Ki, i ∈ I 6= /0 of

elements of K, we see that still
⋂

i∈I Ki ∈ K.7 As explained in Ref. [6, Chapter 7], this

allows us to capture the inferential aspects of desirability at this level using the closure

operator ClK : P(P(T))→ K associated with the collection K of closed SDSes, defined

by

ClK(W) :=
⋂

{K ∈ K : W ⊆ K}=
⋂

{K ∈ K : W ⊆ K} for all W ⊆ P(T).

If we call an SDS W consistent if it can be extended to some coherent SDS, or equival-

ently, if ClK(W) 6= P(T), then we find that ClK(W) is the smallest, or most conservative,

coherent SDS that includes W, for any consistent W. Of course,

W = ClK(W)⇔W ∈ K, for all W ⊆ P(T),

and therefore also K = ClK(P(P(T))) = {ClK(W) : W ⊆P(T)}. The following result is

then again a standard conclusion in order theory; see Ref. [6, Chapter 7] for the argument-

ation.

Proposition 2. The partially ordered set 〈K,⊆〉 is a complete lattice. For any non-empty

family Wi, i ∈ I of elements of K, we have for its infimum and its supremum that, respect-

ively, infi∈I Wi =
⋂

i∈I Wi and supi∈I Wi = ClK(
⋃

i∈I Wi).

The top 1K =
⋃

K of this complete lattice is the largest closed SDS P(T); its bottom 0K =
ClK( /0) =

⋂

K =
⋂

K is the smallest coherent SDS 0K , which is also easy to identify.

Proposition 3. 0K =
⋂

K = {S ∈ P(T) : S∩T+ 6= /0}.

2.3. Desirable sets of things: the finitary case. We call a subset K of P(T) a finitely

coherent SDS if it satisfies conditions K1–K4, together with the following finitary version

of K5:

Kfin
5 . if tσ ∈ ClT(σ(W)) for all σ ∈ ΦW, then {tσ : σ ∈ ΦW} ∈ K, for all /0 6=W ⋐ K;

We can replace K4 and Kfin
5 by a single axiom, which is the finitary counterpart of K4,5:

Kfin
4,5. if tσ ∈ ClT(σ(W)) for all σ ∈ ΦW, then {tσ : σ ∈ ΦW} ∈ K, for all W ⋐ K.

We denote by Kfin the set of all finitely coherent SDSes, and we let Kfin := Kfin ∪{P(T)}.

For this finitary version, the discussion, definitions and ensuing results about the inter-

section structure Kfin, the complete lattice 〈Kfin,⊆〉 with bottom {S ∈ P(T) : S∩T+ 6= /0}
and top P(T), and the associated closure operator ClKfin

(counterparts to Propositions 2

and 3) are completely similar, and we’ll refrain from repeating them here. Observe nev-

ertheless that K ⊆ Kfin and therefore also K ⊆ Kfin: since K5 clearly implies Kfin
5 , any

7Similarly, K = K ∪{P(T)} is a topped intersection structure: closed under arbitrary (also empty) intersec-

tions [6, Chapter 7].



THE LOGIC BEHIND DESIRABLE SETS OF THINGS, AND ITS FILTER REPRESENTATION 7

coherent K is also finitely coherent, so finite coherence is the weaker requirement. As a

consequence, we also find that ClKfin
(W)⊆ ClK(W) for all W ⊆ P(T).

2.4. Conjunctive models. Let’s now show that it’s possible to order embed the struc-

ture 〈D,⊆〉 into the structure 〈K,⊆〉, and therefore also into the structure 〈Kfin,⊆〉, in a

straightforward and natural manner.

If we consider any set of things S that’s an element of the coherent SDS K, then we

know from the coherence condition K2 that all its supersets are also in K. But, of course,

not all of its subsets need to be, as is made clear by the coherence condition K1.

This observation brings us to the following idea. Consider any SDS W—not necessarily

coherent—and any element S ∈W. If there’s some finite subset Ŝ of S such that Ŝ ∈W, then

we’ll call S finitary (in W). If, moreover, all the elements S of the SDS W are finitary, then

we’ll call W finitary as well; so any desirable set in a finitary W has a desirable finite subset.

The (finitely) coherent finitary SDSes will be studied in much more detail in Section 9.

They are special because they are completely determined by their finite elements.

For the present discussion, however, we restrict our attention to an important special

case of such finitary SDSes, where each desirable set has a desirable singleton subset:

Definition 1 (Conjunctivity). We call an SDS W ⊆P(T) conjunctive8 if for all S ∈W there

is some t ∈ S such that {t} ∈W.

In the remainder of this section, we’ll spend some effort on identifying the conjunctive

coherent SDSes.

We begin by introducing ways to turn an SDT into an SDS, and vice versa. Consider,

to this end, any So ⊆ T and any Wo ⊆ P(T), and let

DWo
:= {t ∈ T : {t} ∈Wo} ⊆ T and KSo

:= {S ⊆ T: S∩So 6= /0} ⊆ P(T). (4)

So, if Wo is Your assessment of desirable sets of things, then DWo is the set of things that

You hold desirable, according to that assessment. And similarly, if So is Your assessment

of desirable things, then KSo is the set of sets of things that are desirable to You, according

to that assessment. This leads to the introduction of two maps,

K• : P(T)→ P(P(T)) : S 7→ KS and D• : P(P(T))→ P(T) : W 7→ DW,

whose properties we now explore in the next three basic propositions.

The following conclusion is fairly immediate. It states that D• is an order homomorph-

ism (or order-preserving map) and that K• is an order embedding.

Proposition 4. Consider any S,S1,S2 ∈ P(T) and any W1,W2 ⊆ P(T). Then KS is con-

junctive, and DKS
= S. Moreover,

(i) if W1 ⊆W2 then DW1
⊆ DW2

;

(ii) S1 ⊆ S2 if and only if KS1
⊆ KS2

.

In the following two propositions we find out whether the maps D• and K• preserve (finite)

coherence.

Proposition 5. Consider any SDS K ⊆ P(T). If K is (finitely) coherent, then KDK
⊆ K.

Moreover, the following statements hold:

(i) if K is coherent, then DK is coherent;

(ii) if K is finitely coherent and the closure operator ClT is finitary, then DK is coherent.

Proposition 6. Consider any set of things D ⊆ T, then DKD
= D. Moreover, consider the

following statements:

8In earlier papers [11, 12, 14] about the desirability of gambles, and the underlying preference models, we

used the term ‘binary’ instead of ‘conjunctive’, because the corresponding preference models turn out to be

binary relations. But it seems a bit counter-intuitive to call sets based on singletons ‘binary’. We now use the

term ‘conjunctive’ because, as we’ll see further on in Proposition 7 and Theorem 8, these models are essentially

representations of a conjunction of desirability statements for things.
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(i) D is a coherent SDT;

(ii) KD is a coherent SDS;

(iii) KD is a finitely coherent SDS.

Then (i)⇔(ii) and (ii)⇒(iii), so (i)⇒(iii). Moreover, if the closure operator ClT is finitary,

then also (i)⇔(iii).

So, if we start out with a coherent SDS K, then the coherent SDT DK and the corresponding

coherent and conjunctive SDS KDK
are conservative approximations of K: going from a

model K to its conjunctive part KDK
= {S ∈ K : (∃t ∈ S){t} ∈ K} typically results in a loss

of information. Similar results hold for finitely coherent SDSes K, provided that the closure

operator ClT is finitary, as then its conjunctive part KDK
will be coherent too. Interestingly,

going from a coherent SDT D to the corresponding coherent and conjunctive SDS KD does

not result in a loss of information, as we’ll soon see below in Theorem 8.

Based on our findings in Propositions 4–6, we’re now finally in a position to find out

what the conjunctive and (finitely) coherent SDSes look like.

Proposition 7 (Conjunctivity). The following statements hold:

(i) An SDS K ⊆ P(T) is coherent and conjunctive if and only if there’s some coherent

SDT D ∈ D such that K = KD .

(ii) When the closure operator ClT is finitary, then an SDS K ⊆P(T) is finitely coherent

and conjunctive if and only if there’s some coherent SDT D ∈ D such that K = KD .

In both these cases then necessarily D = DK.

Combining the results of Propositions 4(ii), 6 and 7 leads at once to a formal statement

of what we alluded to in the introduction to this subsection.

Theorem 8. The map K• is an order embedding of the (intersection) structure 〈D,⊆〉 into

the (intersection) structure 〈K,⊆〉. Its image is the set of all conjunctive coherent SDSes,

and on this set its inverse is the map D•. Moreover, if the closure operator ClT is finitary,

then the map K• is also an order embedding of the (intersection) structure 〈D,⊆〉 into the

(intersection) structure 〈Kfin,⊆〉. Its image is the set of all conjunctive finitely coherent

SDSes, and on this set its inverse is the map D•.

In all the results following Proposition 5, the finitary character of the closure oper-

ator ClT appears as a sufficient condition to, loosely speaking, bijectively connect the fi-

nitely coherent SDSes to the coherent SDTs. Let’s give a simple counterexample to show

that this one-to-one correspondence may break down for infinitary ClT. It was suggested

to us by Kevin Blackwell, and is loosely based on Satan’s Apple, a paradox for dominance

in infinitary decisions due to Arntzenius, Elga, and Hawthorn [1].

Counterexample (Satan’s Apple). We consider as a set of things T the set N0 of all non-

negative integers (with zero), and use the following closure operator

ClT(S) :=











{1} if S = /0

{1, . . . ,maxS} if S is a finite and non-empty subset of N,

N0 otherwise

for all S ⊆ T,

where N denotes the set of all natural numbers (without zero) and maxS is the maximum

of the finite set of natural numbers S. To see that this closure operator is not finitary, check

for instance that

ClT(N) = N0 ⊃ N=
⋃
{

{1, . . . ,maxS} : /0 6= S ⋐ N
}

=
⋃
{

ClT(S) : S ⋐ N
}

.

If we let T− := {0}, then an SDT S ⊆ T is consistent if and only if it’s finite and doesn’t

contain the forbidden thing 0, and coherent if and only if it takes the form {1, . . . ,n} for

some n ∈ N. Observe that, also, T+ = {1}.
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Let’s now consider the SDS K := P(N0)\{ /0,{0}}. It is clearly conjunctive, and equal

to its conjunctive part KDK
. The SDT DK =N is clearly not coherent, so we can infer from

the equivalence results in Proposition 6 that K = KDK
isn’t coherent either.

Since the closure operator ClT isn’t finitary, we can’t use Proposition 6 to also prove the

finite incoherence of K. On the contrary, we’ll now prove that K is in fact finitely coherent.

Since K clearly satisfies K1–K4, we concentrate on showing that it also satisfies Kfin
5 .

Consider, to this effect, any non-empty W ⋐ K, so S /∈ { /0,{0}} for all S ∈W. This already

implies that there is some σo ∈ ΦW such that σo(S) 6= 0 for all S ∈ W. Now, consider

for any σ ∈ ΦW any choice of the tσ ∈ ClT(σ(W)), and assume towards contradiction that

{tσ : σ ∈ ΦW} ∈ { /0,{0}}. Since ΦW is non-empty because W is, it must then be that

{tσ : σ ∈ ΦW} = {0}, so it must follow that 0 ∈ ClT(σ(W)), implying that σ(W) is an in-

finite subset of N or contains 0, for all σ ∈ ΦW. That σ(W) should be infinite, is impossible

for finite W, so we find that 0 ∈ σ(W) = {σ(S) : S ∈W} for all σ ∈ ΦW, a contradiction.

That the SDS K is finitely coherent (but not coherent), whereas the SDT DK isn’t co-

herent, shows that the equivalence between the coherence of DK and the finite coherence

of K in Proposition 6 in general can’t be guaranteed to hold unless the closure operator ClT
is finitary. It also shows that, in the context of Proposition 7, the finite coherence of a

conjunctive SDS K needn’t guarantee that the SDT DK, and therefore also the conjunctive

SDS K = KDK
, are coherent, unless the closure operator ClT is finitary. We’ll come back to

these issues in Section 9, where we discuss models that are merely finitary. ⊳

3. SETS OF DESIRABLE FINITE SETS OF THINGS

In order to connect this discussion more directly with our recent work on coherent

choice in earlier papers [8, 9, 11, 12, 14], we’ll also consider the case where You are

only allowed to express the desirability of finite sets of things.

We’ll denote by Q(T) the set of all finite sets of things:

Q(T) := {Ŝ ∈ P(T) : Ŝ ⋐ T},

and follow the convention that the empty set is finite, so /0 ∈ Q(T).
As before, we’ll say that You consider a finite set of things Ŝ ∈ Q(T) to be desirable

if You consider at least one thing in Ŝ to be. We collect all Your desirability statements

for finite sets of things in a set of desirable finite sets of things—or for short SDFS, plural

SDFSes—Ŵ ⊆ Q(T).9

SDFSes can be ordered by set inclusion too, and, here too, we take Ŵ1 ⊆ Ŵ2 to imply

that Ŵ1 is less informative, or more conservative, than Ŵ2.

We call an SDFS K̂ ⊆ Q(T) finitely coherent if it satisfies the following conditions:10

F1. /0 /∈ K̂ ;

F2. if Ŝ1 ∈ K̂ and Ŝ1 ⋐ Ŝ2 then Ŝ2 ∈ K̂ , for all Ŝ1, Ŝ2 ∈ Q(T);
F3. if Ŝ ∈ K̂ then Ŝ \T− ∈ K̂ , for all Ŝ ∈ Q(T);
F4. {t+} ∈ K̂ for all t+ ∈ T+;

F5. if tσ ∈ ClT(σ(Ŵ)) for all σ ∈ ΦŴ, then {tσ : σ ∈ ΦŴ} ∈ K̂ , for all /0 6= Ŵ ⋐ K̂ .

As before, Axioms F4 and F5 can be replaced by a single axiom, obtained from F5 by also

allowing Ŵ ⋐ K̂ to be empty:

F4,5. if tσ ∈ ClT(σ(Ŵ)) for all σ ∈ ΦŴ, then {tσ : σ ∈ ΦŴ} ∈ K̂ , for all Ŵ ⊆ K̂ .

We denote the set of all finitely coherent SDFSes by Ffin, and let Ffin := Ffin ∪{Q(T)}.

Observe that Q(T) is never finitely coherent, by F1. Since each of the axioms F1–F5 is

preserved under taking arbitrary non-empty intersections, the set Ffin of all finitely coherent

9We’ll generally use a •̂ to indicate that the set ‘•’ is finite at the level of things, or contains only finite sets at

the level of sets of things.
10We could also introduce an infinitary notion of coherence for SDFDes (see also Ref. [9]), but we’ll refrain

from doing so here, in order not to unduly complicate things: we haven’t come across any such notion in the

literature, apart from Ref. [9].
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SDFSes constitutes an intersection structure: the intersection of any non-empty family of

finitely coherent SDFSes is still coherent, or in other and more formal words, for any non-

empty family K̂i, i ∈ I 6= /0 of elements of Ffin, we see that still
⋂

i∈I K̂i ∈ Ffin.11 Again,

as explained in Ref. [6, Chapter 7], this allows us to capture the inferential aspects of

desirability at this level using the closure operator ClFfin
: P(Q(T))→ Ffin associated with

the collection Ffin of closed SDFSes, defined by

ClFfin
(Ŵ) :=

⋂

{K̂ ∈ Ffin : Ŵ ⊆ K̂}=
⋂

{K̂ ∈ Ffin : Ŵ ⊆ K̂} for all Ŵ ⊆ Q(T).

If we call an SDFS Ŵ finitely consistent if it can be extended to some finitely coherent

SDFS, or equivalently, if ClFfin
(Ŵ) 6= Q(T), then we find that ClFfin

(Ŵ) is the smallest, or

most conservative, finitely coherent SDFS that includes Ŵ, for any finitely consistent Ŵ.

Of course,

Ŵ = ClFfin
(Ŵ)⇔ Ŵ ∈ Ffin, for all Ŵ ⊆ Q(T),

and therefore also Ffin = ClFfin
(P(Q(T))). The following result is then once again a

standard conclusion in order theory; see Ref. [6, Chapter 7] for the argumentation.

Proposition 9. The partially ordered set 〈Ffin,⊆〉 is a complete lattice. For any non-

empty family Ŵi, i ∈ I of elements of Ffin, we have for its infimum and its supremum that,

respectively, infi∈I Ŵi =
⋂

i∈I Ŵi and supi∈I Ŵi = ClFfin
(
⋃

i∈I Ŵi).

The top 1Ffin
=

⋃

Ffin of this complete lattice is the largest closed SDFS Q(T); its bot-

tom 0Ffin
= ClFfin

( /0) =
⋂

Ffin =
⋂

Ffin is the smallest coherent SDFS, which, here too, is

easy to identify.

Proposition 10. 0Ffin
=

⋂

Ffin = {Ŝ ∈ Q(T) : Ŝ∩T+ 6= /0}.

Let’s now investigate which of the results of Section 2.4 we can recover in the context

of SDFSes. Of course, we’ll also call an SDFS Ŵ ⊆ Q(T) conjunctive if for all Ŝ ∈ Ŵ

there is some t ∈ Ŝ such that {t} ∈ Ŵ, and we’ll try to find out what the conjunctive finitely

coherent SDFSes are. In the light of what we found for finite coherence in Section 2.4,

we expect the finitary character of the closure operator ClT to play a role in some of these

results.

If we introduce the map

K̂• : P(T)→ P(Q(T)) : S 7→ K̂S := {Ŝ ⋐ T: Ŝ∩S 6= /0}, (5)

then it’s immediately clear that K̂• is an order embedding: S1 ⊆ S2 if and only if K̂S1
⊆ K̂S2

,

for all S1,S2 ⊆ T. We’ll see further on in Theorem 14 that it allows us to embed D into Ffin.

First of all, the maps D• and K̂• preserve (finite) coherence.

Proposition 11. Consider any finitely coherent SDFS K̂ ⊆ Q(T), then K̂DK̂ ⊆ K̂ . If,

moreover, the closure operator ClT is finitary, then DK̂ is a coherent SDT.

Proposition 12. Consider any set of things D ⊆ T, then DK̂D
=D. Moreover, the following

statements hold:

(i) if D is a coherent SDT then K̂D is a finitely coherent SDFS;

(ii) if the closure operator ClT is finitary, and K̂D is a finitely coherent SDFS, then D is

a coherent SDT.

Consequently, if the closure operator ClT is finitary, then D is a coherent SDT if and only

if K̂D is a finitely coherent SDFS.

So, assuming that the closure operator ClT is finitary, if we start out with a finitely co-

herent SDFS K̂ , then the coherent SDT DK̂ and the corresponding finitely coherent and

conjunctive SDFS K̂DK̂ are conservative approximations of K̂ : going from a model K̂ to

11Similarly, Ffin = Ffin ∪{Q(T)} is a topped intersection structure: closed under arbitrary (also empty) inter-

sections [6, Chapter 7].
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its conjunctive part K̂DK̂ = {Ŝ ∈ K̂ : (∃t ∈ Ŝ){t} ∈ K̂} typically results in a loss of in-

formation. On the other hand, going from a coherent SDT D to the corresponding finitely

coherent and conjunctive SDFS K̂D never results in a loss of information; see Theorem 14

below.

Combining these results allows us to find out what the conjunctive and finitely coherent

SDFSes look like.

Proposition 13 (Conjunctivity). Assume that the closure operator ClT is finitary. An

SDFS K̂ ⊆ Q(T) is finitely coherent and conjunctive if and only if there’s some coher-

ent SDT D ∈ D such that K̂ = K̂D , and then necessarily D = DK̂ .

Combining the results of Propositions 12 and 13 leads at once to a formal statement of

what we alluded to in the introduction to this section.

Theorem 14. Assume that the closure operator ClT is finitary. The map K̂• is an order

embedding of the (intersection) structure 〈D,⊆〉 into the (intersection) structure 〈Ffin,⊆〉.
Its image is the set of all conjunctive finitely coherent SDFSes, and on this set its inverse is

the map D•.

4. TOWARDS A REPRESENTATION WITH FILTERS

It’s a well-established consequence of Stone’s Representation Theorem [6, Chapters 5,

10 and 11] that filters of subsets of a space constitute abstract ways of dealing with de-

ductively closed sets of propositions about elements of that space, or in other words and

very simply put, they allow us to do propositional logic with statements about elements

of the space. In Stone’s Theorem, the subsets that the filters are composed of constitute a

Boolean lattice.

Further on, we’ll also have occasion to work with filters of subsets, but where the subsets

no longer constitute a Boolean, but only a bounded distributive lattice. The role of Stone’s

Theorem will therefore be taken over by its generalisation to that more general class of

lattices, which is the Prime Filter Representation Theorem. So, where do such filters on

distributive lattices come from in the context described above?

In general, we’ll denote a space by X . A filter of subsets of X —also called a filter

on 〈P(X ),⊆〉 —is then a non-empty subset F of the power set P(X ) of X such that:

SF1. if A ∈ F and A ⊆ B then also B ∈ F, for all A,B ∈ P(X );
SF2. if A ∈ F and B ∈ F then also A∩B ∈ F, for all A,B ∈ P(X ).

We call a filter proper if F 6= P(X ), or equivalently, if /0 /∈ F. In these definitions, the

collection of subsets P(X ) may also be replaced by a bounded (distributive) lattice of

subsets, where intersection plays the role of infimum and union the role of supremum.

The particular space X that we’ll be considering in this paper, is the set D of all co-

herent SDTs. To guide the interpretation of what we’re doing, we’ll assume that there’s

an actual (but unknown) SDT, which we’ll denote by DT. This SDT DT is assumed to

be coherent, and therefore a specific element of the set D. The elements of DT are the

things that actually are desirable, and all other things in T aren’t. Moreover, each coherent

SDT D ∈ D is a possible identification of this actual set DT.

Any non-contradictory propositional statement about DT corresponds to some non-

empty subset A ⊆D of coherent SDTs for which the statement holds true, and this subset A

represents the remaining possible identifications of DT after the statement has been made.

We’ll call such subsets events. The empty subset of D is the event that represents contra-

dictory propositional statements.

Any proper filter F of such events A ⊆ D then corresponds to a deductively closed

collection of propositional statements—a so-called theory—about DT, where intersection

of events represents the conjunction of propositional statements, and inclusion of events

represents implication of propositional statements. The only improper filter P(D), which

contains the empty event, then represents logical contradiction at this level.
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We can interpret the desirability statements studied in Sections 2 and 3 as statements

about such an actual DT. Let’s make this more clear. Stating that a ‘set of things S is

desirable’ corresponds to the event

DS := {D ∈ D : S ∩D 6= /0}, (6)

as this amounts to requiring that at least one element of S must be actually desirable, and

must therefore belong to DT.12 In other words, the desirability statement is equivalent

to ‘DT ∈ DS’. As a special case, stating that a thing t is desirable corresponds to the

event D{t} := {D ∈ D : t ∈ D}, as it amounts to requiring that t must belong to DT. Also

observe that D /0 = /0, the so-called impossible event.

More generally, working with SDSes W as we did in Sections 2 and 3, therefore cor-

responds to dealing with a conjunction of the desirability statements ‘the set of things S is

desirable’ for all S ∈W, or in other words with events of the type

E (W) :=
⋂

S∈W

DS =
⋂

S∈W

{D ∈ D : S ∩D 6= /0}, where W ⊆ P(T), (7)

where, of course, as a special case we find that W = /0 corresponds to a vacuous assessment,

which leads to no restrictions on DT: E ( /0) = D.13

Working with the filters of subsets of D—filters of events—that are generated by such

collections, then represents doing propositional logic with basic statements of the type ‘the

set of things S is desirable’, for S ∈ P(T). We might therefore suspect that the language

of such filters could be able to represent, explain, and perhaps also refine the relationships

between the inference mechanisms that lie behind the intersection structures and closure

operators in Sections 2 and 3. Investigating this type of representation in terms of filters of

events is the main aim of this paper.

There is, however, a particular aspect of the inference mechanisms at hand that tends to

complicate—or is it simplify?—matters somewhat. Not all events in P(D) are relevant

to our problem; only the ones that are intersections (and, as we’ll see further on in The-

orem 18, unions) of the basic events of the type DS , S ⊆ T seem to require attention. We’ll

therefore restrict our focus to these, and as a result, the representing collection of events

will no longer constitute a Boolean lattice, but only a specific distributive sublattice. As

we’ll see in Sections 7–10, the effect will be two-fold: we’ll broadly speaking be led to a

more general prime filter rather than an ultrafilter representation, and this representation

will be an isomorphism rather than an endomorphism.

5. THE BASIC REPRESENTATION LATTICES

Since we expect the events E (W), W ⊆P(T) to become important in what follows, let’s

take some time in this section to study them a bit closer.

In order to do this, we need to introduce some new notation, which we’ll have occasion

to use later in other sections as well. In any partially ordered set 〈L,≤〉, we let

upL(a) := {b ∈ L : a ≤ b} and UpL(A) :=
⋃

a∈A

upL(a) = {b ∈ L : (∃a ∈ A)a ≤ b}

for all a ∈ L and A ⊆ L. (8)

Further on, we’ll also make use of the fact that UpL(
⋃

i∈I Ai) =
⋃

i∈I UpL(Ai) and that

UpL(UpL(A)) = UpL(A). In fact, UpL(•) is a closure operator.

In the special case that 〈L,≤〉= 〈D,⊆〉 that we’re about to consider now, we get

upD(D) = {D′ ∈ D : D ⊆ D′} and UpD(A) = {D′ ∈ D : (∃D ∈ A)D ⊆ D′}

for all D ∈ D and A ⊆ D.

12It will be obvious that whatever is said about sets of things S ⊆ T and sets of sets of things W ⊆ P(T) in

this section, also holds in particular for their finite versions Ŝ ⋐ T and Ŵ ⋐ Q(T).
13This is in accordance with Equation (7), as the empty intersection of subsets of D is D itself.
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The following proposition is fairly easy to prove, but it will be instrumental in our

discussion further on. It links the events E (W) to our discussion of desirability in Section 2.

We start with a definition of a type of event that’s intricately linked with the production

axioms K5 and Kfin
5 there:14

D(W) :=
{

ClT(σ(W)) : σ ∈ ΦW

}

∩D, for W ⊆ P(T). (9)

Observe that D(W)⊆ D for all W ⊆ P(T); in particular, D( /0) = {ClT( /0)}∩D = {T+}.

Proposition 15. Consider any W ⊆ P(T), then E (W) = UpD(D(W)).

It turns out that the propositional statement that ‘W is an SDS’ is never contradictory as

soon as W is a subset of some coherent SDS. A similar result holds for finitely coherent

SDSes, of course, at least for finite W.

Proposition 16 (Consistency). The following statements hold.

(i) For any coherent SDS K ∈ K: E (W) 6= /0 for all W ⊆ K;

(ii) For any finitely coherent SDS K ∈ Kfin: E (W) 6= /0 for all W ⋐ K;

(iii) For any finitely coherent SDFS K̂ ∈ Ffin: E (Ŵ) 6= /0 for all Ŵ ⋐ K̂ .

There are two simple properties (in a finitary and infinitary version) that all our results

about filter representation will essentially rest upon. Indeed, the following proposition is

the crucial workhorse for the argumentation in the coming sections. It nicely connects the

order-theoretic aspects of working with events to those of working with (finitely) coherent

SD(F)Ses.

Proposition 17. Consider any coherent SDS K ∈ K, then the following statements hold

for all W1,W2 ⊆ P(T):

(i) if E (W1)⊆ E (W2) and W1 ⊆ K then also W2 ⊆ K;

(ii) if E (W1) = E (W2) then W1 ⊆ K ⇔W2 ⊆ K.

Similarly, consider any finitely coherent SDS K ∈ Kfin, then the following statements hold

for all W1,W2 ⋐ P(T):

(i) if E (W1)⊆ E (W2) and W1 ⋐ K then also W2 ⋐ K;

(ii) if E (W1) = E (W2) then W1 ⋐ K ⇔W2 ⋐ K.

And finally, consider any finitely coherent SDFS K̂ ∈ Ffin, then the following statements

hold for all Ŵ1,Ŵ2 ⋐ Q(T):

(i) if E (Ŵ1)⊆ E (Ŵ2) and Ŵ1 ⋐ K̂ then also Ŵ2 ⋐ K̂ ;

(ii) if E (Ŵ1) = E (Ŵ2) then Ŵ1 ⋐ K̂ ⇔ Ŵ2 ⋐ K̂ .

We’re now ready to introduce the particular collections of events we’ll build our further

discussion on. Let’s consider the sets of events

E :=
{

E (W) : W ⊆P(T)
}

, Efin :=
{

E (W) : W ⋐P(T)
}

and Êfin :=
{

E (Ŵ) : Ŵ ⋐Q(T)
}

,

and order each of them by set inclusion ⊆. That doing so leads to bounded distributive

lattices, will be crucial for our filter representation efforts, since it will allow us to use the

Prime Filter Representation Theorem, as we’ll explain in the next section.

Theorem 18. The following statements hold:

(i) the partially ordered set 〈E,⊆〉 is a completely distributive complete lattice, with

union as join and intersection as meet, /0 as bottom and D as top;

(ii) the partially ordered set 〈Efin,⊆〉 is a bounded distributive lattice, with union as join

and intersection as meet, /0 as bottom and D as top;

(iii) the partially ordered set 〈Êfin,⊆〉 is a bounded distributive lattice, with union as join

and intersection as meet, /0 as bottom and D as top.

Obviously, Êfin ⊆ Efin ⊆ E, and the inclusion is also a sublattice relation.

14We can call K2, K3 and K5 production axioms, because they allow us to produce new desirable sets from

old ones. The axiom K1 serves a more destructive role.
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6. A BRIEF PRIMER ON (INFERENCE WITH) FILTERS

The introductory discussion in Section 4 led us to try and represent inference about de-

sirability statements using filters on appropriate sets of events. After spending some effort

on identifying these sets of events as bounded distributive lattices in Section 5, we’re now

ready to start looking at how to do inference with filters, and how to use that inference

mechanism to represent reasoning about desirability statements. The present section sum-

marises those aspects of filters and filter inference on (bounded distributive) lattices that

are relevant to our representation effort.

We begin by recalling the definition of a filter on a bounded lattice 〈L,≤〉 with meet ⌢
and join ⌣; we’ll denote the lattice’s top by 1L and its bottom by 0L. It’s an immediate

generalisation of the definition of a filter of subsets we gave near the beginning of Section 4.

Definition 2 (Filters). Let 〈L,≤〉 be a bounded lattice with meet ⌢ and join ⌣, bottom 0L

and top 1L. A non-empty subset F of the set L is called a filter on 〈L,≤〉 if it satisfies the

following properties:

LF1. if a ∈ F and a ≤ b then also b ∈ F, for all a,b ∈ L;

LF2. if a ∈ F and b ∈ F then also a ⌢ b ∈ F, for all a,b ∈ L.

We call a filter F proper if F 6= L, or equivalently, if 0L /∈ F. We denote the set of all

proper filters of 〈L,≤〉 by F(L), and the set of all filters by F(L) = F(L)∪{L}.

We continue with a short discussion of filter bases, inspired by the discussion in, for in-

stance, Ref. [31, Section 12]. This will be relevant for some of the proofs in the Appendix.

A non-empty subset B of a proper filter F is called a filter base for F if

(∀a ∈ L)
(

a ∈ F ⇔ (∃b ∈ B)b ≤ a
)

,

or in other words if F = UpL(B) = {a ∈ L : (∃b ∈ B)b ≤ a}. Clearly, a non-empty

subset B of L \ {0L} is a filter base for some proper filter if and only if it is directed

downwards, meaning that

(∀b1,b2 ∈ B)(∃b ∈ B)b ≤ b1 ⌢ b2. (10)

The inference mechanism that’s associated with filters is, as are all such mechanisms,

based on the idea of closure and intersection structures, which we brought to the fore in

Section 2. Here too, it’s easy to see that the set F(L) of all proper filters on a bounded15

lattice 〈L,≤〉 is indeed an intersection structure, meaning that it’s closed under arbitrary

non-empty intersections: for any non-empty family Fi, i ∈ I of elements of F(L), we see

that still
⋂

i∈I Fi ∈ F(L).16

Again, if we associate with this intersection structure the map ClF(L) : P(L) → F(L)
defined by

ClF(L)(H) :=
⋂

{F ∈ F(L) : H ⊆ F}=
⋂

{F ∈ F(L) : H ⊆ F} for all H ⊆ L,

then this map is a closure operator.

In this language, the filters are the perfect, or deductively closed, subsets of the bounded

lattice 〈L,≤〉, and the closure operator can be used to extend any set of lattice elements to

the smallest deductively closed set that includes it. If we call a set of lattice elements H

filterisable if it’s included in some proper filter, or equivalently, if ClF(L)(H) 6= L, then we

find that ClF(L)(H) is the smallest proper filter that includes H, for any filterisable set H.

Of course,

H = ClF(L)(H)⇔ H ∈ F(L), for all H ⊆ L,

15That the lattice is bounded, guarantees that intersections of filters always contain the lattice top, and are

therefore non-empty.
16Similarly, F(L) = F(L)∪{L} is a topped intersection structure: closed under arbitrary (also empty) inter-

sections [6, Chapter 7].
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and therefore also F(L) = ClF(L)(P(L)). Once again, the following result is then a stand-

ard conclusion in order theory [6, Chapter 7].

Proposition 19. The partially ordered set 〈F(L),⊆〉 is a complete lattice. For any non-

empty family Fi, i ∈ I of elements of F(L), we have for its infimum and its supremum that,

respectively, infi∈I Fi =
⋂

i∈I Fi and supi∈I Fi = ClF(L)(
⋃

i∈I Fi).

The top
⋃

F(L) of this complete lattice is the largest filter L; its bottom ClF(L)( /0) =
⋂

F(L) =
⋂

F(L) is the smallest proper filter {1L}.

Two special types of filters deserve more attention in the light of what’s to come.

Principal filters. In the special case that 〈L,≤〉 is a complete lattice, we can replace the

finite meets in LF2 by arbitrary, possibly infinite ones, as in

LF
p
2. if A ⊆ F then also infA ∈ F, for all non-empty A ⊆ L.

In particular, we then find that infF ∈ F, and it’s not hard to show that then F =
upL(infF). Such a so-called principal filter is clearly proper if and only if infF 6= 0L; see

Ref. [6, Section 2.20] for the terminology. We see that the set of all principal filters, par-

tially ordered by set inclusion, is trivially order-isomorphic to the complete lattice 〈L,≤〉
itself.

Prime filters on distributive lattices. A prime filter G on 〈L,≤〉 is a proper filter that also

satisfies the following condition:

LPF. if a ⌣ b ∈ G then also a ∈ G or b ∈ G, for all a,b ∈ L.

We denote the set of all prime filters on 〈L,≤〉 by Fp(L). When 〈L,≤〉 is a bounded dis-

tributive lattice, any proper filter can be represented by prime filters, as it’s the intersection

of all the prime filters that include it. This is the Prime Filter Representation Theorem; see

Ref. [6, Sections 10.7–21] for more details.

Theorem 20 (Prime filter representation). Let 〈L,≤〉 be a bounded distributive lattice.

Then any non-empty F ⊆ L is a filter if and only if F =
⋂

{G ∈ Fp(L) : F ⊆ G}.

Taking stock. Now that we know what the inference mechanism underlying filters is, we

can clarify what we mean by filter representation of other inference mechanisms. Ax-

ioms K1–K5 govern the inference mechanism behind the desirability of sets of things, and

we’ve seen in Section 2.2, and in particular in Proposition 2, that its mathematical essence

can be condensed into the complete lattice 〈K,⊆〉 and the closure operator ClK . Similarly,

the finitary version of this inference mechanism is laid down in Axioms K1–Kfin
5 , and is

captured by the complete lattice 〈Kfin,⊆〉 and the closure operator ClKfin
.

In Section 4, we voiced our suspicion that the language of filters might be able to repres-

ent, explain, and perhaps also refine the relationships between the inference mechanisms

that lie behind the intersection structures and closure operators in Sections 2 and 3. Re-

duced to its essence, this suspicion leads to the following question: can we find bounded

lattices 〈L,≤〉 such that the complete lattice 〈F(L),⊆〉 and the closure operator ClF(L) are

essentially the same as—can be identified through an order isomorphism with—the com-

plete lattice 〈K,⊆〉 and the closure operator ClK ; or in the finitary case, the same as the

complete lattice 〈Kfin,⊆〉 and the closure operator ClKfin
? We’ll show in Sections 7 and 8

that, indeed, we can find such bounded lattices: the completely distributive complete lattice

of events 〈E,⊆〉 and the bounded distributive lattice of events 〈Efin,⊆〉, respectively.

Why bother? What’s so special about such representations in terms of filters of events?

The answer’s twofold.

First of all, there’s the issue of interpretation we’ve already drawn attention to in Sec-

tion 4. The events in E, Efin and Êfin represent propositional statements about the de-

sirability of things, and filters of such events represent collections of such propositional

statements that are closed under logical deduction—conjunction and modus ponens. The

order isomorphisms that we’ll identify below then simply tell us that making inferences
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about desirable things and desirable sets of things based on the Axioms D1–D3 and K1–

K5/Kfin
5 (and F1–F5) is mathematically equivalent to doing a type of propositional logic

with propositional statements about the desirability of things.

The second reason has a more mathematical flavour. Since the sets of events E, Efin

and Êfin constitute bounded distributive lattices when ordered by set inclusion, we can

make use of the Prime Filter Representation Theorem on such bounded distributive lattices,

which states that any filter can be written as the intersection of all the prime filters it’s

included in. The order isomorphisms we’re about to identify in the following sections, will

then allow us to transport this theorem to the context of (finitely) coherent SD(F)Ses, and

write these as intersections of special types of them, namely the conjunctive ones. This will

lead us directly to the so-called conjunctive representation results for coherent SDSes in

Theorem 26, for finitely coherent SDSes in Theorem 31, and for finitely coherent SDFSes

in Corollary 37 below.

7. FILTER REPRESENTATION FOR FINITELY COHERENT SDSES

We’re now first going to focus on finitely coherent SDSes, and try to relate them to

the filters on the bounded distributive lattice 〈Efin,⊆〉. This will lead directly to a so-

called conjunctive representation result of finitely coherent SDSes in terms of—as limits

inferior of—conjunctive ones. We’ll then see in subsequent sections that coherent SDSes

and finitely coherent SDFSes also have conjunctive representation results, which turn out

to be formally simpler.

We adapt the notations and definitions related to filters in Section 6 from a generic

bounded distributive lattice 〈L,≤〉 to the specific bounded distributive lattice 〈Efin,⊆〉.
This leads to the complete lattice 〈F(Efin),⊆〉 of all filters on Efin, with bottom 0F(Efin) =
⋂

F(Efin) = {D} and top 1F(Efin)
= Efin; see also Theorem 18 and Proposition 19. We also

denote the set of all proper filters by F(Efin) := F(Efin) \ {Efin}, and the corresponding

closure operator by ClF(Efin).

In order to establish the existence of an order isomorphism between the complete lat-

tices 〈Kfin,⊆〉 and 〈F(Efin),⊆〉, we consider the maps

ϕfin
D : P(P(T))→ P(Efin) : K 7→ ϕfin

D (K) := {E (W) : W ⋐ K}

and

κfin
D : P(Efin)→ P(P(T)) : F 7→ κfin

D (F) := {S ∈ P(T) : DS ∈ F},

which, as we’ll see presently, do the job.

Theorem 21 (Order isomorphism: finitely coherent SDSes). The following statements

hold, for all K,K1,K2 ⊆ P(T) and all F,F1,F2 ⊆ Efin:

(i) if K is a finitely coherent SDS then ϕfin
D (K) is a proper filter on 〈Efin,⊆〉;

(ii) if F is a proper filter on 〈Efin,⊆〉, then κfin
D (F) is a finitely coherent SDS;

(iii) if K is a finitely coherent SDS, then (κfin
D ◦ϕfin

D )(K) = K;

(iv) if F is a proper filter on 〈Efin,⊆〉, then (ϕfin
D ◦κfin

D )(F) = F;

(v) if K1 ⊆ K2 then ϕfin
D (K1)⊆ ϕfin

D (K2);
(vi) if F1 ⊆ F2 then κfin

D (F1)⊆ κfin
D (F2);

(vii) ϕfin
D (0Kfin

) = 0F(Efin) and ϕfin
D (1Kfin

) = 1F(Efin);

(viii) κfin
D (0F(Efin)

) = 0Kfin
and κfin

D (1F(Efin)
) = 1Kfin

.

This tells us that ϕfin
D is an order isomorphism between 〈Kfin,⊆〉 and 〈F(Efin),⊆〉, with

inverse order isomorphism κfin
D . Moreover,

(ix) if the proper filter F =ϕfin
D (K) and the finitely coherent SDS K = κfin

D (F) are related

by this order isomorphism, then F is a prime filter on 〈Efin,⊆〉 if and only if K

satisfies the so-called completeness condition

(∀S1,S2 ⊆ T)
(

S1 ∪S2 ∈ K ⇒ (S1 ∈ K or S2 ∈ K)
)

. (11)
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As we’re about to show, an important consequence of the existence of the order iso-

morphism in Theorem 21 is that it allows us to represent any finitely coherent SDS in terms

of coherent but conjunctive models. This is interesting because, by Proposition 7, such co-

herent conjunctive SDSes are conceptually much simpler, as they represent SDTs—they

only represent conjunctive desirability statements.

To see how this representation in terms of conjunctive models comes about, we begin

by recalling that the events E (W) for W ⋐ P(T) are sets of coherent SDTs. They are

completely determined by the following chain of equivalences: consider any D ∈ D, then

D ∈ E (W)⇔ D ∈
⋂

S∈W

DS ⇔ (∀S ∈W)S ∩D 6= /0 ⇔W ⋐ KD ,

where we recall from Equation (4) that KD := {S ∈ P(T) : S∩D 6= /0}. This tells us that

E (W) = {D ∈ D : W ⋐ KD}, for all W ⋐ P(T). (12)

As a next step, we now consider any proper filter F ∈ F(Efin) and any finitely coherent

SDS K ∈ Kfin that correspond, in the sense that K = κfin
D (F) and F = ϕfin

D (K). On the one

hand, we infer from K = κfin
D (F) that for any S ∈ P(T):

S ∈ K ⇔ DS ∈ F ⇔ (∃V ∈ F)V ⊆ DS ⇔ (∃V ∈ F)(∀D ∈V)S∩D 6= /0

⇔ (∃V ∈ F)(∀D ∈V)S ∈ KD ,

where the second equivalence follows from the filter property SF1. This chain of equival-

ences therefore tells us that

K =
⋃

V∈F

⋂

D∈V

KD . (13)

On the other hand, we infer from F = ϕfin
D (K) and Equation (12) that

F =
{

{D ∈ D : W ⋐ KD} : W ⋐ K
}

. (14)

Taking into account the consequences of Equations (12)–(14) leads to the following

representation result for finite consistency, finite coherence, and the corresponding closure

operator ClKfin
in terms of the conjunctive models KD .

Theorem 22 (Conjunctive representation). Consider any SDS K ⊆P(T), then the follow-

ing statements hold:

(i) K is finitely consistent if and only if E (W) = {D ∈ D : W ⋐ KD} 6= /0 for all W ⋐ K;

(ii) ClKfin
(K) =

⋃

W⋐K

⋂

D∈D : W⋐KD
KD ;

(iii) K is finitely coherent if and only if K is finitely consistent and

K =
⋃

W⋐K

⋂

D∈D : W⋐KD

KD .

This tells us that an SDS is finitely consistent if and only if each of its finite subsets is

included in some conjunctive model, and that any finitely coherent SDS can be written as

a limit inferior of conjunctive models. Even if the representation in terms of such limits

inferior is formally somewhat complicated, it has the advantage that the basic representing

models are the conjunctive ones, which are easy to identify and ‘construct’.

There is, however, another representation result that’s formally simpler, but where the

representing models are less easy to ‘construct’: a representation that’s based on the rep-

resenting role that prime filters play in bounded distributive lattices; see the discussion in

Ref. [6, Sections 10.7–21] and Section 6 for more details. Let’s now, in the remainder of

this section, explain how it comes about.

Definition 3 (Completeness). We call an SDS W ⊆ P(T) complete if it satisfies the com-

pleteness condition (11):

(∀S1,S2 ⊆ T)
(

S1 ∪S2 ∈W ⇒ (S1 ∈W or S2 ∈W)
)

;
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we denote by Kfin,c the set of all complete and finitely coherent SDSes, and by Kc the set

of all complete and coherent SDSes.

Theorem 21(ix) tells us that the complete finitely coherent SDSes are in a one-to-one rela-

tionship with the prime filters on the distributive lattice 〈Efin,⊆〉, and the order isomorph-

ism κfin
D identified in that theorem allows us to easily transform the prime filter representa-

tion result of Theorem 20 into the following alternative representation theorem for finitely

coherent SDSes.

Theorem 23 (Prime filter representation). A finitely consistent SDS K ⊆ P(T) is finitely

coherent if and only if K =
⋂

{K′ ∈ Kfin,c : K ⊆ K′}.

As suggested above, a disadvantage of this type of representation is that, generally

speaking, the complete SDSes are—much like their prime filter counterparts—hard if not

impossible to identify ‘constructively’. That, however, they include all coherent conjunct-

ive models, will be very helpful in our discussion of the coherent finitary models in Sec-

tion 9 further on.

Proposition 24. Consider any coherent SDT D ∈ D, then the (finitely) coherent conjunct-

ive SDS KD is complete.

8. FILTER REPRESENTATION FOR COHERENT SDSES

We next turn to a representation result for the coherent, rather than merely finitely co-

herent, SDSes, and as is to be expected, we’ll focus on the filters on the set E in order to

achieve that.

It turns out that our representation will only involve the proper principal filters on this

set E. Let’s denote the set of all principal filters by P(E) := {upE(E (W)) : W ⊆ P(T)},

and the set of all proper principal filters on E by P(E), where

P(E) = {upE(E (W)) : W ⊆ P(T)} \ {E}= {upE(E (W)) : W ⊆ P(T) and E (W) 6= /0},

and where we let, as a special case of the general definition in Equation (8),

upE(E (W)) = {E (W ′) : W ′ ⊆ P(T) and E (W)⊆ E (W ′)}.

It’s readily verified that P(E) is closed under arbitrary non-empty intersections, and there-

fore an intersection structure: for any W ⊆ P(T) and any non-empty family Wi ⊆ P(T),
i ∈ I we see that

(∀i ∈ I)E (Wi)⊆ E (W)⇔
⋃

i∈I

E (Wi)⊆ E (W),

and Equation (33) in Appendix A.3 guarantees that there’s some W ′ ⊆ P(T) for which

E (W ′) =
⋃

i∈I E (Wi). It’s in fact clearly also a topped intersection structure, and therefore

〈P(E),⊆〉 is a complete lattice, with intersection as infimum, and with bottom 0P(E) = {D}
and top 1P(E) = E.

In order to establish the existence of an order isomorphism between the complete lat-

tices 〈K,⊆〉 and 〈P(E),⊆〉, we now consider the maps

ϕD : P(P(T))→ P(E) : K 7→ ϕD(K) := {E (W) : W ⊆ K}

and

κD : P(E)→ P(P(T)) : F 7→ κD(F) := {S ∈ P(T) : DS ∈ F},

which are the obvious counterparts of the maps defined in Section 7, and which as we’ll

see presently, do the job in this infinitary context.

Theorem 25 (Order isomorphism: coherent SDSes). The following statements hold, for

all K,K1,K2 ⊆ P(T) and all F,F1,F2 ⊆ E:

(i) if K is a coherent SDS then ϕD(K) is a proper principal filter on 〈E,⊆〉;
(ii) if F is a proper principal filter on 〈E,⊆〉, then κD(F) is a coherent SDS;
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(iii) if K is a coherent SDS, then (κD ◦ϕD)(K) = K;

(iv) if F is a proper principal filter on 〈E,⊆〉, then (ϕD ◦κD)(F) = F;

(v) if K1 ⊆ K2 then ϕD(K1)⊆ ϕD(K2);
(vi) if F1 ⊆ F2 then κD(F1)⊆ κD(F2);

(vii) ϕD(0K) = 0P(E) and ϕD(1K) = 1P(E);

(viii) κD(0P(E)) = 0K and κD(1P(E)) = 1K .

This tells us that ϕD is an order isomorphism between 〈K,⊆〉 and 〈P(E),⊆〉, with inverse

order isomorphism κD.

To use this order isomorphism to find a representation of coherent SDSes in terms of the

conjunctive models, we begin by recalling the earlier finitary argument and transporting it

to the current infinitary context: consider any W ⊆ P(T) and any D ∈ D, then

D ∈ E (W)⇔ D ∈
⋂

S∈W

DS ⇔ (∀S ∈W)S ∩D 6= /0 ⇔W ⊆ KD ,

so

E (W) = {D ∈ D : W ⊆ KD}, for all W ⊆ P(T). (15)

Again similarly to what we did for finitely coherent SDSes in Section 7, we now con-

sider any proper principal filter F ∈ P(E) and any coherent SDS K ∈ K that correspond,

in the sense that K = κD(F) and F = ϕD(K). Observe that the principal filter F = ϕD(K)
is completely determined by its smallest element

⋂

F, which is the subset of D given by:
⋂

F =
⋂

ϕD(K) =
⋂

{E (W) : W ⊆ K}= E (K), (16)

where the last equality follows readily from Equation (7). Hence, on the one hand,

F = ϕD(K) = upE(E (K)). (17)

On the other hand, we infer from K = κD(F) that for any S ∈ P(T),

S ∈ K ⇔ DS ∈ F ⇔ DS ∈ upE(E (K))⇔ E (K)⊆ DS ⇔ (∀D ∈ E (K))D ∩S 6= /0

⇔ (∀D ∈ E (K))S ∈ KD .

So, if we combine this chain of equivalences with Equation (15), we can conclude that

K =
⋂

D∈E (K)

KD =
⋂

D∈D : K⊆KD

KD . (18)

Taking into account the consequences of Equations (15)–(18) leads to the following rep-

resentation result for consistency, coherence, and the corresponding closure operator ClK
in terms of the conjunctive models KD .

Theorem 26 (Conjunctive representation). Consider any SDS K ⊆P(T), then the follow-

ing statements hold:

(i) K is consistent if and only if E (K) = {D ∈ D : K ⊆ KD} 6= /0;

(ii) ClK(K) =
⋂

D∈D : K⊆KD
KD ;

(iii) K is coherent if and only if K is consistent and K =
⋂

D∈D : K⊆KD
KD .

A similar result was derived in a different manner, without the simplifying use of the order-

isomorphisms κD and ϕD, by De Bock in Ref. [9, Theorem 1].

9. FINITARY SDSES

We conclude from the discussion in the previous section that the conjunctive repres-

entation for coherent SDSes is remarkably simpler than the one for merely finitely coher-

ent SDSes. But, as we’ll explain presently, it turns out that we can recover the simpler

conjunctive representation—in terms of intersections rather than limits inferior—also for

finitely coherent SDSes, provided that we focus on their finite elements. This was already

proved by De Bock [9], based on ideas in our earlier papers [11, 12], but we intend to de-

rive this remarkable result here using our filter representation approach, which allows for a
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different and arguably somewhat simpler proof, based on the Prime Filter Representation

Theorem.

Finitary SDSes. Recall that we denote by Q(T) the set of all finite sets of things, Q(T) =
{S ∈ P(T) : S ⋐ T}, and that we follow the convention that the empty set /0 is finite, so

/0 ∈ Q(T).
If W ⊆ P(T) is an SDS, then we call fin(W) :=W∩Q(T) its finite part and

fty(W) := UpP(T)(fin(W)) = UpP(T)(W∩Q(T)) = {S ∈ P(T) : (∃Ŝ ∈W∩Q(T))Ŝ ⋐ S}

its finitary part, where we let, for ease of notation, for all S ∈ P(T) and W ⊆ P(T):

upP(T)(S) := {S′ ∈ P(T) : S ⊆ S′} and

UpP(T)(W) :=
⋃

S∈W

upP(T)(S) = {S′ ∈ P(T) : (∃S′′ ∈W)S′′ ⊆ S′}.

We’ll call an SDS W finitary if each of its desirable sets has a finite desirable subset,

meaning that

(∀S ∈W)(∃Ŝ ∈W∩Q(T))Ŝ ⋐ S, or equivalently, W ⊆ fty(W),

Interestingly, for any (finitely) coherent SDS K, the coherence condition K2 guarantees

that, since K∩Q(T)⊆ K, also fty(K)⊆ K. This tells us that a (finitely) coherent SDS K is

finitary if and only if K = fty(K), or in other words:

Proposition 27. A finitary and (finitely) coherent SDS K is equal to its finitary part fty(K),
and therefore completely determined by its finite part fin(K) = K∩Q(T).

Moreover, it’s easy to see that fty(fty(K)) = fty(K) for any (finitely) coherent SDS K,

implying that its finitary part fty(K) is always finitary. If nothing else, this shows that our

terminology is consistent.

Does the (finite) coherence of an SDS imply the coherence (finite or otherwise) of its

finitary part? The following proposition provides the beginning of an answer, which we’ll

be able to complete further on in Corollary 32.

Proposition 28. If an SDS K is (finitely) coherent, then its finitary part fty(K) is finitely

coherent.

The relation with completeness and conjunctivity. Let’s now find out more about how,

for a (finitely) coherent SDS, being finitary relates to being complete, and in particular to

being conjunctive. This will allow us to establish in Theorem 31 below that for finitary and

finitely coherent SDSes, the conjunctive representation of Theorem 22 simplifies.

For a start, all coherent and conjunctive SDSes are, of course, finitary.

Proposition 29. Consider any coherent SDT D ∈ D, then the (finitely) coherent conjunct-

ive SDS KD is finitary: fty(KD) = KD .

But what is the relation for a coherent SDS between its being conjunctive and its being

complete? On the one hand, coherent SDSes that are conjunctive are always complete; see

Propositions 7 and 24. On the other hand, complete coherent SDSes are not necessarily

conjunctive, but we’re now about to find out that they necessarily have a conjunctive finit-

ary part. Consequently, the coherent conjunctive SDSes are exactly the complete and co-

herent SDSes that are finitary; and the same holds for finitely coherent conjunctive SDSes

provided that the closure operator ClT is finitary.

The following proposition gives a more detailed statement.

Proposition 30. For any complete and coherent SDS K ∈ Kc, there’s some D ∈ D such

that fin(K) = fin(KD), and therefore fty(K) = fty(KD) = KD , namely D = DK . Moreover,

if the closure operator ClT is finitary, then for any complete and finitely coherent SDS K ∈
Kfin,c, there’s some D ∈ D such that fin(K) = fin(KD), and therefore fty(K) = fty(KD) =
KD , namely D = DK .



THE LOGIC BEHIND DESIRABLE SETS OF THINGS, AND ITS FILTER REPRESENTATION 21

Since the finitary part of a complete and (finitely) coherent SDS is conjunctive, the

Prime Filter Representation Theorem (in the version formulated as Theorem 23) results in

a representation with conjunctive models, provided that the closure operator ClT is finitary.

Theorem 31 (Conjunctive representation). If the closure operator ClT is finitary, then

a finitary and finitely consistent SDS K ⊆ P(T) is finitely coherent if and only if K =
⋂

{KD : D ∈ D and K ⊆ KD}.

This leads to the remarkable conclusion that for finitary SDSes there’s no difference

between finite coherence and coherence, as long as the closure operator ClT is finitary.

Similar conclusions, arrived at in a very different manner, were drawn by De Bock in

Ref. [9, Corollary 1 and Proposition 1]

Corollary 32. If the closure operator ClT is finitary, then

(i) any finitary SDS is finitely coherent if and only if it’s coherent;

(ii) the finitary part fty(K) of any (finitely) coherent SDS K is coherent.

Observe that the Satan’s Apple counterexample in Section 2.4 shows that the finitary char-

acter of the closure operator ClT cannot generally be let go of in this result.

10. FILTER REPRESENTATION FOR FINITELY COHERENT SDFSES

At this point, we have gathered enough background material to turn to finitely coherent

SDFSes, and try to relate them to the filters on the distributive lattice 〈Êfin,⊆〉. As is the

case for finitely coherent SDSes, this will lead directly to a conjunctive representation res-

ult of finitely coherent SDSFes in terms of—as limits inferior of—conjunctive ones. And,

as a next step, we’ll then use the Prime Filter Representation Theorem and the relevant

results in Sections 7 and 9 to investigate when a simpler representation using intersections

of conjunctive SDFSes is possible.

The first step is almost completely analogous to the discussion of filter representation

for finitely coherent SDSes in Section 7. We adapt the notations and definitions related

to filters in Section 6 from a generic bounded distributive lattice 〈L,≤〉 to the specific

bounded distributive lattice 〈Êfin,⊆〉. This leads to the complete lattice 〈F(Êfin),⊆〉 of

all filters on Êfin, with bottom 0F(Êfin) =
⋂

F(Êfin) = {D} and top 1F(Êfin) = Êfin; see also

Theorem 18 and Proposition 19. We also denote the set of all proper filters by F(Êfin) :=
F(Êfin)\ {Êfin}, and the corresponding closure operator by ClF(Êfin)

.

In order to establish the existence of an order isomorphism between the complete lat-

tices 〈Ffin,⊆〉 and 〈F(Êfin),⊆〉, we consider the maps

ϕ̂fin
D : P(Q(T))→ P(Êfin) : K̂ 7→ ϕ̂fin

D (K̂) := {E (Ŵ) : Ŵ ⋐ K̂}

and

κ̂fin
D : P(Êfin)→ P(Q(T)) : F 7→ κ̂fin

D (F) := {Ŝ ∈ Q(T) : DŜ ∈ F},

which, as we’ll see presently, do the job.

Theorem 33 (Order isomorphism: finitely coherent SDFSes). The following statements

hold, for all K̂ , K̂1, K̂2 ⊆ Q(T) and all F,F1,F2 ⊆ Efin:

(i) if K̂ is a finitely coherent SDFS then ϕ̂fin
D (K̂) is a proper filter on 〈Êfin,⊆〉;

(ii) if F is a proper filter on 〈Êfin,⊆〉, then κ̂fin
D (F) is a finitely coherent SDFS;

(iii) if K̂ is a finitely coherent SDFS, then (κ̂fin
D ◦ ϕ̂fin

D )(K̂) = K̂ ;

(iv) if F is a proper filter on 〈Êfin,⊆〉, then (ϕ̂fin
D ◦ κ̂fin

D )(F) = F;

(v) if K̂1 ⊆ K̂2 then ϕ̂fin
D (K̂1)⊆ ϕ̂fin

D (K̂2);

(vi) if F1 ⊆ F2 then κ̂fin
D (F1)⊆ κ̂fin

D (F2);

(vii) ϕ̂fin
D (0Ffin

) = 0F(Êfin) and ϕ̂fin
D (1Ffin

) = 1F(Êfin);

(viii) κ̂fin
D (0F(Êfin)) = 0Ffin

and κ̂fin
D (1F(Êfin)) = 1Ffin

.
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This tells us that ϕ̂fin
D is an order isomorphism between 〈Ffin,⊆〉 and 〈F(Êfin),⊆〉, with

inverse order isomorphism κ̂fin
D . Moreover,

(ix) if the proper filter F = ϕ̂fin
D (K̂) and the finitely coherent SDFS K̂ = κ̂fin

D (F) are

related by this order isomorphism, then F is a prime filter on 〈Êfin,⊆〉 if and only

if K̂ satisfies the so-called completeness condition

(∀Ŝ1, Ŝ2 ⋐ T)
(

Ŝ1 ∪ Ŝ2 ∈ K̂ ⇒ (Ŝ1 ∈ K̂ or Ŝ2 ∈ K̂)
)

. (19)

To see how the representation in terms of conjunctive models comes about in this con-

text, we recall that the events E (Ŵ) for Ŵ ⋐ Q(T) are sets of coherent SDTs, completely

determined by

D ∈ E (Ŵ)⇔ D ∈
⋂

Ŝ∈Ŵ

DŜ ⇔ (∀Ŝ ∈ Ŵ)Ŝ∩D 6= /0 ⇔ Ŵ ⋐ K̂D , for all D ∈ D,

where we recall from Equation (5) that K̂D := {Ŝ ⋐ T: Ŝ∩D 6= /0}. This tells us that

E (Ŵ) = {D ∈ D : Ŵ ⋐ K̂D}, for all Ŵ ⋐ Q(T). (20)

As a next step, we now consider any proper filter F ∈ F(Êfin) and any finitely coherent

SDFS K̂ ∈ Ffin that correspond, in the sense that K̂ = κ̂fin
D (F) and F = ϕ̂fin

D (K̂). On the

one hand, we infer from K̂ = κ̂fin
D (F) that for any Ŝ ∈ Q(T):

Ŝ ∈ K̂ ⇔ DŜ ∈ F ⇔ (∃V ∈ F)V ⊆ DŜ ⇔ (∃V ∈ F)(∀D ∈V)Ŝ∩D 6= /0

⇔ (∃V ∈ F)(∀D ∈V)Ŝ ∈ K̂D ,

where the second equivalence follows from the filter property SF1. This chain of equival-

ences therefore tells us that

K̂ =
⋃

V∈F

⋂

D∈V

K̂D . (21)

On the other hand, we infer from F = ϕ̂fin
D (K̂) and Equation (20) that

F =
{

{D ∈ D : Ŵ ⋐ K̂D} : Ŵ ⋐ K̂
}

. (22)

Taking into account the consequences of Equations (20)–(22) leads to the following rep-

resentation result for finite consistency, finite coherence, and the corresponding closure

operator ClFfin
in terms of the conjunctive models K̂D .

Theorem 34 (Conjunctive representation). Consider any SDFS K̂ ⊆ Q(T), then the fol-

lowing statements hold:

(i) K̂ is finitely consistent if and only if E (Ŵ) = {D ∈ D : Ŵ ⋐ K̂D} 6= /0 for all Ŵ ⋐ K̂ ;

(ii) ClFfin
(K̂) =

⋃

Ŵ⋐K̂

⋂

D∈D : Ŵ⋐K̂D
K̂D;

(iii) K̂ is finitely coherent if and only if K̂ is finitely consistent and

K̂ =
⋃

Ŵ⋐K̂

⋂

D∈D : Ŵ⋐K̂D

K̂D .

As a next step, we’ll allow ourselves to be inspired by the developments in Section 7:

we’ll use the Prime Filter Representation Theorem 20 to find a simpler representation result

in terms of complete and finitely coherent SDFSes.

Definition 4 (Completeness). We call an SDFS Ŵ ⊆Q(T) complete if it satisfies the com-

pleteness condition (19):

(∀Ŝ1, Ŝ2 ⋐ T)
(

Ŝ1 ∪ Ŝ2 ∈ Ŵ ⇒ (Ŝ1 ∈ Ŵ or S2 ∈ Ŵ)
)

,

and we denote by Ffin,c the set of all complete and finitely coherent SDFSes.

Theorem 35 (Prime filter representation). A finitely consistent SDFS K̂ ⊆ Q(T) is finitely

coherent if and only if K̂ =
⋂

{K̂′ ∈ Ffin,c : K̂ ⊆ K̂′}.
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Contrary to the case of SDSes, the finitely coherent and complete SDFSes can be iden-

tified ‘constructively’.

Proposition 36. Consider any coherent SDT D ∈ D and any finitely coherent and com-

plete K̂ ∈ Ffin,c. Then the following statements hold:

(i) the finitely coherent conjunctive SDFS K̂D is complete;

(ii) K̂ = K̂DK̂ , so K̂ is conjunctive.

Hence, if the closure operator ClT is finitary, then a finitely coherent SDFS is complete if

and only if it is conjunctive, and then Ffin,c = {K̂D : D ∈ D}.

Here too, our Satan’s Apple counterexample can be used to show that we cannot gener-

ally let go of the finitary character of the closure operator ClT in these results.

Counterexample (Satan’s Apple). As before, we consider the set of things T := N0 with

the (non-finitary) closure operator

ClT(S) :=











{1} if S = /0

{1, . . . ,maxS} if S is a finite and non-empty subset of N,

N0 otherwise

for all S ⊆ T,

and the set of forbidden things T− := {0}. Recall that here D = {{1, . . . ,n} : n ∈ N} and

T+ = {1}.

We consider the SDFS K̂ := Q(N0)\ { /0,{0}}. It’s easy to check that K̂ is complete. It

is clearly conjunctive, and equal to its conjunctive part K̂DK̂ . The SDT DK̂ = N is clearly

not coherent. Since the closure operator ClT isn’t finitary, we can’t use Proposition 12 to

also prove the finite incoherence of K̂ . On the contrary, we’ll now prove that K̂ is in fact a

finitely coherent SDFS. Nevertheless, it can’t be associated with a coherent set of desirable

things, as DK̂ = N.

Indeed, since K̂ clearly satisfies F1–F4, we concentrate on F5. Consider any non-

empty Ŵ ⋐ K̂ , so Ŝ /∈ { /0,{0}} for all Ŝ ∈ Ŵ. This already implies that there is some σo ∈
ΦŴ such that σo(Ŝ) 6= 0 for all Ŝ ∈ Ŵ. Now, consider for any σ ∈ ΦŴ any choice of the

tσ ∈ ClT(σ(Ŵ)), and assume towards contradiction that {tσ : σ ∈ ΦŴ} ∈ { /0,{0}}. Since

ΦŴ is non-empty because Ŵ is, it must then be that {tσ : σ ∈ ΦŴ} = {0}, so it must

follow that 0 ∈ ClT(σ(Ŵ)), implying that σ(Ŵ) is an infinite subset of N or contains 0,

for all σ ∈ ΦŴ. That σ(Ŵ) should be infinite, is impossible for finite Ŵ, so we find that

0 ∈ σ(Ŵ) = {σ(Ŝ) : Ŝ ∈ Ŵ} for all σ ∈ ΦŴ, a contradiction. ⊳

If we now combine Theorem 35 with Proposition 36, we find a simplified conjunctive

representation result. This provides an alternative and arguably simpler proof for a theorem

that was also recently proved by Jasper De Bock [9, Theorem 3], and that generalises our

earlier results when things are gambles [8, 11, 12, 14], and whose proofs were much more

involved.

Corollary 37 (Conjunctive representation). Assume that the closure operator ClT is finit-

ary. Then a finitely consistent SDFS K̂ ⊆ Q(T) is finitely coherent if and only if K̂ =
⋂

{K̂D : D ∈ D and K̂ ⊆ K̂D}.

The formal similarity between this conjunctive representation result for finitely coherent

SDFSes and the one in Theorem 31 for finitely coherent finitary SDSes, is striking. That

this is no coincidence, is also made clear by our final result, which shows that when the

closure operator ClT is finitary, there is a one-to-one correspondence between the finitely

coherent SDFSes and the finitely coherent finitary SDSes; see also Ref. [9, Proposition 10].

The maps that provide this one-to-one connection, and which are each others inverses on

the relevant sets, are fin(•) and UpP(T)(•).

Theorem 38. Assume that the closure operator ClT is finitary.
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(i) if K̂ is a finitely coherent SDFS, then UpP(T)(K̂) is a finitely coherent SDS;

(ii) if K is a (finitely) coherent SDS, then fin(K) is a finitely coherent SDFS;

(iii) for all finitary K ∈ Kfin, UpP(T)(fin(K)) = K;

(iv) for all K̂ ∈ Ffin, fin(UpP(T)(K̂)) = K̂ .

What does it really mean that the conjunctive representation changes from its form in

Theorem 34 to the simpler version in Corollary 37? (And mutatis mutandis, from its form

in Theorem 22 to the simpler one in Theorem 31; which has a similar answer).

First of all, since we can infer from Theorem 34(ii) that ClFfin
(Ŵ) =

⋂

{K̂D : Ŵ ⋐ K̂D}
for all Ŵ ⋐ Q(T), the same result then guarantees that ClFfin

(K̂) =
⋃

Ŵ⋐K̂ ClFfin
(Ŵ) for

all K̂ ⊆ Q(T): the coherence axioms F1–F5 make sure that the resulting closure oper-

ator ClFfin
is finitary, and the ‘complicated form’ of the conjunctive representation is simply

an expression of this finitary character!

But then, where does the simplification in Corollary 37 find its origin? Explaining this

will take some steps, so bear with us.

In a first step, we define the map

K̂(•) : Q(Q(T))→ Ffin : Ŵ 7→ K̂(Ŵ) :=
⋂

{K̂D : D ∈ D and Ŵ ⋐ K̂D},

in analogy with the map [see also Equations (7) and (20)]

E (•) : Q(Q(T))→ Êfin : Ŵ 7→ E (Ŵ) := {D ∈ D : Ŵ ⋐ K̂D},

then clearly K̂(•) =
⋂

{K̂D : D ∈ E (•)}.

But, observe as a second step that the map E (•) has actually been defined on a larger

domain in Equation (7): indeed, E (W) = {D ∈ D : W ⊆ K̂D} for all W ⊆ Q(T); see how

Equation (15) actually extends Equation (20). This suggests that we can similarly extend

the map K̂(•) from Q(Q(T)) to the larger domain P(Q(T)), as follows:

K̂(•) : P(Q(T))→ Ffin : W 7→ K̂(W) :=
⋂

{K̂D : D ∈ D and W ⊆ K̂D},

and then still K̂(•) =
⋂

{K̂D : D ∈ E (•)}.

Thirdly, check that E (K̂D) = upD(D) and therefore K̂(K̂D) = K̂D for all D ∈ D. This

allows us to conclude that K̂(W) =
⋂

D∈E (W) K̂(K̂D) for all W ⊆ Q(T): the map K̂ is com-

pletely determined by the (identity) values K̂D it assumes on the K̂D , D ∈ D, which—at

least when the closure operator ClT is finitary—are all the conjunctive finitely coherent

models [see Proposition 36].

Now, as a fourth step, observe that the conjunctive representation result in Theorem 34

tells us that, in general,

ClFfin
(Ŵ) = K̂(Ŵ) for all Ŵ ⋐ Q(T)

and that, therefore,17

ClFfin
(W) =

⋃

Ŵ⋐W

K̂(Ŵ) = lim
Ŵ⋐W

K̂(Ŵ) for all W ⊆ Q(T). (23)

When the closure operator ClT is finitary, the simplified conjunctive representation result

in Corollary 37 tells us that, essentially,

ClFfin
(W) = K̂(W) =

⋂

{K̂D : D ∈ E (W)} for all W ⊆ Q(T), (24)

and therefore, combining Equations (23) and (24), leads to the important conclusion that

K̂(W) = lim
Ŵ⋐W

K̂(Ŵ) for all W ⊆ Q(T),

which is a ‘continuity’ result for the map K̂(•).
It’s this ‘continuity’ that allows us to achieve a simpler filter representation for SD-

FSes K̂ , now no longer in terms of the filters ϕ̂fin
D (K̂) = {E (Ŵ) : Ŵ ⋐ K̂} on the bounded

17Here and below, the ‘lim . . .’ is the (Moore–Smith) limit of the net K̂(Ŵ) associated with the set of finite

subsets Ŵ of W, which is a directed set under set inclusion [31, Section 11].
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distributive lattice 〈Êfin,⊆〉, but rather in terms of the principal filters {E (W) : W ⊆ K̂} on

the completely distributive complete lattice 〈E,⊆〉, which are representationally simpler, as

they are completely characterised by their smallest elements E (K̂); observe that E (K̂)∈ E,

but not necessarily E (K̂)∈ Êfin. The ‘continuity’ of the map K̂ then allows us to go directly

from these smallest elements E (K̂) to the closures ClFfin
(K̂) = K̂(K̂), rather than indirectly

via the limits of the values K̂(Ŵ) for Ŵ ⋐ K̂ , which we would be forced to if we were to

restrict ourselves to working only with the events E (Ŵ), Ŵ ⋐ K̂ in the set Êfin.

11. EXAMPLE: PROPOSITIONAL LOGIC

In the remainder of this paper, we’ll illustrate the ideas in the previous sections by

looking at two interesting and relevant special cases.

As a first and fairly straightforward example, we consider propositional logic under the

standard axiomatisation; see Ref. [6, Section 11.11 onwards] for a more detailed account

of the facts we’re about to summarise below. We’ll assume the reader to be familiar with

the basic set-up of this logic using well-formed formulas.

The basic setup. In this context, the things t in T are the well-formed formulas (wffs)

in the logical language; ‘desirable’ means ‘true’ or ‘derivable’; the set T− contains all

contradictions and the set T+ all tautologies. We’ll denote and-ing by ‘∧’, or-ing by ‘∨’

and negation by ‘¬’. Moreover, ‘closed’ means ‘deductively closed’; the closure operator

ClT represents the usual deductive closure under finitary conjunction and modus ponens,

and the ‘coherent’ sets D in D are the sets of wffs that are deductively closed and contain

no contradictions; see the summary in Table 1.

abstract theory of things propositional logic

thing wff

desirable thing true, derivable wff

T+ all tautologies

T− all contradictions

closed deductively closed

consistent SDT logically consistent set of wffs

coherent SDT logically consistent and deductively closed set of wffs

TABLE 1. Propositional logic as a special case of desirable sets of things

To see how distributive—in this case even Boolean—lattices and the corresponding

filters get to play a role in this context, it will be useful to consider the Lindenbaum algebra

associated with this propositional logic. We use the notations ‘t1 ⊢ t2’ for ‘t2 ∈ ClT({t1})’
and ‘t1 ≡ t2’ for ‘t1 ⊢ t2 and t2 ⊢ t1’. Then the equivalence relation ≡ partitions the set T

into classes of logically equivalent wffs, which we collect in the set

L= T/≡ := {t/≡ : t ∈ T}, where t/≡ := {t ′ ∈ T: t ′ ≡ t}.

This set L can be ordered by the partial order ≤, defined by

t1/≡ ≤ t2/≡ ⇔ t1 ⊢ t2, for all t1, t2 ∈ T,

which turns it into a Boolean lattice—or Boolean algebra, the so-called Lindenbaum al-

gebra—with meet ⌢ and join ⌣ defined by

t1/≡ ⌢ t2/≡ := (t1 ∧ t2)/≡ and t1/≡ ⌣ t2/≡ := (t1 ∨ t2)/≡ for all t1, t2 ∈ T,

and complement operator co given by

co(t/≡) := (¬t)/≡ for all t ∈ T.

Its top collects all tautologies, and its bottom all contradictions.
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To get to filters, it’s important to recall—or observe—that the map •/≡ : T→L connects

the coherent sets of desirable wffs to the proper filters of the Lindenbaum algebra L: for

any coherent set of desirable wffs D ∈ D, the corresponding set of equivalence classes

D/≡ := {t/≡ : t ∈ D}

is a proper filter on L, and conversely, for any proper filter F ∈ F(L) on L, the correspond-

ing set of wffs

{t ∈ T : t/≡ ∈ F}

is a coherent set of desirable wffs. Moreover, the closed but inconsistent set of wffs T is

mapped to the improper filter L.

Towards desirable sets. Let’s now bring desirable sets of wffs to the forefront, in order to

complete the picture of Table 1. As the closure operator for propositional logic is finitary—

since it’s based on the finitary conjunction and modus ponens production rules—we’ll

focus on the finitary aspects of this type of coherence, and rely on the representation results

of Section 10.

To allow ourselves to be inspired by interpretation, we recall that a finite set of wffs Ŝ ∈
Q(T) is considered to be desirable if it contains at least one desirable (true) wff, or equi-

valently in this special case, if its disjunction
∨

Ŝ := t1 ∨·· ·∨ tn with Ŝ = {t1, . . . , tn}

is desirable (true). This simple observation leads us to the following definition, for which

we can prove a basic but very revealing proposition. We let, for any SDFS K̂ ,

D(K̂) :=
{

∨

Ŝ : Ŝ ∈ K̂
}

.

Proposition 39. Consider any finitely coherent set of desirable finite sets of wffs K̂ ∈ Ffin,

then the following statements hold:

(i) D(K̂) is a coherent set of desirable wffs;

(ii) D(K̂) is the smallest D ∈ D such that K̂ ⊆ K̂D ;

(iii) K̂ = K̂D(K̂ ).

We conclude that in the special case of propositional logic, all finitely coherent sets of

desirable finite sets of wffs are conjunctive, or in other words, that working with desirable

sets of wffs does not lead to anything more interesting than simply working with desirable

wffs. The reason for this is, of course, that in the case of propositional logic, the language

of desirable wffs is already powerful enough to also accommodate for or-ing desirabil-

ity statements, besides the and-ing that’s inherently possible in any language of desirable

things.

12. EXAMPLE: COHERENT CHOICE

As a second and final example, we’ll consider coherent choice functions, and coherent

sets of desirable gamble sets. Our discussion here will be based mostly on earlier work

by some of us [11–14], to which we refer for the full details, and for explicit proofs of the

results mentioned below.

Consider a variable X , and suppose that the value it takes in a finite set X is unknown.

Any map h : X → R then corresponds to a real-valued uncertain reward h(X), and is

called a gamble on X . We’ll typically assume this reward is expressed in units of some

linear utility scale. The set G of all such gambles h constitutes a linear space.

In a typical decision problem, You are uncertain about the value of X , and are asked to

express Your preferences between several possible decisions or acts, where each such act

has an associated uncertain reward, or gamble.

We consider the strict vector ordering ≻, defined by

h ≻ g ⇔ (∀x ∈ X )h(x)> g(x),
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as a background ordering, reflecting those (minimal) strict preferences we want any subject

who’s uncertain about X to always have, regardless of their beliefs about X . We’ll also

consider the sets G≻0 = {h ∈ G : ≻ 0} and G≺0 = {h ∈ G : h ≺ 0}=−G≻0.

We’ll also be concerned with so-called linear previsions P on G , i.e. the expectation

operators associated with the probability mass functions p ∈ ΣX , so

P(h) = Ep(h) := ∑
x∈X

p(x)h(x) and ΣX :=

{

p : X → R≥0 : ∑
x∈X

p(x) = 1

}

.

For more details about linear previsions, we point to Refs. [2, 27, 29].

Choice and rejection functions. In the general, abstract setting, the gambles h in the

linear space G are intended to represent possible options in a decision problem under un-

certainty.

In a specific application, there will be a finite subset Ŝ ⋐ G containing gambles that

You have to—in some way or other—express preferences between. Such a decision prob-

lem may be ‘solved’ when You specify Your subset R(Ŝ)⊆ Ŝ of rejected, or inadmissible,

gambles. We may interpret rejecting a gamble h ∈ R(Ŝ) from Ŝ as ‘Ŝ contains another

gamble that You prefer to h’. The remaining options C(Ŝ) := Ŝ \R(Ŝ) are then Your ad-

missible or non-rejected gambles in Ŝ.

Initially, You may be uninformed, which will be reflected by Your set R(Ŝ) of rejected

options being small. You may gather more information, and when You do so, You may be

able to additionally identify options that You reject, yielding a larger set R(Ŝ) and hence a

smaller set of still admissible options C(Ŝ). It may happen that You are optimally informed,

and in this case Your set C(Ŝ) of admissible options will be a singleton, or possibly a set

of ‘best’ options that are ‘equally good’ in the sense that You are indifferent between

them. However, we’ll not assume that this state of being optimally informed is always

attainable: You needn’t always be indifferent between the options in C(Ŝ). Instead, these

admissible options may be incomparable, and as such, the setup we’re describing here

can deal with partial preferences, and leads to so-called imprecise-probabilistic decision-

making approaches. This makes this approach to decision theory more general than the

classical idea of maximising expected utility where all the admissible options in C(Ŝ) have

the same highest expected utility, so You are indifferent between them.

These ideas formalise to all decision problems—all sets in Q(G )—as follows. The

function R : Q(G ) → Q(G ) : Ŝ 7→ R(Ŝ) ⊆ Ŝ that maps any finite gamble set Ŝ ∈ Q(G )
to its subset of rejected options, is called a rejection function, and the corresponding dual

function C : Q(G )→Q(G ) : Ŝ 7→C(Ŝ)⊆ Ŝ that identifies the admissible options, is called

a choice function. As C(Ŝ) = Ŝ \R(Ŝ) for every Ŝ in Q(G ), either function can be re-

trieved from the other, so they are both equivalent representations of the same information.

Choice functions in an imprecise-probabilistic decision-making context were first intro-

duced by Kadane et al. [17], who later [24] also advanced a representation result for what

they called coherent choice functions in terms of sets of probabilities and a decision cri-

terion called E-admissibility, going back to Isaac Levi [18]. Some time after that, some

of us [11, 14] established, amongst other things, more general representations in more ab-

stract contexts. We intend to briefly report on this work below, and to show how it relates

to the desirable sets of things framework.

Recall that the background ordering≻ for the option space G reflects those strict prefer-

ences between gambles that it is rational for You to have, regardless of any information or

beliefs You might have about the decision problem at hand. We’ll assume that this idea is

reflected by the following requirement on rejection functions: If h ≻ g then g ∈ R({h,g}),

for all h and g in G . This will imply, together with Sen’s [25] Property α ,18 that g is in-

admissible in a decision problem Ŝ as soon as Ŝ contains another option h ≻ g, or in other

18Sen’s [25] Property α is the requirement that R(A1)⊆ R(A2), for all A1 and A2 in Q(G ) such that A1 ⊆ A2,

which is an axiom for choice under uncertainty that is almost always assumed.
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words, as soon as it is dominated by some option in Ŝ;

(∀g ∈ Ŝ)
(

(

(∃h ∈ Ŝ)h ≻ g
)

⇒ g ∈ R(Ŝ)
)

; for all Ŝ ∈ Q(G ). (25)

The linearity of the utility scale is reflected in the assumption that any so-called coherent

rejection function R must at least satisfy

(∀h ∈ Ŝ)
(

h ∈ R(Ŝ)⇔ 0 ∈ R(Ŝ−{h})
)

; for all Ŝ in Q(G ), (26)

where Ŝ1+ Ŝ2 := {h1+h2 : h1 ∈ Ŝ1,h2 ∈ Ŝ2} and −Ŝ := {−h : h ∈ Ŝ} for any Ŝ, Ŝ1, Ŝ2 ⋐ G .

As a precursor to the discussion below, we see that to infer whether an option h is rejected

from Ŝ—whether h ∈ R(Ŝ)—it suffices to check whether 0 ∈ R(Ŝ −{h}), in which case

we’ll call Ŝ−{h} a desirable finite gamble set.

Binary choice and sets of coherent sets of desirable options. Equation (26) has a partic-

ularly interesting consequence for binary decision problems, which are decision problems

that focus on binary gamble sets Ŝ = {h,g}. Indeed, it implies that

g ∈ R({h,g})⇔ 0 ∈ R({0,h− g}); for all h and g in G . (27)

But 0 ∈ R({0,h − g}) means that You reject the status quo represented by 0 from the

gamble set {0,h − g}, which can also be interpreted to mean that You strictly prefer the

gamble h − g to the status quo 0; we’ll then call h − g a desirable gamble. Your set

of desirable gambles D is the subset of G that contains those gambles that are desirable

to You in the sense that You strictly prefer them to 0. Your set of desirable gambles D

determines Your binary preferences, since

g ∈ R({h,g})⇔ 0 ∈ R({0,h− g})⇔ h− g ∈ D.

We’ll call a set of desirable gambles D coherent [14] (but see also Refs. [5, 15, 22, 30] for

related definitions) when

OD1. 0 /∈ D;

OD2. G≻0 ⊆ D;

OD3. if h,g ∈ D and (λ ,µ)> 0,19 then λ h+ µg ∈ D, for all h,g ∈ G and λ ,µ ∈ R.

We see that if we identify gambles as special cases of the abstract things, where we let the

set of things T be the set of gambles G , and desirable gambles with desirable things, then

we have made a start with identifying the correspondences between things and gambles in

Table 2. Let’s now work towards completing this table, beginning at the level of desirable

things, where we still have to identify the sets T−, T+ and the closure operator ClT.

First of all, observe that a coherent D can’t have anything in common with the set G�0 :=
G≺0 ∪{0}. Indeed, assume towards contradiction that D contains some gamble h ∈ G�0,

then necessarily h ≺ 0 by OD1. Since then −h ≻ 0 because ≻ is a vector ordering, we infer

from OD2 that −h ∈ D, and therefore, by OD3, that 0 = h − h ∈ D, contradicting OD1.

Hence, indeed, D ∩G�0 = /0, indicating that the convex cone G�0 plays the role of the set

of forbidden things T−.

To identify the closure operator governing the desirability of gambles, we observe that

OD3 makes sure that coherent sets of desirable gambles D are convex cones: they satisfy

D = posi(D), where

posi(S) :=

{

n

∑
k=1

λkhk : n ∈N,λk ∈ R>0,hk ∈ S

}

for any S ⊆ G

is the set of all positive linear combinations of elements of S, and therefore the smallest

convex cone that includes S. We see that the coherent sets of desirable gambles D ⊆ G are

exactly the convex cones in G that include G≻0 and have nothing in common with G�0,

which tells us that the map posi( • ∪G≻0) takes the role of the closure operator ClT, and

19We’ll use the notation (λ ,µ)> 0 to mean that λ ≥ 0 and µ ≥ 0 but not both equal to zero.
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abstract theory of things desirable gamble sets

set of all things T linear space of all gambles G

thing gamble

desirable thing desirable gamble

T− all gambles in G�0

ClT posi( • ∪G≻0)
T+ all gambles in G≻0

closed closed under the coherence axioms

consistent SDT consistent set of desirable gambles

coherent SDT coherent set of desirable gambles

desirable finite set of things desirable finite gamble set

consistent SDFS consistent set of desirable finite gamble sets

finitely coherent SDFS finitely coherent set of desirable finite gamble sets

TABLE 2. Desirable finite gamble sets as a special case of desirable fi-

nite sets of things

implements the inference mechanism behind the desirability of gambles, also called nat-

ural extension [15]. Interestingly, it is clear from its definition that this closure operator is

finitary. Also observe that posi( /0∪G≻0) = posi(G≻0) = G≻0 plays the role of the set T+.

To conclude, let’s check that with these identifications, the desirability axioms D1–D3

in Section 2.1 are verified. For D1, assume that all gambles in S ⊆ G are desirable to You.

Then we infer from OD2 and OD3 that any positive linear combination of elements of S

and G≻0 must also be desirable to You. As these positive linear combinations are precisely

the elements of the closure posi(S ∪G≻0) of the set S, we see that D1 is indeed satisfied.

We have already argued that D ∩G�0 = /0 for Your set of desirable gambles D, so D2 is

satisfied as well. And finally, for D3, note that, indeed, T+∩T− = G≻0 ∩G�0 = /0.

Coherent sets of desirable finite gamble sets. To continue filling out Table 2, we now lift

the framework of sets of desirable gambles to sets of desirable finite gamble sets, as was

done in Refs. [9, 11, 12, 14].20 The underlying idea is that, rather than merely use gambles

as elements that are potentially desirable, we now turn to finite gamble sets, instead. In

doing so, we’ll move from (strict) binary preferences between gambles to more general

preferences that aren’t necessarily binary.

We’ll allow You to state for a finite gamble set Ŝ ∈Q(G ) that at least one of its elements

is desirable to You, but without Your needing to specify which; we’ll then say that Ŝ is

desirable to You, and call Ŝ a desirable finite gamble set. Your set of desirable finite

gamble sets K̂ may then contain singletons {h}, reflecting that You find h desirable, but

also finite gamble sets Ŝ that aren’t singletons. In fact, it’s perfectly possible for K̂ to

contain no singletons, apart from the {h} for h ∈ G≻0 that result from the background

ordering. It would then contain no non-trivial binary preferences.

Generally speaking, we’ll call a set of desirable finite gamble sets K̂ ⊆ Q(G ) finitely

coherent when

OF1. /0 /∈ K̂ ;

OF2. if Ŝ1 ∈ K̂ and Ŝ1 ⋐ Ŝ2 then Ŝ2 ∈ K̂ , for all Ŝ1, Ŝ2 ∈ Q(G );
OF3. if Ŝ ∈ K̂ then Ŝ \G�0 ∈ K̂ , for all Ŝ ∈ Q(G );
OF4. {h+} ∈ K̂ for all h+ ∈ G≻0;

OF5. if, with n ∈ N, Ŝ1, . . . , Ŝn ∈ K̂ then also {∑n
k=1 λ k

h1,...,hn
hk : hk ∈ Ŝk,k = 1, . . . ,n} ∈ K̂ ,

with λ k
h1,...,hn

≥ 0 and ∑n
k=1 λ k

h1,...,hn
> 0.

20The terminology used there is slightly different, because our ‘finite gamble sets’ are simply called ‘gamble

sets’ there.
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It can be argued (see, for instance, Ref. [9]) that these finite coherence axioms are equi-

valent to the coherence axioms proposed in Refs. [11, 12, 14]. It’s not too difficult to see

that these finite coherence requirements can be reinterpreted as, essentially, Axioms F1–F5,

after a proper identification of the relevant concepts here with those in the abstract treat-

ment of SFDSes, as summarised in Table 2. As a consequence, the inference mechanism

for finitely coherent SDFSes expressed by the closure operator ClFfin
, and all concomitant

machinery, can be applied to sets of desirable finite gamble sets.

Back to choice and rejection functions. We can now easily relate sets of desirable finite

gamble sets K̂ back to rejection functions R. To do so, we’ll consider any finite gamble

set Ŝ, and any gamble h ∈ Ŝ for which we want to find out whether it’s being rejected

from Ŝ. We’ll follow Ref. [14] in introducing the corresponding finite gamble set Ŝ ⊖
h := (Ŝ \ {h})−{h}, which then allows for an efficient connection, taking into account

Equation (26) and our interpretation of rejecting a gamble:

h ∈ R(Ŝ)⇔ 0 ∈ R(Ŝ−{h})⇔ (∃g ∈ Ŝ⊖ h)g is preferred to 0 ⇔ Ŝ ⊖ h ∈ K̂ . (28)

This connection allows for a one-to-one correspondence between rejection functions R and

sets of desirable finite gamble sets K̂ , allowing us to transport the finite coherence notions

from the latter to the former.

What about filter representation? So, now that we know that working with desirable

gambles and desirable finite gamble sets fits in the context of the present paper, we also

know that there will be representations in terms of (principal) filters of events.

We’ve seen above that coherent sets of desirable finite gamble sets are special in-

stances of the finitely coherent SDFSes that are derived from the finitary closure oper-

ator ClT = posi( • ∪G≻0). This puts us squarely in the context of Section 10, and of the

representation results proved therein. What underlies all of these results is the lattice of

events Êfin = {E (Ŵ) : Ŵ ⋐ Q(G )}, where each E (Ŵ) is some subset of D, so some col-

lection of coherent sets of desirable gambles, which can be interpreted as a set of possible

identifications of the actual set of desirable gambles DT; see the discussion in Section 4.

Now, as discussed in great detail in Refs. [12, 14], it’s possible to impose additional

(rationality) requirements on sets of desirable finite gamble sets K̂ , besides coherence, and

it will be interesting to briefly hint at them here. There is a representation result that guar-

antees that a set of desirable finite gamble sets K̂ satisfies certain specific Archimedeanity

and mixingness conditions if and only if there’s some non-empty set of probability mass

functions, also called credal set, M ⊆ ΣX such that

K̂ =
⋂

{K̂Ep : p ∈ M } where K̂Ep
:= {Ŝ ∈ Q(G ) : (∃h ∈ Ŝ)Ep(h)> 0}, (29)

and where the largest such representing credal set M is given by

M (K̂) := {p ∈ ΣX : (∀Ŝ ∈ K̂)(∃h ∈ Ŝ)Ep(h)> 0}.

This leads to an interesting conclusion. Rather than saying something about an actual

model DT ∈ D, the desirability statements present in an Archimedean and mixing K̂ can

be interpreted as propositional statements about an actual model pT in a set of possible

identifications ΣX , and the corresponding ‘event’ M (K̂) is then the set of all possible

identifications of pT that remain after making the desirability statements in K̂ . In fact, this

allows us to identify a representation in terms of principal filters of subsets of ΣX . We

therefore recover, as a special case, the filter representation results proved in the seminal

work by Catrin Campbell–Moore [3].

Let us, to conclude this section, find out what the representation result (29) tells us about

the choice function C and the rejection function R that are associated with an Archimedean

and mixing set of desirable finite gamble sets K̂ , where we use the correspondence estab-

lished in Equation (28). First of all, we find that for any p ∈ ΣX and any Ŝ ∈ Q(G ),

Ŝ⊖ h ∈ K̂Ep ⇔ (∃g ∈ Ŝ \ {h})Ep(g − h)> 0 ⇔ (∃g ∈ Ŝ)Ep(g)> Ep(h),
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and therefore

h ∈ R(Ŝ)⇔ (∀p ∈ M (K̂))(∃g ∈ Ŝ)Ep(g)> Ep(h),

and

h ∈C(Ŝ)⇔ (∃p ∈ M (K̂))(∀g ∈ Ŝ)Ep(g)≤ Ep(h). (30)

This tells us that a gamble h is admissible in a gamble set Ŝ if it is Bayes-admissible for at

least one mass function in the credal set M (K̂), in the sense that it maximises expectation.

We therefore recover Levi’s E-admissibility criterion [18] in decision making as a special

consequence of our representation results, and in this sense, all representation results in

this paper can be seen as generalisations of Levi’s E-admissibility.

13. DISCUSSION AND CONCLUSIONS

What this paper studies, discusses and eventually solves, is (i) how to deal with dis-

junctive statements in deductive inference systems that by their very nature deal mainly

with conjunction, and (ii) how to identify the event-and-filter type of inference mechanism

that underlies all of these systems.

Laying bare the exact nature of the event-and-filter type conservative inference mech-

anism behind coherent SDSes has allowed us to prove powerful representation results for

such coherent SDSes in terms of the simpler, conjunctive, models which are essentially

coherent SDTs. These resulting representations, in their simplest form (Theorem 26 and

Corollary 37), are reminiscent of, and in fact formal generalisations of, decision making

using Levi’s E-admissibility Rule [18].

Indeed, E-admissibility can be recovered as a very special consequence, where the de-

sirable things are desirable gambles, and where rather than mere coherence, stronger re-

quirements of Archimedeanity and mixingness are imposed on sets of desirable gamble

sets.

In another interesting special case, where the desirable things are asserted propositions

in propositional logic, the additional layer of working with asserted sets of propositions—

as instances of desirable sets of things—doesn’t add anything new: all coherent sets of

desirable sets of things are conjunctive there. This is, of course, not really surprising,

as desirable sets of things are introduced to deal with disjunctive statements, which are

already present in the language of things themselves as propositions in propositional logic.

It would be interesting to find out whether something similar also happens in other logical

languages, besides classical propositional logic, for which the way to deal with disjunctive

statements is also already present in the language itself.

The case where things are gambles, on the other hand, shows that in other inference

contexts where disjunctive statements are not already part of the language of things, going

from desirable things to desirable sets of things is indeed meaningful and useful.

A more detailed and comprehensive study of these and other special cases is the topic

of current research.
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APPENDIX A. PROOFS AND TECHNICAL RESULTS

A.1. Proofs of results in Section 2.

Proof of Equation (2). Let D :=
⋂

i∈I Di for ease of notation. Since, clearly, D ∩ T− =
/0, we need only prove that D ∈ D, or in other words, that ClT(D) ⊆ D [use C1]. For

any i ∈ I, we have that D ⊆ Di, and therefore also that ClT(D) ⊆ ClT(Di) = Di, where

the inclusion follows from C2, and the equality from the assumption that Di ∈ D. Hence,

indeed, ClT(D)⊆
⋂

i∈I Di = D. �

Proof of Equation (3). To show that ClT(S)⊆
⋂

{D ∈ D : S ⊆ D}, consider any D in D for

which S ⊆ D. Then also ClT(S) ⊆ ClT(D) = D, where the inclusion follows from C2 and

the equality holds because D ∈ D. Hence, indeed, ClT(S)⊆
⋂

{D ∈ D : S ⊆ D}.

For the converse inclusion, note that S ⊆ ClT(S) by C1. But since also ClT(S) ∈ D by

the assumed consistency of S, we find that ClT(S) ∈ {D ∈ D : S ⊆ D}, whence, indeed,
⋂

{D ∈ D : S ⊆ D} ⊆ ClT(S). �

http://www.jstor.org/stable/4356297
http://www.jstor.org/stable/1913287
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Proof that T+ is the smallest closed SDT. To prove that ClT( /0)⊆
⋂

D, we consider that for

any D ∈ D, ClT( /0) ⊆ ClT(D) = D, where the inclusion follows from C2. Hence, indeed,

ClT( /0)⊆
⋂

D.

For the converse inclusion, simply observe that ClT( /0) ∈ D, by C3. �

Proof that K4&K5 are equivalent to K4,5. It clearly suffices to show that K4,5 restricted to

the case that W = /0 is equivalent to K4. But there, ΦW contains only the empty map σ /0

with σ /0(W) = /0, and therefore ClT(σ /0(W)) = ClT( /0) = T+, so K4,5 now simply requires

that for any t+ ∈ T+, also {t+} ∈ K, which is, of course, exactly the purport of K4. �

Proof of Proposition 3. If we let, for ease of notation, K+ := {S ∈ P(T) : S ∩ T+ 6= /0},

then it follows from K4 and K2 that it clearly suffices to prove that K+ is a coherent SDS.

It’s a matter of immediate verification that it trivially satisfies K1, K2 and K4.

For K3, consider that for any S ∈ P(T), (S \T−)∩T+ = S∩ (T+ \T−) = S∩T+, where

the last equality follows from the fact that T+∩T− = /0 [use D3].

For K5, first observe that if T+ = /0, and therefore also K+ = /0, then the condition is

satisfied vacuously. Otherwise, consider any non-empty W ⊆ K+ and observe that there

always is some σ+ ∈ ΦW such that σ+(S) ∈ S ∩ T+ for all S ∈ W. Then σ+(W) ⊆ T+,

and therefore also ClT(σ+(W)) = T+ [to see why this equality holds, observe that /0 ⊆
σ+(W)⊆ T+ implies ClT( /0)⊆ ClT(σ+(W))⊆ ClT(T+) by C2, and recall that T+ = ClT( /0)
by definition, and that then ClT(T+) = ClT(ClT( /0)) = ClT( /0) = T+ by C3]. If we now

choose any tσ ∈ ClT(σ(W)) for all σ ∈ ΦW, then we must prove that S+ ∈ K+ for the

corresponding S+ := {tσ : σ ∈ΦW}, or in other words, that S+∩T+ 6= /0. But this is obvious,

since on the one hand tσ+ ∈ S+, and on the other hand tσ+ ∈ ClT(σ+(W)) = T+. �

Proof of Proposition 5. Before we really begin, we can already observe that if K is (fi-

nitely) coherent, it follows from K4 that T+ ⊆ DK.

For the proof of the first statement, consider any S in KDK
. Then S∩DK 6= /0, or, in other

words, to ∈ DK for some to in S. But then {to} ∈ K, and therefore K2 guarantees that also

S ∈ K, since {to} ⊆ S.

To prove the coherence of DK , it is [by C1] enough to show that ClT(DK)⊆ DK and that

DK ∩T− = /0.

To show that DK ∩ T− = /0, we only need to rely on K satisfying the conditions K1–

K3, and therefore not on the finitary or infinitary aspect of the coherence of K, nor on

whether the closure operator ClT is finitary or not. Indeed, assume towards contradiction

that T−∩DK 6= /0, so there’s some t− ∈ T−∩DK . This implies that {t−} ∈ K, and therefore,

[use K3 with {t−} \T− = /0], that /0 ∈ K, contradicting K1.

To prove that ClT(DK) ⊆ DK , we’ll need a different approach in (ii) the finitary and in

(i) the infinitary case. But we may in both cases assume without loss of generality that

ClT(DK) 6= /0.

(ii). Consider any to in ClT(DK). Since we already know that T+ ⊆ DK, we may assume

without loss of generality that to /∈ T+. Since ClT is finitary, this implies that there’s some

non-empty S ⋐ DK for which to ∈ ClT(S) [S must be non-empty because, otherwise, we’d

have that to ∈ ClT(S) = ClT( /0) = T+, contradicting our assumption that to /∈ T+]. If we

now let W := {{t} : t ∈ S} then clearly /0 6= W ⋐ K. Every element of W is a singleton,

so ΦW consists of the single map σo : W → T defined by σo({t}) := t for all t ∈ S. But

then of course σo(W) = {σo({t}) : t ∈ S} = S and therefore ClT(σo(W)) = ClT(S). If we

now consider the special choice tσo
:= to ∈ ClT(σo(W)), then Kfin

5 guarantees that {to} =
{tσ : σ ∈ ΦW} ∈ K, so to ∈ DK . Hence, indeed, ClT(DK)⊆ DK.

(i). In this case, the proof is fairly similar, but let’s spell it out anyway, in order to

verify explicitly that we don’t need the finitary character of the closure operator ClT here.

Again, consider any to in ClT(DK). Since we already know that T+ ⊆ DK , we may assume

without loss of generality that to /∈ T+. But this implies that DK must be non-empty. If we

now let W := {{t} : t ∈ DK} then clearly /0 6= W ⊆ K. Every element of W is a singleton,
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so ΦW consists of the single map σo : W → T defined by σo({t}) := t for all t ∈ DK . But

then of course σo(W) = {σo({t}) : t ∈ DK} = DK and therefore ClT(σo(W)) = ClT(DK).
If we now consider the special choice tσo

:= to ∈ ClT(σo(W)), then K5 guarantees that

{to}= {tσ : σ ∈ ΦW} ∈ K, so to ∈ DK . Hence, indeed, ClT(DK)⊆ DK . �

Proof of Proposition 6. First off, consider the following chain of equivalences, valid for

any t ∈ T:

t ∈ DKD
⇔ {t} ∈ KD ⇔{t}∩D 6= /0 ⇔ t ∈ D,

which implies that, generally speaking, DKD
= D.

(i)⇒(ii). Assume that D is coherent, then we must show that K1–K5 are satisfied for KD .

We concentrate on the proofs for K3–K5, since the proofs for K1 and K2 are trivial.

K3. Assume that S ∈ KD , meaning that S ∩D 6= /0. Since D ∩T− = /0 by Equation (1),

this implies that

/0 ⊂ S∩D = S∩
(

(D ∩T−)∪ (D \T−)
)

= S∩ (D \T−) = (S \T−)∩D,

so, indeed, S \T− ∈ KD .

K4. Since the coherence of D implies that T+ ⊆ D, it follows trivially that, indeed,

{t+} ∈ KD for all t+ ∈ T+.

K5. Consider any non-empty W ⊆ KD , meaning that S ∩D 6= /0 for all S ∈ W. This

implies that we can always find some σo ∈ ΦW for which σo(S) ∈ D for all S ∈ W, and

therefore σo(W) ⊆ D, so we also find that ClT(σo(W)) ⊆ D. This guarantees that always

tσo ∈ D, and therefore that, indeed, {tσ : σ ∈ ΦW} ∈ KD .

(ii)⇒(i). Assume that KD is coherent, then Proposition 5(i) guarantees that the SDT DKD

is coherent. Since we proved above that DKD
= D, this implies that D is coherent.

(ii)⇒(iii). Trivial, because K5 implies Kfin
5 .

(iii)⇒(i). Assume that KD is finitely coherent and that the closure operator ClT is fi-

nitary, then Proposition 5(ii) guarantees that the SDT DKD
is coherent. Since we proved

above that DKD
= D, this implies that D is coherent. �

Proof of Proposition 7. The ‘if’ statements follow from Propositions6 and 4, so we turn to

the proof of the ‘only if’ statements. First off, consider the following chain of equivalences,

valid for any (finitely) coherent SDS K:

K is conjunctive ⇔ (∀S ∈ K)(∃t ∈ S){t} ∈ K ⇔ (∀S ∈ K)(∃t ∈ S)t ∈ DK

⇔ (∀S ∈ K)S ∩DK 6= /0 ⇔ (∀S ∈ K)S ∈ KDK
⇔ K ⊆ KDK

⇔ K = KDK
,

where the last equivalence follows from Proposition 5, which tells us that KDK
⊆K, because

K was assumed to be (finitely) coherent. It remains to argue that the SDT DK is coherent.

In the case of (i) this follows immediately from Proposition 5(i); and in the case of (ii) this

follows immediately from Proposition 5(ii).

Finally, if K =KD then necessarily DK =DKD
=D, where the last equality follows from

Proposition 6. �

A.2. Proofs of results in Section 3.

Proof of Proposition 10. The proof is very similar to the proof of Proposition 3, but we

nevertheless include it here for the sake of completeness. If we let, for ease of notation,

K̂+ := {S ∈ Q(T) : Ŝ ∩T+ 6= /0}, then it follows from F4 and F2 that it clearly suffices to

prove that K̂+ is a finitely coherent SDFS.

It’s a matter of immediate verification that it trivially satisfies F1, F2 and F4.

For F3, consider that for any Ŝ ∈ Q(T), (Ŝ \T−)∩T+ = Ŝ∩ (T+ \T−) = Ŝ ∩T+, where

the last equality follows from the fact that T+∩T− = /0 [use D3].

For F5, first observe that if T+ = /0, and therefore also K̂+ = /0, then the condition is

satisfied vacuously. Otherwise, consider any non-empty Ŵ ⋐ K̂+ and observe that there

always is some σ+ ∈ ΦŴ such that σ+(Ŝ) ∈ Ŝ∩T+ for all Ŝ ∈ Ŵ. Then σ+(Ŵ) ⊆ T+, and
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therefore also ClT(σ+(Ŵ)) = T+ [to see why this equality holds, observe that /0⊆ σ+(Ŵ)⊆
T+ implies that ClT( /0) ⊆ ClT(σ+(Ŵ)) ⊆ ClT(T+) by C2, and recall that T+ = ClT( /0) by

definition, and that then ClT(T+) = ClT(ClT( /0)) = ClT( /0) = T+ by C3]. If we now choose

any tσ ∈ClT(σ(Ŵ)) for all σ ∈ ΦŴ, then we must prove that Ŝ+ ∈ K̂+ for the corresponding

Ŝ+ := {tσ : σ ∈ ΦŴ}, or in other words, that Ŝ+∩T+ 6= /0. But this is obvious, since both

tσ+ ∈ Ŝ+, and tσ+ ∈ ClT(σ+(Ŵ)) = T+. �

Proof of Proposition 11. The proof is very similar to the proof of Proposition 5, but we

nevertheless include it here for the sake of completeness.

For the proof of the first statement, consider any Ŝ in K̂DK̂ . Then Ŝ ∩DK̂ 6= /0, or, in

other words, to ∈ DK̂ for some to in Ŝ. But then {to} ∈ K̂ , and therefore F2 guarantees that

also Ŝ ∈ K̂ , since {to} ⊆ Ŝ.

We now turn to the last statement. First of all, observe that if K̂ is finitely coherent, then

it follows from F4 that T+ ⊆ DK̂ .

To prove the coherence of DK̂ , it is [by C1] enough to show that ClT(DK̂ )⊆DK̂ and that

DK̂ ∩T− = /0.

To show that DK̂ ∩T− = /0, assume towards contradiction that T− ∩DK̂ 6= /0, so there’s

some t− ∈ T−∩DK̂ . This implies that {t−} ∈ K̂ , and therefore [use F3 with {t−}\T− = /0]

that /0 ∈ K̂ , contradicting F1.

To prove that ClT(DK̂ ) ⊆ DK̂ , we may clearly assume that ClT(DK̂ ) 6= /0. Consider,

then, any to in ClT(DK̂ ). Since we already know that T+ ⊆ DK̂ , we may assume without

loss of generality that to /∈ T+. Since ClT is finitary, this implies that there’s some non-

empty Ŝ ⋐ DK̂ for which to ∈ ClT(Ŝ) [Ŝ must be non-empty because, otherwise, we’d have

that to ∈ ClT(Ŝ) = ClT( /0) = T+, contradicting our assumption that to /∈ T+]. If we now

let Ŵ := {{t} : t ∈ Ŝ} then clearly /0 6= Ŵ ⋐ K̂ . Every element of Ŵ is a singleton, so

ΦŴ consists of the single map σo : Ŵ → T defined by σo({t}) := t for all t ∈ Ŝ. But then

of course σo(Ŵ) = {σo({t}) : t ∈ Ŝ} = Ŝ and therefore ClT(σo(Ŵ)) = ClT(Ŝ). If we now

consider the special choice tσo
:= to ∈ ClT(σo(Ŵ)), then F5 guarantees that {to}= {tσ : σ ∈

ΦŴ} ∈ K̂ , so to ∈ DK̂ . Hence, indeed, ClT(DK̂ )⊆ DK̂ . �

Proof of Proposition 12. The proof is very similar to the proof of Proposition 6, but we

nevertheless include it here for the sake of completeness. For the first statement, consider

the following chain of equivalences, valid for any t ∈ T:

t ∈ DK̂D
⇔ {t} ∈ K̂D ⇔ {t}∩D 6= /0 ⇔ t ∈ D,

which implies that, generally speaking, indeed DK̂D
= D.

Next, assume that D is coherent, then we must show that F1–F5 are satisfied for K̂D .

We concentrate on the proofs for F3–F5, since the proofs for F1 and F2 are trivial.

F3. Assume that Ŝ ∈ K̂D , meaning that Ŝ ∩D 6= /0. Since D ∩T− = /0 by Equation (1),

this implies that

/0 ⊂ Ŝ∩D = Ŝ∩
(

(D ∩T−)∪ (D \T−)
)

= Ŝ∩ (D \T−) = (Ŝ \T−)∩D,

so, indeed, Ŝ \T− ∈ K̂D .

F4. Since the coherence of D implies that T+ ⊆ D, it follows trivially that, indeed,

{t+} ∈ K̂D for all t+ ∈ T+.

F5. Consider any non-empty Ŵ ⋐ K̂D , meaning that Ŝ ∩ D 6= /0 for all Ŝ ∈ Ŵ. This

implies that we can always find some σo ∈ ΦŴ for which σo(Ŝ) ∈ D for all Ŝ ∈ Ŵ, and

therefore σo(Ŵ) ⊆ D, so we also find that ClT(σo(Ŵ)) ⊆ D. This guarantees that always

tσo ∈ D, and therefore that, indeed, {tσ : σ ∈ ΦŴ} ∈ K̂D .

Finally, assume that the closure operator ClT is finitary and that K̂D is finitely coherent,

then Proposition 11 guarantees that the SDT DK̂D
is coherent. Since we proved above that

DK̂D
= D, this implies that D is coherent. �
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Proof of Proposition 13. The proof is very similar to the proof of Proposition 7, but we

nevertheless include it here for the sake of completeness. For the ‘if’ statement, assume

that there’s some coherent D ∈ D such that K̂ = K̂D . Then it follows from Proposition 12

that K̂ = K̂D is finitely coherent. To show that it is also conjunctive, consider any Ŝ ∈ K̂ ,

so Ŝ ∩D 6= /0. Fix any t ∈ Ŝ ∩D, then on the one hand t ∈ Ŝ and on the other hand t ∈ D

and therefore, indeed, {t} ∈ K̂D .

Next, we turn to the proof of the ‘only if’ statement. First off, consider the following

chain of equivalences, valid for any finitely coherent SDFS K̂ :

K̂ is conjunctive⇔ (∀Ŝ ∈ K̂)(∃t ∈ Ŝ){t} ∈ K̂ ⇔ (∀Ŝ ∈ K̂)(∃t ∈ Ŝ)t ∈ DK̂

⇔ (∀Ŝ ∈ K̂)Ŝ∩DK̂ 6= /0 ⇔ (∀Ŝ ∈ K̂)Ŝ ∈ K̂DK̂ ⇔ K̂ ⊆ K̂DK̂ ⇔ K̂ = K̂DK̂ ,

where the last equivalence follows from Proposition 11, which tells us that K̂DK̂ ⊆ K̂ ,

because K̂ was assumed to be finitely coherent. Proposition 11 furthermore guarantees

that the SDT DK̂ is coherent.

Finally, if K̂ = K̂D then necessarily DK̂ = DK̂D
= D, where the last equality follows

from Proposition 12. �

A.3. Proofs of results in Section 5.

Proof of Proposition 15. For a start, consider any D ∈ D, and verify the equivalences in

the following chain:

D ∈ E (W)⇔ D ∈
⋂

S∈W

DS ⇔ (∀S ∈W)S ∩D 6= /0 ⇔ (∃σ ∈ ΦW)(∀S ∈W)σ(S) ∈ D

⇔ (∃σ ∈ ΦW)σ(W)⊆ D ⇔ (∃σ ∈ ΦW)ClT(σ(W))⊆ D

⇔ D ∈ UpD(D(W)),

where the penultimate equivalence follows from C1–C3 and the assumption that D ∈ D.

The proof of the last equivalence goes as follows. The converse implication is immediate,

looking at the definition of D(W) in Equation (9). For the direct implication, assume that

these is some σ ∈ ΦW such that ClT(σ(W))⊆ D. Since D ∈ D, we see that then necessarily

also ClT(σ(W)) ∈ D, and therefore, by Equation (9), that ClT(σ(W)) ∈ D(W). �

Proof of Proposition 16. We give a proof for the first statement involving coherence of

SDSes. The proof for the second and third statement involving finite coherence of SDSes

and finite coherence of SDFSes are completely analogous.

Assume, towards contradiction, that there’s some W ⊆ K such that E (W) = /0, then

Proposition 15 tells us that D(W) = /0, so we get from Equation (9) that ClT(σ(W))∩T− 6= /0

for all σ ∈ ΦW. We can therefore select a tσ ∈ ClT(σ(W))∩T− for all σ ∈ ΦW, and then

it follows from K4,5 that S := {tσ : σ ∈ ΦW} ∈ K. But since, by construction, S ⊆ T−, it

follows from K3 that /0 = S \T− ∈ K, contradicting K1. �

Proof of Proposition 17. We restrict ourselves to the proof of the version for finitely co-

herent SDSes, as the proofs of the other versions are similar, and somewhat less involved.

We only give a proof for the first statement (i), as the second statement (ii) is a trivial

consequence of the first. Since always /0 ⋐ K, it’s clear that we may assume without

loss of generality that W2 6= /0. It follows from Proposition 16 that we may also assume

without loss of generality that E (W1) 6= /0. Using Proposition 15, we can then infer from

E (W1)⊆ E (W2) that

/0 6= UpD({ClT(σ(W1)) : σ ∈ ΦW1
}∩D)⊆

⋂

S∈W2

DS . (31)

Now, ΦW1
can be partitioned into two disjoint sets

Φ∗
W1

:=
{

σ ∈ ΦW1
: ClT(σ(W1)) ∈ D

}

and Φ∗∗
W1

:=
{

σ ∈ ΦW1
: ClT(σ(W1)) /∈ D

}

.

We infer from Equation (31) that Φ∗
W1

6= /0 and that ClT(σ(W1))∩ S 6= /0 for all S ∈ W2

and all σ ∈ Φ∗
W1

, and it follows from the definition of Φ∗∗
W1

that ClT(σ(W1))∩T− 6= /0 for

all σ ∈ Φ∗∗
W1

. If we now fix any S ∈ W2, then this tells us that we can always choose a
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tσ ∈ ClT(σ(W1)) such that also tσ ∈ S, for all σ ∈ Φ∗
W1

. Similarly and at the same time,

we can always choose a tσ ∈ ClT(σ(W1)) such that also tσ ∈ T−, for all σ ∈ Φ∗∗
W1

. Now

let S′ := {tσ : σ ∈ Φ∗
W1
} ⊆ S and S′′ := {tσ : σ ∈ Φ∗∗

W1
} ⊆ T−, then, since we assumed that

W1 ⋐ K, we infer from Kfin
5 that S′∪S′′ = {tσ : σ ∈ ΦW1

} ∈ K, and from K3 that then also

S′ \T− ∈ K. But since, by construction, S′ \T− ⊆ S′ ⊆ S, we infer from K2 that also S ∈ K.

Hence, indeed, W2 ⋐ K. �

Proof of Theorem 18. We begin with a proof for the first statement. Consider any non-

empty family of Wi ⊆ P(T), i ∈ I then

⋂

i∈I

E (Wi) =
⋂

i∈I

(

⋂

Si∈Wi

DSi

)

=
⋂

S∈W

DS = E (W) = E

(

⋃

i∈I

Wi

)

∈ E, (32)

where we let W :=
⋃

i∈I Wi. That
⋂

i∈I E (Wi) still belongs to E allows us to conclude, via a

standard result in order theory [6, Corollary 2.29], that intersection is indeed the infimum

in the poset 〈E,⊆〉. Moreover, taking into account the complete distributivity of unions

over intersections, we also find that

⋃

i∈I

E (Wi) =
⋃

i∈I

(

⋂

Si∈Wi

DSi

)

=
⋂

ψ∈Ψ

⋃

i∈I

Dψ(i) =
⋂

ψ∈Ψ

DSψ = E (W ′) ∈ E, (33)

where Ψ is the set of all choice maps ψ : I →
⋃

i∈I Wi with ψ(i) ∈Wi for all i ∈ I, where we

let Sψ :=
⋃

i∈I ψ(i) ∈ P(T) and W ′ := {Sψ : ψ ∈ Ψ} ⊆ P(T), and where the penultimate

equality holds because

⋃

i∈I

Dψ(i) =
⋃

i∈I

{D ∈ D : D ∩ψ(i) 6= /0}= {D ∈ D : D∩Sψ 6= /0}= DSψ .

That
⋃

i∈I E (Wi) still belongs to E allows us to conclude, again via the same standard result

in order theory [6, Corollary 2.29], that union is indeed the supremum in the poset 〈E,⊆〉.
This structure is therefore a complete lattice (of sets), since the non-empty index set I was

arbitrary in our argumentation. It follows at once that this complete lattice is completely

distributive, because any complete lattice of sets is [6, Theorem 10.29].

Finally, we infer from Equation (7) that E ({ /0}) = D /0 = /0, so /0 ∈ E and therefore /0 is

the bottom of this structure. Similarly, we can infer from Equation (7) that E ( /0) = D, so

D ∈ E and therefore D is the top of this structure.

The proof for the second and third statements use the same ideas, but in a simpler,

finitary guise, as the index set I and the subsets Wi [or Ŵi] in the argumentation above are

now kept finite, and only finite distributivity is required. �

A.4. Proofs of results in Section 6.

Proof of the statement involving Equation (10). We must prove that the non-empty sub-

set B of L \ {0L} is a filter base for some proper filter if and only if it satisfies the condi-

tion (10).

For sufficiency, assume that B satisfies (10) and let F := UpL(B). Then it’s enough

show that F is a proper filter. Since any image of UpL(•) satisfies LF1, it suffices to focus

on LF2. Consider any a1,a2 ∈ F, so there are b1,b2 ∈ B such that b1 ≤ a1 and b2 ≤ a2.

Then on the one hand b1 ⌢ b2 ≤ a1 ⌢ a2, and on the other hand it follows from the

assumption that there is some b ∈ B such that b ≤ b1 ⌢ b2 and therefore b ≤ a1 ⌢ a2,

which guarantees that, indeed, a1 ⌢ a2 ∈ F. Moreover, since 0L /∈ B, it follows at once

that also 0L /∈ F.

For necessity, assume that there is some proper filter F for which F = UpL(B).
Consider any b1,b2 ∈ B then b1 ⌢ b2 ∈ F by LF2, so there is some b ∈ B such that

b ≤ b1 ⌢ b2. �
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A.5. Proofs of results in Section 7.

Proof of Theorem 21. For statement (i), assume that K is a finitely coherent SDS. We must

show that ϕfin
D (K) is a proper filter. To see that ϕfin

D (K) is non-empty, observe that al-

ways /0 ⋐ K, and therefore D = E ( /0) ∈ ϕfin
D (K). To show that ϕfin

D (K) is increasing [satis-

fies LF1], consider any W1,W2 ⋐ P(T) such that E (W1) ∈ ϕfin
D (K) and E (W1) ⊆ E (W2).

Then Proposition 17(ii) implies that W1 ⋐ K, and Proposition 17(i) then guarantees that

also W2 ⋐ K, whence, indeed, also E (W2) ∈ ϕfin
D (K). To show that ϕfin

D (K) is closed un-

der finite intersections [satisfies LF2], consider arbitrary W1,W2 ⋐ K. Then we infer from

Equation (32) that E (W1)∩E (W2) = E (W1 ∪W2), and since W1∪W2 ⋐ K, this tells us that,

indeed, E (W1)∩E (W2) ∈ ϕfin
D (K). To show that the filter ϕfin

D (K) is proper, simply ob-

serve that it follows from Proposition 16 that E (W) 6= /0 for all W ⋐ K, which ensures that

/0 /∈ ϕfin
D (K). This tells us that, indeed, ϕfin

D (K) 6= Efin [recall that /0 ∈ Efin by Theorem 18].

For statement (ii), assume that F is a proper filter. We check that the relevant conditions

are satisfied for K to be a finitely coherent SDS.

K1. Since D /0 = /0 and F is proper, we find that D /0 /∈ F [again, recall that /0 ∈ Efin by

Theorem 18]. Hence, indeed, /0 /∈ κfin
D (F).

K2. Consider any S1,S2 ∈ P(T) with S1 ⊆ S2. Assume that S1 ∈ κfin
D (F), so DS1

∈ F.

That S1 ⊆ S2 implies, via Lemma 40(i), that DS1
⊆ DS2

. This allows us to infer that also

DS2
∈ F, using LF1. Hence, indeed, S2 ∈ κfin

D (F).
K3. Consider any S ∈P(T), and assume that S ∈ κfin

D (F). Infer from Lemma 40(ii) that

DS = DS\T− and therefore also DS ∈ F ⇔ DS\T− ∈ F. Hence, indeed, S \T− ∈ κfin
D (F).

K4. We may assume without loss of generality that T+ 6= /0, because otherwise this

requirement is trivially satisfied. Consider then any t+ ∈ T+, then we must show that

{t+} ∈ κfin
D (F), or in other words that D{t+} ∈ F. Now simply observe that

D{t+} = {D ∈ D : {t+}∩D 6= /0}= D ∈ F,

where the last equality holds because the coherence of D implies that T+ ⊆D, and the final

statement holds because the smallest filter 0F(Efin) = {D} is included in all filters.

Kfin
5 . Consider any non-empty W ⋐ κfin

D (F) and any choice tσ ∈ ClT(σ(W)) for all

the σ ∈ ΦW, then we must prove that So := {tσ : σ ∈ ΦW} ∈ κfin
D (F), or in other words

that DSo ∈ F. It follows from the assumptions that DS ∈ F for all S ∈ W, and therefore

also, by LF2 and the finiteness of W, that E (W) =
⋂

S∈W DS ∈ F, so it’s enough to prove

that E (W) ⊆ DSo , because then also, by LF1, DSo ∈ F, as required. Consider, to this end,

any D ∈ E (W), then it follows from Proposition 15 and Equation (9) that there’s some

selection map σo ∈ ΦW such that ClT(σo(W)) ⊆ D. This guarantees that tσo ∈ D, and

therefore D ∩So 6= /0. Hence, indeed, D ∈ DSo .

For statement (iii), let F ′ := ϕfin
D (K) and let K′ := κfin

D (F ′), then we have to prove that

K = K′. We start with the following chain of equivalences:

S ∈K′ ⇔DS ∈F
′ ⇔DS ∈ϕfin

D (K)⇔ (∃W⋐K)E (W)= E ({S}), for all S ∈ P(T), (34)

where the third equivalence follows from the fact that, by Equation (7), E ({S}) = DS . To

prove that K ⊆ K′, consider any S ∈ K, then {S}⋐ K. Using Equation (34) with W := {S},

this implies that, indeed, S ∈ K′. For the converse inclusion, consider any S ∈ K′, so

there’s, by Equation (34), some W ⋐ K for which E (W) = E ({S}). Proposition 17(ii) then

guarantees that also {S}⋐ K, or in other words, that, indeed, S ∈ K.

For statement (iv), let K′ := κfin
D (F) and let F ′ := ϕfin

D (K′), then we have to prove

that F ′ = F, or in other words, that E (W) ∈ F ′ ⇔ E (W) ∈ F for all W ⋐ P(T). Now,

consider the following chain of equivalences, valid for any W ⋐ P(T):

E (W) ∈ F
′ ⇔ E (W) ∈ ϕfin

D (K′)⇔ (∃W ′
⋐ K′)E (W) = E (W ′)

⇔ (∃W ′
⋐ P(T))

(

W ′
⋐ κfin

D (F) and E (W) = E (W ′)
)

⇔ (∃W ′
⋐ P(T))

(

E (W ′) ∈ F and E (W) = E (W ′)
)
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⇔ E (W) ∈ F,

where the second equivalence follows from the definition of ϕfin
D (K′) and the fourth equi-

valence follows from Lemma 41.

Statements (v) and (vi) follow readily from the definitions of the maps ϕfin
D and κfin

D .

Before we turn to the proofs of statements (vii) and (viii), it will be helpful to recall

from the finitary counterparts of Propositions 2 and 3 that 0Kfin
= {S ∈ P(T) : S ∩T+ 6=

/0} and 1Kfin
= P(T), and from Proposition 19 and Theorem 18 that 0F(Efin)

= {D} and

1F(Efin)
= Efin.

For statement (vii), consider any W ⋐ 0Kfin
and S ∈W,21 then S∩T+ 6= /0, and therefore,

by Lemma 40(v), also DS = D. Equation (7) then guarantees that E (W) = D. But then

indeed, ϕfin
D (0Kfin

) = {E (W) : W ⋐ 0Kfin
}= {D}= 0F(Efin)

. For the tops, we find that

ϕfin
D (1Kfin

) = ϕfin
D (P(T)) = {E (W) : W ⋐ P(T)}= Efin = 1F(Efin)

.

For statement (viii), consider the following chain of equivalences, for any S ∈ P(T):

S ∈ κfin
D (0F(Efin))⇔ S ∈ κfin

D ({D})⇔ DS = D ⇔ S∩T+ 6= /0 ⇔ S ∈ 0Kfin
,

where the third equivalence follows from Lemma 40(v). For the tops, we find that

κfin
D (1F(Efin)) = κfin

D (Efin) = {S ∈ P(T) : E ({S}) ∈ Efin}= P(T) = 1Kfin
.

Finally, we turn to statement (ix). Consider that the proper filter F is prime if and only

if for all W1,W2 ⋐ P(T),

E (W1)∪E (W2) ∈ F ⇒ (E (W1) ∈ F or E (W2) ∈ F). (35)

Since we’ve already argued in the proof of Theorem 18 that E (W1)∪ E (W2) = E (W),
with W := {S1 ∪ S2 : S1 ∈ W1 and S2 ∈ W2}, it follows from Proposition 17(ii) that the

statement (35) is equivalent to

{S1 ∪S2 : S1 ∈W1 and S2 ∈W2}⋐ K ⇒ (W1 ⋐ K or W2 ⋐ K). (36)

Assume now that F is prime, and apply the condition (36) with W1 := {S1} and W2 :=
{S2} to find the completeness condition (11). Conversely, assume that K is complete, and

consider any W1,W2 ⋐ P(T). To prove that condition (36) is satisfied, we assume that

{S1 ∪ S2 : S1 ∈ W1 and S2 ∈ W2} ⋐ K and at the same time W1 6⋐ K, and we prove that

then necessarily W2 ⋐ K. It follows from the assumptions that there’s some So ∈ W1 such

that So /∈ K, while at the same time {So ∪ S2 : S2 ∈ W2} ⋐ K. But then the completeness

condition (11) guarantees that S2 ∈ K for all S2 ∈W2, whence, indeed, W2 ⋐ K. �

Lemma 40. Consider any S,S1,S2 ∈ P(T). Then the following statements hold:

(i) if S1 ⊆ S2 then DS1
⊆ DS2

;

(ii) DS = DS\T−;

(iii) UpD(DS) = DS;

(iv) if S ⊆ T− then DS = /0;

(v) S ∩T+ 6= /0 if and only if DS = D;

Proof. The proofs of (i) and (iii) are trivial, looking at Equation (6).

For (ii), consider any D ∈ D, and the following sequence of equivalences:

D ∈ DS\T− ⇔ D ∩ (S \T−) 6= /0 ⇔ D∩S 6= /0 ⇔ D ∈ DS ,

where the penultimate equivalence holds because D ∩ (S \ T−) = (D \ T−)∩ S = D ∩ S,

since D \T− = D. This tells us that, indeed, DS = DS\T− .

For (iv), consider any D ∈ D. Assume that S ⊆ T−, then also S ∩D ⊆ T−∩D = /0, so

D /∈ DS . Hence, indeed, DS = /0.

21The case that W = /0 is also covered, because E ( /0) = D as well; see the discussion after Equation (7).
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For (v), consider any D ∈ D. Assume that S ∩ T+ 6= /0, then also S ∩D 6= /0 because

T+ ⊆ D, so D ∈ DS . Hence, indeed, DS = D. Conversely, assume that DS = D, then since

T+ =
⋂

D ∈ D, we find that in particular T+ ∈ DS , so indeed T+∩S 6= /0. �

Lemma 41. Let F be any proper filter on 〈Efin,⊆〉 and let W ⋐ P(T) be any finite SDS,

then W ⋐ κfin
D (F)⇔ E (W) ∈ F.

Proof. Consider the following chain of equivalences, valid for any W ⋐ P(T):

W ⋐ κfin
D (F)⇔ (∀S ∈W)S ∈ κfin

D (F)⇔ (∀S ∈W)DS ∈ F ⇔ E (W) ∈ F,

where the last equivalence follows from Equation (7) and the fact that F satisfies LF2

and LF1 [observe, by the way, that E ( /0) = D ∈ F when F is a proper filter]. �

Proof of Theorem 22. (i). That E (W) = {D ∈ D : W ⋐ KD} follows from Equation (12).

For necessity, suppose that K is finitely consistent. That means that there’s some finitely

coherent Ko ∈Kfin such that K ⊆Ko. But it then follows from Proposition 16 that E (W) 6= /0

for all W ⋐ Ko, and therefore in particular also for all W ⋐ K.

For sufficiency, assume that E (W) 6= /0 for all W ⋐ K. Then we infer from Lemma 42(i)

that BK := {E (W) : W ⋐ K} is a filter base. Let’s denote by FK the (smallest) proper filter

that it generates; see Lemma 42(ii). If we now let K′ := κfin
D (FK), then it follows from

Theorem 21(ii) that K′ is a finitely coherent SDS: K′ ∈ Kfin. We’re therefore done if we

can prove that K ⊆ K′. To this end, consider any S ∈ K, then {S} ⋐ K and therefore also

DS = E ({S}) ∈ BK . But then DS ∈ FK , and therefore indeed also S ∈ κfin
D (FK) = K′.

(ii). If K is not finitely consistent then it follows from (i) that there’s some W ⋐ K for

which E (W) = {D ∈ D : W ⋐ KD} = /0 and therefore
⋂

D∈D : W⋐KD
KD =

⋂

D∈E (W) KD =

P(T), making sure that both the left-hand side and the right-hand side in (ii) are equal

to P(T). We may therefore assume that K is finitely consistent. If we borrow the notation

from the argumentation above in the proof of (i), and take into account Lemma 42(iii) and

Equation (12), then it’s clear that we have to prove that

ClKfin
(K) =

⋃

V∈FK

⋂

D∈V

KD .

If we take into account Equation (13), then we see that
⋃

V∈FK

⋂

D∈V KD = κfin
D (FK) = K′,

so we need to prove that K′ = ClKfin
(K). Since we already know from the proof of (i) that

K′ is finitely coherent and that K ⊆ K′, we find that ClKfin
(K) ⊆ K′, because ClKfin

(K) is

the smallest finitely coherent SDS that the finitely consistent K is included in. To prove

the converse inclusion, namely that K′ ⊆ ClKfin
(K), it suffices to consider any K′′ ∈ Kfin

such that K ⊆ K′′, and prove that then K′ ⊆ K′′. Now consider any E ∈ FK , then by

Lemma 42(ii) there are W,W ′ ⋐ P(T) such that E = E (W ′) and W ⋐ K and E (W) ⊆
E (W ′). But then also W ⋐K′′, and therefore W ′ ⋐K′′, by Proposition 17. This implies that

also E = E (W ′) ∈ ϕfin
D (K′′), so we can conclude that FK ⊆ ϕfin

D (K′′). But then indeed also

K′ = κfin
D (FK) ⊆ κfin

D (ϕfin
D (K′′)) = K′′, where the inclusion follows from Theorem 21(vi)

and the last equality follows from Theorem 21(iii).

(iii). The proof is now straightforward, given (ii), since finitely coherent means finitely

consistent and closed with respect to the ClKfin
-operator. �

Lemma 42. Consider any SDS K ⊆ P(T) such that E (W) 6= /0 for all W ⋐ K, then the

following statements hold:

(i) the set BK := {E (W) : W ⋐ K} is a filter base;

(ii) the smallest proper filter FK that includes BK is given by

FK := UpEfin
(BK) =

{

E (W ′) : W ′
⋐ P(T) and (∃W ⋐ K)E (W)⊆ E (W ′)

}

;

(iii)
⋃

V∈FK

⋂

D∈V KD =
⋃

B∈BK

⋂

D∈B KD =
⋃

W⋐K

⋂

D∈E (W) KD .



42 GERT DE COOMAN, ARTHUR VAN CAMP, AND JASPER DE BOCK

Proof. (i). Any non-empty collection of non-empty sets that is closed under finite inter-

sections is in particular a filter base; see the discussion in Section 6, and in particular

condition (10). First of all, observe that the set BK is non-empty because /0 ⋐ K, and

contains no empty set by assumption. To show that it’s closed under finite intersections,

and therefore directed downwards, consider any W1,W2 ⋐ K, then we infer from Equa-

tion (32) that E (W1)∩E (W2) = E (W1 ∪W2), with still W1 ∪W2 ⋐ K, and therefore, indeed,

E (W1)∩E (W2) ∈ BK .

(ii). Trivially from the discussion of filter bases in Section 6.

(iii). The second equality is trivial given the definition of BK . For the first inequality, it’s

clearly enough to prove that
⋃

V∈FK

⋂

D∈V KD ⊆
⋃

B∈BK

⋂

D∈B KD . But this is immediate,

since (ii) tells us that for any V ∈ FK there’s some B ∈ BK such that B ⊆V and therefore

also
⋂

D∈V KD ⊆
⋂

D∈B KD . �

Proof of Theorem 23. Consider any finitely consistent K. For necessity, assume that K is

finitely coherent, then it follows from Theorem 21(i) that ϕfin
D (K) is a proper filter. The

prime filter representation result in Theorem 20 then guarantees that

ϕfin
D (K) =

⋂
{

G ∈ Fp(Efin) : ϕfin
D (K)⊆ G

}

,

and applying the map κfin
D to both sides of this equality leads to

K = κfin
D (ϕfin

D (K)) = κfin
D

(

⋂
{

G ∈ Fp(Efin) : ϕfin
D (K)⊆ G

}

)

=
⋂
{

κfin
D (G) : G ∈ Fp(Efin) and ϕfin

D (K)⊆ G
}

,

where the first equality follows from Theorem 21(iii) and the last one from the fact that κfin
D

is an order isomorphism between complete lattices of sets, by Theorem 21, and because we

have seen in the finitary counterpart to Proposition 2 and in Proposition 19 that intersection

plays the role of infimum in these complete lattices. This then leads to

K =
⋂
{

κfin
D (G) : G ∈ Fp(Efin) and ϕfin

D (K)⊆ G
}

=
⋂
{

κfin
D (G) : G ∈ Fp(Efin) and K ⊆ κfin

D (G)
}

=
⋂
{

K′ ∈ Kfin,c : K ⊆ K′
}

,

where the second equality follows from Theorem 21(iii)&(iv)&(v)&(vi) and the last equal-

ity follows from the correspondence between prime filters and complete finitely coherent

SDSes in Theorem 21(ix).

For sufficiency, assume that K =
⋂

{

K′ ∈ Kfin,c : K ⊆ K′
}

. That K is finitely consistent

implies that K 6= P(T), and therefore also
{

K′ ∈ Kfin,c : K ⊆ K′
}

6= /0. K is therefore

finitely coherent as the intersection of a non-empty set of finitely coherent SDSes. �

Proof of Proposition 24. First off, it follows from Proposition 6 that KD is (finitely) coher-

ent. Now, consider any S1,S2 ⊆ T and assume that S1 ∪S2 ∈ KD , or equivalently, that

/0 ⊂ (S1 ∪S2)∩D = (S1 ∩D)∪ (S2 ∩D),

which clearly implies that, indeed, S1 ∈ KD or S2 ∈ KD . �

A.6. Proofs of results in Section 8.

Proof of Theorem 25. For statement (i), assume that K is a coherent SDS.

We must show that ϕfin
D (K) is a proper principal filter. To see that ϕfin

D (K) is non-empty,

observe that always /0 ⋐ K, and therefore D = E ( /0) ∈ ϕfin
D (K). To show that ϕD(K) is

increasing [satisfies LF1], consider any W1,W2 ⊆ P(T) such that E (W1) ∈ ϕD(K) and

E (W1)⊆ E (W2). Then the infinitary version of Proposition 17(ii) implies that W1 ⊆ K, and

the infinitary version of Proposition 17(i) guarantees that then W2 ⊆ K, whence, indeed,

also E (W2) ∈ ϕD(K). To show that ϕD(K) is closed under arbitrary non-empty intersec-

tions [satisfies LF
p
2], consider any non-empty family of Wi ⊆ K, i ∈ I. Then we infer from
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Equation (32) that
⋂

i∈I E (Wi) = E (
⋃

i∈I Wi), and since
⋃

i∈I Wi ⊆ K, this tells us that, in-

deed,
⋂

i∈I E (Wi) ∈ ϕD(K). To show that ϕD(K) is proper, simply observe that it follows

from Proposition 16 that E (W) is non-empty for all W ⊆ K. This ensures that /0 /∈ ϕD(K),
so ϕD(K) 6= E [recall that /0 ∈ E by Theorem 18]. We conclude that ϕD(K) is a proper

principal filter.

For statement (ii), assume that F is a proper principal filter. We check that the relevant

conditions are satisfied for K to be a coherent SDS.

K1. Since D /0 = /0 and F is proper, we find that D /0 /∈ F [recall again that /0 ∈ E by

Theorem 18]. Hence, indeed, /0 /∈ κD(F).
K2. Consider any S1,S2 ∈ P(T) with S1 ⊆ S2. Assume that S1 ∈ κD(F), so DS1

∈ F.

That S1 ⊆ S2 implies, via Lemma 40(i), that DS1
⊆ DS2

. This allows us to infer that also

DS2
∈ F, using LF1. Hence, indeed, S2 ∈ κD(F).

K3. Consider any S ∈P(T), and assume that S ∈ κD(F). Infer from Lemma 40(ii) that

DS = DS\T− and therefore also DS ∈ F ⇔ DS\T− ∈ F. Hence, indeed, S \T− ∈ κD(F).
K4. We may assume without loss of generality that T+ 6= /0, because otherwise this

requirement is trivially satisfied. Consider then any t+ ∈ T+, then we must show that

{t+} ∈ κD(F), or in other words that D{t+} ∈ F. Now simply observe that

D{t+} = {D ∈ D : {t+}∩D 6= /0}= D ∈ F,

where the second equality holds because the coherence of D implies that T+ ⊆ D, and the

final statement holds because the smallest principal filter 0P(E) = {D} is included in all

principal filters.

K5. Consider any non-empty subset W of κD(F) and any choice tσ ∈ ClT(σ(W)) for

all the σ ∈ ΦW, then we must prove that So := {tσ : σ ∈ ΦW} ∈ κD(F), or in other words

that DSo ∈ F. It follows from the assumptions that DS ∈ F for all S ∈ W, and therefore

also, using LF
p
2 and Equation (7), that E (W) =

⋂

S∈W DS ∈ F, so it’s enough to prove that

E (W)⊆ DSo , because we’ll then also find, by LF1, that DSo ∈ F, as required. This is what

we now set out to do. Consider any D ∈ E (W), then it follows from Proposition 15 and

Equation (9) that there’s some selection map σo ∈ ΦW such that ClT(σo(W)) ⊆ D, which

guarantees that tσo ∈ D, and therefore D ∩So 6= /0. Hence, indeed, D ∈ DSo .

For statement (iii), let F ′ := ϕD(K) and let K′ := κD(F
′), then we have to prove that

K = K′. We start with the following chain of equivalences:

S ∈ K′ ⇔ DS ∈ F
′ ⇔ DS ∈ ϕD(K)⇔ (∃W ⊆ K)

(

E (W) = E ({S})
)

for all S ∈ P(T),
(37)

where the third equivalence follows from the fact that, by Equation (7), E ({S}) = DS . To

prove that K ⊆ K′, consider any S ∈ K, so {S} ⊆ K. Using Equation (37) with W := {S},

this implies that, indeed, S ∈ K′. For the converse inclusion, consider any S ∈ K′, so

there’s, by Equation (37), some W ⊆ K for which E (W) = E ({S}). The infinitary version

of Proposition 17(ii) then guarantees that also {S} ⊆ K, or in other words, that S ∈ K.

For statement (iv), let K′ := κD(F) and let F ′ := ϕD(K
′), then we have to prove that

F ′ = F, or in other words, if we consider any W ⊆ P(T), that E (W) ∈ F ′ ⇔ E (W) ∈F.

Now, consider the following chain of equivalences, valid for any W ⊆ P(T):

E (W) ∈ F
′ ⇔ E (W) ∈ ϕD(K

′)⇔ (∃W ′ ⊆ K′)E (W) = E (W ′)

⇔ (∃W ′ ⊆ P(T))
(

W ′ ⊆ κD(F) and E (W) = E (W ′)
)

⇔ (∃W ′ ⊆ P(T))
(

E (W ′) ∈ F and E (W) = E (W ′)
)

⇔ E (W) ∈ F,

where the second equivalence follows from the definition of ϕD(K
′), and the fourth equi-

valence follows from Lemma 43.

Statements (v) and (vi) follow readily from the definitions of the maps ϕD and κD.
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Before we turn to the proofs of statements (vii) and (viii), it will be helpful to recall

from Propositions 2 and 3 that 0K = {S ∈ P(T) : S ∩T+ 6= /0} and 1K = P(T), together

with 0P(E) = {D} and 1P(E) = E.

For statement (vii), consider any W ⊆ 0K and any S ∈ W,22 then S ∩T+ 6= /0, and there-

fore, by Lemma 40(v), also DS = D. Equation (7) then guarantees that E (W) = D. But

then indeed, ϕD(0K) = {E (W) : W ⊆ 0K}= {D}= 0P(E). For the tops, we find that

ϕD(1K) = ϕD(P(T)) = {E (W) : W ⊆ P(T)}= E = 1P(E).

For statement (viii), consider the following chain of equivalences, for any S ∈ P(T):

S ∈ κD(0P(E))⇔ S ∈ κD({D})⇔ DS = D ⇔ S∩T+ 6= /0 ⇔ S ∈ 0K ,

where the third equivalence follows from Lemma 40(v). For the tops, we find that

κD(1P(E)) = κD(E) = {S ∈ P(T) : E ({S}) ∈ E}= P(T) = 1K . �

Lemma 43. Let F be any proper principal filter on 〈E,⊆〉 and let /0 6=W ⊆ P(T) be any

non-empty SDS, then W ⊆ κD(F)⇔ E (W) ∈ F.

Proof. Consider the following chain of equivalences:

W ⊆ κD(F)⇔ (∀S ∈W)S ∈ κD(F)⇔ (∀S ∈W)DS ∈ F ⇔ E (W) ∈ F,

where the last equivalence follows from Equation (7) and the fact that F satisfies LF1

and LF
p
2 [observe, by the way, that E ( /0) = D ∈F when F is a proper principal filter]. �

Proof of Theorem 26. (i). The equality between the two sets follows from Equation (15).

For necessity, suppose that K is consistent. That means that there’s some coherent Ko ∈
K such that K ⊆ Ko. But it then follows from Proposition 16 that E (W) 6= /0 for all W ⊆ Ko,

and therefore in particular also for W = K.

For sufficiency, assume that E (K) 6= /0. Denote by FK := upE(E (K)) the (smallest)

proper principal filter that it generates. If we now let K′ := κD(FK), then it follows from

Theorem 25(ii) that K′ is a coherent SDS: K′ ∈K. We’re therefore done if we can prove that

K ⊆ K′. To this end, consider any S ∈ K, then {S}⊆ K and therefore also E (K)⊆ E ({S}).
But then DS = E ({S}) ∈ FK , and therefore indeed also S ∈ κD(FK) = K′.

(ii). If K is not consistent then it follows from (i) that E (K) = /0, and therefore also

from Equation (15) that
⋂

D∈D : K⊆KD
KD =

⋂

D∈E (K) KD = P(T), making sure that both

the left-hand side and the right-hand side in (ii) are equal to P(T).
We may therefore assume that K is consistent, and use the argumentation and notations

above in the proof of (i), starting with the proper principal filter FK := upE(E (K)) and

the corresponding coherent SDS K′ := κD(FK) for which we know that K ⊆ K′, and, by

Theorem 25(iv), that ϕD(K
′) = FK . Applying Equation (17) for the coherent K′ leads to

E (K′) =
⋂

ϕD(K
′) =

⋂

FK = E (K),

so Equation (18) tells us that K′ =
⋂

D∈D : K⊆KD
KD . We therefore need to prove that

ClK(K) = K′. But since we already know that K ⊆ K′, it’s enough to consider any K′′ ∈ K

such that K ⊆K′′, and to prove that then K′ ⊆K′′. Now K ⊆K′′ implies that E (K′′)⊆ E (K)
and therefore that FK = upE(E (K)) ⊆ upE(E (K′′)) = ϕD(K

′′), where the last equality

follows from applying Equation (17) for the coherent K′′. But then indeed also, by The-

orem 25(vi)&(iii), K′ = κD(FK)⊆ κD(ϕD(K
′′)) = K′′.

(iii). The proof is now straightforward, given (ii), since coherent means consistent and

closed with respect to the ClK-operator. �

22The case that W = /0 is also covered, because E ( /0) = D as well; see the discussion after Equation (7).
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A.7. Proofs of results in Section 9.

Proof of Proposition 28. It’s enough to consider any finitely coherent K ∈ Kfin, and to

check that fty(K) satisfies the relevant axioms K1–K4 and Kfin
5 .

K1. It follows from the finite coherence of K that /0 /∈ K [use K1], and therefore that

/0 /∈ K∩Q(T), whence also /0 /∈ Up
P(T)(K∩Q(T)) = fty(K).

K2. Consider that

UpP(T)(fty(K)) = UpP(T)

(

UpP(T)(K∩Q(T))
)

= UpP(T)(K∩Q(T)) = fty(K),

where the second equality follows because UpP(T)(•) is a closure operator [see the com-

ments in the beginning of Section 5].

K3. Consider any S ∈ fty(K), then there’s some Ŝ ∈ K∩Q(T) such that Ŝ ⋐ S. But then

also Ŝ \T− ⊆ S \T−, and since Ŝ \T− ∈ K ∩Q(T) by the finite coherence of K [use K3],

we find that, indeed, S \T− ∈ UpP(T)(K∩Q(T)) = fty(K).
K4. Consider any t+ ∈ T+. Since {t+} ∈ K by the finite coherence of K [use K4], and

therefore also {t+} ∈ K∩Q(T), we trivially find that {t+} ∈ UpP(T)(K∩Q(T)) = fty(K).
Kfin

5 . Fix any non-empty W ⋐ fty(K), and for all corresponding selections σ ∈ ΦW,

some tσ ∈ ClT(σ(W)). Then we must prove that {tσ : σ ∈ ΦW} ∈ fty(K).
For any S ∈ W, there’s some Ŝ ∈ K such that Ŝ ⋐ S. Let, with obvious notations, Ŵ :=

{Ŝ : S ∈ W}. Then Ŵ ⋐ K∩Q(T), so Ŵ is a finite set of finite subsets of T, which in turn

implies that the set of selections ΦŴ is finite as well. For any σ̂ ∈ ΦŴ, we consider the

corresponding selection σσ̂ ∈ ΦW, defined by σσ̂(S) := σ̂(Ŝ) ∈ Ŝ ⋐ S, for all S ∈W, again

with obvious notations, implying that σσ̂(W) = σ̂(Ŵ). If we now let tσ̂ := tσ σ̂ , then it

follows from the argumentation above that tσ̂ ∈ ClT(σ̂(Ŵ)), simply because by assumption

tσσ̂ ∈ ClT(σσ̂(W)). Clearly,

{tσ̂ : σ̂ ∈ ΦŴ}= {tσσ̂ : σ̂ ∈ ΦŴ} ⊆ {tσ : σ ∈ ΦW}. (38)

We infer from the finite coherence of K that {tσ̂ : σ̂ ∈ ΦŴ} ∈ K∩Q(T) [use Kfin
5 and the

finiteness of Ŵ and ΦŴ]. But then Equation (38) tells us that, indeed, {tσ : σ ∈ ΦW} ∈
fty(K). �

Proof of Proposition 29. It follows from Proposition 6 that KD is (finitely) coherent. It

then follows from K2 that fty(KD)⊆ KD . For the converse inclusion, consider any S ∈ KD ,

then S ∩D 6= /0. Consider, therefore, any t ∈ S∩D, then {t} ⊆ S and {t} ∈ KD ∩Q(T), so

S ∈ fty(KD), and therefore, indeed, KD ⊆ fty(KD). �

Proof of Proposition 30. We give the proof for the second statement involving finite coher-

ence. The proof for the first statement involving coherence is similar, but slightly simpler.

That fty(KD) = DK follows from Proposition 29. So, assume that the closure operator ClT
is finitary, and consider any K ∈ Kfin,c. It suffices to prove that K∩Q(T) = KD ∩Q(T) for

some coherent D ∈ D.

Let D := DK , then D is coherent and KD ⊆ K, by Proposition 5, so it only remains to

prove that K ∩Q(T) ⊆ KD ∩Q(T). So, consider any S ∈ K ∩Q(T), then there are two

possibilities. If S is a singleton {t}, then necessarily t ∈ DK = D, and therefore S = {t} ∈
KD . Otherwise, it follows from the completeness of K that there’s some strict subset S′

of S such that S′ ∈ K, and therefore also S′ ∈ K ∩Q(T). Now replace S with S′ in the

argumentation above, and keep the recursion going until we do reach a singleton {t} for

which t ∈ DK = D, or equivalently {t} ∈ K, which must happen after a finite number of

steps, because S is finite. But then necessarily also t ∈ S, so S∩D 6= /0, and therefore indeed

S ∈ KD ∩Q(T). �

Proof of Theorem 31. The proof of sufficiency is fairly straightforward. Assume that K =
⋂

{KD : D ∈ D and K ⊆ KD}. Recall that it follows from Proposition 6 that any element

of the set {KD : D ∈ D and K ⊆ KD} 6= /0 is finitely coherent, and therefore also strictly

included in P(T). Since the assumed finite consistency of K implies that K 6= P(T),
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this guarantees that {KD : D ∈ D and K ⊆ KD} 6= /0. Hence, K is finitely coherent, as an

intersection of a non-empty collection of finitely coherent SDSes.

We now turn to the proof of necessity, so assume that the SDS K is finitary and finitely

coherent. Our proof will rely on the Prime Filter Representation Theorem for finitely

coherent SDSes [Theorem 23], which tells us that K =
⋂

{K′ ∈ Kfin,c : K ⊆ K′}. Consider

any K′ ∈ Kfin,c such that K ⊆ K′ [it follows from the assumptions that these is always at

least one such K′]. Then also fin(K)⊆ fin(K′), and therefore

K = fty(K) = Up
P(T)(fin(K)) ⊆ Up

P(T)(fin(K′)) = fty(K′) = KDK′ ⊆ K′,

where the first equality follows from the assumed finitary character of K, the last equality

follows from the finitary character of the finitely coherent conjunctive KDK′ [see Proposi-

tion 30], and the last inclusion follows from Proposition 5. We’ve thus proved that

K ⊆ K′ ⇒ K ⊆ KDK′ ⊆ K′, for all K′ ∈ Kfin,c.

But, since DK′ ∈ D for all K′ ∈ Kfin,c, by Proposition 5, this implies that

{KDK′ : K′ ∈ Kfin,c and K ⊆ K′} ⊆ {KD : D ∈ D and K ⊆ KD},

and therefore

K ⊆
⋂

{KD : D ∈ D and K ⊆ KD} ⊆
⋂

{KDK′ : K′ ∈ Kfin,c and K ⊆ K′}

⊆
⋂

{K′ ∈ Kfin,c : K ⊆ K′}= K,

where the third inclusion follows again from Proposition 5, and the equality follows from

Theorem 23. �

Proof of Corollary 32. For (i), recall that all the conjunctive models have the form KD for

D ∈ D by Proposition 7, and are therefore coherent by Proposition 6. So is, therefore, any

intersection of them. Now recall Theorem 31.

For (ii), assume that K is (finitely) coherent, then Proposition 28 guarantees that fty(K)
is finitely coherent. But since fty(K) is finitary, we infer from the first statement that its

finite coherence implies its coherence. �

A.8. Proofs of results in Section 10.

Proof of Theorem 33. The proof is very similar to the proof of Theorem 21, but we never-

theless include it here for the sake of completeness.

For statement (i), assume that K̂ is a finitely coherent SDFS. We must show that ϕ̂fin
D (K̂)

is a proper filter. To see that ϕ̂fin
D (K̂) is non-empty, observe that always /0 ⋐ K̂ , and

therefore D = E ( /0) ∈ ϕ̂fin
D (K̂). To show that ϕ̂fin

D (K̂) is increasing [satisfies LF1], con-

sider any Ŵ1,Ŵ2 ⋐ Q(T) such that E (Ŵ1) ∈ ϕ̂fin
D (K̂) and E (Ŵ1) ⊆ E (Ŵ2). Then Propos-

ition 17(ii) implies that Ŵ1 ⋐ K̂ , and Proposition 17(i) then guarantees that also Ŵ2 ⋐ K̂ ,

whence, indeed, also E (Ŵ2) ∈ ϕ̂fin
D (K̂). To show that ϕ̂fin

D (K) is closed under finite inter-

sections [satisfies LF2], consider arbitrary Ŵ1,Ŵ2 ⋐ K̂ . Then we infer from Equation (32)

that E (Ŵ1)∩ E (Ŵ2) = E (Ŵ1 ∪Ŵ2), and since Ŵ1 ∪ Ŵ2 ⋐ K̂ , this tells us that, indeed,

E (Ŵ1)∩E (Ŵ2) ∈ ϕ̂fin
D (K̂). To show that the filter ϕ̂fin

D (K̂) is proper, simply observe that it

follows from Proposition 16 that E (Ŵ) 6= /0 for all Ŵ⋐ K̂ . This ensures that /0 /∈ ϕ̂fin
D (K̂), so

ϕfin
D (K̂) 6= Êfin [recall that /0 ∈ Êfin by Theorem 18]. We conclude that ϕfin

D (K̂) is a proper

filter.

For statement (ii), assume that F is a proper filter. We check that the relevant conditions

are satisfied for K̂ to be a finitely coherent SDFS.

F1. Since D /0 = /0 and F is proper, we find that D /0 /∈ F [recall again that /0 ∈ Êfin by

Theorem 18]. Hence, indeed, /0 /∈ κ̂fin
D (F).
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F2. Consider any Ŝ1, Ŝ2 ∈ Q(T) with Ŝ1 ⊆ Ŝ2. Assume that Ŝ1 ∈ κ̂fin
D (F), so DŜ1

∈ F.

That Ŝ1 ⊆ Ŝ2 implies, via Lemma 40(i), that DŜ1
⊆ DŜ2

. This allows us to infer that also

DŜ2
∈ F, using LF1. Hence, indeed, Ŝ2 ∈ κ̂fin

D (F).

F3. Consider any Ŝ ∈Q(T), and assume that Ŝ ∈ κ̂fin
D (F). Infer from Lemma 40(ii) that

DŜ = DŜ\T− and therefore also DŜ ∈ F ⇔ DŜ\T− ∈ F. Hence, indeed, Ŝ \T− ∈ κ̂fin
D (F).

F4. We may assume without loss of generality that T+ 6= /0, because otherwise this

requirement is trivially satisfied. Consider then any t+ ∈ T+, then we must show that

{t+} ∈ κ̂fin
D (F), or in other words that D{t+} ∈ F. Now simply observe that

D{t+} = {D ∈ D : {t+}∩D 6= /0}= D ∈ F,

where the second equality holds because the coherence of D implies that T+ ⊆ D, and the

final statement holds because the smallest filter 0F(Êfin)
= {D} is included in all filters.

F5. Consider any non-emptyŴ⋐ κ̂fin
D (F) and any choice tσ ∈ ClT(σ(Ŵ)) for all the σ ∈

ΦŴ, then we must prove that Ŝo := {tσ : σ ∈ ΦŴ} ∈ κ̂fin
D (F), or in other words that DŜo ∈

F. It follows from the assumptions that DŜ ∈ F for all Ŝ ∈ Ŵ, and therefore also, by LF2

and the finiteness of Ŵ, that E (Ŵ) =
⋂

Ŝ∈Ŵ DŜ ∈ F, so it’s enough to prove that E (Ŵ) ⊆

DŜo , because then also, by LF1, DŜo ∈F, as required. Consider, to this end, any D ∈ E (Ŵ),
then it follows from Proposition 15 and Equation (9) that there’s some selection map σo ∈
ΦŴ such that ClT(σo(Ŵ)) ⊆ D. This guarantees that tσo ∈ D, and therefore D ∩ Ŝo 6= /0.

Hence, indeed, D ∈ DŜo .

For statement (iii), let F ′ := ϕ̂fin
D (K̂) and let K̂′ := κ̂fin

D (F ′), then we have to prove that

K̂ = K̂′. We start with the following chain of equivalences:

Ŝ ∈ K̂′ ⇔DŜ ∈F
′ ⇔DŜ ∈ ϕ̂fin

D (K̂)⇔ (∃Ŵ⋐ K̂)E (Ŵ) = E ({Ŝ}), for all Ŝ ∈ Q(T), (39)

where the third equivalence follows from the fact that, by Equation (7), E ({Ŝ}) = DŜ . To

prove that K̂ ⊆ K̂′, consider any Ŝ ∈ K̂ , then {Ŝ}⋐ K̂ . Using Equation (39) with Ŵ := {Ŝ},

this implies that, indeed, Ŝ ∈ K̂′. For the converse inclusion, consider any Ŝ ∈ K̂′, so

there’s, by Equation (39), some Ŵ ⋐ K̂ for which E (Ŵ) = E ({Ŝ}). Proposition 17(ii) then

guarantees that also {Ŝ}⋐ K̂ , or in other words, that, indeed, Ŝ ∈ K̂ .

For statement (iv), let K̂′ := κ̂fin
D (F) and let F ′ := ϕ̂fin

D (K̂′), then we have to prove

that F ′ = F, or in other words, that E (Ŵ) ∈ F ′ ⇔ E (Ŵ) ∈ F for all Ŵ ⋐ Q(T). Now,

consider the following chain of equivalences, valid for any Ŵ ⋐ Q(T):

E (Ŵ) ∈ F
′ ⇔ E (Ŵ) ∈ ϕ̂fin

D (K̂′)⇔ (∃Ŵ ′
⋐ K̂′)E (Ŵ) = E (Ŵ ′)

⇔ (∃Ŵ ′
⋐ Q(T))

(

Ŵ ′
⋐ κ̂fin

D (F) and E (Ŵ) = E (Ŵ ′)
)

⇔ (∃Ŵ ′
⋐ Q(T))

(

E (Ŵ ′) ∈ F and E (Ŵ) = E (Ŵ ′)
)

⇔ E (Ŵ) ∈ F,

where the second equivalence follows from the definition of ϕfin
D (K′) and the fourth equi-

valence follows from Lemma 41.

Statements (v) and (vi) follow readily from the definitions of the maps ϕ̂fin
D and κ̂fin

D .

Before we turn to the proofs of statements (vii) and (viii), it will be helpful to recall

from Propositions 9 and 10 that 0Ffin
= {Ŝ ∈ Q(T) : Ŝ ∩T+ 6= /0} and 1Ffin

= Q(T), and

from Proposition 19 and Theorem 18 that 0F(Êfin) = {D} and 1F(Êfin) = Êfin.

For statement (vii), consider any Ŵ ⋐ 0Ffin
and Ŝ ∈ Ŵ,23 then Ŝ∩T+ 6= /0, and therefore,

by Lemma 40(v), also DŜ = D. Equation (7) then guarantees that E (Ŵ) = D. But then

indeed, ϕ̂fin
D (0Ffin

) = {E (Ŵ) : Ŵ ⋐ 0Ffin
}= {D}= 0F(Êfin). For the tops, we find that

ϕ̂fin
D (1Ffin

) = ϕ̂fin
D (Q(T)) = {E (Ŵ) : Ŵ ⋐ Q(T)}= Êfin = 1F(Êfin).

23The case that Ŵ = /0 is also covered, because E ( /0) = D as well; see the discussion after Equation (7).
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For statement (viii), consider the following chain of equivalences, for any Ŝ ∈ Q(T):

Ŝ ∈ κ̂fin
D (0F(Êfin))⇔ Ŝ ∈ κ̂fin

D ({D})⇔ DŜ = D ⇔ Ŝ ∩T+ 6= /0 ⇔ Ŝ ∈ 0Ffin
,

where the third equivalence follows from Lemma 40(v). For the tops, we find that

κ̂fin
D (1F(Êfin)

) = κ̂fin
D (Êfin) = {Ŝ ∈ Q(T) : E ({Ŝ}) ∈ Êfin}= Q(T) = 1Ffin

.

Finally, we turn to statement (ix). Consider that the proper filter F is prime if and only

if for all Ŵ1,Ŵ2 ⋐ Q(T),

E (Ŵ1)∪E (Ŵ2) ∈ F ⇒ (E (Ŵ1) ∈ F or E (Ŵ2) ∈ F). (40)

Since we’ve already argued in the proof of Theorem 18 that E (Ŵ1)∪ E (Ŵ2) = E (Ŵ),
with Ŵ := {Ŝ1 ∪ Ŝ2 : Ŝ1 ∈ Ŵ1 and Ŝ2 ∈ Ŵ2}, it follows from Proposition 17(ii) that the

statement (40) is equivalent to

{Ŝ1 ∪ Ŝ2 : Ŝ1 ∈ Ŵ1 and Ŝ2 ∈ Ŵ2}⋐ K̂ ⇒ (Ŵ1 ⋐ K̂ or Ŵ2 ⋐ K̂). (41)

Assume now that F is prime, and apply the condition (41) with Ŵ1 := {Ŝ1} and Ŵ2 :=
{Ŝ2} to find the completeness condition (19). Conversely, assume that K̂ is complete, and

consider any Ŵ1,Ŵ2 ⋐ Q(T). To prove that condition (41) is satisfied, we assume that

{Ŝ1 ∪ Ŝ2 : Ŝ1 ∈ Ŵ1 and Ŝ2 ∈ Ŵ2} ⋐ K̂ and at the same time Ŵ1 6⋐ K̂ , and we prove that

then necessarily Ŵ2 ⋐ K̂ . It follows from the assumptions that there’s some Ŝo ∈ Ŵ1 such

that Ŝo /∈ K̂ , while at the same time {Ŝo ∪ Ŝ2 : Ŝ2 ∈ Ŵ2} ⋐ K̂ . But then the completeness

condition (11) guarantees that Ŝ2 ∈ K̂ for all Ŝ2 ∈ Ŵ2, whence, indeed, Ŵ2 ⋐ K̂ . �

Lemma 44. Let F be any proper filter on 〈Êfin,⊆〉 and let Ŵ ⋐ Q(T) be any finite SDFS,

then Ŵ ⋐ κ̂fin
D (F)⇔ E (Ŵ) ∈ F.

Proof. The proof is very similar to the proof of Lemma 41, but we nevertheless include it

here for the sake of completeness.

Consider the following chain of equivalences, valid for any Ŵ ⋐ Q(T):

Ŵ ⋐ κ̂fin
D (F)⇔ (∀Ŝ ∈ Ŵ)Ŝ ∈ κ̂fin

D (F)⇔ (∀Ŝ ∈ Ŵ)DŜ ∈ F ⇔ E (Ŵ) ∈ F,

where the last equivalence follows from Equation (7) and the fact that F satisfies LF2

and LF1 [observe, by the way, that E ( /0) = D ∈ F when F is a proper filter]. �

Proof of Theorem 34. The proof is very similar to the proof of Theorem 22, but we never-

theless include it here for the sake of completeness.

(i). That E (Ŵ)= {D ∈D : Ŵ⋐ K̂D} follows from Equation (20). For necessity, suppose

that K̂ is finitely consistent. That means that there’s some finitely coherent K̂o ∈ Ffin such

that K̂ ⊆ K̂o. But it then follows from Proposition 16 that E (Ŵ) 6= /0 for all Ŵ ⋐ K̂o, and

therefore in particular also for all Ŵ ⋐ K̂ .

For sufficiency, assume that E (Ŵ) 6= /0 for all Ŵ ⋐ K̂ . Then we infer from Lemma 45(i)

that BK̂ := {E (Ŵ) : Ŵ ⋐ K̂} is a filter base. Let’s denote by FK̂ the (smallest) proper filter

that it generates; see Lemma 45(ii). If we now let K̂′ := κ̂fin
D (FK̂ ), then it follows from

Theorem 33(ii) that K̂′ is a finitely coherent SDFS: K̂′ ∈ Ffin. We’re therefore done if we

can prove that K̂ ⊆ K̂′. To this end, consider any Ŝ ∈ K̂ , then {Ŝ} ⋐ K̂ and therefore also

DŜ = E ({Ŝ}) ∈ BK̂ . But then DŜ ∈ FK̂ , and therefore indeed also Ŝ ∈ κ̂fin
D (FK̂ ) = K̂′.

(ii). If K̂ is not finitely consistent then it follows from (i) that there’s some Ŵ ⋐ K̂ for

which E (Ŵ) = {D ∈ D : Ŵ ⋐ K̂D} = /0 and therefore
⋂

D∈D : Ŵ⋐K̂D
K̂D =

⋂

D∈E (Ŵ) K̂D =

Q(T), making sure that both the left-hand side and the right-hand side in (ii) are equal

to Q(T). We may therefore assume that K̂ is finitely consistent. If we borrow the notation

from the argumentation above in the proof of (i), and take into account Lemma 45(iii) and

Equation (20), then it’s clear that we have to prove that

ClFfin
(K̂) =

⋃

V∈FK̂

⋂

D∈V

K̂D .
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If we take into account Equation (21), then we see that
⋃

V∈FK̂

⋂

D∈V K̂D = κ̂fin
D (FK̂ ) = K̂′,

so we need to prove that K̂′ = ClFfin
(K̂). Since we already know from the proof of (i) that

K̂′ is finitely coherent and that K̂ ⊆ K̂′, we find that ClFfin
(K̂) ⊆ K̂′, because ClFfin

(K̂) is

the smallest finitely coherent SDFS that the finitely consistent K̂ is included in. To prove

the converse inclusion, namely that K̂′ ⊆ ClFfin
(K̂), it suffices to consider any K̂′′ ∈ Ffin

such that K̂ ⊆ K̂′′, and prove that then K̂′ ⊆ K̂′′. Now consider any E ∈ FK̂ , then by

Lemma 45(ii) there are Ŵ,Ŵ ′ ⋐Q(T) such that E =E (Ŵ ′) and Ŵ⋐ K̂ and E (Ŵ)⊆E (Ŵ ′).
But then also Ŵ ⋐ K̂′′, and therefore Ŵ ′ ⋐ K̂′′, by Proposition 17. This implies that also

E = E (Ŵ ′) ∈ ϕ̂fin
D (K̂ ′′), so we can conclude that FK̂ ⊆ ϕ̂fin

D (K̂′′). But then indeed also

K̂′ = κ̂fin
D (FK̂ ) ⊆ κ̂fin

D (ϕ̂fin
D (K̂′′)) = K̂′′, where the inclusion follows from Theorem 33(vi)

and the last equality follows from Theorem 33(iii).

(iii). The proof is now straightforward, given (ii), since finitely coherent means finitely

consistent and closed with respect to the ClFfin
-operator. �

Lemma 45. Consider any SDFS K̂ ⊆ Q(T) such that E (Ŵ) 6= /0 for all Ŵ ⋐ K̂ , then the

following statements hold:

(i) the set BK̂ := {E (Ŵ) : Ŵ ⋐ K̂} is a filter base;

(ii) the smallest proper filter FK̂ that includes BK̂ is given by

FK̂ := UpÊfin
(BK̂ ) =

{

E (Ŵo) : Ŵo ⋐ Q(T) and (∃Ŵ ⋐ K̂)E (Ŵ)⊆ E (Ŵo)
}

;

(iii)
⋃

V∈FK̂

⋂

D∈V K̂D =
⋃

B∈BK̂

⋂

D∈B K̂D =
⋃

Ŵ⋐K̂

⋂

D∈E (Ŵ) K̂D .

Proof. The proof is very similar to the proof of Lemma 42, but we nevertheless include it

here for the sake of completeness.

(i). Any non-empty collection of non-empty sets that is closed under finite intersec-

tions is in particular a filter base; see the discussion in Section 6, and in particular con-

dition (10). First of all, observe that the set BK̂ is non-empty because /0 ⋐ K̂ , and that it

contains no empty set by assumption. To show that it’s closed under finite intersections,

and therefore directed downwards, consider any Ŵ1,Ŵ2 ⋐ K̂ , then we infer from Equa-

tion (32) that E (Ŵ1)∩E (Ŵ2) = E (Ŵ1∪Ŵ2), with still Ŵ1∪Ŵ2 ⋐ K̂ , and therefore, indeed,

E (Ŵ1)∩E (Ŵ2) ∈ BK̂ .

(ii). Trivially from the discussion of filter bases in Section 6.

(iii). The second equality is trivial given the definition of BK̂ . For the first inequality,

it’s clearly enough to prove that
⋃

V∈FK̂

⋂

D∈V K̂D ⊆
⋃

B∈BK̂

⋂

D∈B K̂D . But this is imme-

diate, since (ii) tells us that for any V ∈ FK̂ there’s some B ∈ BK̂ such that B ⊆ V and

therefore also
⋂

D∈V K̂D ⊆
⋂

D∈B K̂D . �

Proof of Theorem 35. The proof is very similar to the proof of Theorem 23, but we never-

theless include it here for the sake of completeness.

Consider any finitely consistent SFDS K̂ . For necessity, assume that K̂ is finitely co-

herent, then it follows from Theorem 33(i) that ϕ̂fin
D (K̂) is a proper filter. The prime filter

representation result in Theorem 20 then guarantees that

ϕfin
D (K̂) =

⋂
{

G ∈ Fp(Êfin) : ϕ̂fin
D (K̂)⊆ G

}

,

and applying the map κ̂fin
D to both sides of this equality leads to

K̂ = κ̂fin
D (ϕ̂fin

D (K̂)) = κ̂fin
D

(

⋂
{

G ∈ Fp(Êfin) : ϕ̂fin
D (K̂)⊆ G

}

)

=
⋂
{

κ̂fin
D (G) : G ∈ Fp(Êfin) and ϕ̂fin

D (K̂)⊆ G
}

,

where the first equality follows from Theorem 33(iii) and the last one from the fact that κ̂fin
D

is an order isomorphism between complete lattices of sets, by Theorem 33, and because



50 GERT DE COOMAN, ARTHUR VAN CAMP, AND JASPER DE BOCK

we have seen in Propositions 9 and 19 that intersection plays the role of infimum in these

complete lattices. This then leads to

K̂ =
⋂
{

κ̂fin
D (G) : G ∈ Fp(Êfin) and ϕ̂fin

D (K̂)⊆ G
}

=
⋂
{

κ̂fin
D (G) : G ∈ Fp(Êfin) and K̂ ⊆ κ̂fin

D (G)
}

=
⋂
{

K̂′ ∈ Ffin,c : K̂ ⊆ K̂′
}

,

where the second equality follows from Theorem 33(iii)&(iv)&(v)&(vi) and the last equal-

ity follows from the correspondence between prime filters and complete finitely coherent

SDSes in Theorem 33(ix).

For sufficiency, assume that K̂ =
⋂

{

K̂′ ∈ Ffin,c : K̂ ⊆ K̂′
}

. That K̂ is finitely consistent

implies that K̂ 6= Q(T), and therefore also
{

K̂′ ∈ Ffin,c : K̂ ⊆ K̂′
}

6= /0. K̂ is therefore

finitely coherent as the intersection of a non-empty set of finitely coherent SDFSes. �

Proof of Proposition 36. The proof of statement (i) is very similar to the proof of The-

orem 24, but we nevertheless include it here for the sake of completeness. First off, it

follows from Proposition 12 that K̂D is finitely coherent. Now, consider any Ŝ1, Ŝ2 ∈ Q(T)
and assume that Ŝ1 ∪ Ŝ2 ∈ K̂D , or equivalently, that

/0 ⊂ (Ŝ1 ∪ Ŝ2)∩D = (Ŝ1 ∩D)∪ (Ŝ2 ∩D),

which clearly implies that, indeed, Ŝ1 ∈ K̂D or Ŝ2 ∈ K̂D .

The proof of statement (ii) is, in its turn, very similar to the proof of Proposition 30,

but marginally simpler. We also include it here for the sake of completeness. Observe

that K̂DK̂ ⊆ K̂ by Proposition 11, so it remains to prove that K̂ ⊆ K̂DK̂ . So, consider

any Ŝ ∈ K̂ , then there are two possibilities. If Ŝ is a singleton {t}, then necessarily t ∈ DK̂ ,

and therefore Ŝ = {t} ∈ K̂DK̂ . Otherwise, it follows from the completeness of K̂ that there’s

some strict subset Ŝ′ of Ŝ such that Ŝ′ ∈ K̂ , and therefore also Ŝ′ ∈ K̂ . Now replace Ŝ with Ŝ′

in the argumentation above, and keep the recursion going until we do reach a singleton {t}
for which t ∈ DK̂ , or equivalently {t} ∈ K̂ , which must happen after a finite number of

steps, because Ŝ is finite. But then necessarily also t ∈ Ŝ, so Ŝ ∩DK̂ 6= /0, and therefore

indeed Ŝ ∈ K̂DK̂ .

For the final statements, assume that ClT is finitary, and consider any finitely coherent

SDFS K̂ . If K̂ is complete, then (ii) guarantees that it is also conjunctive. Conversely, if

K̂ is conjunctive, then Proposition 11 guarantees that DK̂ is a coherent SDT, and Proposi-

tion 13 that K̂ = K̂DK̂ , and then (i) tells us that K̂ is indeed complete. The rest of the proof

is now immediate. �

Proof of Theorem 38. For the proof of statement (i), we check that Up
P(T)(K̂) satisfies the

finite coherence conditions K1–Kfin
5 .

K1. Assume towards contradiction that /0 ∈ UpP(T)(K̂), then there must be some Ŝ ∈ K̂

such that Ŝ ⋐ /0, and therefore Ŝ = /0, contradicting the assumption that K̂ satisfies F1.

K2. Consider any S1 ∈ UpP(T)(K̂) and S2 ⊇ S1. Then there is some Ŝ1 ∈ K̂ such that

Ŝ1 ⋐ S1, and therefore also Ŝ1 ⋐ S2. This tells us that, indeed, S2 ∈ UpP(T)(K̂).
K3. Consider any S ∈ UpP(T)(K̂). Then there is some Ŝ ∈ K̂ such that Ŝ ⋐ S, and

therefore also Ŝ \T− ⋐ S \T−. Since it follows from F3 that Ŝ \T− ∈ K̂ , this tells us that,

indeed, S \T− ∈ Up
P(T)(K̂).

K4. Consider any t+ ∈ T+, then by assumption {t+} ∈ K̂ , and therefore indeed also

{t+} ∈ UpP(T)(K̂).
Kfin

5 . Fix any non-empty W ⋐ UpP(T)(K̂), and for all corresponding selections σ ∈ ΦW,

some tσ ∈ ClT(σ(W)). Then we must prove that {tσ : σ ∈ ΦW} ∈ UpP(T)(K̂).
For any S ∈ W, there’s some Ŝ ∈ K̂ such that Ŝ ⋐ S. Let, with obvious notations,

Ŵ := {Ŝ : S ∈ W}. Then Ŵ ⋐ K̂ , so Ŵ is a finite set of finite subsets of T, which in turn

implies that the set of selections ΦŴ is finite as well. For any σ̂ ∈ ΦŴ, we consider the

corresponding selection σσ̂ ∈ ΦW, defined by σσ̂(S) := σ̂(Ŝ) ∈ Ŝ ⋐ S, for all S ∈W, again
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with obvious notations, implying that σσ̂(W) = σ̂(Ŵ). If we now let tσ̂ := tσ σ̂ , then it fol-

lows from the argumentation above that tσ̂ ∈ ClT(σ̂(Ŵ)), simply because by assumption

tσσ̂ ∈ ClT(σσ̂(W)). Clearly,

{tσ̂ : σ̂ ∈ ΦŴ}= {tσσ̂ : σ̂ ∈ ΦŴ} ⊆ {tσ : σ ∈ ΦW}. (42)

We infer from the finite coherence of K̂ that {tσ̂ : σ̂ ∈ ΦŴ} ∈ K̂ [use F5 and the finiteness

of Ŵ and ΦŴ]. But then Equation (42) tells us that, indeed, {tσ : σ ∈ ΦW} ∈ UpP(T)(K̂).
On to the proof of statement (ii). It is trivially verified that fin(K) satisfies the con-

ditions F1–F4, so we concentrate on F5. Consider any non-empty Ŵ ⋐ fin(K), and for

all σ ∈ ΦŴ, any choice tσ ∈ ClT(σ(Ŵ)). Since clearly also Ŵ ⋐ K, we infer from Kfin
5 [or

from K5] that {tσ : σ ∈ ΦŴ} ∈ K. Since ΦŴ is a subset of the set of all maps from the

finite set Ŵ to the finite set
⋃

Ŵ, it follows that also {tσ : σ ∈ ΦŴ} ∈ Q(T). We conclude

that, indeed, {tσ : σ ∈ ΦŴ} ∈ fin(K).
For the proof of statement (iii), observe that this is essentially Proposition 27.

And finally, for the proof of statement (iv), observe that, trivially, K̂ ⊆ fin(UpP(T)(K̂)).
Conversely, consider any Ŝ ∈ fin(UpP(T)(K̂)), then Ŝ ∈Q(T) and Ŝ ∈ upP(T)(K̂), so there

is some Ŝ′ ∈ K̂ such that Ŝ′ ⋐ Ŝ. But then F2 guarantees that also Ŝ ∈ K̂ . �

A.9. Proofs of results in Section 11.

Proof of Proposition 39. First, fix any D ∈ D such that K̂ ⊆ K̂D . Consider any Ŝ ∈ K̂ , then

clearly also Ŝ ∩D 6= /0. Consider any tŜ ∈ Ŝ∩D [which is always possible], then tŜ ⊢
∨

Ŝ,

and therefore also
∨

Ŝ ∈ D, because D is deductively closed. This tells us that D(K̂)⊆ D.

It therefore suffices to prove (i) in order to also prove (ii). And (ii) then readily leads to (iii),

taking into account Corollary 37.

So, let’s concentrate on the proof of (i). First, we prove that D(K̂) is deductively closed.

So consider any Ŝ ∈ K̂ and any t ∈ T such that
∨

Ŝ ⊢ t. Then we have to prove that also

t ∈ D(K̂). To this end, let Ŝ′ := Ŝ ∪{t} then still Ŝ′ ∈ K̂ by coherence [F2], and therefore

also
∨

Ŝ′ ∈ D(K̂). But we infer from
∨

Ŝ ⊢ t that
∨

Ŝ′ = t, and therefore indeed t ∈ D(K̂).
It now only remains to prove that D(K̂) is consistent. Assume towards contradiction

that it isn’t, so D(K̂)∩T− 6= /0. Consider any t− ∈ D(K̂)∩T−, so there’s some Ŝ ∈ Q(T)
for which t− =

∨

Ŝ. This can only happen if all wffs in Ŝ are contradictions, so Ŝ ⊆ T−.

But then K3 implies that /0 ∈ K̂ , contradicting F1. �

APPENDIX B. NOTATION

In this appendix, we provide a list of the most commonly used and most important

notation, and where it is defined or first introduced.

notation meaning introduced where

T set of all things Section 2.1

P(T) set of all sets of things Section 2.1

SDT abbreviation for ‘set of desirable things’ Section 2.1

S, Si generic sets of things Section 2.1

Cl closure operator Section 2.1

ClT closure operator associated with T Section 2.1

T− set of all forbidden things Section 2.1

T+ the smallest closed SDT Section 2.1

D, Di generic coherent SDTs Section 2.1

D set of all closed SDTs Section 2.1

D set of all coherent SDTs Equation (1)

1D top of the complete lattice 〈D,⊆〉 Section 2.1

0D bottom of the complete lattice 〈D,⊆〉 Section 2.1

SDS abbreviation for ‘set of desirable sets of things’ Section 2.2

W, Wi generic sets of sets of things Section 2.2
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ΦW set of all selection maps on W Section 2.2

σ, σo generic selection maps Section 2.2

K, Ki generic coherent SDSes Section 2.2

K set of all coherent SDSes Section 2.2

K the complete lattice K := K∪{P(T)} Section 2.2

ClK closure operator associated with K Section 2.2

1K top of the complete lattice 〈K,⊆〉 Section 2.2

0K bottom of the complete lattice 〈K,⊆〉 Section 2.2

Kfin set of all finitely coherent SDSes Section 2.3

Kfin the complete lattice Kfin := Kfin ∪{P(T)} Section 2.3

ClKfin
closure operator associated with Kfin Section 2.3

DW SDT associated with the SDS W Equation (4)

KS SDS associated with the SDT S Equation (4)

D• map turning an SDS into an SDT Section 2.3

K• map turning an SDT into an SDS Section 2.3

KDK
conjunctive part of the coherent SDS K Section 2.3

Q(T) set of all finite sets of things Section 3

SDFS abbreviation for ‘set of desirable finite sets of things’ Section 3

Ffin set of all finitely coherent SDFSes Section 3

Ffin the complete lattice Ffin := Ffin ∪{Q(T)} Section 3

ClFfin
closure operator associated with Ffin Section 3

1Ffin
top of the complete lattice 〈Ffin,⊆〉 Section 3

0Ffin
bottom of the complete lattice 〈Ffin,⊆〉 Section 3

K̂• map turning an SDT into an SDFS Equation (5)

K̂DK̂ conjunctive part of the coherent SDFS K̂ Section 3

F filter Section 4

DT set of things that are actually desirable Section 4

DS event corresponding to ‘the set of things S is desirable’ Equation (6)

E (W) event corresponding to ‘the set of sets of things W is

desirable’

Equation (7)

upL(a) set of elements dominating a in the poset L Equation (8)

UpL(A) set of elements dominating some a ∈ A in the poset L Equation (8)

D(W) event based on the set of sets of things W Equation (9)

E the set of events representing sets of sets of things Section 5

Efin the set of events representing finite sets of sets of

things

Section 5

Êfin the set of events representing finite sets of finite sets of

things

Section 5

〈L,≤〉 generic bounded lattice Section 6

⌢ meet of a generic bounded lattice Section 6

⌣ join of a generic bounded lattice Section 6

1L top of a generic bounded lattice Section 6

0L bottom of a generic bounded lattice Section 6

F(L) set of all filters on 〈L,≤〉 Section 6

F(L) set of all proper filters on 〈L,≤〉 Section 6

B filter base Section 6

ClF(L) closure operator associated with F(L) Section 6

Fp(L) set of all prime filters on 〈L,≤〉 Section 6

1Kfin
top of the complete lattice 〈Kfin,⊆〉 Section 7

0Kfin
bottom of the complete lattice 〈Kfin,⊆〉 Section 7

ϕfin
D map turning a finitely coherent SDS into a proper filter

on 〈Efin,⊆〉
Section 7
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κfin
D map turning a proper filter on 〈Efin,⊆〉 into a finitely

coherent SDS

Section 7

Kc set of all complete and coherent SDSes Section 7

Kfin,c set of all complete and finitely coherent SDSes Section 7

P(E) set of all principal filters on 〈E,⊆〉 Section 8

P(E) set of all proper principal filters on 〈E,⊆〉 Section 8

ϕD map turning a coherent SDS into a proper principal

filter on 〈E,⊆〉
Section 8

κD map turning a proper principal filter on 〈E,⊆〉 into a

coherent SDS

Section 8

fin(W) finite part of the SDS W Section 9

fty(W) finitary part of the SDS W Section 9

ϕ̂fin
D map turning a finitely coherent SDFS into a proper fil-

ter on 〈Êfin,⊆〉
Section 10

κ̂fin
D map turning a proper filter on 〈Êfin,⊆〉 into a finitely

coherent SDFS

Section 10

L Lindenbaum algebra Section 11

G set of all gambles Section 12

G≻0 set of all gambles h ≻ 0 Section 12

G≺0 set of all gambles h ≺ 0 Section 12

G�0 set of all gambles h ≺ 0 or h = 0 Section 12

Ep expectation operator associated with the probability

mass function p

Section 12

ΣX set of all probability mass functions on X Section 12

M credal set Section 12
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