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Abstract
We discuss our recent work on incorporating impreci-
sion in the field of algorithmic randomness, based on
the martingale-theoretic approach of game-theoretic
probability. We consider several notions of random-
ness associated with interval, rather than precise, fore-
casting systems. We study their properties and argue
that there are quite a number of reasons for wanting to
do so. First, the richer mathematical structure in this
generalisation provides a useful backdrop for a better
understanding of precise randomness. Second, ran-
domness associated with non-stationary precise fore-
casting systems can be captured by a constant but
less precise interval forecast: greater model simplicity
requires more imprecision. Third, imprecise random-
ness can’t always be explained away as a result of
(over)simplification: there are sequences that are ran-
dom for a constant interval forecast, but never random
for any computable (more) precise forecasting system.
Incorporating imprecision into randomness therefore
allows us to do more than was hitherto possible. Fi-
nally, the random sequences for a non-vacuous interval
forecast constitute a meagre set, as they do for precise
forecasts: imprecise and precise random sequences are
equally rare from a topological point of view, and are,
in that sense, equally interesting.
Keywords: Martin-Löf randomness, computable ran-
domness, Schnorr randomness, computable stochastic-
ity, imprecise probabilities, game-theoretic probability,
interval forecast, supermartingale, computability, mea-
gre set.

1. Introduction

This paper presents an overview of our work on incorpo-
rating imprecision into the study of randomness, where we
aim at giving a precise mathematical meaning to, and study
the mathematical consequences of, associating randomness
with interval rather than precise probabilities. We believe it
can provide a satisfactory answer to questions raised by a
number of researchers [19, 20, 22, 50] about frequentist and
‘objective’ aspects of interval, or imprecise, probabilities.
There are many notions of randomness [1, 4], but we focus
here essentially on Martin-Löf, computable, and Schnorr
randomness. We refer to the preprint [12] for a much more
extensive and detailed version of this paper, with proofs

for what we claim below, and to Ref. [13] for a much more
limited report on our earlier efforts in this direction.

We consider an infinite sequence ω = (z1, . . . ,zn, . . .),
whose components zk are either 0 or 1, and are considered
as successive outcomes of some experiment. In the liter-
ature, the randomness of such a sequence ω is typically
associated with a forecasting system ϕ that associates with
each finite sequence of outcomes (x1, . . . ,xn) the (condi-
tional) expectation ϕ(x1, . . . ,xn) = E(Xn+1|x1, . . . ,xn) for
the next, as yet unknown, outcome Xn+1. This ϕ(x1, . . . ,xn)
is a (precise) forecast for the value of Xn+1 after observ-
ing the values x1, . . . ,xn of the earlier outcomes X1, . . . ,Xn,
and can be seen as a fair price for—and therefore a com-
mitment to bet on—the unknown next outcome Xn+1 after
observing the first n outcomes x1, . . . ,xn. The sequence ω

is then ‘random’ when there is no ‘allowable’ strategy for
getting infinitely rich by exploiting the bets made available
by the forecasting system ϕ along the sequence, without
borrowing. Betting strategies that are made available by the
forecasting system ϕ are called supermartingales. Which
supermartingales are considered ‘allowable’ differs in var-
ious approaches [1, 4, 18, 25, 34], but typically involves
some (semi)computability requirement.

This martingale-theoretic, or algorithmic randomness,
approach lends itself elegantly to allowing for interval
rather than precise forecasts, and therefore to allowing
for ‘imprecision’ in the definition of randomness. As we
explain in Section 2, an ‘imprecise’ forecasting system ϕ as-
sociates with each finite sequence of outcomes (x1, . . . ,xn)
a (conditional) expectation interval ϕ(x1, . . . ,xn) for the
next outcome Xn+1. The lower bound of this interval fore-
cast represents a supremum acceptable buying price, and
its upper bound an infimum acceptable selling price, for
the next outcome Xn+1 [2, 44, 49]. This idea allows us
to associate supermartingales with an interval forecasting
system, and therefore in Section 3 to extend a number of
existing notions of randomness to allow for interval, rather
than precise, forecasts: we include in particular Martin-Löf,
computable, and Schnorr randomness [1, 4, 18, 34]. We dis-
cuss interesting properties of these randomness notions in
Section 4. In Section 5, we restrict our attention to station-
ary interval forecasts, as an extension of the more classical
accounts of randomness, which typically consider a fore-
casting system with constant forecast 1/2—corresponding
to flipping a fair coin. In the precise case, a given sequence
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may not be random for any stationary forecast, but as we
will see, for interval forecasting there typically is a filter
of intervals that a sequence is random for. We show in
Section 6 by means of a few examples that this filter may
not have a smallest element, and even when it does, this
smallest element may be a non-vanishing interval. These
examples involve sequences that are random for some com-
putable non-stationary precise forecast, but can’t be random
for a stationary forecast unless it becomes interval-valued,
or imprecise. This might lead to the suspicion that this im-
precision is perhaps only an artefact, which results from
looking at non-stationary phenomena through an imperfect
stationary lens. We continue the argument by showing that
this suspicion is unfounded: there are sequences that are
random for a stationary interval forecast, but not random
for any computable (more) precise forecast, be it stationary
or not. This serves to corroborate our claim that there are
forms of randomness that are irreducibly imprecise. Finally,
we argue in Section 7 that ‘imprecise’ randomness is an
interesting extension of the existing notions of ‘precise’
randomness, because it is equally rare: just as for precise
stationary forecasts, the set of all sequences that are random
for a non-vacuous stationary interval forecast is meagre.

2. Preliminaries

We begin by introducing the preliminary notions needed to
define and study randomness in the following sections.

2.1. The Forecasting Game

The dynamics of forecasting can be made clear, after the
fashion first introduced by Shafer and Vovk [36, 37], by
considering a game amongst three players, Forecaster, Scep-
tic and Reality. It involves a sequence of initially unknown
outcomes X1, X2, . . . , Xn, . . . in the set of possible out-
comes {0,1}. To stress that they are unknown, we call
them variables, and use upper-case notation.

Each successive stage n∈N of the game consists of three
steps. Here and in what follows, N is the set of all natural
numbers, without zero, and N0 := N∪{0}.

In a first step, Forecaster specifies an interval In =
[pn, pn]⊆ [0,1] for the expectation of the as yet unknown
outcome Xn in {0,1}—or equivalently, for the probability
that Xn = 1. We interpret this so-called interval forecast In
as a commitment for Forecaster to adopt pn as his supre-
mum acceptable buying price and pn as his infimum accept-
able selling price for the gamble (with reward function)
Xn. This means that Sceptic can now in a second step take
Forecaster up on any (combination) of the following com-
mitments, whose (possibly negative) uncertain pay-offs are
expressed in units of a linear utility: (i) for all real q≤ pn
and α ≥ 0, Forecaster is committed to accepting the gam-
ble α[Xn−q], leading to an uncertain reward −α[Xn−q]

for Sceptic;1 and (ii) for all real r ≥ pn and β ≥ 0, Fore-
caster is committed to accepting the gamble β [r− Xn],
leading to an uncertain reward −β [r− Xn] for Sceptic.
Finally, in a third step, Reality determines the value xn
of Xn in {0,1}, and the corresponding rewards −α[xn−q]
or −β [r− xn] are paid by Forecaster to Sceptic, who adds
them to his current capital.

Elements x of {0,1} are called outcomes, and elements
p of the real unit interval [0,1] will serve as (precise) fore-
casts. We denote by I the set of non-empty closed subin-
tervals of the real unit interval [0,1]. Any element I of I
will serve as an interval forecast. We will use the generic
notation I for such an interval forecast, and p := min I and
p := max I for its lower and upper bounds, respectively.
An interval forecast I = [p, p] is of course precise when
p = p =: p, and we will then make no distinction between
the singleton interval forecast I = {p} ∈I and the corre-
sponding precise forecast p ∈ [0,1].

When Forecaster announces an interval forecast In, Scep-
tic can try and increase her capital by taking a gamble on
the unknown outcome Xn. Any such gamble can be iden-
tified with a map fn : {0,1} → R, and can therefore be
represented as a point or vector ( fn(1), fn(0)) in the two-
dimensional vector space R2. fn(Xn) is then the (possibly
negative) increase in Sceptic’s capital in stage n of the game,
as a function of the outcome variable Xn. Not every gam-
ble fn(Xn) on the unknown outcome Xn will be available
to Sceptic: which gambles she can take is determined by
Forecaster’s interval forecast In. As indicated above, they
have the form fn(Xn) =−α[Xn−q]−β [r−Xn], where α

and β are non-negative real numbers, q ≤ pn and r ≥ pn.
They constitute a closed convex cone AIn in R2.

If we associate with any precise forecast p ∈ [0,1] the
expectation Ep, defined by Ep( f ) := p f (1)+(1− p) f (0)
for any gamble f : {0,1} → R, and also consider the so-
called upper expectation EI associated with an interval
forecast I ∈I , defined by

EI( f ) := max
p∈I

Ep( f ) =

{
Ep( f ) if f (1)≥ f (0)
Ep( f ) if f (1)≤ f (0)

for any gamble f : {0,1}→ R,

then the closed convex cone AIn of all gambles fn(Xn) on
the outcome Xn that are available to Sceptic at stage n, after
Forecaster announces his interval forecast In, is completely
determined by the condition EIn( fn) ≤ 0. When Reality
then chooses a value xn for Xn, this results in a (possibly
negative) gain in capital fn(xn) for Sceptic.

1. Because we allow q≤ pn rather than q < pn, we actually see pn as a
maximum acceptable buying price, rather than a supremum one. We
do this because it doesn’t affect the conclusions, but it does simplify
the mathematics and the discussion somewhat. Similarly for r ≥ pn.
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2.2. The Event Tree and Its Forecasting Systems

We call (x1,x2, . . . ,xn, . . .) an outcome sequence, and we
collect all possible outcome sequences in the set Ω :=
{0,1}N. We collect the finite outcome sequences x1:n :=
(x1, . . . ,xn) in the set S := {0,1}∗ =

⋃
n∈N0
{0,1}n. The fi-

nite outcome sequences s in S and infinite outcome se-
quences ω in Ω constitute the nodes—also called situa-
tions—and paths in an event tree with unbounded horizon,
part of which is depicted below. The empty sequence x1:0 =:
� is also called the initial situation.
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In the repeated game described above, Forecaster will
only provide interval forecasts In after observing the ac-
tual sequence (x1, . . . ,xn−1) that Reality has chosen, and
the corresponding sequence of gambles ( f1, . . . , fn−1) that
Sceptic has chosen. This is the essence of so-called pre-
quential forecasting [6, 7, 10]. For the present discussion,
it will be more advantageous to consider an alternative, and
in some aspects more involved, setting where a forecast Is
is specified in each of the possible situations s in the event
tree S; see the figure below.
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We can use this idea to extend the notion of a forecasting
system in Refs. [8, 48] from precise to interval forecasts.

Definition 1 (Forecasting System)
A forecasting system is a map ϕ : S→I , that associates
an interval forecast ϕ(s) ∈I with any situation s in the
event tree S. With any forecasting system ϕ we can as-
sociate two real processes ϕ and ϕ , defined by ϕ(s) :=
minϕ(s) and ϕ(s) := maxϕ(s) for all s ∈ S. A forecasting
system ϕ is called precise if ϕ = ϕ .

Specifying a forecasting system ϕ requires that Forecaster
should imagine in advance all the moves that Reality (and
Sceptic) could make, and that he should devise in advance
what forecast ϕ(s) to give in each situation s ∈ S.

We denote by Φ the set I S of all forecasting systems,
and use the notation ϕ v ϕ∗ to mean that the forecasting
system ϕ∗ is at least as conservative as ϕ , meaning that
ϕ(s)⊆ ϕ∗(s) for all s ∈ S.

2.3. Imprecise Probability Trees

Since in each situation s the interval forecast Is = ϕ(s)
corresponds to a so-called local upper expectation EIs , we

can use the argumentation in our earlier papers [14, 16, 17]
on imprecise stochastic processes to help ϕ turn the event
tree into an imprecise probability tree, with an associated
global upper expectation on paths, and a corresponding
notion of ‘almost surely’ [14, 16, 17, 36, 37, 38, 47].

For any path ω ∈ Ω, the initial sequence that consists
of its first n elements is a situation in {0,1}n, denoted
by ω1:n. Its n-th element belongs to {0,1} and is denoted
by ωn. As a convention, we let its 0-th element be the initial
situation ω1:0 = ω0 =�.

For any situation s∈ S and path ω ∈Ω, ω goes through s
if there is some n ∈ N0 such that ω1:n = s. We denote
by Γ(s) the so-called cylinder set of all paths ω ∈Ω that go
through s. We write sv t, and say that the situation s pre-
cedes the situation t, when every path that goes through t
also goes through s: Γ(t)⊆ Γ(s). We say that the situation s
strictly precedes the situation t, and write s@ t, when sv t
and s 6= t, or equivalently, when Γ(t)⊂ Γ(s).

For any situation s = (x1, . . . ,xn) ∈ S, we call n = |s| its
depth in the tree. Of course, |s| ≥ |�| = 0. Also, for any
x ∈ {0,1}, we denote by sx the situation (x1, . . . ,xn,x).

A process F is a map defined on S. A real process asso-
ciates a real number F(s) ∈ R with every situation s ∈ S.
With any real process F , we can always associate a pro-
cess ∆F , called the process difference. For every s ∈ S,
∆F(s) is the gamble on {0,1} defined by

∆F(s)(x) := F(sx)−F(s) for all x ∈ {0,1}.

The initial value of a process F is its value F(�) in the
situation �. We call a real process non-negative if it is non-
negative in all situations. Similarly, a positive real process
is (strictly) positive in all situations. We call test process
any non-negative real process F with F(�) = 1.

We now look at a number of special real processes. In the
imprecise probability tree associated with a given forecast-
ing system ϕ , a supermartingale M for ϕ is a real process
such that Eϕ(s)(∆M(s))≤ 0 for all s∈ S. In other words, all
supermartingale differences have non-positive upper expec-
tation: supermartingales are real processes that Forecaster
expects to decrease. We denote the set of all supermartin-
gales for a given forecasting system ϕ by Mϕ

—whether a
real process is a supermartingale depends of course on the
forecasts in the situations.

The supermartingales for ϕ are effectively all the pos-
sible capital processes M for a Sceptic who starts with
an initial capital M(�), and in each possible subsequent
situation s selects a gamble fs = ∆M(s) that is available
there because of Forecaster’s specification of the interval
forecast Is = ϕ(s): EIs( fs)≤ 0. If Reality chooses the suc-
cessive outcomes x1, . . . ,xn, then Sceptic will end up in the
corresponding situation s = (x1, . . . ,xn) with a capital

M(x1, . . . ,xn) = M(�)+
n−1

∑
k=0

∆M(x1, . . . ,xk)(xk+1)︸ ︷︷ ︸
= f(x1 ,...,xk)

(xk+1)

.
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We call test supermartingale for ϕ any test process
that is also a supermartingale for ϕ , or in other words,
any non-negative supermartingale M for ϕ with initial
value M(�) = 1. It corresponds to Sceptic starting with
unit capital and never borrowing. We collect all test super-
martingales for ϕ in the set Tϕ

.
We also pay attention to a particular way of construct-

ing test supermartingales. Define a multiplier process as a
map D from S to non-negative gambles on {0,1}. Given
such a multiplier process D, we can construct a test pro-
cess D} by the recursion equation

D}(sx) := D}(s)D(s)(x) for all s ∈ S and x ∈ {0,1},

with D}(�) := 1. We call D} the test process generated
by the multiplier process D. Any multiplier process D that
satisfies the additional condition that Eϕ(s)(D(s))≤ 1 for
all s ∈ S, is called a supermartingale multiplier for the
forecasting system ϕ . The test process D} generated by D
is then a test supermartingale for ϕ .

2.4. Upper Expectations and Null Events

In the context of (imprecise) probability trees, any bounded
real-valued map defined on the sample space Ω is called
a gamble on Ω, or also a global gamble. An event A is a
subset of Ω, and its indicator IA is the gamble on Ω that
assumes the value 1 on A and 0 elsewhere.

The supermartingales for a forecasting system ϕ allow
us to associate a global upper expectation Eϕ with ϕ:

Eϕ(g) := inf
{

M(�) : M ∈Mϕ
and liminfM ≥ g

}
for all gambles g on Ω, (1)

where liminfM(ω) := liminfn→∞ M(ω1:n) for all ω ∈Ω.
For extensive discussion about why the expression (1)

is interesting and useful, we refer to Refs. [14, 17, 36, 37,
39, 40, 41, 43]. For our present purposes, it may suffice to
mention that for precise forecasts, it leads to a model that
coincides with the one found in measure-theoretic proba-
bility theory; see Refs. [36, Chapter 8] and [37, Chapter 9],
as well as Ref. [43]. In particular, when all Is = {1/2}, it
coincides on all measurable global gambles with the usual
uniform (Lebesgue) expectation. More generally, for an im-
precise forecast ϕ ∈Φ, the upper expectation Eϕ provides
a tight upper bound on the measure-theoretic expectation
of every precise forecasting system ϕ ′ that is compatible
with ϕ in the sense that ϕ ′ v ϕ [39].

For an event A⊆Ω, the corresponding upper probability
is defined by Pϕ(A) := Eϕ(IA). We call an event A ⊆ Ω

null for a forecasting system ϕ if Pϕ(A) = 0. As usual, any
property that holds, except perhaps on a null event, is said
to hold almost surely for the forecasting system ϕ . We will
then also say that almost all paths have that property in the
imprecise probability tree corresponding to ϕ .

2.5. Computability

A recursive map ψ : N0 → N0 is a map that can be
computed by a Turing machine. By the Church–Turing
(hypo)thesis, this is equivalent to the existence of an al-
gorithm that, upon input of a number n ∈ N0, outputs the
number ψ(n) ∈ N0. All notions of computability that we
need are based on this notion, and we use the equivalent
condition consistently. It is clear that in this definition, we
can replace any of the N0 with any other countable set
that is linked with N0 through a recursive bijection whose
inverse is also recursive.

In what follows, we will need a notion of computable real
processes, or in other words, computable real-valued maps
F : S→ R defined on the set S of all situations. Because
there is an obvious recursive bijection between N0 and
S, whose inverse is also recursive, we can identify real
processes and real sequences, and simply import, mutatis
mutandis, the definitions for computable real sequences
common in the literature [31, Chapter 0, Definition 5].

We call a net of rational numbers rs,n recursive if there
are three recursive maps a,b,ς from S×N0 to N0 such that

b(s,n)> 0 and rs,n = (−1)ς(s,n) a(s,n)
b(s,n)

for all s ∈ S and n ∈ N0.

We call a real process F : S→ R computable if there is
a recursive net of rational numbers rs,n and a recursive
map e : S×N0→ N0 such that

n≥ e(s,N)⇒ |rs,n−F(s)| ≤ 2−N

for all s ∈ S and n,N ∈ N0.

A forecasting system ϕ is computable if the processes ϕ

and ϕ are.
A real process F is lower semicomputable [34, 26] if

it can be approximated from below by a recursive net of
rational numbers, meaning that there is some recursive net
of rational numbers rs,n such that

(i) rs,n+1 ≥ rs,n for all s ∈ S and n ∈ N0;
(ii) F(s) = limn→∞ rs,n for all s ∈ S.

We say that F is upper semicomputable if −F is lower
semicomputable. Computability can be related to lower
and upper computability: a real process F is computable if
and only if it is both lower and upper semicomputable. The
set of all (semi)computable processes is countable; see for
instance Ref. [48, Lemma 13]. The (semi)computability of
multiplier processes is defined similarly, by replacing the
domain S by S×{0,1}.

3. Several Notions of Randomness
We denote by A any countable set of test processes that in-
cludes the countable set of all computable positive test pro-
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cesses, which we denote by A+
C. Examples of such sets A

are:

A+
C all computable positive test processes

AC all computable test processes
AML all lower semicomputable test processes
A}ML all test processes generated by

lower semicomputable multiplier processes.

We call such test processes in A allowable. It holds that

A+
C ⊆ AC and A+

C ⊆ A}ML ⊆ AML. (2)

The test supermartingales for ϕ in this set A are called
allowable test supermartingales, and collected in the set
Tϕ

A :=A∩Tϕ
. In particular, Tϕ,+

C :=A+
C∩T

ϕ
, Tϕ

C :=AC∩
Tϕ

, Tϕ

ML := AML ∩T
ϕ

and Tϕ,}
ML := A}ML ∩T

ϕ
. Hereafter,

unless explicitly stated to the contrary, A is an arbitrary but
fixed set of allowable test processes.

We introduce several versions of randomness, each con-
nected with a particular class of test supermartingales.

Definition 2 (Randomness)
Consider any forecasting system ϕ : S → I and any
path ω ∈Ω. We call ω A-random for ϕ if all (allowable)
test supermartingales T in Tϕ

A remain bounded above on ω ,
meaning that supn∈N T (ω1:n) < ∞. We then also say that
the forecasting system ϕ makes ω A-random.

In other words, A-randomness of a path means that there
is no allowable strategy that starts with unit capital and
avoids borrowing, and allows Sceptic to increase her capital
without bounds by exploiting the bets on the outcomes
along the path that are made available to her by Forecaster’s
specification of the forecasting system ϕ .

We let ΦA(ω) := {ϕ ∈ Φ : ω is A-random for ϕ} de-
note the set of all forecasting systems that make the path ω

A-random. We will also use the special notations Φ
+
C(ω),

ΦC(ω), Φ
}
ML(ω) and ΦML(ω) in the cases that A is equal

to A+
C, AC, A}ML and AML, respectively.

When the forecasting system ϕ is precise and com-
putable, and A is the set AML of all lower semicom-
putable test processes, our definition reduces to that of
Martin-Löf randomness on the Schnorr–Levin (martingale-
theoretic) account [1, 4, 34, 35, 48]. We continue to call
AML-randomness Martin-Löf randomness when the fore-
casting system ϕ is no longer precise or computable. Be-
cause A}ML-randomness is weaker than Martin-Löf random-
ness, but has a similar flavour, we will also call it weak
Martin-Löf randomness. When the forecasting system ϕ

is precise and computable, and A is the set AC of all com-
putable test processes, our definition reduces to that of
computable randomness [1, 4]. We continue to call AC-
randomness computable randomness when the forecasting
system ϕ is no longer precise or computable.

We also extend the notion of Schnorr randomness
[34, 35] to our present context. To this end, we call a

map ρ : N0 → N0 a growth function if it is recursive,
non-decreasing and unbounded, and call a real-valued
map µ : N0→ R computably unbounded if there is some
growth function ρ such that limsupn→∞[µ(n)−ρ(n)]> 0.

Definition 3 (Schnorr Randomness)
Consider any forecasting system ϕ : S→ I . We call a
path ω ∈ Ω Schnorr random for ϕ if no computable test
supermartingale T ∈ Tϕ

C for ϕ is computably unbounded
on ω . We then also say that the forecasting system ϕ makes
ω Schnorr random, and we collect all such forecasting
systems in the set ΦS(ω).

4. Properties
The more conservative—imprecise—a forecasting system,
the less stringent is the corresponding randomness notion.

Proposition 4 Let ω be A-random (respectively Schnorr
random) for a forecasting system ϕ . Then ω is also A-
random (respectively Schnorr random) for any forecasting
system ϕ∗ such that ϕ v ϕ∗.

The larger a set A of allowable test processes, the more
stringent is the corresponding randomness notion, and the
‘fewer’ A-random paths there are. And Schnorr randomness
is the weakest form of randomness considered here.

Proposition 5 Consider two sets A,A′ of allowable test
processes such that A′ ⊆ A. If ω is A-random for a fore-
casting system ϕ , then ω is also A′-random for ϕ as well
as Schnorr random, so ΦA(ω)⊆ΦA′(ω)⊆ΦS(ω).

As a consequence of Equation (2), we can infer from Propo-
sition 5 that

ΦML(ω)⊆Φ
}
ML(ω)⊆Φ

+
C(ω) = ΦC(ω)⊆ΦS(ω). (3)

As a special case, the (computable) vacuous forecasting
system ϕv assigns the vacuous forecast ϕv(s) := [0,1] to
all situations s ∈ S. Clearly ϕ v ϕv for all ϕ ∈Φ, so ϕv is
the most conservative forecasting system. It corresponds to
Forecaster making no actual commitments. This vacuous
forecasting system can be used to conclude that for any
path ω there are forecasting systems that make it random.

Proposition 6 All paths are A-random and Schnorr ran-
dom for the vacuous forecasting system, so ϕv ∈ΦA(ω)⊆
ΦS(ω) for all ω ∈Ω.

We now turn to a number of important consistency results
for the randomness notions we have introduced. We first
show that any Forecaster who specifies a forecasting system
is consistent in the sense that he believes himself to be well-
calibrated: in the imprecise probability tree generated by
his own forecasts, almost all paths will be random, so he is
‘almost sure’ that Sceptic won’t be able to become infinitely
rich by exploiting his—Forecaster’s—forecasts.
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Theorem 7 Consider any forecasting system ϕ : S→I .
Then almost all paths are A-random, and therefore also
Schnorr random, for ϕ in the imprecise probability tree
that corresponds to ϕ .

This result guarantees in particular that there always are
random paths, for any forecasting system, and leads to the
following ‘converse’ to Proposition 6.

Corollary 8 For any forecasting system ϕ there is at least
one path that is A-random, and therefore also Schnorr
random, for ϕ .

Theorem 9 below shows that if we concentrate on a spe-
cific path that is random, then the limsup average gain
for Sceptic along that path for betting on a fixed gam-
ble h : {0,1} → R with rates provided by Forecaster is
non-positive—Forecaster’s liminf average loss is then non-
negative. In this result, the average can be taken over any
recursive selection of situations. To formalise this, we call
any process that assumes values in {0,1} a selection pro-
cess. For any k ∈ N0, the situation ω1:k is then selected on
the path ω only if S(ω1:k) = 1.

Theorem 9 (Average Gains: Selection Processes)
Consider any computable forecasting system ϕ : S→ I ,
any path ω ∈ Ω that is A-random for ϕ , and
the corresponding sequence (I1, . . . , In, . . .) of in-
terval forecasts In := ϕ(ω1:n−1) for the path ω .
If S : S → {0,1} is a recursive selection process
such that limn→∞ ∑

n
k=0 S(ω1:k) = ∞, then

liminf
n→∞

∑
n−1
k=0 S(ω1:k)

[
h(ωk+1)−EIk+1(h)

]
∑

n−1
k=0 S(ω1:k)

≥ 0

for any gamble h on {0,1}.

For Schnorr randomness we can only prove a weaker result,
involving the simpler notion of a selection function σ : N→
{0,1}: at any ‘time point’ k ∈N, the outcome ωk is selected
along the path ω only if σ(k) = 1.

Theorem 10 (Average Gains: Selection Functions)
Consider any computable forecasting system ϕ : S→ I ,
any path ω ∈ Ω that is A-random for ϕ , and the
corresponding sequence (I1, . . . , In, . . .) of interval fore-
casts In := ϕ(ω1:n−1) for the path ω . If σ is a recursive
selection function such that limn→∞ ∑

n
k=1 σ(k) = ∞, then

liminf
n→∞

∑
n
k=1 σ(k)

[
h(ωk)−EIk(h)

]
∑

n
k=1 σ(k)

≥ 0

for any gamble h on {0,1}. The same conclusion continues
to hold when ω is Schnorr random for ϕ .

5. Stationary Forecasting Systems

We now turn to the special case where the interval fore-
casts I ∈I are constant, and don’t depend on the already
observed outcomes. This leads to a generalisation of the
classical case of randomness associated with a fair coin,
which corresponds to I = {1/2}. For any interval I ∈ I ,
we denote by γ I : S→I the corresponding so-called sta-
tionary forecasting system that assigns the same interval
forecast I to all situations: γ I(s) := I for all s ∈ S.

In order to investigate the mathematical properties of
imprecise randomness, we associate, with any path ω , the
collection of all interval forecasts that make ω A-random:
IA(ω) := {I ∈I : γ I ∈ΦA(ω)}. We use the special nota-
tions I +

C (ω), IC(ω), I }
ML(ω) and IML(ω) in the cases

that A is equal to A+
C, AC, A}ML and AML, respectively.

Similarly, IS(ω) := {I ∈I : γ I ∈ΦS(ω)}.

5.1. Computable Stochasticity

We begin our study of the randomness associated with sta-
tionary forecasting systems by considering the behaviour
of relative frequencies along random paths. Theorem 9 im-
plies the consistency property in Corollary 11 below, which
is a counterpart in our more general context of the notion
of computable stochasticity or Church randomness in the
precise fair-coin case where I = {1/2} [1]. Interestingly, this
corollary doesn’t impose any computability requirements
on the interval forecast I.

Computable stochasticity, or Church randomness, goes
back to Alonzo Church’s account of randomness [5]. He
required of a random path ω that for any recursive selection
process S such that ∑

n
k=0 S(ω1:k)→ ∞,

lim
n→∞

∑
n−1
k=0 S(ω1:k)ωk+1

∑
n−1
k=0 S(ω1:k)

=
1
2
.

In other words, the relative frequencies of the ones—the
successes—in the outcomes that S selects along the random
path ω should converge to the constant probability 1/2 of a
success. It is well-known that all paths that are computably
random—and therefore also all Martin-Löf random paths—
for a stationary forecast I = {1/2} are also Church random;
see for instance Refs. [1, 51].

Our generalised notions of randomness no longer imply
such convergence, but we’re still able to conclude that the
limits inferior and superior of the relative frequencies of
the successes in the selected outcomes of a random path
must lie in the forecast interval.

Corollary 11 (Church Randomness)
For any path ω ∈Ω, any constant interval forecast [p, p] ∈
IA(ω) that makes ω A-random, and any recursive selec-
tion process S : S→{0,1} such that ∑

n
k=0 S(ω1:k)→ ∞:
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p ≤ liminf
n→∞

∑
n−1
k=0 S(ω1:k)ωk+1

∑
n−1
k=0 S(ω1:k)

≤ limsup
n→∞

∑
n−1
k=0 S(ω1:k)ωk+1

∑
n−1
k=0 S(ω1:k)

≤ p.

That Corollary 11 needn’t hold for Schnorr randomness, is
in accordance with the fact that, in the particular fair-coin
case where I = {1/2}, Schnorr randomness was shown by
Wang [51] not to imply computable stochasticity either
[51]. We can prove a weaker result for paths that are (only)
Schnorr random, now based on Theorem 10.

Corollary 12 (Weak Church Randomness)
For any path ω ∈Ω, any constant interval forecast [p, p] ∈
IA(ω) that makes ω A-random, and any recursive selec-
tion function σ such that limn→∞ ∑

n
k=0 σ(k) = ∞:

p ≤ liminf
n→∞

∑
n
k=1 σ(k)ωk

∑
n
k=1 σ(k)

≤ limsup
n→∞

∑
n
k=1 σ(k)ωk

∑
n
k=1 σ(k)

≤ p.

The same conclusion continues to hold when the interval
forecast [p, p] makes ω Schnorr random.

If we were to strengthen the requirements on the selection
processes S in Theorem 9 and Corollary 11 from ‘being
recursive’ to ‘being recursive and displaying recursive be-
haviour on the path ω under consideration’, then the corre-
sponding (weaker) computable stochasticity result would
still hold for all Schnorr random paths. This is essentially
what we do in Theorem 10 and Corollary 12. Any crit-
icism of Schnorr randomness along the lines of Wang’s
argument [51] will therefore have to include an argumenta-
tion for why such a strengthening of the requirements on
the selection processes isn’t reasonable, or undesirable, or
alternatively, why selection processes rather than selection
functions appear in the requirements.

5.2. The Structure of the Interval Forecasts That
Make a Path Random

It is guaranteed by Proposition 5 and Equation (3) that
IA(ω)⊆IS(ω) and

IML(ω)⊆I }
ML(ω)⊆IC(ω) = I +

C (ω)⊆IS(ω). (4)

Most of our efforts here will be devoted to investigating the
mathematical structure of these sets of interval forecasts.

As immediate consequences of the results in Section 4,
we find that all these sets of interval forecasts associated
with a random path are non-empty and increasing.

Proposition 13 (Non-emptiness) For all ω ∈Ω, [0,1] ∈
IA(ω) ⊆IS(ω), so any sequence of outcomes ω has at
least one stationary forecast that makes it A-random and
therefore also Schnorr random.

Proposition 14 (Increasingness) For all ω ∈ Ω and
any I,J ∈I :

(i) if I ∈IA(ω) and I ⊆ J, then J ∈IA(ω);
(ii) if I ∈IS(ω) and I ⊆ J, then J ∈IS(ω).

Corollary 12 allows us to derive the following consistency
result: any collection of interval forecasts that make some
path random must have a non-empty intersection.

Proposition 15 For any ω ∈Ω, IA(ω) and IS(ω) have
the intersection property: any of their subsets has a non-
empty intersection. In fact,[

liminf
n→∞

1
n

n

∑
k=1

ωk, limsup
n→∞

1
n

n

∑
k=1

ωk

]
⊆
⋂

IA(ω)⊆
⋂

IS(ω). (5)

Proposition 16 below guarantees, together with Proposi-
tion 14, that IC(ω), I }

ML(ω) and IS(ω) are set filters:
increasing sets that are closed under finite intersections.
We have no proof for a corresponding result for Martin-
Löf randomness: it is an open problem whether the set of
constant interval forecasts IML(ω) is closed under finite
intersections, and therefore a set filter.

Proposition 16 For any ω ∈ Ω, the sets of interval fore-
casts I }

ML(ω), IC(ω) and IS(ω) are closed under finite
intersections.

In these specific cases, any interval forecast that in-
cludes the non-empty closed intervals

⋂
IA(ω) =:

[pA(ω), pA(ω)] and
⋂

IS(ω) =: [pS(ω), pS(ω)] strictly
on both sides will make the path ω A-random, respectively
Schnorr random. We will see that it may depend on the
case at hand whether the interval forecasts [pA(ω), pA(ω)]
and [pS(ω), pS(ω)] themselves do the job: in the following
sections, we will come across a number of examples where
they do, and another example where they don’t.

5.3. Examples at the Extreme Ends

We conclude the discussion in this section with a few im-
mediate examples of possible sets of interval forecasts.

For any precise forecast p ∈ [0,1], there always are
paths ω that are A-random, and at least as many that are
Schnorr random, for the precise stationary forecasting sys-
tem γ p; see Corollary 8. A constant interval forecast I will
make any such path ω A-random if and only if it contains
the precise forecast p: IA(ω) = {I ∈I : p ∈ I}; and sim-
ilarly for Schnorr random paths.

On the other hand, any recursive path with infinitely
many zeroes and ones will only be random for the vacuous
interval forecast.

Proposition 17 If a path ω ∈ Ω is recursive and has in-
finitely many zeroes and infinitely many ones, then the only
interval forecast that makes ω A-random, or Schnorr ran-
dom, is the vacuous one: IA(ω) = IS(ω) = {[0,1]}.
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The examples in the next section will show that, in be-
tween these extremes of total imprecision and maximal
precision, there lies an uncharted realm of paths whose
unpredictability is ‘similar’ to that of the ones traditionally
called ‘random’, but for which 0 < pA(ω) < pA(ω) < 1,
and similarly, 0 < pS(ω)< pS(ω)< 1.

6. Why We Claim That Some Types of
Randomness Are Irreducibly Imprecise

We have learnt from our work on imprecise Markov chains
[11, 15, 17, 24, 42] that we can often compute tight bounds
on expectations in non-stationary precise Markov chains
very efficiently by replacing them with stationary but im-
precise versions. Similarly, in statistical modelling, when
learning from data sampled from a distribution with a vary-
ing (non-stationary) parameter, it is quite a challenge to
estimate the time sequence of its values, but we may be
more successful in learning about its (stationary) interval
range. Such ideas also lie behind the proposal by Fierens et
al. [20] of a frequentist interpretation for imprecise proba-
bility models, based on non-stationarity.

Here, we explore this idea in the context of our study
of imprecise randomness, and illustrate in a number of
interesting examples that randomness associated with non-
stationary precise forecasting systems can be captured by
a stationary forecasting system, which must then be less
precise: we gain simplicity of representation by going from
a non-stationary to a stationary one, but we must then pay
for it by losing precision.

We start with a simple example to introduce the basic
idea. Fix any p,q in [0,1] with p < q, and any path ω that
is A-random for the forecasting system ϕp,q, defined by

ϕp,q(s) :=

{
p if |s| is odd
q if |s| is even

for all s ∈ S.

Corollary 8 guarantees that there is at least one such path.
Then IA(ω) = IS(ω) = {I ∈I : [p,q]⊆ I}.

We next look at sequences that are ‘nearly’ random for
the constant precise forecast 1/2, but not quite. Consider the
following sequence {pn}n∈N0 of precise forecasts:

pn :=
1
2
+(−1)n

δn with δn :=

√
8

n+33
for all n ∈ N0.

We see that pn → 1/2 and that pn ∈ (0,1) for all n ∈ N0.
Focus on an arbitrary but fixed path ω that is AML-random
for the computable precise forecasting system ϕ∼1/2 with

ϕ∼1/2(s) := p|s| for all s ∈ S.

There is at least one such path, by Corollary 8. Then for
all A such that A+

C ⊆ A⊆ AML:

IA(ω) = IS(ω) =
{
[p, p] ∈I : p < 1/2 < p

}
.

These two examples indicate that randomness associated
with a non-stationary precise forecasting system can also
be ‘described’ as randomness for a simpler, stationary but
then necessarily imprecise, forecasting system. They might
lead us to suspect that all stationary imprecise forms of
randomness could be ‘explained away’ as such simpler
representations of non-stationary but precise forms of ran-
domness. This would imply that the imprecision in the
stationary forecasts isn’t essential, and can always be dis-
missed as a necessary consequence of using a stationary
representation that isn’t powerful enough to allow for the
ideal, precise but non-stationary, representation.

We will now argue that this suspicion is misguided, and
in fact wrong when we focus on computable forecasting
systems: we outline in the theorem below that there are
paths that are random for a (computable) stationary interval
forecasting system but never for any computable precise
forecasting system, be it stationary or not. This serves to
corroborate our claim that there is randomness that is ir-
reducibly imprecise, as its imprecision can’t be explained
away as an effect of oversimplification. The imprecision
involved is furthermore non-negligible, and can be made
arbitrarily large, because besides excluding the possibility
of randomness of such paths for precise computable fore-
casting systems, we also show they can’t be random for any
computable forecasting system whose highest imprecision
is smaller than that of the original, stationary one.

Theorem 18 (Irreducible Imprecision)
Consider any set of allowable test processes A, and any
interval forecast [p, p] ∈ I . Then there is path ω ∈ Ω

that is A-random—and therefore also Schnorr random—
for the stationary interval forecast [p, p], but that is never
Schnorr random—and therefore never A-random—for any
computable forecasting system ϕ whose highest impreci-
sion is smaller than that of [p, p], in the specific sense
that sups∈S

[
ϕ(s)−ϕ(s)

]
< p− p.

For an example showing that the computability condition
in this result can’t be dropped, and a discussion on the
theoretical and practical relevance of this condition, we
refer to recent work by Persiau and us [30].

7. Random Sequences Are Topologically
Rare

Theorem 7 tells us that the set of all random paths for a
forecasting system has lower probability one—since its
complement has upper probability zero—so there are many
such random paths in a ‘measure-theoretic’ sense. But we
will see presently that, in a topological sense, random paths
are also ‘few’, in the sense that they typically constitute
only a meagre set. This is a known result for precise ran-
domness, that was, as far as we can judge, first formulated
in the context of a much more encompassing discussion
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on the nature of randomness by Muchnik, Semenov and
Uspensky [28], who showed that the set of all paths that
correspond to a precise stationary forecast is meagre. It
also appeared in a related form in the wake of discussions
[3, 9, 29, 32, 33] of Philip Dawid’s calibration papers [6, 8],
and was foreshadowed by some of Terry Fine’s results [21].

Here is the essence of Muchnik, Semenov and Uspen-
sky’s argument [28]. They call a path ω lawful if there
is some algorithm that, given as input any situation s on
the path ω , outputs a non-trivial finite set R(s) of situa-
tions t A s such that one of these ‘extensions’ t is also on
the path—meaning that ω ∈ Γ(t). By ‘non-trivial’, they
mean that R(s) is restrictive: it actually eliminates possible
extensions. They then go on to show that the set of all law-
ful paths is meagre, and finally, that random paths, because
they satisfy the law of large numbers, are lawful.

We now show that we can extend this argument to impre-
cise stationary forecasts. First of all, let us give a definition
of lawfulness that makes the formulation above more pre-
cise. A partial function on a domain D is a function that
need not be defined on all elements of D.

Definition 19 (Lawfulness [28, Definition 2.1])
We call algorithm any recursive (partial) function R from S
to the collection of finite subsets of S. A path ω ∈ Ω is
called lawful for an algorithm R if for all m ∈ N0:

(i) R is defined in the situation ω1:m;
(ii) R(ω1:m) is a non-empty finite subset of S such

that ω1:m @ t for all t ∈ R(ω1:m);
(iii) R(ω1:m) is non-trivial:

⋃
t∈R(ω1:m)

Γ(t)⊂ Γ(ω1:m);
(iv) there is some t ∈ R(ω1:m) such that ω ∈ Γ(t).

A path ω ∈Ω is called lawful if it is lawful for some algo-
rithm R. A path that isn’t lawful is called lawless.

A set of paths A⊆Ω is nowhere dense in Ω [28] if for every
s ∈ S, there is some t ∈ S such that sv t and A∩Γ(t) = /0.
A set of paths B⊆Ω is then called meagre, or first category,
it it is a countable union of nowhere dense sets. We rely on
the following central result in Ref. [28].

Theorem 20 ([28, Corollary 2.3]) Any subset of Ω con-
taining only lawful paths is meagre.

To see that a set of random paths is meagre, it therefore
suffices to prove that these random paths are all lawful. This
turns out to be not too difficult, because relative frequencies
along lawless paths behave very ‘wildly’.

Proposition 21 Let ω ∈Ω be a lawless path. Then

liminf
n→∞

1
n

n

∑
k=1

ωk = 0 and limsup
n→∞

1
n

n

∑
k=1

ωk = 1.

So, in order to derive our result, it now suffices to consider
that relative frequencies along random paths can’t behave
so wildly, because they are constrained by our ‘weak com-
putable stochasticity’ result in Corollary 12. Random paths
are typically lawful.

Theorem 22 Let I = [p, p] ∈I be any closed subinterval
of [0,1] strictly included in [0,1], so p > 0 or p < 1. Then
the set of all paths that are A-random for the stationary
forecasting system γ I is meagre. Similarly, the set of all
Schnorr random paths for γ I is meagre.

We see that the important distinction for random paths lies
not between precise and imprecise stationary forecasts, but
rather between vacuous and non-vacuous ones: for any
non-vacuous stationary forecast, the set of random paths
is meagre, whereas for the vacuous forecast, all paths are
random, and therefore the corresponding set of random
paths is co-meagre—the complement of a meagre set.

It also suggests that the paths that are random for non-
vacuous interval forecasts are ‘equally rare’ as those that
are random for precise forecasts, which, we believe, only
adds to their mathematical interest.

8. Conclusion

There have been a number of papers [19, 20, 22, 50] that
aim to introduce imprecision for probabilities that have a
physical, or frequentist, interpretation. The present paper
wants to continue that tradition.

We believe the work described here is a first system-
atic attempt at reconciling imprecision with the study of
algorithmic randomness along the lines of von Mises [46],
Church [5], Kolmogorov [23], Ville [45], Martin-Löf [27],
Levin [25] and Schnorr [34, 35]. Our results indicate that
this is possible and interesting.

Besides the sequences that are random for precise fore-
casts, new realms of sequences arise that are random only
for interval forecasts, and have interesting properties. Topo-
logically speaking, they are as rare as their precise coun-
terparts, as they also constitute meagre sets. Our examples
show that incorporating imprecision into the study of ran-
domness allows for a richer mathematical structure to arise,
and our treatment allows us to better understand, as special
cases, the existing results in the precise limit.

On the one hand, ‘imprecise randomness’ arises as a
useful stationary model simplification when dealing with
non-stationarity. But, we have also shown that it has a more
fundamental role, as there are sequences that are random
for a given computable interval forecast, but not for any
computable (more) precise forecast.

All this leads us to the conviction that there is more to
randomness than the classical account for precise forecasts
seems to suggest.
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