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Precise probability models



Mass functions and expectations
Assume we are uncertain about:

I the value or a variable X
I in a set of possible values X .

This is usually modelled by a probability mass function p on X :

p(x)� 0 and Â
x2X

p(x) = 1;

With p we can associate an expectation operator Ep:

Ep(f ) := Â
x2X

p(x) f (x) where f : X ! R.

If A ✓ X is an event, then its probability is given by

Pp(A) = Â
x2A

p(x) = Ep(IA).



The simplex of all probability mass functions

Consider the simplex SX of all mass functions on X :

SX :=

(
p 2 RX

+ : Â
x2X

p(x) = 1

)
.
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Geometrical interpretation of expectation

Assessments lead to constraints
Specifying an expectation E(f ) for a map f : X ! R

Â
x2X

p(x) f (x) = E(f )

imposes a linear constraint on the possible values for p in SX .

It corresponds to intersecting the simplex SX with a hyperplane, whose
direction depends on f :
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Imprecise probability
models



Linear inequality constraints

More flexible assessments
Impose linear inequality constraints on p in SX :

E(f ) Â
x2X

p(x) f (x) or Â
x2X

p(x) f (x) E(f ).

Corresponds to intersecting SX with affine semi-spaces:
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Credal sets

Any such number of assessments leads to a credal set M .

Definition
A credal set M is a convex closed subset of SX .
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Lower and upper expectations

b

c

a

SX

E(I{c}) = 1/4

E(I{c}) = 4/7

Equivalent model
Consider the set L (X ) = RX of all real-valued maps on X . We
define two real functionals on L (X ): for all f : X ! R

EM (f ) = min{Ep(f ) : p 2 M } lower expectation
EM (f ) = max{Ep(f ) : p 2 M } upper expectation.

Observe that
EM (f ) =�EM (�f ).



Basic properties of upper expectations

Definition
We call a real functional E on L (X ) an upper expectation if it satisfies
the following properties:
for all f and g in L (X ) and all real l � 0:

1. E(f ) max f [boundedness];
2. E(f +g) E(f )+E(g) [sub-additivity];
3. E(l f ) = lE(f ) [non-negative homogeneity].

Theorem
A real functional E is an upper expectation if and only if it is the upper
envelope of some credal set M .

Proof.
Use M =

�
p 2 SX : (8f 2 L (X ))(Ep(f ) E(f ))

 
.



Discrete-time
uncertain processes



Precise probability trees

We consider an uncertain process with variables X1, X2, . . . , Xn, . . .
assuming values in a finite set of states X .

This leads to a standard event tree with nodes

s = (x1,x2, . . . ,xn), xk 2 X , n � 0.

The standard event tree becomes a probability tree by attaching to each
node s a local probability mass function ps on X with associated
expectation operator Es.



Precise probability trees
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Precise probability trees
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Calculating global expectations from local ones
Consider a function g : X n ! R of the first n variables:

g = g(X1,X2, . . . ,Xn)

We want to calculate its expectation E(g|s) in s = (x1, . . . ,xk).

Theorem (Law of Iterated Expectation)
Suppose we know E(g|s,x) for all x 2 X , then we can calculate E(g|s)
by backwards recursion using the local model ps:

E(g|s) = Es|{z}
local

(E(g|s, ·)) = Â
x2X

ps(x)E(g|s,x).

s

(s,b)
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Calculating global expectations from local ones

All expectations E(g|x1, . . . ,xk) in the tree can be calculated from the
local models as follows:

1. start in the final cut X n and let:

E(g|x1,x2, . . . ,xn) = g(x1,x2, . . . ,xn);

2. do backwards recursion using the Law of Iterated Expectation:

E(g|x1, . . . ,xk) = E(x1,...,xk)| {z }
local

(E(g|x1, . . . ,xk, ·))

3. go on until you get to the root node ⇤, where:

E(g|⇤) = E(g).



Christiaan Huygens (1656–1657)



Sets of mass functions

Major restrictive assumption
Until now, we have assumed that we have sufficient information in order
to specify, in each node s, a probability mass function ps on the set X
of possible values for the next state.

s

(s,b)ps(b)

(s,a)ps(a)

ps

More general uncertainty models
We consider credal sets as more general uncertainty models: closed
convex subsets of SX .



Imprecise probability trees



Definition and interpretation

Definition
An imprecise probability tree is a probability tree where in each node s
the local uncertainty model is an imprecise probability model Ms, or
equivalently, its associated upper expectation Es:

Es(f ) = max{Ep(f ) : p 2 Ms} for all real maps f on X .

An imprecise probability tree can be seen as an infinity of compatible
precise probability trees: choose in each node s a probability mass
function ps from the set Ms.
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Associated lower and upper expectations

For each real map g = g(X1, . . . ,Xn), each node s = (x1, . . . ,xk), and each
such compatible precise probability tree, we can calculate the
expectation

E(g|x1, . . . ,xk)

using the backwards recursion method described before.

By varying over each compatible probability tree, we get a closed real
interval:

[E(g|x1, . . . ,xk),E(g|x1, . . . ,xk)]

We want a better, more efficient method to calculate these lower and
upper expectations E(g|x1, . . .xk) and E(g|x1, . . . ,xk).



The Law of Iterated Expectation

Theorem (Law of Iterated Expectation)
Suppose we know E(g|s,x) for all x 2 X , then we can calculate E(g|s)
by backwards recursion using the local model Es:

E(g|s) = Es|{z}
local

(E(g|s, ·)) = max
ps2Ms

Â
x2X

ps(x)E(g|s,x).

s

(s,b)

(s,a)

MsE(g|s) = Es(E(g|s, ·))

E(g|s,a)

E(g|s,b)

The complexity of calculating the E(g|s), as a function of n, is therefore
essentially the same as in the precise case!



Imprecise Markov chains



Precise Markov chains: definition

Definition
The uncertain process is a stationary precise Markov chain when all Ms
are singletons (precise), and

1. M⇤ = {m1},
2. the Markov Condition is satisfied:

M(x1,...,xn) = {q(·|xn)}.

For each x 2 X , the transition mass function q(·|x) corresponds to an
expectation operator:

E(f |x) = Â
z2X

q(z|x) f (z).
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Precise Markov chains: transition operators

Definition
Consider the linear transformation T of L (X ), called transition
operator:

T: L (X )! L (X ) : f 7! Tf

where Tf is the real map given by, for any x 2 X :

Tf (x) := E(f |x) = Â
z2X

q(z|x) f (z)

T is the dual of the linear transformation with Markov matrix M, with
elements Mxy := q(y|x).

Then the Law of Iterated Expectation yields:

En(f ) = E1(Tn�1f ), and dually, mn = Mn�1m1.

Complexity is linear in the number of time steps n.
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Imprecise Markov chains: definition

Definition
The uncertain process is a stationary imprecise Markov chain when the
Markov Condition is satisfied:
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Lower and upper mass
functions



Another example with X = {a,b,c}

⇥
TI{a} TI{b} TI{c}

⇤
=

2

4
q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

3

5= 1/200

2

4
9 9 162

144 18 18
9 162 9

3

5

⇥
TI{a} TI{b} TI{c}

⇤
=

2

4
q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

3

5= 1/200
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Another example with X = {a,b,c}

n = 1 n = 2 n = 3 n = 4

n = 5 n = 6 n = 7 n = 8

n = 9 n = 10 n = 22 n = 1000



A non-linear
Perron–Frobenius Theorem



Generalising the linear case

Theorem (De Cooman, Hermans and Quaeghebeur, 2008)
Consider a stationary imprecise Markov chain with finite state set X
and an upper transition operator T. Suppose that T is regular, meaning
that there is some n > 0 such that minTnI{x} > 0 for all x 2 X . Then for
every initial upper expectation E1, the upper expectation En = E1 �Tn�1

for the state at time n converges point-wise to the same upper
expectation E•:

lim
n!•

En(h) = lim
n!•

E1(Tn�1h) := E•(h)

for all h in L (X ). Moreover, the corresponding limit upper expectation
E• is the only T-invariant upper expectation on L (X ), meaning that
E• = E• �T.



Ergodicity

And in that case also

Theorem (De Cooman, De Bock and Lopatatzidis, 2016)
Consider a stationary imprecise Markov chain with finite state set X
and an upper transition operator T. Suppose that T is
Perron–Frobenius-like with stationary upper expectation E•. Then

E•(h) liminf
n!•

1
n

n

Â
k=1

h(Xk) limsup
n!•

1
n

n

Â
k=1

h(Xk) E•(h)

almost surely for all h in L (X ).
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