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Precise probability models



Mass functions and expectations

Assume we are uncertain about:
» the value or a variable X
» In a set of possible values % ".

This is usually modelled by a probability mass function p on 2"

p(x)>0and Y p(x)=1;
xeX

With p we can associate an expectation operator E,:

Ey(f) = Y p(x)f(x) wheref: 2" —R.
xed

If A C 2 is an event, then its probability is given by

Pp(A) = ZP(X) = Ep(Ia).

x€EA



The simplex of all probability mass functions

Consider the simplex ¥, of all mass functions on .2":

4 A

Zgg::<p€Rf: Zp(x)zl > .
. xex )
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Geometrical interpretation of expectation

Assessments lead to constraints
Specifying an expectation E£(f) foramapf: 2 — R

Y p(0)f(x) = E(f)

xe

Imposes a linear constraint on the possible values for p in X 5.

It corresponds to intersecting the simplex X~ ,- with a hyperplane, whose
direction depends on f:




Imprecise probability
models



Linear inequality constraints

More flexible assessments
Impose linear inequality constraints on p in X 5-:

E(f)< ), p(x)f(x) or Y p(x)f(x)<E(f).

xe & xe

Corresponds to intersecting X~ »- with affine semi-spaces:
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Credal sets

Any such number of assessments leads to a credal set 7.

Definition
A credal set .7 is a convex closed subset of > 4.




Lower and upper expectations

Ly /\ E([{C}) — 4/7
/ul\ﬁ’(]{c}) = 1/4
a b
Equivalent model

Consider the set ¥ (.2") = R” of all real-valued maps on .2". We
define two real functionals on (%2 ):forall f: 2" — R

E ,(f) =min{E,(f): p € 4 } lower expectation
E 4 (f) = max{E,(f): p € .4} upper expectation.

Observe that

E (f)=—E»(—f).




Basic properties of upper expectations

Definition

We call a real functional £ on £ (.2") an upper expectation if it satisfies
the following properties:

forall fand ¢ in (%) and all real A > 0:
1. E(f) < maxf [boundedness];
2. E(f+g) <E(f)+E(g) [sub-additivity];
3. E(Af) = AE(f) [non-negative homogeneity].

Theorem

A real functional E is an upper expectation if and only if it is the upper
envelope of some credal set .7/ .

Proof.
Use .# = {pecly: (Vf € L(2))Ef) <E(f))}.




Discrete-time
uncertain processes



Precise probability trees

We consider an uncertain process with variables X, X», ...

assuming values in a finite set of states 2.

This leads to a standard event tree with nodes

s = (X1,X2,...,%,), xx€Z, n=>0.



Precise probability trees
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Precise probabillity trees

We consider an uncertain process with variables X, X», ..., X, ...
assuming values in a finite set of states 2.

This leads to a standard event tree with nodes

s = (X1,X2,...,%,), xx€Z, n=>0.

The standard event tree becomes a probability tree by attaching to each
node s a local probability mass function p; on 2" with associated
expectation operator E;.
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Precise probability trees
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Calculating global expectations from local ones

Consider a function g: 2" — R of the first n variables:
8 — g(X17X27 <. 7Xn)

We want to calculate its expectation E(g|s) ins = (x1,...,xz).

Theorem (Law of lterated Expectation)

Suppose we know E(g|s,x) for all x € 2, then we can calculate E(g|s)
by backwards recursion using the local model p;:

E(gls) = E(gls,-)) =Y ps(x)E(g|s,x)

local xez

(s,a) = E(gls;a)

E(gls) = py(a)E(gls,a) +ps (b)E(gls,b) — s Q<

(s,b) — E(gl|s,b)



All expectations E(g|x;,...,x;) in the tree can be calculated from the
local models as follows:

1. start in the final cut .2 and let:

E(glx1,x2,...,x,) = g(x1,x2,...,X,);

2. do backwards recursion using the Law of Iterated Expectation:

.....

3. go on until you get to the root node L1, where:

E(g|t)) = E(g)-




Christiaan Huygens (1656—1657)
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Sets of mass functions

Major restrictive assumption

Until now, we have assumed that we have sufficient information in order
to specity, in each node s, a probability mass function p; on the set .2~
of possible values for the next state.

ps(a) (s,a)

More general uncertainty models

We consider credal sets as more general uncertainty models: closed
convex subsets of X 4.



Imprecise probability trees



Definition and interpretation

Definition

An imprecise probability tree is a probability tree where in each node s
the local uncertainty model is an imprecise probability model .7, or
equivalently, its associated upper expectation E,:

E(f) = max{E,(f): p € .} for all real maps f on 2.



Definition and interpretation
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Definition and interpretation

Definition

An imprecise probability tree is a probability tree where in each node s
the local uncertainty model is an imprecise probability model .7, or
equivalently, its associated upper expectation E,:

E(f) = max{E,(f): p € .} for all real maps f on 2.

An imprecise probability tree can be seen as an infinity of compatible
precise probability trees: choose in each node s a probability mass
function p, from the set . 7.



Definition and interpretation
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Associated lower and upper expectations

For each real map ¢ = ¢(X,...,X,), each node s = (x,...,x;), and each
such compatible precise probability tree, we can calculate the
expectation

E(g|xi,...,xx)

using the backwards recursion method described before.

By varying over each compatible probability tree, we get a closed real
interval:
E(g|x1,...,xx),E(g|x1,...,x1)]

We want a better, more efficient method to calculate these lower and
upper expectations E(g|xi,...x;) and E(g|xi,...,x).



The Law of lterated Expectation

heorem (Law of lterated Expectation)

Suppose we know E(gls,x) for all x € 2", then we can calculate E(g|s)
by backwards recursion using the local model E;:

E(g|s)
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The complexity of calculating the E(gls), as a function of n, is therefore
essentially the same as in the precise case!



Imprecise Markov chains



Precise Markov chains: definition

Definition
The uncertain process is a stationary precise Markov chain when all .7
are singletons (precise), and

1. %D — {ml},
2. the Markov Condition is satisfied:




Precise Markov chains: definition
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Precise Markov chains: definition

Definition
The uncertain process is a stationary precise Markov chain when all .7
are singletons (precise), and

1. %D — {ml},

2. the Markov Condition is satisfied:

For each x € 27, the transition mass function ¢(-|x) corresponds to an
expectation operator:

E(flx) =Y q(z|x)f(2).

e



Precise Markov chains: transition operators

Definition
Consider the linear transformation T of .2 (.2"), called transition

operator:
T: 2(Z)—>Z(Z): f—Tf

where Tf is the real map given by, for any x € .7

Tf (x) = E(flx) = ) q(zx)f(

e

T i1s the dual of the linear transformation with Markov matrix M, with
elements M, == g(y|x).



Precise Markov chains: transition operators

Definition
Consider the linear transformation T of .«'(.2"), called transition
operator:

T: Z2(Z)—>ZL(X): f—=Tf

where Tf Is the real map given by, for any x € .2

Tf (x) = E(flx) = )_ q(z|x)f

e

T Is the dual of the linear transformation with Markov matrix M, with
elements M., := g(y|x).

Then the Law of Iterated Expectation yields:

E,(f) = E((T"'f), and dually, m, = M" 'm.

Complexity is linear in the number of time steps .



Imprecise Markov chains: definition

Definition
The uncertain process Is a stationary imprecise Markov chain when the
Markov Condition is satisfied:




Imprecise Markov chains: definition
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Imprecise Markov chains: definition

Definition
The uncertain process is a stationary imprecise Markov chain when the
Markov Condition is satisfied:

An imprecise Markov chain can be seen as an infinity of probability
frees.

For each x € 27, the local transition model 2(-|x) corresponds to lower
and upper expectation operators:

E(flx) = min {E,(f): p € 2(-}x))
E(flx) = max{E,(f): p € 2(}v)}.




Imprecise Markov chains: transition operators

Definition
Consider the non-linear transformations T and T of . (.2"), called lower
and upper transition operators:

T Z2(2)—=>ZL(X): f=>Tf

T: (X)) ZL(X): f—=Tf

where the real maps T/ and T/ are given by:

T/ (x) = E(flv) = min {E, (f): p € 2(|x)}
T/(x) = E(flv) = max {E, (f): p € 2(|x)}




Imprecise Markov chains: transition operators

Definition
Consider the non-linear transformations T and T of .¥(.2"), called lower
and upper transition operators:

T () —>Z(X): f=Tf

T: (X)) ZL(X): f—=Tf

where the real maps T/ and T/ are given by:

T/ (x) = E(flx) = min {E,(f): p € 2(-})}
T/ (x) = E(flx) = max {E,(f): p € 2(-})}

Then the Law of lterated Expectation yields:

E,(f) = Ei(T""'f) and E,(f) = E;(T""'f).

Complexity is still linear in the number of time steps .



Lower and upper mass
functions



Another example with 2 = {a,b,c}

q(ala) q(bla) q(cla)’ 9 9

[Il{a} Il{b} II{C}] — Q(Cl b) Q(b b) Q(C b) - 1/200 144 18
_Q(a c) Q(b c) Q(c c) 9 162

B g(ala) q(bla) q(cla)] 19 19

[Tl{a} Tl{b} TI{C}} — Q(a b) Q(b b) ﬁ(c b) — 1/200 154 28
g(alc) q(blc) q(c|c)] 19 172

162
18
9

172"
28
19




Another example with 2 = {a,b,c}

<7 v
A a. 2 /'.\

n = 1000

n—==22

n=10



A non-linear
Perron—-Frobenius Theorem



Consider a stationary imprecise Markov chain with finite state set 2
and an upper transition operator T. Suppose that T is , meaning
that there is some n > 0 such that minT"I;,, > 0 for all x ¢ 2". Then for
every initial upper expectation E,, the upper expectation E, = E; o T" !
for the state at time n converges point-wise to the same upper
expectation E..:

lim E, (h) = lim E{(T" 'h) .= E..(h)

N—>9 N—>9

for all h in 2 (%"). Moreover, the corresponding limit upper expectation
E.. is the only T-invariant upper expectation on ¥ (2"), meaning that

Eo=FE,o0T.



Ergodicity

And in that case also

Theorem (De Cooman, De Bock and Lopatatzidis, 2016)

Consider a stationary imprecise Markov chain with finite state set 2~
and an upper transition operator T. Suppose that T is
Perron—Frobenius-like with stationary upper expectation E... Then

Eo (h)<hm1nf Zh X;) < limsup — Zh Xi) < E(h)

n—oo ]/l 11— 00

almost surely for all h in £ (%Z").
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