Imprecise Markov chains From basic theory to applications I prof. Gert de Cooman

the unknown at the edge of tomorrow

Uncertainty Treatment and Optimisation in Aerospace Engineering

Imprecise discrete-time Markov chains

Precise probability models

Mass functions and expectations

Assume we are uncertain about:

- the value or a variable X
- in a set of possible values \mathscr{X} .

This is usually modelled by a probability mass function p on \mathscr{X} :

$$p(x) \ge 0$$
 and $\sum_{x \in \mathscr{X}} p(x) = 1;$

With p we can associate an expectation operator E_p :

$$E_p(f) \coloneqq \sum_{x \in \mathscr{X}} p(x) f(x)$$
 where $f \colon \mathscr{X} \to \mathbb{R}$.

If $A \subseteq \mathscr{X}$ is an event, then its probability is given by

$$P_p(A) = \sum_{x \in A} p(x) = E_p(I_A).$$

The simplex of all probability mass functions

Consider the simplex $\Sigma_{\mathscr{X}}$ of all mass functions on \mathscr{X} :

$$\Sigma_{\mathscr{X}} \coloneqq \left\{ p \in \mathbb{R}_{+}^{\mathscr{X}} \colon \sum_{x \in \mathscr{X}} p(x) = 1 \right\}.$$

Geometrical interpretation of expectation

Assessments lead to constraints Specifying an expectation E(f) for a map $f: \mathscr{X} \to \mathbb{R}$

 $\sum_{x \in \mathscr{X}} p(x)f(x) = E(f)$

imposes a linear constraint on the possible values for p in $\Sigma_{\mathscr{X}}$.

It corresponds to intersecting the simplex $\Sigma_{\mathscr{X}}$ with a hyperplane, whose direction depends on *f*:

Imprecise probability models

More flexible assessments Impose linear inequality constraints on p in $\Sigma_{\mathscr{X}}$:

$$\underline{E}(f) \leq \sum_{x \in \mathscr{X}} p(x)f(x)$$
 or $\sum_{x \in \mathscr{X}} p(x)f(x) \leq \overline{E}(f)$.

More flexible assessments Impose linear inequality constraints on p in $\Sigma_{\mathscr{X}}$:

$$\underline{E}(f) \leq \sum_{x \in \mathscr{X}} p(x)f(x)$$
 or $\sum_{x \in \mathscr{X}} p(x)f(x) \leq \overline{E}(f)$.

More flexible assessments Impose linear inequality constraints on p in $\Sigma_{\mathscr{X}}$:

$$\underline{E}(f) \leq \sum_{x \in \mathscr{X}} p(x)f(x)$$
 or $\sum_{x \in \mathscr{X}} p(x)f(x) \leq \overline{E}(f)$.

More flexible assessments Impose linear inequality constraints on p in $\Sigma_{\mathscr{X}}$:

$$\underline{E}(f) \leq \sum_{x \in \mathscr{X}} p(x)f(x)$$
 or $\sum_{x \in \mathscr{X}} p(x)f(x) \leq \overline{E}(f)$.

More flexible assessments Impose linear inequality constraints on p in $\Sigma_{\mathscr{X}}$:

$$\underline{E}(f) \leq \sum_{x \in \mathscr{X}} p(x)f(x)$$
 or $\sum_{x \in \mathscr{X}} p(x)f(x) \leq \overline{E}(f)$.

Credal sets

Any such number of assessments leads to a credal set \mathscr{M} .

Definition

A credal set \mathscr{M} is a convex closed subset of $\Sigma_{\mathscr{X}}$.

Lower and upper expectations

Equivalent model

Consider the set $\mathscr{L}(\mathscr{X}) = \mathbb{R}^{\mathscr{X}}$ of all real-valued maps on \mathscr{X} . We define two real functionals on $\mathscr{L}(\mathscr{X})$: for all $f : \mathscr{X} \to \mathbb{R}$

 $\underline{E}_{\mathscr{M}}(f) = \min \{ E_p(f) : p \in \mathscr{M} \} \text{ lower expectation} \\ \overline{E}_{\mathscr{M}}(f) = \max \{ E_p(f) : p \in \mathscr{M} \} \text{ upper expectation.}$

Observe that

 $\overline{E}_{\mathscr{M}}(f) = -\underline{E}_{\mathscr{M}}(-f).$

Basic properties of upper expectations

Definition

We call a real functional \overline{E} on $\mathscr{L}(\mathscr{X})$ an upper expectation if it satisfies the following properties:

for all f and g in $\mathscr{L}(\mathscr{X})$ and all real $\lambda \geq 0$:

- 1. $\overline{E}(f) \leq \max f$ [boundedness];
- **2.** $\overline{E}(f+g) \leq \overline{E}(f) + \overline{E}(g)$ [sub-additivity];
- **3.** $\overline{E}(\lambda f) = \lambda \overline{E}(f)$ [non-negative homogeneity].

Theorem

A real functional \overline{E} is an upper expectation if and only if it is the upper envelope of some credal set \mathcal{M} .

Proof.

Use $\mathscr{M} = \{ p \in \Sigma_{\mathscr{X}} : (\forall f \in \mathscr{L}(\mathscr{X}))(E_p(f) \leq \overline{E}(f)) \}.$

Discrete-time uncertain processes

We consider an uncertain process with variables $X_1, X_2, \ldots, X_n, \ldots$ assuming values in a finite set of states \mathscr{X} .

This leads to a standard event tree with nodes

$$s = (x_1, x_2, \ldots, x_n), \quad x_k \in \mathscr{X}, \quad n \ge 0.$$

We consider an uncertain process with variables $X_1, X_2, \ldots, X_n, \ldots$ assuming values in a finite set of states \mathscr{X} .

This leads to a standard event tree with nodes

$$s = (x_1, x_2, \ldots, x_n), \quad x_k \in \mathscr{X}, \quad n \ge 0.$$

The standard event tree becomes a probability tree by attaching to each node *s* a local probability mass function p_s on \mathscr{X} with associated expectation operator E_s .

Calculating global expectations from local ones

Consider a function $g: \mathscr{X}^n \to \mathbb{R}$ of the first *n* variables:

 $g = g(X_1, X_2, \ldots, X_n)$

We want to calculate its expectation E(g|s) in $s = (x_1, ..., x_k)$.

Theorem (Law of Iterated Expectation)

Suppose we know E(g|s,x) for all $x \in \mathscr{X}$, then we can calculate E(g|s) by backwards recursion using the local model p_s :

$$E(g|s) = \underbrace{E_s}_{local} (E(g|s, \cdot)) = \sum_{x \in \mathscr{X}} p_s(x) E(g|s, x).$$

Calculating global expectations from local ones

All expectations $E(g|x_1,...,x_k)$ in the tree can be calculated from the local models as follows:

1. start in the final cut \mathscr{X}^n and let:

$$E(g|x_1, x_2, ..., x_n) = g(x_1, x_2, ..., x_n);$$

2. do backwards recursion using the Law of Iterated Expectation:

$$E(g|x_1,\ldots,x_k) = \underbrace{E_{(x_1,\ldots,x_k)}}_{\text{local}} (E(g|x_1,\ldots,x_k,\cdot))$$

3. go on until you get to the root node \Box , where:

$$E(g|\Box) = E(g).$$

Christiaan Huygens (1656–1657)

i vincar qui promus diobas punches allata pratistisse calculus it is Eabertic it & portio Abita luson B & 3246. J. 1. 30 - 5 - - X. 5266 - 051. - X. - X. 000 × 20 yoxx odn Focx Con Blacker day , Lakkin cex+zdex+dax ~ dan+zdex cento quia simil a Dita partes Delas Delas . × ~ Don portio lusoni B

Sets of mass functions

Major restrictive assumption

Until now, we have assumed that we have sufficient information in order to specify, in each node s, a probability mass function p_s on the set \mathscr{X} of possible values for the next state.

More general uncertainty models

We consider credal sets as more general uncertainty models: closed convex subsets of $\Sigma_{\mathscr{X}}$.

Definition

An imprecise probability tree is a probability tree where in each node *s* the local uncertainty model is an imprecise probability model \mathcal{M}_s , or equivalently, its associated upper expectation \overline{E}_s :

 $\overline{E}_s(f) = \max \{ E_p(f) : p \in \mathcal{M}_s \}$ for all real maps f on \mathscr{X} .

Definition

An imprecise probability tree is a probability tree where in each node *s* the local uncertainty model is an imprecise probability model \mathcal{M}_s , or equivalently, its associated upper expectation \overline{E}_s :

 $\overline{E}_s(f) = \max \{ E_p(f) : p \in \mathcal{M}_s \}$ for all real maps f on \mathcal{X} .

An imprecise probability tree can be seen as an infinity of compatible precise probability trees: choose in each node *s* a probability mass function p_s from the set \mathcal{M}_s .

Associated lower and upper expectations

For each real map $g = g(X_1, ..., X_n)$, each node $s = (x_1, ..., x_k)$, and each such compatible precise probability tree, we can calculate the expectation

 $E(g|x_1,\ldots,x_k)$

using the backwards recursion method described before.

By varying over each compatible probability tree, we get a closed real interval:

 $[\underline{E}(g|x_1,\ldots,x_k),\overline{E}(g|x_1,\ldots,x_k)]$

We want a better, more efficient method to calculate these lower and upper expectations $\underline{E}(g|x_1, \dots, x_k)$ and $\overline{E}(g|x_1, \dots, x_k)$.

The Law of Iterated Expectation

Theorem (Law of Iterated Expectation)

Suppose we know $\overline{E}(g|s,x)$ for all $x \in \mathscr{X}$, then we can calculate $\overline{E}(g|s)$ by backwards recursion using the local model \overline{E}_s :

$$\overline{E}(g|s) = \underbrace{\overline{E}_s}_{local}(\overline{E}(g|s,\cdot)) = \max_{\substack{p_s \in \mathcal{M}_s}} \sum_{x \in \mathcal{X}} p_s(x) \overline{E}(g|s,x).$$

The complexity of calculating the $\overline{E}(g|s)$, as a function of *n*, is therefore essentially the same as in the precise case!

Imprecise Markov chains

Precise Markov chains: definition

Definition

The uncertain process is a stationary precise Markov chain when all M_s are singletons (precise), and

1. $\mathcal{M}_{\Box} = \{m_1\},\$

2. the Markov Condition is satisfied:

$$\mathscr{M}_{(x_1,\ldots,x_n)}=\{q(\cdot|x_n)\}.$$

Precise Markov chains: definition

Precise Markov chains: definition

Definition

The uncertain process is a stationary precise Markov chain when all M_s are singletons (precise), and

1. $\mathcal{M}_{\Box} = \{m_1\},\$

2. the Markov Condition is satisfied:

$$\mathscr{M}_{(x_1,\ldots,x_n)}=\{q(\cdot|x_n)\}.$$

For each $x \in \mathscr{X}$, the transition mass function $q(\cdot|x)$ corresponds to an expectation operator:

$$E(f|x) = \sum_{z \in \mathscr{X}} q(z|x)f(z).$$

Precise Markov chains: transition operators

Definition

Consider the linear transformation T of $\mathscr{L}(\mathscr{X})$, called transition operator:

 $\mathsf{T}\colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X})\colon f \mapsto \mathsf{T}f$

where T*f* is the real map given by, for any $x \in \mathscr{X}$:

$$\left| \operatorname{T} f(x) \coloneqq E(f|x) = \sum_{z \in \mathscr{X}} q(z|x) f(z) \right|$$

T is the dual of the linear transformation with Markov matrix M, with elements $M_{xy} \coloneqq q(y|x)$.

Precise Markov chains: transition operators

Definition

Consider the linear transformation T of $\mathscr{L}(\mathscr{X})$, called transition operator:

 $\mathsf{T}\colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X})\colon f \mapsto \mathsf{T}f$

where T*f* is the real map given by, for any $x \in \mathscr{X}$:

$$Tf(x) := E(f|x) = \sum_{z \in \mathscr{X}} q(z|x)f(z)$$

T is the dual of the linear transformation with Markov matrix M, with elements $M_{xy} \coloneqq q(y|x)$.

Then the Law of Iterated Expectation yields:

$$E_n(f) = E_1(\mathbf{T}^{n-1}f)$$
, and dually, $m_n = M^{n-1}m_1$.

Complexity is linear in the number of time steps *n*.

Imprecise Markov chains: definition

Definition

The uncertain process is a stationary imprecise Markov chain when the Markov Condition is satisfied:

$$\mathcal{M}_{(x_1,\ldots,x_n)}=\mathcal{Q}(\cdot|x_n).$$

Imprecise Markov chains: definition

Imprecise Markov chains: definition

Definition

The uncertain process is a stationary imprecise Markov chain when the Markov Condition is satisfied:

$$\mathscr{M}_{(x_1,\ldots,x_n)}=\mathscr{Q}(\cdot|x_n).$$

An imprecise Markov chain can be seen as an infinity of probability trees.

For each $x \in \mathscr{X}$, the local transition model $\mathscr{Q}(\cdot|x)$ corresponds to lower and upper expectation operators:

$$\underline{E}(f|x) = \min \{E_p(f) \colon p \in \mathscr{Q}(\cdot|x)\}\$$
$$\overline{E}(f|x) = \max \{E_p(f) \colon p \in \mathscr{Q}(\cdot|x)\}.$$

Imprecise Markov chains: transition operators

Definition

Consider the non-linear transformations <u>T</u> and <u>T</u> of $\mathscr{L}(\mathscr{X})$, called lower and upper transition operators:

$$\underline{\mathrm{T}} \colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X}) \colon f \mapsto \underline{\mathrm{T}}f$$
$$\overline{\mathrm{T}} \colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X}) \colon f \mapsto \overline{\mathrm{T}}f$$

where the real maps $\underline{T}f$ and $\overline{T}f$ are given by:

$$\begin{vmatrix} \underline{\mathrm{T}}f(x) \coloneqq \underline{E}(f|x) = \min \{E_p(f) \colon p \in \mathscr{Q}(\cdot|x)\} \\ \overline{\mathrm{T}}f(x) \coloneqq \overline{E}(f|x) = \max \{E_p(f) \colon p \in \mathscr{Q}(\cdot|x)\} \end{vmatrix}$$

Imprecise Markov chains: transition operators

Definition

Consider the non-linear transformations <u>T</u> and <u>T</u> of $\mathscr{L}(\mathscr{X})$, called lower and upper transition operators:

$$\underline{\mathrm{T}} \colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X}) \colon f \mapsto \underline{\mathrm{T}}f$$

$$\overline{\mathrm{T}} \colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X}) \colon f \mapsto \overline{\mathrm{T}}f$$

where the real maps $\underline{T}f$ and $\overline{T}f$ are given by:

$$\begin{aligned} \underline{\mathrm{T}}f(x) &\coloneqq \underline{E}(f|x) = \min\left\{E_p(f) \colon p \in \mathscr{Q}(\cdot|x)\right\} \\ \overline{\mathrm{T}}f(x) &\coloneqq \overline{E}(f|x) = \max\left\{E_p(f) \colon p \in \mathscr{Q}(\cdot|x)\right\} \end{aligned}$$

Then the Law of Iterated Expectation yields:

$$\underline{E}_n(f) = \underline{E}_1(\underline{T}^{n-1}f) \text{ and } \overline{E}_n(f) = \overline{E}_1(\overline{T}^{n-1}f).$$

Complexity is still linear in the number of time steps *n*.

Lower and upper mass functions

Another example with $\mathscr{X} = \{a, b, c\}$

$$\begin{bmatrix} \underline{T}I_{\{a\}} & \underline{T}I_{\{b\}} & \underline{T}I_{\{c\}} \end{bmatrix} = \begin{bmatrix} \underline{q}(a|a) & \underline{q}(b|a) & \underline{q}(c|a) \\ \underline{q}(a|b) & \underline{q}(b|b) & \underline{q}(c|b) \\ \underline{q}(a|c) & \underline{q}(b|c) & \underline{q}(c|c) \end{bmatrix} = \frac{1}{200} \begin{bmatrix} 9 & 9 & 162 \\ 144 & 18 & 18 \\ 9 & 162 & 9 \end{bmatrix}$$

$$\begin{bmatrix} \overline{T}I_{\{a\}} & \overline{T}I_{\{b\}} & \overline{T}I_{\{c\}} \end{bmatrix} = \begin{bmatrix} \overline{q}(a|a) & \overline{q}(b|a) & \overline{q}(c|a) \\ \overline{q}(a|b) & \overline{q}(b|b) & \overline{q}(c|b) \\ \overline{q}(a|c) & \overline{q}(b|c) & \overline{q}(c|c) \end{bmatrix} = \frac{1}{200} \begin{bmatrix} 19 & 19 & 172 \\ 154 & 28 & 28 \\ 19 & 172 & 19 \end{bmatrix}$$

Another example with $\mathscr{X} = \{a, b, c\}$

A non-linear Perron–Frobenius Theorem

Generalising the linear case

Theorem (De Cooman, Hermans and Quaeghebeur, 2008)

Consider a stationary imprecise Markov chain with finite state set \mathscr{X} and an upper transition operator \overline{T} . Suppose that \overline{T} is regular, meaning that there is some n > 0 such that $\min \overline{T}^n I_{\{x\}} > 0$ for all $x \in \mathscr{X}$. Then for every initial upper expectation \overline{E}_1 , the upper expectation $\overline{E}_n = \overline{E}_1 \circ \overline{T}^{n-1}$ for the state at time *n* converges point-wise to the same upper expectation \overline{E}_{∞} :

$$\lim_{n\to\infty}\overline{E}_n(h) = \lim_{n\to\infty}\overline{E}_1(\overline{T}^{n-1}h) \coloneqq \overline{E}_\infty(h)$$

for all *h* in $\mathscr{L}(\mathscr{X})$. Moreover, the corresponding limit upper expectation \overline{E}_{∞} is the only \overline{T} -invariant upper expectation on $\mathscr{L}(\mathscr{X})$, meaning that $\overline{E}_{\infty} = \overline{E}_{\infty} \circ \overline{T}$.

Ergodicity

And in that case also

Theorem (De Cooman, De Bock and Lopatatzidis, 2016)

Consider a stationary imprecise Markov chain with finite state set \mathscr{X} and an upper transition operator \overline{T} . Suppose that \overline{T} is *Perron–Frobenius-like* with stationary upper expectation \overline{E}_{∞} . Then

$$\underline{E}_{\infty}(h) \leq \liminf_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} h(X_k) \leq \limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} h(X_k) \leq \overline{E}_{\infty}(h)$$

almost surely for all h in $\mathscr{L}(\mathscr{X})$.

Literature

Literature

Gert de Cooman and Filip Hermans.
Imprecise probability trees: bridging two theories of imprecise probability.
Artificial Intelligence, 172:1400–1427, 2008.

Gert de Cooman, Filip Hermans, and Erik Quaeghebeur. Imprecise Markov chains and their limit behaviour. *Probability in the Engineering and Informational Sciences*, 23:597–635, 2009.

Gert de Cooman, Jasper De Bock, and Stavros Lopatatzidis. Imprecise stochastic processes in discrete time: global models, imprecise Markov chains, and ergodic theorems. *International Journal of Approximate Reasoning*, 76:18–46, 2016.

Thomas Augustin, Frank P. A. Coolen, Gert de Cooman, and Matthias C. M. Troffaes, editors. Introduction to Imprecise Probabilities. John Wiley & Sons, 2014.