

Computable randomness is inherently imprecise

Gert de Cooman and Jasper De Bock ISIPTA 2017 Lugano, 10 July 2017

A single forecast

The first player, *Forecaster*, specifies an interval bound $I = [\underline{p}, \overline{p}]$ for the expectation of an unknown outcome X in $\{0,1\}$. We interpret this *interval forecast* I as a commitment, on the part of Forecaster, to adopt \underline{p} as a *supremum buying price* and \overline{p} as a *infimum selling price* for the gamble (with reward function) X.

A single forecast

The first player, *Forecaster*, specifies an interval bound $I = [\underline{p}, \overline{p}]$ for the expectation of an unknown outcome X in $\{0,1\}$. We interpret this *interval forecast* I as a commitment, on the part of Forecaster, to adopt \underline{p} as a *supremum buying price* and \overline{p} as a *infimum selling price* for the gamble (with reward function) X.

The second player, *Sceptic*, can now in a second step take Forecaster up on any (combination) of the following commitments:

- (i) for any $p \in [0,1]$ such that $p \le p$, and any $\alpha \ge 0$, Forecaster must accept the gamble $\alpha[X-p]$.
- (ii) for any $q \in [0,1]$ such that $q \ge \overline{p}$, and any $\beta \ge 0$, Forecaster accepts the gamble $\beta[q-X]$.

A single forecast

The first player, *Forecaster*, specifies an interval bound $I = [\underline{p}, \overline{p}]$ for the expectation of an unknown outcome X in $\{0,1\}$. We interpret this *interval forecast* I as a commitment, on the part of Forecaster, to adopt \underline{p} as a *supremum buying price* and \overline{p} as a *infimum selling price* for the gamble (with reward function) X.

The second player, *Sceptic*, can now in a second step take Forecaster up on any (combination) of the following commitments:

- (i) for any $p \in [0,1]$ such that $p \le p$, and any $\alpha \ge 0$, Forecaster must accept the gamble $\alpha[X-p]$.
- (ii) for any $q \in [0,1]$ such that $q \ge \overline{p}$, and any $\beta \ge 0$, Forecaster accepts the gamble $\beta[q-X]$.

Finally, in a third step, the third player, *Reality*, determines the value x of X in $\{0,1\}$.

 $f(X) = -\alpha[X-p] - \beta[q-X]$ with $\alpha \ge 0$ and $\beta \ge 0$ and $0 \le p \le \underline{p}$ and $\overline{p} \le q \le 1$

$$\overline{E}_I(f) \leq 0$$

$$\underline{E}_{I}(f) = \min_{p \in I} E_{p}(f) = \min_{p \in I} \left[pf(1) + (1-p)f(0) \right] = \begin{cases} E_{\underline{p}}(f) & \text{if } f(1) \ge f(0) \\ E_{\overline{p}}(f) & \text{if } f(1) \le f(0) \end{cases} \tag{1}$$

$$\overline{E}_{I}(f) = \max_{p \in I} E_{p}(f) = \begin{cases} E_{\overline{p}}(f) & \text{if } f(1) \ge f(0) \\ E_{\underline{p}}(f) & \text{if } f(1) \le f(0) \end{cases} = -\underline{E}_{I}(-f), \tag{2}$$

 $f(X) = -\alpha[X-p] - \beta[q-X]$ with $\alpha \ge 0$ and $\beta \ge 0$ and $0 \le p \le \underline{p}$ and $\overline{p} \le q \le 1$

$$\overline{E}_I(f) \leq 0$$

$$\underline{E}_{I}(f) = \min_{p \in I} E_{p}(f) = \min_{p \in I} \left[pf(1) + (1-p)f(0) \right] = \begin{cases} E_{\underline{p}}(f) & \text{if } f(1) \ge f(0) \\ E_{\overline{p}}(f) & \text{if } f(1) \le f(0) \end{cases}$$
(1)

$$\overline{E}_{I}(f) = \max_{p \in I} E_{p}(f) = \begin{cases} E_{\overline{p}}(f) & \text{if } f(1) \ge f(0) \\ E_{\underline{p}}(f) & \text{if } f(1) \le f(0) \end{cases} = -\underline{E}_{I}(-f), \tag{2}$$

 $f(X) = -\alpha[X-p] - \beta[q-X]$ with $\alpha \ge 0$ and $\beta \ge 0$ and $0 \le p \le \underline{p}$ and $\overline{p} \le q \le 1$

$$\overline{E}_I(f) \leq 0$$

$$\underline{E}_{I}(f) = \min_{p \in I} E_{p}(f) = \min_{p \in I} \left[pf(1) + (1-p)f(0) \right] = \begin{cases} E_{\underline{p}}(f) & \text{if } f(1) \ge f(0) \\ E_{\overline{p}}(f) & \text{if } f(1) \le f(0) \end{cases} \tag{1}$$

$$\overline{E}_{I}(f) = \max_{p \in I} E_{p}(f) = \begin{cases} E_{\overline{p}}(f) & \text{if } f(1) \ge f(0) \\ E_{\underline{p}}(f) & \text{if } f(1) \le f(0) \end{cases} = -\underline{E}_{I}(-f), \tag{2}$$

Event tree

Forecasting system

A forecasting system γ associates with any situation $s = (x_1, \dots, x_n)$ an interval forecast $\gamma(s) = I_s$.

Computable randomness of a sequence

Definition 3 (Computable randomness) Consider any forecasting system $\gamma: \Omega^{\Diamond} \to \mathscr{C}$. We call an outcome sequence ω computably random for γ if all computable non-negative supermartingales T remain bounded above on ω , meaning that there is some $B \in \mathbb{R}$ such that $T(\omega^n) \leq B$ for all $n \in \mathbb{N}$. We then also say that the forecasting system γ makes ω computably random.

We denote by $\Gamma_{C}(\omega) := \{ \gamma \in \Gamma : \omega \text{ is computably random for } \gamma \}$ the set of all forecasting systems for which the outcome sequence ω is computably random.

Consistency results

Theorem 6 Consider any forecasting system $\gamma: \Omega^{\Diamond} \to \mathscr{C}$. Then (strictly) almost all outcome sequences are computably random for γ in the imprecise probability tree that corresponds to γ .

Corollary 7 For any sequence of interval forecasts $(I_1, ..., I_n, ...)$ there is a forecasting system given by $\gamma(x_1, ..., x_n) := I_{n+1}$ for all $(x_1, ..., x_n) \in \{0,1\}^n$ and all $n \in \mathbb{N}_0$, and associated imprecise probability tree such that (strictly) almost all—and therefore definitely at least one—outcome sequences are computably random for γ in the associated imprecise probability tree.

Constant interval forecasts

Stationary forecasting system γ_I :

$$\gamma_I(s) := I \text{ for all } s \in \Omega^{\diamondsuit}.$$

 $\mathscr{C}_{C}(\omega) := \{I \in \mathscr{C} : \gamma_{I} \in \Gamma_{C}(\omega)\} = \{I \in \mathscr{C} : \gamma_{I} \text{ makes } \omega \text{ computably random}\}.$

Church randomness

Corollary 11 (Church randomness) Consider any outcome sequence $\omega = (x_1, ..., x_n, ...)$ in Ω and any stationary interval forecast $I = [\underline{p}, \overline{p}] \in \mathscr{C}_{\mathbb{C}}(\omega)$ that makes ω computably random. Then for any computable selection process $S \colon \Omega^{\diamondsuit} \to \{0,1\}$ such that $\sum_{k=0}^{n} S(x_1, ..., x_k) \to +\infty$:

$$\underline{p} \leq \liminf_{n \to +\infty} \frac{\sum_{k=0}^{n-1} S(x_1, \dots, x_k) x_{k+1}}{\sum_{k=0}^{n-1} S(x_1, \dots, x_k)} \leq \limsup_{n \to +\infty} \frac{\sum_{k=0}^{n-1} S(x_1, \dots, x_k) x_{k+1}}{\sum_{k=0}^{n-1} S(x_1, \dots, x_k)} \leq \overline{p}.$$

The set filter of forecasts that make a sequence random

 $\mathscr{C}_{\mathbf{C}}(\boldsymbol{\omega}) \coloneqq \{I \in \mathscr{C} : \gamma_I \in \Gamma_{\mathbf{C}}(\boldsymbol{\omega})\} = \{I \in \mathscr{C} : \gamma_I \text{ makes } \boldsymbol{\omega} \text{ computably random}\}.$

Proposition 9 (Non-emptiness) For all $\omega \in \Omega$, $[0,1] \in \mathscr{C}_{\mathbb{C}}(\omega)$, so any sequence of outcomes ω has at least one stationary forecast that makes it computably random: $\mathscr{C}_{\mathbb{C}}(\omega) \neq \emptyset$.

Proposition 10 (Increasingness) *Consider any* $\omega \in \Omega$ *and any* $I, J \in \mathcal{C}$. *If* $I \in \mathcal{C}_{\mathbb{C}}(\omega)$ *and* $I \subseteq J$, *then also* $J \in \mathcal{C}_{\mathbb{C}}(\omega)$.

Proposition 12 For any $\omega \in \Omega$ and any two interval forecasts I and J: if $I \in \mathscr{C}_{\mathbb{C}}(\omega)$ and $J \in \mathscr{C}_{\mathbb{C}}(\omega)$ then $I \cap J \neq \emptyset$, and $I \cap J \in \mathscr{C}_{\mathbb{C}}(\omega)$.

$$\emptyset \neq \bigcap \mathscr{C}_{\mathbf{C}}(\boldsymbol{\omega}) = \left[\underline{p}_{\mathbf{C}}(\boldsymbol{\omega}), \overline{p}_{\mathbf{C}}(\boldsymbol{\omega})\right].$$

The set filter of forecasts that make a sequence random

 $\mathscr{C}_{\mathbf{C}}(\boldsymbol{\omega}) \coloneqq \{I \in \mathscr{C} : \gamma_I \in \Gamma_{\mathbf{C}}(\boldsymbol{\omega})\} = \{I \in \mathscr{C} : \gamma_I \text{ makes } \boldsymbol{\omega} \text{ computably random}\}.$

Proposition 9 (Non-emptiness) For all $\omega \in \Omega$, $[0,1] \in \mathscr{C}_{\mathbb{C}}(\omega)$, so any sequence of outcomes ω has at least one stationary forecast that makes it computably random: $\mathscr{C}_{\mathbb{C}}(\omega) \neq \emptyset$.

Proposition 10 (Increasingness) *Consider any* $\omega \in \Omega$ *and any* $I, J \in \mathcal{C}$. *If* $I \in \mathcal{C}_{\mathbb{C}}(\omega)$ *and* $I \subseteq J$, *then also* $J \in \mathcal{C}_{\mathbb{C}}(\omega)$.

Proposition 12 For any $\omega \in \Omega$ and any two interval forecasts I and J: if $I \in \mathscr{C}_{\mathbb{C}}(\omega)$ and $J \in \mathscr{C}_{\mathbb{C}}(\omega)$ then $I \cap J \neq \emptyset$, and $I \cap J \in \mathscr{C}_{\mathbb{C}}(\omega)$.

$$\emptyset \neq \bigcap \mathscr{C}_{\mathbf{C}}(\boldsymbol{\omega}) = \left[\underline{p}_{\mathbf{C}}(\boldsymbol{\omega}), \overline{p}_{\mathbf{C}}(\boldsymbol{\omega})\right].$$

The set filter of forecasts that make a sequence random

 $\mathscr{C}_{\mathbf{C}}(\boldsymbol{\omega}) \coloneqq \{I \in \mathscr{C} : \gamma_I \in \Gamma_{\mathbf{C}}(\boldsymbol{\omega})\} = \{I \in \mathscr{C} : \gamma_I \text{ makes } \boldsymbol{\omega} \text{ computably random}\}.$

Proposition 9 (Non-emptiness) For all $\omega \in \Omega$, $[0,1] \in \mathscr{C}_{\mathbb{C}}(\omega)$, so any sequence of outcomes ω has at least one stationary forecast that makes it computably random: $\mathscr{C}_{\mathbb{C}}(\omega) \neq \emptyset$.

Proposition 10 (Increasingness) *Consider any* $\omega \in \Omega$ *and any* $I, J \in \mathcal{C}$. *If* $I \in \mathcal{C}_{\mathbb{C}}(\omega)$ *and* $I \subseteq J$, *then also* $J \in \mathcal{C}_{\mathbb{C}}(\omega)$.

Proposition 12 For any $\omega \in \Omega$ and any two interval forecasts I and J: if $I \in \mathscr{C}_{\mathbb{C}}(\omega)$ and $J \in \mathscr{C}_{\mathbb{C}}(\omega)$ then $I \cap J \neq \emptyset$, and $I \cap J \in \mathscr{C}_{\mathbb{C}}(\omega)$.

$$\emptyset \neq \bigcap \mathscr{C}_{\mathbf{C}}(\omega) = \left[\underline{p}_{\mathbf{C}}(\omega), \overline{p}_{\mathbf{C}}(\omega)\right].$$

Interval randomness: a simple example

$$\gamma_{p,q}(z_1,\ldots,z_n) \coloneqq \begin{cases} p & \text{if } n \text{ is odd} \\ q & \text{if } n \text{ is even} \end{cases}$$
 for all $(z_1,\ldots,z_n) \in \Omega^{\lozenge}$.

Proposition 14 Consider any ω that is computably random for the forecasting system $\gamma_{p,q}$. Then for all $I \in \mathcal{C}$, $I \in \mathcal{C}_{\mathbb{C}}(\omega) \Leftrightarrow [p,q] \subseteq I$.

Point randomness, but not quite

$$p_n := \frac{1}{2} + (-1)^n \delta_n$$
, with $\delta_n := e^{-\frac{1}{n+1}} \sqrt{e^{\frac{1}{n+1}} - 1}$ for all $n \in \mathbb{N}$,

$$\gamma_{\sim 1/2}(z_1,\ldots,z_{n-1}) \coloneqq p_n \text{ for all } n \in \mathbb{N} \text{ and } (z_1,\ldots,z_{n-1}) \in \Omega^{\Diamond}.$$

Proposition 15 Consider any ω that is computably random for the forecasting system $\gamma_{\sim 1/2}$. Then for all $I \in \mathcal{C}$, $I \in \mathcal{C}_{\mathbb{C}}(\omega)$ if and only if $\min I < 1/2$ and $\max I > 1/2$.

1. Is it possible to use an equivalent Martin-Löf type approach, using randomness tests?

- 1. Is it possible to use an equivalent Martin-Löf type approach, using randomness tests?
- 2. Can we take other notions of computability into account?

- 1. Is it possible to use an equivalent Martin-Löf type approach, using randomness tests?
- 2. Can we take other notions of computability into account?
- 3. Are similar results possible on a prequential approach?

- 1. Is it possible to use an equivalent Martin-Löf type approach, using randomness tests?
- 2. Can we take other notions of computability into account?
- 3. Are similar results possible on a prequential approach?
- 4. Our results seem to allow for an ontological interpretation of imprecise probabilities: how do we do statistics with them?