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A single forecast

The first player, Forecaster, specifies an interval bound I = [p, p] for the expectation of an unknown
outcome X in {0, 1}. We interpret this interval forecast I as a commitment, on the part of Forecaster,
to adopt p as a supremum buying price and p as a infimum selling price for the gamble (with reward
function)_X :
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function)_X :

The second player, Sceptic, can now 1n a second step take Forecaster up on any (combination) of
the following commitments:
(i) forany p € |0,1] such that p < p, and any o > 0, Forecaster must accept the gamble a|X — p].
(ii) for any g € [0, 1] such that ¢ > p, and any B > 0, Forecaster accepts the gamble B[g — X].
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Finally, in a third step, the third player, Reality, determines the value x of X in {0,1}.



Gambles available to Sceptic: interval forecast
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Gambles available to Sceptic: interval forecast
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Event tree




Forecasting system
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A forecasting system 7 associates with any situation s = (x1,...,x,) an interval forecast Y(s) = L.



Computable randomness of a sequence
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Definition 3 (Computable randomness) Consider any forecasting system y: Q0 — €. We call an
outcome sequence @ computably random for ¥ if all computable non-negative supermartingales T
remain bounded above on @, meaning that there is some B € R such that T(®") < B for all n € N.
We then also say that the forecasting system Y makes @ computably random.

We denote by I'c(w) := {y € I': w is computably random for Y} the set of all forecasting systems
for which the outcome sequence w 1s computably random.



Consistency results

Theorem 6 Consider any forecasting system v: QY — €. Then (strictly) almost all outcome se-
quences are computably random for Y in the imprecise probability tree that corresponds to Y.
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Corollary 7 For any sequence of interval forecasts (I,...,I,,...) there is a forecasting system

given by y(x1,...,x,) :i= Iy for all (x1,...,x,) € {0,1}" and all n € Ny, and associated impre-
cise probability tree such that (strictly) almost all—and therefore definitely at least one—outcome
sequences are computably random for Y in the associated imprecise probability tree.



Constant interval forecasts

Stationary forecasting system Vr:

Yi(s) =1 for all s € QY.
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bc(w)={1€C: y1€Tc(w)}={I € ¥: v makes w computably random}.



Church randomness

Corollary 11 (Church randomness) Consider any outcome sequence ® = (X1,...,Xp,...) in Q
and any stationary interval forecast I = |p,p| € €c(®) that makes @ computably random. Then for

any computable selection process S: Q0 — {0,1} such that Y _,S(x1,...,X) — ~oo:
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The set filter of forecasts that make a sequence random

bc(w):={1€C: y1€Tc(w)} ={I €% y; makes ® computably random}.

Proposition 9 (Non-emptiness) Forall ® € Q, [0,1] € 6c(w), so any sequence of outcomes ® has
at least one stationary forecast that makes it computably random: 6c(®) # 0.

Proposition 10 (Increasingness) Consider any @ € Q and any 1,J € €. If I € 6c(w) and I C J,
then also J € 6c(m).

Proposition 12 For any @ € Q and any two interval forecasts I and J: if I € c(®) and J € bc(®)
then INJ # 0, and INJ € 6c(w).

0 # (N c() = | pe(®), pe(@)].
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Interval randomness: a simple example

if n 1s odd
poRRBo for all (z1,...,2,) € QY.
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Proposition 14 Consider any @ that is computably random for the forecasting system Y, ,. Then
foralll €€, 1€ %6c(®) < |p,q| CI



Point randomness, but not quite

1
Pn= 5+ (—1)" 0y, with 0, := e w11/ e —1foralln €N,

Yeia(21,- - 2n—1) = py foralln € N and (z1,...,2,—1) € Q°.

Proposition 15 Consider any o that is computably random for the forecasting system Y..,. Then
foralll € €, I € 6c(m) if and only if minl < 1/2 and maxI > 1/2.



And where do we go from here?

1. Is it possible to use an equivalent Martin-Lof type
approach, using randomness tests?
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Is it possible to use an equivalent Martin-Lof type
approach, using randomness tests?

Can we take other notions of computability into
account?

. Are similar results possible on a prequential approach?

Our results seem to allow for an ontological
interpretation of imprecise probabilities: how do we do
statistics with them?



