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Event trees We denote by X;., the tuple (X,...,X;), taking values in set
Lo = x'_, Z,, for any k < ¢ with k,¢ € IN. A situation is an finite sequence
of states x;., € 21.,, with n € Ny, and the set of all situations is denoted
by Q°. Infinite sequences of states are called paths, and the set of all

Imprecise probabilities We present the basic
axioms for the theory of imprecise probabilities
introduced by Walley (1991). For a recent intro-
ductory book, see also Thomas Augustin, Frank
P. A. Coolen, Gert de Cooman and Matthias C. M. paths is denoted by ().

Troffaes (2014). 0= | Zimand Q:=x7, 2,

Suppose a subject is uncertain about the value n€N
that a variable X assumes in a finite set of possible For any path o € (), the initial sequence of its first n elements, 2.,

values 2. His uncertainty is modelled by a lower IS denoted by w". A variable is a function defined on Q). It is called n-
expectation E, which is a real functional on the measurable if it only depends on the value of X;.,. An event is a subset
set ¥(Z) of all real-valued functions (gambles) of (2. With any situation x;.,, we can associate the so-called exact event

f: Z— R on Z, satisfying the following the basic ['(x1.,), which is the set of all paths w € ) that go through x;.,.
so-called coherence axioms:

1.E(f) > min f for all f € 9(2);
2.E(f+g) > E(f)+E(g) forall f,g € 4(Z);
B.E(Af)=AE(f)forall fe ¥ (%) andreal A > 0.

The conjugate upper expectation E is defined by
E(f) = —E(—f) and it follows from the coherence

F = F " dan . w) =1 ZF ().
4. minf < E(f) <E(f) <maxf forall f € ¥4(2); iminf % () = (@") imsup 7 (o) 1?:31) (0")

5.E(f+g)<E(f)+E(g) <E(f+g)<E(f)+E(g) Also, with any real process . we can associate the path-averaged pro-
for all f.g E_g( 2); cess (.7 ), which is the real process defined by:

6.E(f) <E(g)and E(f) < _ o if n=0
with £ < g; F o) = {}lﬁ(xl;n) if >0

7.E(f+u)=E(f)+pand E(f+u) =
forall f € 4 (%) and real u.

Ergodicity theorem Consider a Markov
chain, with a finite state space Z°. For such
a system, we have proved various Perron-
Frobenius-like theorems. They provide nec-
essary and sufficient conditions for the uncer-
tainty model about the state X, to converge, as
n — oo, to an uncertainty model independent of
the initial state X;. In Markov chains with pre-
cise probabilities, this convergence is sufficient
for a pointwise ergodic theorem to hold:
lim lZ f(Xk) = E<(f) almost surely

n——+oon —1

Processes A process .7 is a map defined on Q)°. The process differ-
ence AF (x1.,) € 9(Zn+1) is defined by

Ag(xlzn) (xn—l—l) = g(xliiﬂ-l)

We can associate a real process .# with extended real variables liminf.7#
and limsup.#, defined for all ® € () by:

Our result Applying the theory of imprecise
probabilities to stochastic processes, we can
define so-called imprecise Markov chains as
special cases of imprecise probability trees. We
iIntroduce and study submartingales and super-
martingales in such trees, for which we are able
to prove a strong law of large numbers for sub-
martingale differences. Combining this result
with the Perron-Frobenius-like character of our
model we can prove the following

— F (x1) for all x,1 € Zoy1.

E(g) forall f,g €¥9(2) foralln e N and x;., € 27

liminf— Z f(Xy) > E..(f) strictly almost surely.
k=

n—ee n

E(f)+u

Imprecise trees and martingales (P (aaa)

= 2% (a,a,a) initial situation

W =

Imprecise probability trees We turn the event tree into a probability tree
by assigning to each situation x;.,, a local probability model O(-|x;.,). This
local model Q(-|x.,) is then an expectation operator on the set ¥ (.2,,+1) of all
gambles g(X,. ) on the next state X,,11, given that X;., = x;.,. We can equally
well attach to each situation x;., a local imprecise probability model O(-|x;.,)
for the next state X, ;. This local model QO(-|xi.,) is then a lower expectation (a,a)
operator on the set ¥(.2,+1) of all gambles g(X,+1) on the next state X,, 1,
given X1 = X1:p-

: . . b, b,b) (b, (b,a,b) (b, b, (b,b,b)
Martingales A submartingale .7 is a real process such that (a.b,a) (a, a,a) & a)

O(AAM (x1:n)|x1:0) > 0 for all n € N and x;., € Z7.,. A real process ./ is a su-
permartingale if —.# is a submartingale, meaning that Q(A.# (x1.,)|x1.x) < 0.
We denote the set of all submartingales for a given imprecise probability tree
by M. Similarly, we have M := —M.
Consider any submartingale .# and any situation s € Q°, then:

A (s) < sup liminf.Z(®w) < sup limsup.Z (o).

wel(s) wel (s)

Using this inequality, and results from previous papers, we were able to
prove the following formulas for the global conditional lower expectations (the
so-called Shafer—Vovk-Ville formulas)

E(f|s) =sup{ A (s): # € M and limsup.#Z (o) < f(w) forall € T'(s)}.

As a special case, for any situation x;.,, € Q° and any n-measurable real
variable £, with n,m € IN such that n > m:

E(f‘xlzm) — Sup{%(xlzm) M e M and (\V/xm—l—lzn S %m—l—lzn)%(xlzn) < f(xlzn)}-

%:3 S QQ

Strong law of large numbers for submartingale differences

Theorem 1. Let .# be a supermartingale that
Is bounded below. Then .# converges strictly
almost surely to a real variable.

We call an event A null if E(A) =0, and strictly
null if there is some test supermartingale .7 that
converges to + on A, meaning that:

lim.7 (o)

A test supermartingale is a supermartingale with
7 (0O) =1 that is non-negative for all situations
in QY.

Using the definitions of null and strictly null event,
Shafer and Vovk (2001) proved the following ver-
sion of the supermartingale convergence theo-

The intuition behind it is that there exists a test
supermartingale which is 4-c0 on the paths where
the process diverges. We were able to derive the
following useful theorem:

= J+oo forall m € A.

Theorem 2 (Strong law of large numbers for sub-
martingale differences). Let .# be a submartin-
gale such that A.# is uniformly bounded. Then

rem: liminf(.#) > O strictly almost surely.

Imprecise Markov chains Imprecise Markov chains are Towards an imprecise ergodic theorem For any f € for some r € IN. If we define the following distance :

imprecise probability trees where all local uncertainty models 4 (%), the average gain process is defined by: d(E,F)= max |E(h)—F(h)|,
satisfy the so-called Markov condition: I (Ko 1 (X, Z AKX he4 (Z)
_ lin) = — )]+ k—1 : : :
O(-x1) = O(-1x,) for all situations x,., € o " then we derive [using 1, 3 and 7] that 0 <d(E,F) <1, and :
' E(f)—F <d(E,F o 1
The lower transition operator T: (%) —@(2): frs T is and the ergodic average prc;ciss by. Jene (1 and th|_(f ) _t(fg \<_ ((T_) Z)Pf | t (1)
- sin and the proper , We ge
defined by (1] (Xin) == ¥ [F(Xe) — Ex(/)] ) PIOPSIYE= PR = e
Tf(x):=0O(flx) forallxe 2 =l T f(X )—ngf(sz)\ <|Ifllvpt™ 7. (2)
— It can be proved that .
and the (global) lower expectation E,(f) := E(f(X,)) at time 1 | Combining (#')| f|(X1.,) with (2), we have
n is then given by A [f)(Xin) = Y (P )L ) (Xin) +— Z T"f (%) =, LT (%), () [Tf]| < HvaP (3)
(=0 =1 (=1
E,(f)=E{(T"'f), withT""'f:=TT...Tf. Associate with T the (weak) coefficient of ergodicity p: From (3) and 7| f|(Xi.,) and using Theorem 2
n—1 times liminf.<Z | f] > 0 strictly almost surely,

T):= Th
P = B8ty T~

Th(y)| =

hed (Z)

An imprecise Markov chain is Perron—Frobenius-like if for
all fe9(%),the sequence T"f converges pointwise to a
constant real number, denoted by E_.(f). The E_.(f) is also
T-invariant in the sensethat E_oT =E_..

where 4, (2) ={he9(2): 0<h<1},andforany he 4(2),

|||y := maxh —minh. Then it can be shown that an imprecise
Markov chain is Perron—Frobenius-like if and only if p(T") < 1

and consequently our main result,

hmmf Z f(Xx) > E..(f) strictly almost surely.

n—eo p =



