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Ergodicity theorem Consider a Markov
chain, with a finite state space X . For such
a system, we have proved various Perron-

Frobenius-like theorems. They provide nec-
essary and sufficient conditions for the uncer-
tainty model about the state X

n

to converge, as
n ! •, to an uncertainty model independent of
the initial state X

1

. In Markov chains with pre-
cise probabilities, this convergence is sufficient
for a pointwise ergodic theorem to hold:

lim

n!+•

1

n

n

Â
k=1

f (X
k

) = E•( f ) almost surely

Our result Applying the theory of imprecise
probabilities to stochastic processes, we can
define so-called imprecise Markov chains as
special cases of imprecise probability trees. We
introduce and study submartingales and super-
martingales in such trees, for which we are able
to prove a strong law of large numbers for sub-
martingale differences. Combining this result
with the Perron-Frobenius-like character of our
model we can prove the following

liminf

n!•

1

n

n

Â
k=1

f (X
k

)�E•( f ) strictly almost surely.

Abstract
Imprecise probabilities We present the basic
axioms for the theory of imprecise probabilities
introduced by Walley (1991). For a recent intro-
ductory book, see also Thomas Augustin, Frank
P. A. Coolen, Gert de Cooman and Matthias C. M.
Troffaes (2014).

Suppose a subject is uncertain about the value
that a variable X assumes in a finite set of possible
values X. His uncertainty is modelled by a lower

expectation E, which is a real functional on the
set G (X) of all real-valued functions (gambles)
f : X ! R on X, satisfying the following the basic
so-called coherence axioms:

1. E( f ) � min f for all f 2 G (X);

2. E( f + g) � E( f )+E(g) for all f ,g 2 G (X);

3. E(l f ) = lE( f ) for all f 2 G (X) and real l � 0.

The conjugate upper expectation E is defined by
E( f ) :=�E(� f ) and it follows from the coherence
axioms 1–3 that

4. min f  E( f )  E( f )  max f for all f 2 G (X);

5. E( f +g)E( f )+E(g)E( f +g)E( f )+E(g)
for all f ,g 2 G (X);

6. E( f )  E(g) and E( f )  E(g) for all f ,g 2 G (X)
with f  g;

7. E( f + µ) = E( f ) + µ and E( f + µ) = E( f ) + µ
for all f 2 G (X) and real µ.

Imprecise probabilities
Event trees We denote by X

k:` the tuple (X
k

, . . . ,X`), taking values in set
X

k:` :=⇥`
r=k

X
r

, for any k  ` with k,`2N. A situation is an finite sequence
of states x

1:n 2 X
1:n, with n 2 N

0

, and the set of all situations is denoted
by W⌃. Infinite sequences of states are called paths, and the set of all
paths is denoted by W.

W⌃ :=
[

n2N
0

X
1:n and W := ⇥•

r=1

X
r

.

For any path w 2 W, the initial sequence of its first n elements, X
1:n,

is denoted by wn. A variable is a function defined on W. It is called n-

measurable if it only depends on the value of X

1:n. An event is a subset
of W. With any situation x

1:n, we can associate the so-called exact event

G(x
1:n), which is the set of all paths w 2 W that go through x

1:n.

Processes A process F is a map defined on W⌃. The process differ-

ence DF (x
1:n) 2 G (X

n+1

) is defined by

DF (x
1:n)(xn+1

) := F (x
1:n+1

)�F (x
1:n) for all x

n+1

2 X
n+1

.

We can associate a real process F with extended real variables liminfF
and limsupF , defined for all w 2 W by:

liminfF (w) := liminf

n!•
F (wn) and limsupF (w) := limsup

n!•
F (wn).

Also, with any real process F we can associate the path-averaged pro-

cess hF i, which is the real process defined by:

hF i(x
1:n) :=

(
0 if n = 0

1

n

F (x
1:n) if n > 0

for all n 2 N and x

1:n 2 X
1:n.

Event trees and processes

Imprecise probability trees We turn the event tree into a probability tree

by assigning to each situation x

1:n, a local probability model Q(·|x
1:n). This

local model Q(·|x
1:n) is then an expectation operator on the set G (X

n+1

) of all
gambles g(X

n+1

) on the next state X

n+1

, given that X

1:n = x

1:n. We can equally
well attach to each situation x

1:n a local imprecise probability model Q(·|x
1:n)

for the next state X

n+1

. This local model Q(·|x
1:n) is then a lower expectation

operator on the set G (X
n+1

) of all gambles g(X
n+1

) on the next state X

n+1

,
given X

1:n = x

1:n.

Martingales A submartingale M is a real process such that
Q(DM (x

1:n)|x1:n) � 0 for all n 2 N and x

1:n 2 X
1:n. A real process M is a su-

permartingale if �M is a submartingale, meaning that Q(DM (x
1:n)|x1:n)  0.

We denote the set of all submartingales for a given imprecise probability tree
by M. Similarly, we have M := �M.
Consider any submartingale M and any situation s 2 W⌃, then:

M (s)  sup

w2G(s)
liminfM (w)  sup

w2G(s)
limsupM (w).

Using this inequality, and results from previous papers, we were able to
prove the following formulas for the global conditional lower expectations (the
so-called Shafer–Vovk–Ville formulas)

E( f |s) := sup{M (s) : M 2 M and limsupM (w)  f (w) for all w 2 G(s)}.

As a special case, for any situation x

1:m 2 W⌃ and any n-measurable real
variable f , with n,m 2 N such that n � m:

E( f |x
1:m) = sup{M (x

1:m) : M 2 M and (8x

m+1:n 2 X
m+1:n)M (x

1:n)  f (x
1:n)}.

Imprecise trees and martingales
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F (a,a,a) initial situation

We call an event A null if E(A) = 0, and strictly

null if there is some test supermartingale T that
converges to +• on A, meaning that:

limT (w) = +• for all w 2 A.

A test supermartingale is a supermartingale with
T (⇤) = 1 that is non-negative for all situations
in W⌃.
Using the definitions of null and strictly null event,
Shafer and Vovk (2001) proved the following ver-
sion of the supermartingale convergence theo-

rem:

Theorem 1. Let M be a supermartingale that

is bounded below. Then M converges strictly

almost surely to a real variable.

The intuition behind it is that there exists a test
supermartingale which is +• on the paths where
the process diverges. We were able to derive the
following useful theorem:

Theorem 2 (Strong law of large numbers for sub-
martingale differences). Let M be a submartin-

gale such that DM is uniformly bounded. Then

liminfhM i � 0 strictly almost surely.

Strong law of large numbers for submartingale differences

Imprecise Markov chains Imprecise Markov chains are
imprecise probability trees where all local uncertainty models
satisfy the so-called Markov condition:

Q(·|x
1:n) = Q(·|x

n

) for all situations x

1:n 2 W⌃
.

The lower transition operator T : G (X)! G (X) : f 7! T f is
defined by

T f (x) := Q( f |x) for all x 2 X

and the (global) lower expectation E

n

( f ) := E( f (X
n

)) at time
n is then given by

E

n

( f ) = E

1

(T n�1

f ), with T

n�1

f

:= TT . . .T| {z }
n�1 times

f .

An imprecise Markov chain is Perron–Frobenius-like if for
all f 2 G (X), the sequence T

n

f converges pointwise to a
constant real number, denoted by E•( f ). The E•( f ) is also
T -invariant in the sense that E• �T = E•.

Towards an imprecise ergodic theorem For any f 2
G (X), the average gain process is defined by:

hW i[ f ](X
1:n) :=

1

n


[ f (X

1

)�E

1

( f )]+
n

Â
k=2

[ f (X
k

)�T f (X
k�1

)]

�

and the ergodic average process by:

A [ f ](X
1:n) :=

1

n

n

Â
k=1

[ f (X
k

)�E

k

( f )]

It can be proved that

A [ f ](X
1:n) =

n�1

Ầ
=0

hW i[T `
f ](X

1:n)+
1

n

n

Â
k=1

T

n

f (X
k

)�1

n

n

Ầ
=1

T

`
f (X

n

).

Associate with T the (weak) coefficient of ergodicity r:

r(T ) := max

x,y2X
max

h2G
1

(X)
|Th(x)�Th(y)|= max

h2G
1

(X)
kThk

v

,

where G
1

(X) := {h2G (X) : 0 h 1}, and for any h2G (X),
khk

v

:= maxh�minh. Then it can be shown that an imprecise
Markov chain is Perron–Frobenius-like if and only if r(T r)< 1

for some r 2 N. If we define the following distance :

d(E,F) = max

h2G
1

(X)
|E(h)�F(h)|,

then we derive [using 1, 3 and 7] that 0  d(E,F)  1, and :

|E( f )�F( f )| d(E,F)k fk
v

. (1)

Using (1) and the property 0  r(T )  1, we get
��
T

`
1

f (X
k

1

)�T

`
2

f (X
k

2

)
�� k fk

v

rbmin{`
1

,`
2

}
r

c
. (2)

Combining hW i[ f ](X
1:n) with (2), we have

|hW i[T `
f ]| k fk

v

rb`
r

c
. (3)

From (3) and A [ f ](X
1:n) and using Theorem 2

liminfA [ f ] � 0 strictly almost surely,

and consequently our main result,

liminf

n!•

1

n

n

Â
k=1

f (X
k

) � E•( f ) strictly almost surely.

An interesting result for imprecise Markov chains


