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ABSTRACT. There are many randomness notions. Classically, many of them are about
whether a given infinite binary sequence is random for some given probability, meaning
that it is random for the i.i.d. process that assigns this probability to the outcome 1. In that
case, if a sequence is random according to several randomness notions, then the probability
for which it is random is the same for all these notions. Comparing randomness notions
then amounts to finding out according to which of them a given sequence is random. This
changes dramatically when we consider randomness for probability intervals, because here,
a sequence is always random for at least one such interval, so the question is not if, but
rather for which intervals, a sequence is random. We show that for many randomness
notions thus generalised, every sequence has a smallest interval for which it is (almost)
random. We study such smallest intervals and then use them as a way to compare the
corresponding randomness notions. We establish conditions under which such smallest
intervals coincide, and provide examples where they do not.

1. INTRODUCTION

The field of algorithmic randomness studies what it means for an infinite binary se-
quence, such as @ = 0100110100.. ., to be random for an uncertainty model. Classically,
this uncertainty model is often (the i.i.d. process that corresponds to) a single (so-called
precise) probability p € [0,1]. Some of the best-studied precise randomness notions are
Martin-Lof randomness, computable randomness, Schnorr randomness and Church ran-
domness. They are increasingly weaker; for example, if a sequence ® is Martin-Lof ran-
dom for a probability p, then it is also computably random, Schnorr random and Church
random for p. Meanwhile, they do not coincide; it is for example possible that a se-
quence @ is Church random but not computably random for 1/2. From a traditional per-
spective, this is how we can typically differentiate between various randomness notions
[1-4].

As shown by De Cooman and De Bock [5-7], these now more or less traditional ran-
domness notions can be generalised by allowing for imprecise-probabilistic uncertainty
models, such as closed probability intervals 7 C [0,1].! These more general randomness
notions, and their corresponding properties, allow for more detail to emerge in their com-
parison. Indeed, every infinite binary sequence ® is for example random for at least one
closed probability interval (and then also for all the ones it is included in). And for the im-
precise generalisations of many of the aforementioned precise randomness notions, we will
see further on that for every (or in some cases many) @, there is some smallest probability
interval for which @ is (almost) random—we will explain the modifier ‘almost’ further on.
It is these smallest probability intervals that we will use to compare a number of different
randomness notions.

Our endeavour to associate a unique (smallest) probability interval with an infinite bin-
ary sequence can be seen as a continuation of work by Richard von Mises [11], and Pablo
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We have discussed in a recent paper [8] how this approach can be connected mathematically to earlier work on
uniform randomness by Levin [9, 10].
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Fierens, Terrence Fine and Adrian Papamarcou [12, 13], who, on the one hand, aimed at
providing a frequentist interpretation for (imprecise) probabilities by identifying them with
relative frequencies along infinite sequences of zeroes and ones, and, on the other hand,
tried to establish methods for learning such uncertainty models from data. In this paper, we
want to provide new insights into the first aspiration from the vantage point of algorithmic
randomness.

We will focus on the following three questions: (i) when is there a well-defined smal-
lest probability interval for which an infinite binary sequence w is (almost) random; (ii) are
there alternative expressions for these smallest intervals; and (iii) for a given sequence ,
how do these smallest intervals compare for different randomness notions? For all ran-
domness notions that we will consider, except for Martin-Lo6f randomness, we will answer
the first question conclusively by associating a unique probability interval with every in-
finite sequence. Once these smallest probability intervals are defined, the second and third
questions explore, respectively, what they look like, and how robust they are with respect
to the adopted randomness notion. We will derive conditions for such smallest probab-
ility intervals to not depend on the adopted randomness notion, but we will also provide
examples where such smallest intervals do not coincide. Thus, by looking at algorithmic
randomness from an imprecise probabilities perspective, we will be able to do more than
merely confirm the known differences between several randomness notions. Extending ex-
isting randomness notions to allow for probability intervals will also allow us to explore fo
what extent these randomness notions are different, in the sense that we can compare the
smallest probability intervals for which infinite binary sequences are (almost) random.

Our contribution is structured as follows.

In Section 2, we introduce (non-)stationary (im)precise uncertainty models for infinite
binary sequences—so-called forecasting systems—that associate with every finite binary
sequence a possibly different probability interval; a probability interval thus corresponds
to a stationary forecasting system. We also introduce a generic definition of randomness
that allows us to formally define what it means for a sequence to have a smallest interval
for which it is (almost) random.

In Section 3, we provide the mathematical background on supermartingales that we
need in order to introduce a number—six in all—of randomness notions in Section 4:
(weak) Martin-Lof randomness, computable randomness, Schnorr randomness, and (weak)
Church randomness. The material from computability theory that we need to define these
randomness notions, is summarised in Appendix A.

In the subsequent sections, we tackle our three main questions (i)—(iii).

We study the existence of the smallest intervals for which an infinite binary sequence ®
is (almost) random in Section 5.

In Section 6, we provide outer and inner bounds for these smallest intervals. When
these bounds coincide, which we will show to be the case if @ is random for a computable
precise forecasting system, we obtain alternative expressions for such smallest intervals.
We also provide examples that indicate that our bounds are not tight in general.

In Section 7, we compare these smallest intervals for various randomness notions.
Again, if o is random for a computable precise forecasting system, we show that such
smallest intervals are reasonably robust with respect to the adopted notion of randomness
in the sense that many of them coincide. If w is (only) random for a forecasting system
that is not computable or is not precise, our approach allows for a better differentiation
between several randomness notions. We show how this can be achieved by providing
examples where the smallest intervals do not coincide.

All novel results—that is, the ones that are not merely borrowed from other publications—
are provided with a proof. Shorter proofs (that don’t make use of computability theory)
usually appear directly after the result. For narrative clarity, the ones that do make use of
computability theory are relegated to Appendix B.
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2. FORECASTING SYSTEMS AND RANDOMNESS

Consider an infinite sequence of binary variables Xi,...,X,, ..., where each variable X,
takes values in the binary sample space 2 = {0,1}; we generically denote such values
by x,. We are interested in the corresponding infinite outcome sequences (X1, ...,Xp,...),
and, in particular, in whether they are random. We denote such a sequence generically by @
and call it a parh. All such paths are collected in the set Q := 2'N.2 For any path ® =

X1y s Xn,--.) € Q, we let @y, == (x1,...,%,) and @, := x, for all n € N. For n =0,
the empty sequence ;.o == @y := () is called the initial situation, and we also denote it
by 0. For any n € Ny, a finite outcome sequence (xi,...,x,) € Z™" is called a situation,

also generically denoted by s, and its length is then denoted by |s| := n. All situations are
collected in the set S := {J,cry, 27" For any s = (x1,...,%,) € Sand x € 27, we use sx to
denote the concatenation (xj,...,X,X).

For any situation s € S and any path @ € Q, we write s C @ when @y.); = s, or in other
words when @ extends s, and we then say that the path @ goes through the situation s. For
any two situations s,z € S, we write s C ¢ when every path that goes through ¢ also goes
through s, and we then say that the situation s precedes the situation ¢; so s is a precursor
of 1. We say that s strictly precedes t, and write s C ¢, when s C ¢ and s # ¢t. For any
situation s € S, we denote the set {r € S: s C ¢} of all situations that extend s by [s], and
the set {® € Q: s C w} of all paths that go through s by [s].

The randomness of a path @ €  is always defined with respect to some uncertainty
model. Classically, this uncertainty model is often simply a real number p € [0, 1], inter-
preted as the probability that X, equals 1, for any n € N. As explained in the Introduction,
we can generalise this by considering a closed probability interval I C [0, 1] instead.* Such
more general uncertainty models will be called interval forecasts, and we collect all such
closed probability intervals in the set Z. Another generalisation of the classical approach
consists in allowing for non-stationary probabilities that X;, equals 1, which may depend on
the already observed outcomes s = (xi,...,X,—1) or only on |s| = n. Each of these general-
isations can themselves be seen as special cases of an even more general approach, which
consists in providing every situation s € S with a (possibly different) interval forecast in Z,
denoted by ¢(s). This interval forecast ¢(s) € Z then describes the uncertainty about the
a priori unknown outcome of X1, given that the situation s has been observed. We call
such general uncertainty models forecasting systems.

Definition 1. A forecasting system is a map @: S — 7 that associates an interval fore-
cast ¢(s) € Z with every situation s € S. We denote by @ the set of all forecasting systems.

With any forecasting system ¢ € ®, we associate two real processes ¢ and @, defined
by ¢(s) := min@(s) and @(s) := max @(s), for all s € S. A forecasting system ¢ € ® is
called precise if ¢ = @. A forecasting system ¢ € & is called stationary if there is some
interval forecast I € Z such that ¢(s) = I for all s € S; for ease of notation, we will then
denote this forecasting system simply by /; the case of a single probability p corresponds
to a stationary forecasting system with 7 = {p}. A forecasting system ¢ € ® is called
temporal if its interval forecasts ¢(s) only depend on the situations s € S through their
length |s|, meaning that @(s) = ¢(¢) for any two situations s,z € S that have the same
length |s| = |¢t|. Allowing ourselves a slight abuse of notation, we will also consider a
temporal forecasting system ¢: S — 7 to be a map from the non-negative integers to the
set of interval forecasts Z, thus enabling us to write @(n) instead of ¢(s) for all n € Ny and
s € S with |s| = n.

2N denotes the set of all natural numbers, and Np := NU {0} the set of all non-negative integers.>

3A real number x € R is called negative, positive, non-negative and non-positive, respectively, if x < 0, x > 0,
x>0andx <0.

4We will make no distinction between a precise forecast p € [0, 1] and the corresponding (degenerate) interval
forecast {p} = [p, p] € Z. This will allow us to treat precise forecasts as a special case of interval forecasts.
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In some of our results, we will consider forecasting systems that are computable. The
following intuitive description will suffice to be able to follow the argumentation and un-
derstand our results: a forecasting system ¢ € ® is computable if there is some (necessarily
finite) algorithm that, given any s € S and any N € Ny as input, can compute the real num-
bers ¢(s) and @(s) to within a precision of 27", For a formal definition of computability,
which we use in our proofs, we refer the reader to Appendix A.

So what does it mean for a path @ € Q to be random for a forecasting system ¢ € ®?
Since there are many different definitions of randomness, and since we intend to compare
them, we now introduce a general abstract definition and a number of natural properties of
such randomness notions that will allow us to do so.

Definition 2. A notion of randomness R associates with every forecasting system ¢ € ®
a set of paths Qr (). A path @ € Q is called R-random for ¢ if ® € Qgr(¢). In particular,
for any I € Z, we will also call any path @ € Qg (I) R-random for the interval forecast I.

The randomness notions we will be considering further on satisfy additional properties.
The first one is a monotonicity property, which we can describe as follows: if a path w €
Q is R-random for a forecasting system ¢ € @, it is also R-random for any forecasting
system ¢’ € ® that is less precise, or more conservative, in the sense that ¢ C ¢’, meaning
that @(s) C @'(s) for all s € S. Consequently, monotonicity requires that the more precise
a forecasting system is, the fewer R-random paths it has.

Property 1. If ¢ C ¢’ then also Qr(¢) C Qr(¢’), for any forecasting systems @, ¢’ € .

It will also prove useful to consider the property stating that all paths @ € Q are R-random
for the (maximally imprecise) so-called vacuous forecasting system @, € ®, which is the
stationary forecasting system defined by ¢,(s) := [0, 1] for all s € S.

Property 2. Qr([0,1]) = Q.

Thus, concentrating on stationary forecasting systems in particular, if Properties 1 and 2
hold for a randomness notion R, every path @ € Q will in particular be R-random for
at least one interval forecast—the vacuous forecast 7 = [0, 1]—and if a path ® € Q is
R-random for an interval forecast I € Z, then it will also be R-random for any interval
forecast I’ € T for which 1 C I'.

It is therefore natural to wonder whether every path @ € Q has some smallest interval
forecast I such that @ € Qg (1). As a step towards answering this question, we consider yet
another property that seems natural to require of a notion of randomness: if a path @ € Q
is R-random for two interval forecasts I,I’ € Z, then it should also be R-random for the
intersection /N 1.

Property 3. For any two interval forecasts I,I' € T and any path @ € Q, if ® € Qr(I)N
.Q.R(I/) then @ € QR(IﬁI/).

Note that, in the above property, it need not be guaranteed that the intersection I NI’
is non-empty. To guarantee that it will be—and as an imprecise generalisation of the law
of large numbers—it suffices to consider the additional property that if a path @ € Q is
R-random for an interval forecast I € Z, then this I should provide outer bounds for the
limiting relative frequency of ones along ®:

Property 4. For any interval forecast I € T and any path @ € Qr(I), it holds that
1 & 1 &
min/ < liminf — Z oy < limsup — Z o, < maxl/. @)
ALy = e MGy

Indeed, if a randomness notion R has Property 4, then

1 & 1 &
®cQr(NQRI') = 0 # |liminf— Y ay,li -) o
RU)NOx(1) = 0 |liminf, Y. o timsup Y. o

1 n—oo N
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C [max{min/,min/’},min{max/,max/’'}] = INI’,

forall ,I' € 7 and all ® € Q.

When the above 4 properties hold for a randomness notion R, we come very close to
answering the question whether every path @ € Q has some smallest interval forecast for
which it is random. To this end, consider for any given path @ € Q the set Zr (@) that
contains all interval forecasts / € Z for which @ is R-random [this set is non-empty by
Property 2 and increasing by Property 1]:

IR((D) = {1 el:we QR(I)}.
If there is a smallest such interval forecast, then it is necessarily given by
R(0):= ﬂIR(a)) = ﬂ{l € Z: o is R-random for I'}.

If a randomness notion R has Property 4, then Ir (®) is guaranteed to be non-empty:

n n

IeTR(w)=0+# 1iminf1 ) ook,limsup1 Y o CI, foralll € ZTandall w € Q,
nree My n—oo 132

and therefore, indeed, Ir (®) # 0. For all randomness notions R that we will consider,

Properties 1, 2 and 4 are satisfied, which implies that Iz (@) will always be well-defined in

our context.

As we will see, for some randomness notions R that satisfy Properties 1-4, Ir (@) will
indeed be the smallest interval forecast for which any ® is random. Consequently, for these
notions, and for any @ € Q, the set Zr(®) is a so-called principal set filter, completely
characterised by the interval forecast Iz (®) in the sense that @ will be R-random for an
interval forecast I € Z if and only if Ir (@) C I. For the other randomness notions that
satisfy Properties 1-4, the set Zr (@) will only be a set filter, and then Ir(®) is not the
smallest interval forecast for which @ is R-random, and Iz (@) does not fully characterise
the set Zr(w). However, in these cases, we do have that Ir (@) is the smallest interval
forecast for which w is almost R-random.

Definition 3. A path @ € Q is called almost R-random for an interval forecast / € 7 if it
is R-random for all interval forecasts I’ € Z of the form

I' = [min] — &, max/ + &] N[0, 1], with &1, & > 0.

Proposition 1. If a notion of randomness R satisfies Properties 1-4, then Ix(®) € T is the
smallest interval forecast for which a path @ € Q is almost R-random.

Proof. Recall that Iy (@) is well-defined and non-empty by Properties 1, 2 and 4. We now
start by proving that @ is almost R-random for Ir(®). That is, we fix any €,& > 0,
consider the interval forecast [ := [min/g (@) — €, maxIr (@) + &] N[0, 1], and show that
I € Iz (w). Observe to this end that, since @ # Ix(®) = (Zr(®), there are two interval
forecasts I1,I, € Zr(w) such that min/ < min/; < min/g(®) and max g (@) < maxl, <
max/. Since Property 3 is satisfied, we infer that then also I; NI, € Zr(w), and since
I} NI, C 1, it follows from Property 1 that, indeed, I € Zg (o).

It only remains to prove that I (@) is the smallest interval forecast for which @ is almost
R-random. Consider any interval forecast / for which w is almost R-random, meaning that
[min] — &, max/ + &) N[0,1] € Zr(w), and therefore also Irx(®) C [min/ — &, max] +
&]NJ0,1], for all &, & > 0. But then obviously also I (®) C I, and we are done. O

If a path @ € Q is almost R-random for the interval forecast Iz (@), then Ig (@) almost
completely characterises the set Zg (®): the only case where we cannot immediately decide
whether a path ® is R-random for an interval forecast I € Z or not, occurs when min/ =
min/g (@) or max/ = max/Ir(®). Moreover, as our terminology also suggests, because
Property 1 holds, @ € Q will be almost R-random for every interval forecast I € 7 for
which it is random. To clarify this, we provide a graphical representation in Figure 1.
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0 ! R
(@) [0.4,0.7]
[0.1,0.8]
o—o0 [0.5,0.6]
o————0 [0.6,0.9]

FIGURE 1. Consider a path @ € Q that is almost R-random for the inter-
val forecast Ir (w) := [0.4,0.7], where the randomness notion R satisfies
Properties 1-4. The green interval corresponds to an interval forecast for
which @ is R-random, whereas the red intervals correspond to interval
forecasts for which  is not R-random.

Finally, although we do not deem this desirable, there could be some randomness no-
tions R for which Zg () is not a (principal) set filter, and for which Properties 1-4 then
do not hold. For example, for the notion of ML-randomness that we will consider, the
question of whether it satisfies Property 3 will remain open. If this (or any other) notion
of randomness does not satisfy Property 3, we could then for instance have the situation
depicted in Figure 2, where there is a path @’ € Q that is R-random for all interval fore-
casts of the form [p, 1] and [0,¢], with p < 1/3 and 2/3 < g, but for no others. Then clearly,
Ir(@") = [1/3,2/3], but @’ is not R-random for I ().

0 1/3 2/3 1 R

0,2/3]

o [0.2,1]
° o [0.1,0.8]
[1/3,1]
1/3,%5)
FIGURE 2. The green intervals correspond to interval forecasts for

which @’ is R-random, whereas the red intervals correspond to inter-
val forecasts for which @’ is not R-random.

In the remainder of this paper, we intend to study the smallest interval forecasts for
which a path is (almost) R-random, if they exist, for several specific randomness notions
R. In the next section, we start by introducing the mathematical machinery needed to in-
troduce some of these notions, which are based on the martingale-theoretic approach to
randomness.

This martingale-theoretic approach makes extensive use of the concept of betting. Gen-
erally speaking, a path @ € Q will there be considered random for a forecasting sys-
tem @ € & if there is no implementable betting strategy that is allowed by ¢ and that, if our
subject adopts it, makes him arbitrarily rich along @. This approach will enable us to in-
troduce the notions of Martin-Lo6f randomness, weak Martin-Lof randomness, computable
randomness and Schnorr randomness, which differ only in what is meant by ‘implement-
able’ and in the way a subject should not be able to get arbitrarily rich [3].

3. MARTINGALE-THEORETIC APPROACH—BETTING STRATEGIES

Consider the following betting game involving an infinite sequence of binary vari-
ables X1, ..., Xy, ... There are three players: Forecaster, Sceptic and Reality.

Forecaster starts by specifying a forecasting system ¢ € ®. For every situation s € S,
the corresponding interval forecast ¢(s) determines for every gamble f: 2 — R whether
or not Forecaster offers f to Sceptic, or in other words, allows Sceptic to select f. The
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set of all gambles is denoted by Z(Z"). A gamble g € £ (2") is offered by Forecaster
to Sceptic whenever its expectation E,(g) := pg(1) + (1 — p)g(0) is non-positive for every
probability p € I = ¢(s), or equivalently, whenever max,c; E,(g) < 0. We will call such
gambles allowable.

The betting game now unfolds as Reality reveals the successive elements @, € 2~ of
a path o € Q. In particular, at every time instant n € Ny: Reality has revealed the situ-
ation @.,; Sceptic selects a gamble fy, , € £ (Z2") from amongst the ones that are allowed
to him by Forecaster, and which is specified by his betting strategy; Reality reveals the
next outcome m,+; € £, and Sceptic receives a (possibly negative) reward fy,., (@nt1)-
We furthermore assume that Sceptic starts with initial unit capital, so his running capital
at every time instant n € Ng equals 1+ ):Z;(l) S, (@r1). We also do not allow Sceptic to
borrow. This means that he is only allowed to adopt betting strategies that, regardless of the
path that Reality reveals, will guarantee that his running capital never becomes negative.

In order to formalise Sceptic’s betting strategies, we will introduce the notion of test
supermartingales. We start by considering real processes F: S — R; a process F is called
positive if F(s) > 0 for all s € S and non-negative if F (s) > 0 for all s € S. A real process F
is called temporal if F (s) only depends on the situation s € S through its length |s|, meaning
that F(s) = F(t) for any two s,7 € S such that |s| = |¢|; we then also write F(n) instead
of F(s) for all n € Ny and s € S with n = |s|. A real process S is called a selection process
if S(s) € {0,1} forall s € S.

With any real process F, we can associate a gamble process AF : S — £ (Z"), defined
by AF(s)(x) == F(sx) — F(s) forall s € S and x € 2", and we call it the process difference
for F. We will use the following notation: for every s € S, F(se) is the gamble on 2~
whose value, for any x € 27, is given by F(sx). Then, clearly, AF(s) = F(se) — F(s) for
alls€S.

If F is positive, then we can also consider another gamble process Dp: S — £ (2),
defined by Dr(s) = F(s*)/F(s) for all s € S, which we call the multiplier process for F.
And vice versa, with every non-negative real gamble process D: S — £ (Z"), we can
associate a non-negative real process D : S — R defined by D (s) = [T/Zy D(x14) (xk+1)
for all s = (x1,...,x,) € S, and we then say that D® is generated by D.

When given a forecasting system @ € ®, we call a real process M a supermartingale
for ¢ if for every s € S, AM(s) is an allowable gamble for the corresponding interval fore-
cast @(s), meaning that max ¢ o (5) E, (AM((s)) < 0. Moreover, a supermartingale 7 is called
a test supermartingale if it is non-negative and 7'(0J) := 1. We collect all test supermartin-
gales for ¢ in the set T(¢). It is easy to see that every test supermartingale 7' corresponds
to an allowed betting strategy for Sceptic that starts with unit capital and avoids borrow-
ing. Indeed, for every situation s = (x1,...,x,) €S, T specifies an allowable gamble AT (s)
for the interval forecast ¢(s) € Z, and Sceptic’s running capital 1+ Y7~ AT (x14) (xe41)
equals T'(s) and is therefore non-negative, and equals 1 in (J.

We recall from the discussion in Section 2 that martingale-theoretic randomness notions
differ in the nature of the implementable betting strategies that are available to Sceptic.
More formally, we will consider three different types of implementable test supermartin-
gales: computable ones, lower semicomputable ones, and test supermartingales generated
by lower semicomputable multiplier processes. Recall that a test supermartingale T € T(¢)
is called computable if there is some algorithm that, given any s € S and any N € Ny
as input, can compute the real number T(s) within a precision of 27V. A test super-
martingale T € T(¢) is called lower semicomputable if there is some algorithm that, given
any s € S as input, can compute a non-decreasing sequence (¢, ),en, of rational numbers
that converges to the real number 7 (s) from below—but without necessarily knowing, for
any given n, how good the rational lower bound g, is. Similarly, a real multiplier pro-
cess D is called lower semicomputable if there is some algorithm that, given any s € S
and x € 2 as input, can compute a non-decreasing sequence (g, ),en, of rational numbers
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that converges to the real number D(s)(x) from below. For all three notions of implement-
able betting strategies introduced above, we assume that, when the forecasting system ¢ at
hand is non-computable, the algorithms have no access to ¢ by an oracle. For more details
on computability theory, we refer the reader to Appendix A.

4. SEVERAL NOTIONS OF (IMPRECISE) RANDOMNESS

At this point, we have introduced the mathematical machinery necessary for defin-
ing our different randomness notions R. We start by introducing four martingale-theoretic
ones: they are Martin-Lof (R=ML) , weak Martin-Lof (R=wML), computable (R=C)
and Schnorr (R=S) randomness; in the classical precise-probabilistic literature, weak
Martin-Lo6f randomness is better known under the name of Hitchcock randomness [3, 14].
Generally speaking, for these notions, a path @ € Q is random for a forecasting sys-
tem @ € & if Sceptic has no implementable allowed betting strategy that makes him ar-
bitrarily rich along @. The randomness notions above differ in how Sceptic’s betting
strategies are implementable, and in how he should not be able to become arbitrarily rich
along a path w € Q. With these types of restrictions in mind, we introduce the following
sets of implementable allowed betting strategies.

Twme (@) all lower semicomputable test supermartingales for ¢

Towmr (@) all test supermartingales for ¢ generated by lower
semicomputable multiplier processes
Tc(), Ts() all computable test supermartingales for ¢
For a path @ to be Martin-Lof, weak Martin-Lof or computably random, we require that
Sceptic’s running capital must never be unbounded on @ for any implementable allowed
betting strategy; that is, no test supermartingale 7 € Tg(¢) must be unbounded on ®,
meaning that limsup,,_,., T (®;.,) = .

Definition 4 ([7]). For any R € {ML, wML, Cl, apath @ € Q is R-random for a forecasting
system @ € @ if no test supermartingale 7 € Tr(¢) is unbounded on .

For Schnorr randomness, we require instead that Sceptic’s running capital must not
be computably unbounded on ® for any implementable allowed betting strategy. More
formally, we require that no test supermartingale 7 € Ts(¢@) is computably unbounded
on . That T is computably unbounded on @ means that limsup,,_, [T (®;.,) — T(n)] >0
for some (real) growth function T, that is, for some real map 7: Ng — R>¢ that is

(i) computable;

(ii) non-decreasing, so T(n+ 1) > 7(n) for all n € Ny;

(iii) unbounded, so lim,_,. T(n) = 0.
Since any real growth function 7 is unbounded, it expresses a (computable) lower bound
for the ‘rate’ at which T increases to infinity along (a subsequence of) ®. Clearly, if
T € Ts(¢) is computably unbounded on @ € Q, then it is also unbounded on ®.

Definition 5 ([7]). A path @ € Q is S-random for a forecasting system @ € P if no test
supermartingale 7 € Ts(¢) is computably unbounded on ®.

De Cooman and De Bock have shown that these four martingale-theoretic randomness
notions satisfy Properties 1 and 2 [7, Propositions 9, 10, 17 and 18]. To describe the rela-
tionships between these martingale-theoretic imprecise-probabilistic randomness notions,
we consider the sets Qr(¢), with R € {ML,wML, C,S}. They satisfy the following inclu-
sions [7, Section 6], for every forecasting system ¢ € &:

QumL(@) € QumL(9) € Qc(@) € Qs(0). 2

SSince the map 7 is non-decreasing, its unboundedness is equivalent to lim,_. T(n) = 0.
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Thus, if a path @ € Q is Martin-L6f random for a forecasting system ¢ € ®, then it is also
weakly Martin-Lof, computably and Schnorr random for ¢. Consequently, for every fore-
casting system ¢ € @, there are at most as many paths that are Martin-L6f random as there
are weakly Martin-Lo6f, computably or Schnorr random paths. We therefore call Martin-
Lof randomness stronger than weak Martin-Lof, computable, or Schnorr randomness. And
similarly, mutatis mutandis, for the other randomness notions.

We will also consider two other imprecise-probabilistic randomness notions that have
a more frequentist flavour: Church (R=CH) and weak Church (R=wCH) randomness.
Their definition makes use of yet another (but simpler) type of implementable real process:
a selection process S is called recursive if there is some algorithm that, given any s € S
as input, outputs the binary digit S(s) € {0,1}. It is called adequate along a path @ € Q
if lim;; e ZZ;(I)S(wlzk) = oo, For every path @ € Q, we collect the corresponding recurs-
ive adequate selection processes in the set Scy(®). Similarly, we collect the recursive
adequate temporal selection processes in the (path-independent) set Sy,cu(®) = Swcn.

Definition 6 ([7]). A path o € Q is CH-random (respectively wCH-random) for a forecast-
ing system @ € @ if for every recursive adequate (respectively recursive adequate temporal)
selection process S € Scy () (respectively S € Sycn), it holds that

n—1 1 —
S(01.1) |01 — @ (. n . — .
i iank:o (014) [ 1 — @(@11)] > 0and I sup):kzos(w1.k)[wk+1 ?(01)]

n—oo i S(onx) n—o0 YizoS(ork)

For a stationary forecasting system / € Z, the conditions in this definition simplify to the
perhaps more intuitive requirement that

<0.

ming < liminf Yi o S(@rx) 01 < limsup Yo S(0r4) 0
nee YUTUS(@) ne Lp_pS(0rx)

It is easy to see that these two randomness notions also satisfy Properties 1 and 2.
Since wCH-randomness considers fewer selection processes than CH-randomness does, it
is clear that if a path w € Q is CH-random for a forecasting system ¢ € ®, then it is also
wCH-random for ¢. Hence, Qcy (@) C Qucn(@). For computable forecasting systems, we
can also relate these two ‘frequentist flavoured’ notions to the martingale-theoretic notions
considered before [7, Sections 6 and 7]: for every computable forecasting system ¢ € P,

< max/.

c Qcu() ¢
= s Q, . 3
< ay(p) c cu(o) 3)

For what follows, it will be useful to translate the above ordering into a partial ordering <
on the set {ML,wML,C,S,CH, wCH} as follows:

Qme (@) € Qumr(@) € Qc()

« CH <
wCH —~ > C<wML <ML.
Is £

As a final remark, which we will have occasion to come back to a number of times in
the sequel, we mention one of the implications of Corollary 20 in Ref. [7], namely that for
any forecasting system ¢, there is at least one Martin-Lof-random path, so Qump(¢) # 0.
Equations (2) and (3) then lead to the following conclusion.

Proposition 2. Consider any forecasting system @ € ®, then Qr(@) # 0 for any R in the
collection {ML,wML,C,S}, so there is at least one path that is R-random for ¢. If @ is
moreover computable, then also Qr(®) # 0 for any R in the collection {CH,WCH},6 50
there is at least one path that is R-random for @.

o1 actually holds for any forecasting system ¢ € ® that Qr(¢) # 0 for any R in the collection {CH,wCH}; we
refer to Ref. [15] for an explicit proof.
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5. SMALLEST INTERVAL FORECASTS AND RANDOMNESS

From now on, we will focus on stationary forecasting systems and investigate the differ-
ences and similarities between the six randomness notions we have introduced above. We
start by investigating whether, for any of these notions, there is a smallest interval forecast
for which a path is (almost) random. To this end, we will first compare the sets Zr (®),
with R € {ML,wML,C,S,CH,wCH}. They satisfy similar relations as the sets Qg (¢),
but without the need for computability assumptions.

Proposition 3 ([7, Section 8]). For every path @ € L, it holds that

c Ieu(o)
< E IWCH(CO).

v (w) € Iymr(w) € Ic(w) < Zy(a)
< 7 =

Similarly to before, if a path @ € Q is Martin-Lo6f random for an interval forecast I € Z,
then it is also weakly Martin-Lof, computably, Schnorr and (weakly) Church random for /.

By Definition 6 [with S = 1], our weakest notion of randomness guarantees that all
interval forecasts I € Zy,c (o) satisfy Property 4, and therefore, by Proposition 3, all six
randomness notions that we are considering here, satisfy Property 4. Since we already
know that they also satisfy Properties 1 and 2, we can infer from the discussion in Section 2
that the sets Zg (@) are non-empty, and that the interval forecasts Ir (@) are well-defined
and non-empty for all R € {ML,wML,C,S,CH, wCH}.

Moreover, since the sets Zg (®) satisfy the relationships in Proposition 3, their intersec-
tions Ir () satisfy the following converse relationships.

Corollary 4. For every path ® € Q, it holds that

C Icn(o) S Ic(®) C Iyv () € I (o).

Iycu() < Is(a) c fe

Proof. Consider any path @ € Q. Since all six randomness notions that we are considering
satisfy Property 2 and 4, the interval forecasts Ir (@) := (Zr (@) are well-defined and non-
empty for all R € {ML,wML,C,S,CH,wCH}. Moreover, since the sets Zg (@) satisfy the
relations in Proposition 3, their intersections Ig (®) satisfy the above inverse relations. [

Let us now return to our original question: for any of our randomness notions R,
with R € {ML,wML,C,S,CH,wCH}, is there a smallest interval forecast for which a
path @ € Q is (almost) random? If so, then it is necessarily given by Ir(®), as we dis-
cussed in Section 2. For CH- and wCH-randomness, we find that every path w € Q is in
fact CH- and wCH-random, respectively, for the interval forecasts Icy(®) and Iycy(®),
and that these are therefore the smallest intervals for which this is the case.

Proposition 5. Consider any R € {CH,wCH} and any path © € Q. Then Ir(®) is the
smallest interval forecast for which @ is R-random, and

n—1 n—1
S(w;.) @ S(01-1) 0
R(@)= | inf 1 iank:(:H( 1:k) L p T Supzk:?l,l( k) Ok+ 1
Sesg(w) nee YUT S(01k)  sesg(w) n—e YicoS(o1x)

Proof. Consider any R € {CH,wCH} and any path @ € Q. We need to prove that o is
R-random for the interval forecast Iz (). To this end, consider the real numbers p < ¢
in [0, 1] defined by

n—1 n—1
S(01:) @ S(01:4) @
p= inf liminf —Zk:?HI( 1) Ok and ¢g:= sup limsup —Zk:?%l( 1) Ok
Sesp(w) nee YT S(oyx) seSp(@) n—oe i S(@1x)
It follows directly from Definition 6 that @ is R-random for [p, ¢], whence, Ir(®) C [p,q].

We are clearly done if we can show that Ix(®) = [p,q]. To this end, assume towards
contradiction that Ig (@) C [p, g, so there is some I € Zg (®) for which p < min/ or max/ <

“)
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g. But then Equation (4) guarantees that there is some selection process S € Sg(®) such
that

n—1 n—1
S(1:) @ S(0.4)®
liminfM < min/ or max/ < limsup M

ne YIS () noe Y 0S(wrg)
contradicting, via Definition 6, that @ is R-random for /, or in other words that I € Zg (®).
We conclude that @ is indeed R-random for the interval forecast Ig (©) = [p, q]. ]

This result not only shows that there is a natural way to associate a unique smallest interval
forecast with a path @ € Q, by adopting (w)CH-randomness, but also that our approach is
very similar in spirit to earlier work by Pablo Fierens, Terrence Fine and Adrian Papamar-
cou [12, 13], as the interval forecast I(W)CH(w) corresponds to the convex hull of the cluster
points of the relative frequencies of ones along the path  and a specific (countable) col-
lection of subsequences.

A similar result need not hold for the other four types of randomness we are consid-
ering here. As an illustrative example, consider the non-stationary but temporal precise
forecasting system @1/, defined, for all s € S, by

1 8
oyps) = 1 (130D, with )= /£ poratin e g

It has been proved [7, Section 9.2] that if a path @ € Q is C-random for ¢._/,, then @ is also
CH-random and almost C-random for the stationary precise model 1/2, but not C-random
for 1/2; and there always is such a C-random path for ®~1/, [7, Corollary 20].

While in general I (w) may not be the smallest interval forecast for which a path @ € Q
is R-random, De Cooman and De Bock have effectively proved that for R € {wML,C, S},
every path @ € Q is almost R-random for Iz (), essentially because in those cases the
corresponding sets Zgr () are closed under finite intersections, that is, because these ran-
domness notions R satisfy Property 3.

Proposition 6. Consider any R € {wML,C,S} and any path @ € Q. Then Ir(®) is the
smallest interval forecast for which @ is almost R-random.

Proof. This is immediate from Proposition 1, since the randomness notion R satisfies Prop-
erties 1, 2 and 4—as has already been mentioned in the text—, and since it satisfies Prop-
erty 3 [7, Propositions 31-33]. (]

It should be noted that there is no mention of ML-randomness in Propositions 5 and 6.
Indeed, it is an open problem whether paths @ € Q are generally (almost) ML-random for
the interval forecast Iy (®); recent results by Barmpalias et al. [16] seem to indicate the
converse. We can however provide a partial answer by focusing on paths @ € Q that are
ML-random for a computable precise forecasting system ¢ € ®.

Proposition 7. If a path ® € Q is ML-random for a given computable precise forecasting
system @ € ®, then Iy (@) is the smallest interval forecast for which ® is almost ML-
random.

6. WHAT DO SMALLEST INTERVAL FORECASTS LOOK LIKE?

Having investigated for which types of randomness R the set Iz (®) is the smallest in-
terval forecast for which a path ® is (almost) random, we now set out to find an alternative
expression for this interval forecast Ig (®); note that we have already succeeded in doing
so for CH- and wCH-randomness in Proposition 5 by providing alternative expressions
for Icy (@) and Lycy () in terms of relative frequencies. As indicated in the Introduction,
we take a different approach here, and start by exploring how a (non-stationary) forecasting
system for which a path @ is R-random puts bounds on the smallest interval forecast Ig (@)
for which it is (almost) R-random.
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Special dedicated interval forecasts will play a vital role in this part of the story: for
every path @ € Q and every forecasting system ¢ € ®, we will consider the interval fore-
casts I (@) and Iy (@) defined by

lp)(®) == |lim inf @(s),lim sup (p(s)} and

noesElop] T T ey,

Ip(w) = [ﬁlﬂi;lfﬂ(@l:n), limsupa(wl;n)} .

n—eo
To make the definitions of the interval forecasts /;y) (@) and Iy (®) more intuitive, we have
provided a graphical representation in Figure 3.

In general, clearly, Ip(®) C Ijp)(®). However, for temporal forecasting systems ¢ €
®, these interval forecasts are easily seen to coincide with the path-independent interval
forecast

Ip = [liy{gigfg(n),limsupﬁ(n)} — Iy (0) = Ip(o). )

n—soo

FIGURE 3. In yellow, light blue and dark blue, we have respectively de-
noted the path @ = (0,1,0...), and the sets of situations [0] and [01].
For Iy(w), we only need to consider the values of ¢ in the situations
along the yellow path @, whereas for [}y (w), we need to take into ac-
count the values of ¢ in the (increasingly smaller) nested blue cones [0],
[01], ... along the yellow path ®.

So, what does the smallest interval forecast Ir (@) for which a path @ is (almost) R-
random look like? We start by considering arbitrary forecasting systems ¢ € & and by as-
suming that @ is R-random for such a forecasting system ¢, for any R € {ML,wML,C, S, CH,
wCH}. The forecasting system ¢ then imposes outer bounds on the interval forecast I (®)
in the following sense.

Proposition 8. For any R € {ML,wML,C,S,CH,wCH} and any path ® € Q that is
R-random for a given forecasting system @ € @, it holds that Ir(®) C Iy(®) if R €
{CH,wCH}, and Iz (®) C Ijy)(®) if R € {ML,wML,C,S}.

When we restrict our attention to computable forecasting systems ¢ € @, the bounds can
be made (at least as tight or) tighter for R € {ML,wML,C,S} as well.

Proposition 9. For any R € {ML,wML,C,S,CH,wCH} and any path @ € Q that is R-
random for a given computable forecasting system ¢ € ®, it holds that Ir (®) C I (®).

To see that the outer bounds on Ir (®) in Proposition 9, with R € {ML,wML,C,S}, can
indeed be tighter than the ones given in Proposition 8, consider the following example,
with a path @ € Q that is R-random for a computable forecasting system ¢ € ® such that

R(w)=1Iy(w) C Ijg) (o).
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Example 1. Define the computable precise forecasting system ¢ | by letting ¢, | O)=1
and @, | (x1.,) :==x, forall x;.,, € Sand n € N. Fix any R € {ML,WML,C, S} and consider
the path @ € Q defined by @, := 1 for all n € N. This ® is R-random for @) - Indeed,
consider any test supermartingale 7 € TR(¢071). Since (p071(a)1;,,) =1 for all n € Ny, it
holds for all n € Ny that

0> E¢011(w1:n)(AT(a)1:n)) = E(AT(@1:1)) = AT (@1:) (1) = AT (@1:0) (@n 1),

50 T(01,) = T(O) + L1—§ AT (@14) (041) < T(O) = 1. All test supermartingales T €
Tr(@, ) are therefore bounded above by 1 on @, which guarantees that @ is indeed
R-random for @, ;. It therefore follows from Proposition 9 that Ig (@) € Iy, , (@). Fur-
thermore, clearly, I, (®) =1 and I[%ﬂ(w) = [0,1]. Since the only non-empty interval

contained in [1,1] is ['1, 1] itself, it follows that Ir (@) = I, (@) C Iy j(@). O

If e is R-random for a computable forecasting system ¢ € ®, now with R € {ML, wML,
C,CH}, then the forecasting system ¢ also imposes inner bounds on the interval fore-
cast Ip (o).

Proposition 10. For any R € {ML,wML,C,CH} and any path @ € Q that is R-random
for a given computable forecasting system ¢ € ®, it holds that

minlg(®) < lirginfﬁ(wl;n) and limsup ¢(@;.,) < max g (o).
n—oo -

n—oo

When the forecasting system @ € ® is also temporal, we can extend this to R € {S,wCH}.

Proposition 11. For any R € {ML,wML,C,S,CH,wCH} and any path ® € Q that is
R-random for a given computable temporal forecasting system @ € ®, it holds that

minlg(®) < lirginf@(a)l;n) and limsup ¢(@;.,) < max g (o).
n—oo n—oo

Interestingly, if w is R-random for a computable precise forecasting systems ¢ € P,
with R € {ML,wML,C,CH}, then the inner bounds on Iz (®) in Proposition 10 simplify
to Iy(®) C Ir(w). If we combine this with the outer bounds on /g (®) in Proposition 9,
we see that in this case the forecasting system @ characterises the interval forecast Ir (®)
completely in the following sense.

Theorem 12. For any R € {ML,wML,C,CH} and any path ® € Q that is R-random for
a given computable precise forecasting system @ € @, it holds that I (®) = I,(®).

Proof. Since the forecasting system ¢ € P is precise by assumption, it holds that ¢ =
¢@. Since w is R-random for the computable precise forecasting system ¢, with R €
{ML,wML, C,CH}, it therefore follows from Proposition 10 that

minlg (®) < liminf@(®;.,) < limsup ¢(®;.,) < maxr(®),
n—eo n—yoo
so, on the one hand, /o, (@) C Iz (®). Since, on the other hand, it follows from Proposition 9
that Ir (@) C Iy(®), we may conclude that, indeed, Iz (@) = Ip(®). O

And of course, when the computable precise forecasting system ¢ € @ is also temporal,
this result applies to Schnorr and weak Church randomness as well.

Theorem 13. For any R € {ML,wML,C,S,CH,wCH} and any path ® € Q that is R-
random for a given computable temporal precise forecasting system ¢ € ®, it holds that
IR((D) = I(p.

Proof. Since the temporal forecasting system ¢ € @ is precise by assumption, it holds that

@ =¢. Since @ is R-random for the computable precise temporal forecasting system @,
with R € {ML,wML,C,S,CH, wCH}, it therefore follows from Proposition 11 that

min/g (@) < liniinf(p(a)lz,,) < limsup @ (@) < maxlg(w),
n—ree n—yoo
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so, on the one hand, /o, (@) C Iz (®). Since, on the other hand, it follows from Proposition 9
that Ir (@) C Iy(w), we may conclude that, indeed, Ir (@) = Iy (@) = I. O

It is now natural to wonder whether this result can be extended to general imprecise
computable forecasting systems. The following example contradicts that.

Example 2. Fix any R € {ML,wML,C,S,CH,wCH} and consider any path @ € Q that is
R-random for 1/2, which is always possible by Proposition 2. Obviously, Ig (@) = 1/2. Since
R-randomness satisfies Property 1, we know that @ is also R-random for the rational—
and therefore computable—interval forecast ¢ = [1/4,3/4]. Clearly, I, = [1/4,3/4] D 1/2, so

IR((D) #I(p. %

Perhaps the results in Theorems 12 or 13 can be extended to general precise (but non-
computable) forecasting systems? Again, we provide a counterexample.

Example 3. As in the previous example, fix any R € {ML,wML,C,S,CH,wCH} and con-
sider any path @ € Q that is R-random for 1/2, which is always possible by Proposition 2.
Obviously, as before, Ir (@) = 1/2.

Observe that the path @ must have an infinite number of zeroes and ones, because
otherwise it would follow that liminf,, .. % Yi—i @ =0orlimsup,_,., % i@ =1, con-
tradicting Property 4 as @ is R-random for 1/2. This implies that @ cannot be comput-
able, because computable paths with infinitely many zeroes and ones are only R-random
for [0,1] [7, Proposition 34].

Meanwhile, the path w is also R-random for the—clearly non-computable because ®
is non-computable—temporal precise forecasting system @g’,, defined by @, (n) := @, 11
for all n € Nj. 7 '

To see why, first assume that R € {ML,wML,C,S}, and consider any test supermartin-
galeT € TR((p&’l). Since T is a supermartingale for ¢, it holds for any n € Ny that

0 2 E¢$1(w1:n>(AT(wl:'1)) - Ewn-H (AT((D]H)) = AT((D];n)((D,H,] )7

and therefore,
n—1
T(01,) =T(O)+ Y AT (014)(0411) < T(O) = 1.
k=0
Consequently, all test supermartingales T € Tr(¢;) are bounded above by 1 on @, so @
is indeed R-random for ¢, .
Next, since @‘)‘” (o) = Q(‘)" . (01:,) = @41, we see that the conditions in Definition 6
are trivially satisfied, so @ is indeed also R-random for @, for R € {CH,wCH}.
However, since we know that @ contains an infinite number of zeroes and ones,
® ) S [y . . —
Tige (@) = Igo (@) = Igo, = llmlnfwgl(n),llmsup (pgfl(n)}

P X
0,1 n—oo n—soo

= [liminfa)nﬂ,limsup (Un+1} =1[0,1],
n—reo n—soo

and therefore Ir (@) # Igo . O

7. WHEN DO SMALLEST INTERVAL FORECASTS (NOT) COINCIDE?

We mentioned in the Introduction that we restrict our attention in this paper to asso-
ciating interval forecasts with idealised infinite amounts of data, and therefore will not
be concerned with trying to elicit such interval forecasts from finite amounts of data. It
will nevertheless be instructive to start our discussion in this section by considering a situ-
ation s € S and assuming that it is an initial segment of some idealised path .

What does it mean to learn an uncertainty model from a finite amount of data, that is,
from a situation s? First of all, it implies that we assume the data-generating process to be
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erratic in some way, and that, therefore, putting forth some uncertainty model is the most
accurate description we can provide.

What type of uncertainty model is to be used, then? The answer depends on the as-
sumptions we (want to) make about the data generating process—that is, about the process
that governs the path @. Alonzo Church [17], for example, suggested associating a prob-
ability p € [0, 1] with a path @ when the relative frequencies of ones along @ and along all
computably selectable infinite subsequences converge to p.

How to elicit this uncertainty model from a finite amount of data, then? When adopting
Church’s above-mentioned assumption on the data-generating process, and when given
a finite amount of data s C w, the relative frequency of ones along s seems a reasonable
estimator for the uncertainty model p that is associated with the path w—for one thing, this
estimator can then be expected to converge to p as more data comes in, in the sense that, if
our assumption is correct, (Ve > 0)(F C o) (Vs€S: t CsC a))|‘—{‘ ZL‘Y‘:I sk—p| <€

However, no matter how straightforward matters seem to be in the above classical (so
called precise-probabilistic) case, we ought to keep an open mind and remain wary of the
justifiability of our assumptions. In [18], for instance, Igor Gorban has argued that quite
some phenomena display behaviour where relative frequencies do not tend to converge
with increasing amounts of data.

As one possible solution, our approach allows for more general types of uncertainty
models: we have allowed for (more general) interval forecasts while still considering a
variety of randomness assumptions R € {ML,wML,C,S,CH,wCH} that can be associ-
ated with the data generating process. We can thus associate with a path @ several smallest
interval forecasts Ir(®), with R € {ML,wML,C,S,CH,wCH}, and we have shown for
all randomness notions R but ML-randomness that Ir (@) is the smallest interval forecast
for which a path w is (almost) random. As a possible (baby) step towards developing a
statistical theory for such interval forecasts one day, we may now ask ourselves the import-
ant question: how robust is the notion of a smallest interval for which a path is (almost)
random, with respect to randomness assumptions about the data generating process: how
strong are the assumptions we want to make and what is their impact?

If, for instance, we impose ML-randomness on a path @, how does the corresponding
smallest interval forecast Iy (@) for which a path is (almost) ML-random—if it exists—
then compare to that for weaker randomness notions? In this section, we investigate con-
ditions for the choice of randomness assumption to have no effect on the smallest interval
forecast for which a path is (almost) random, in the sense that it coincides with the smallest
interval forecasts for which the path is (almost) random, for weaker randomness assump-
tions. On the other hand, we will provide examples where the choice does matter, and
where the stronger the randomness assumption is, the wider the corresponding smallest
interval forecast will be.

Let us start by considering a path @ € Q that is ML-random for some computable pre-
cise forecasting system ¢ € ®; similar results hold when focusing on weaker notions of
randomness. We know from Equation (3) that @ is then also wML-, C- and CH-random
for ¢. By invoking Propositions 5-7, we infer that I (®) is the smallest interval fore-
cast for which @ is (almost) R-random, for any R € {ML,wML,C,CH}. Moreover, by
Theorem 12, these smallest interval forecasts all equal I(p(a)) and therefore coincide, i.e.,
I (@) = LymL (@) = Ic(®) = Icu(®) = Ip(®); the previous exposition is formalised in
the following statement, with the partial ordering < on the set {ML, wML,C,S,CH, wCH}
as defined on page 9.

Corollary 14. For any R € {ML,wML,C,CH} and any path @ € Q that is R-random
for a given computable precise forecasting system ¢ € ® it holds that I,(®) = Io(®) for
all Q € {ML,wML,C,CH} such that Q < R.
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Proof. Since @ is R-random for the computable precise forecasting system ¢, Equation (3)
tells us that @ is also Q-random for ¢, with Q € {ML,wML, C,CH} such that Q <R, and
Theorem 12 then guarantees that I (@) = I, (@) for all these Q. O

By only looking at temporal computable precise forecasting systems ¢ € ®, we can even
strengthen these conclusions. For example, using a similar argument as before—but using
Theorem 13 instead of 12—we see that if @ is ML-random for such a forecasting system ¢,
then the smallest interval forecasts Ir (@) for which @ is (almost) R-random, coincide for
all six randomness notions that we consider; this is formalised in the following statement.

Corollary 15. For any R € {ML,wML,C,S,CH,wCH} and any path @ € Q that is R-
random for a computable temporal precise forecasting system ¢ € ® it holds that Io(w) =
Iy for all Q € {ML,wML,C,S,CH,wCH} such that Q <R.

Proof. Since ® is R-random for the computable precise temporal forecasting system ¢,
Equation (3) tells us that @ is also Q-random for ¢, with Q € {ML,wML,C,S,CH,wCH}
such that Q <R, and Theorem 13 then guarantees that IQ( 0)= I for all these Q. O

Looking at these results, the question arises whether there are paths @ € Q for which
the various interval forecasts Ir (@) do not coincide. It turns out that such paths do exist;
notice that this approach to comparing randomness notions differs from what is classically
done [3, 4], since there is for example, as we discussed in Section 5, a path @ € Q that is
CH-random but not C-random for 1/2, whilst Icy (@) = Ic(®) = 1/2. We start by showing
that the smallest interval forecasts Ic(®) and Is(®) for which a path @ € Q is respectively
almost C- and almost S-random, do not always coincide.

Proposition 16. There is a path ® € Q such that Is(®) = 1/2 € [1/2,1] C Ic(o).

The following proof is based on ideas in Ref. [7], which are in their turn based on a
construction by Wang [4] that shows that S-randomness does not entail CH-randomness; a
more recent and perhaps more simple construction that leads to this result can be found in
Ref. [19, Theorem 2.2.21 and Corollary 2.2.23].

Proof. Yongge Wang [4, Theorem 3.3.5] has proved the existence of a path @ € Q and a
recursive selection process S € Scu(®) such that

(i) 1/2 € Zs(o);

(ii) for all n € Ny, if S(@.,) = 1, then @, = 1.
We will prove that o is exactly the path we are after.

To show that Is(w) = /2, we simply observe that, since 1/2 € Zg(®) and since Is(w) is
non-empty because Properties 2 and 4 hold for R = S, it follows that Is(@) = NZs(®) =
1/2.

We continue by showing that [1/2,1] C Ic(®). By Corollary 4, it suffices to show that
[1/2,1] C Icn(®), which is what we will now do. Since Is(®) = 1/2 and since Lycp(®)
is non-empty by Properties 2 and 4, it follows from Corollary 4 that Iycy(®) = 1/2 # 0,
and therefore, again by Corollary 4, we already find that min/cy (@) < 1/2. It now only
remains to show that 1 < max/Icy(®). Since the path @ is CH-random for the interval
forecast Icy (@) by Proposition 5, we gather using Definition 6 and (ii) that, indeed,

n—1
S(or.x)o
1= limsup Zk:(,),_l( l.k) k+1
n—oo Zk:O S(wl;k)

We are also able to show that there is a path @ € Q such that Ic(®) = 1/2 is the smallest
interval forecast for which it is almost C-random, whereas @ is not almost ML-random
for 1/2. Tt suffices to apply the following result with p < 1/2 < g; for this result, we have
drawn inspiration from Ref. [20].

< maxIcy(w). O
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Proposition 17. For every two real numbers p,q € R such that 0 < p < g < 1, there is a
path ® € Q such that Ic(®) =1/2 and [p,q] ¢ TvL(@).

Clearly, for p < 1/2 < g, the path @ € Q in Proposition 17 cannot be Martin-Lof random
for a precise computable forecasting system ¢ € ®, because otherwise, the interval fore-
casts Ic(®) and Iy (@) would coincide by Corollary 14, and @ would therefore be almost
Martin-L6f random for 1/2 by Proposition 7, contradicting the result. So, for p < 1/2 < ¢,
the path o in this result is an example of a path for which we do not know whether there is
a smallest interval forecast for which @ is almost Martin-Lo6f random. However, if there is
such a smallest interval forecast, then Definition 3 and Proposition 17 show it is definitely
not equal to 1/2; due to Corollary 4, it must then strictly include 1/2.

We continue by showing that there is at least one path @ € Q such that the smallest
interval forecasts Icy (@) and Iycy (@) for which it is CH- and wCH-random, respectively,
do not coincide. To do so, we will make use of the forecasting system ¢, , € ®, defined
for all p,qg € R by

) p ifx, =1
@p,g(0) = 0and @p ¢(x1:0) = {q ifx,=0

for all n € N and x;., € S.

When considering any two computable real numbers p,q € R such that 0 < p < g < 1, it
turns out that [p, g] = Icu(®) D Iwcu(®) for any path @ € Qcu (¢, 4); since the forecasting
system @, , is clearly computable for any two computable reals p and ¢, there always is
such a path, by Proposition 2.

Proposition 18. Consider any two computable real numbers p,q € R such that 0 < p <
g < 1 and any path ® € Qcu(@pq). Then Icu(®) = [p,q] and

p<q—(q—p)g <minlycy(®) and maxlycy(®) < qg—(g—p)p <gq.
We will make use of the following lemma for proving this proposition.

Lemma 19. Consider any two real numbers p,q € R such that 0 < p <q <1, any path ® €
Qcu([p,q]) and any recursive temporal selection process S for which lim,,_e. ZZ;(]) S(k) =
oo, Then
n—1 n—1
S(k)o S(k)o
721‘:1 (k) o < limsu 721‘:1 (K)o <

p < liminf ="~ < —
n—yeo Zk:() S(k) n—yoo Zk:() S(k)
Proof. Consider the recursive temporal selection process S defined by §'(n) := S(n+1)
for all n € Ny and observe that
Yoo S(k) oy _ YigS ko YgS Ko Y5 (k)

LisoSk) SO +EZSK) LSS (k) SO) + K8 (k)
Since lim, o Yf— ) S(k) = oo implies that also lim,_ Y./~ { §'(k) = oo, this guarantees that

n—1 n—1 ¢/
Sk)m S'(k)w
liminfi):’kjl_l( ) _ 1iminf—zk:3_1( /) >
n—yeo Zk:() S(k) n—yee Zk:()s (k)
where the last inequality follows from Definition 6, and in a completely similar vein,
n—1 n—1 ¢/
Sk NI
limsup 7):1‘?_1( ) = limsup —Zk:(r),_l( /) kil <gq
D Y A S(k) n—soo YioS (k)
Proof of Proposition 18. Since @ is CH-random for ¢, 4, and Property 1 holds for R = CH,
we find that @ € Qcu([p,q]).
As a first step, we show that @ then must have an infinite number of zeroes and an
infinite number of ones. Indeed, assume towards contradiction that @ contains only a

i

O
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finite number of ones; the other case can be proved by a similar line of reasoning. Since
o € Qcu([p,q]), we infer from Definition 6 [with S = 1] that

n—1
()
p< hminfw
n—soo n

=0,

contradicting the assumption that 0 < p.

Since @, , is clearly a computable precise forecasting system, it follows from The-
orem 12 that

Icn(@) =1y, (0) = [hmlnf(ppq(a)l n),limsup @, , (o n)}

n—so0

= [lirgg}f(ﬁ(p—q)wn)71imj£p(q+(p—q)wn)] =p.gl, (©

where the last equality holds because @ consists of an infinite number of zeroes and an
infinite number of ones.

It is a matter of straightforward verification to show that p < g — (¢ — p)gq and that
q— (g—p)p < q. Tt therefore remains to prove that Iycp(®) C [¢— (9—p)g,9— (g—p) p]
To this end, fix any recursive temporal selection process S such that lim,, e, Y7~ é S(k)=
Since @ € Qcu(¢,4) and since @, 4 is a computable forecasting system, it follows from
Equation (3) that w € QWcH((pp_’q), and therefore Definition 6 guarantees that

I S(k) [0t — @pg(@rk)] Y70 S(k) (@1 — @pg(01:0)]

liminf — > 0 and limsup — <0.
n—yeo Zk:() S(k) n—yeo Zk:0 S(k)
(7
Now,
Yo S(K)[@ks1 — @pg(@14)] _ YioSK) @1 Lio S(k)@pq(@rs)
Yo S(k) Yo S(k) TicoS(k)
_ Yoo S(k) @y B Y21 8(k) (g+ (p—q) o)
YiZoS(k) Yo S(k)

Y1 S(k) o
TisoS(K)
(®)
Since we assumed that lim, e Y/ éS(k) = oo, taking the liminf on both sides in Equa-
tion (8) then leads to

_ Y S(ek YR S(k)

roosh x94T

liminf Zz;(l) S(k) [wk+11 — Qpq(O1)]
e YizoS(k)
(ZZ_‘%S(”“”‘*‘ ap skl mi”*ﬁ)

= liminf
n—oo

i) S(k) qz’,::éS< K) R

o TSk @ TSk o Y S(k)ox
< liminf zgf(gs(k) +limsup ( q):g (1,5( o ar) YISk
n—1
flimlnfz Sk} @41 +(qu)limsupm

st ZZ:(%S( y 2 novee Y1 S(K)
Zz;é S(k) @y 1 _

T Y S(k)
where the (in)equalities follow from the properties of the liminf operator, ¢ > p and
Lemma 19. Similarly, taking the limsup on both sides in Equation (8) leads to

+(g—p)g,
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n—1
—oS(k)| 041 — ;.
fmsup B SOI0ks1 — @r(010)
n—so0 Y oS(k)
n—1 n—1 n—1

) —oS(k) o1 —1S(k 1 Sko

:hmsup<zk—0 ( ) +1 Zkfl ( ) Zkfl ( ) k

+(g—p)

YIStk Tyl Yo Sk)

n—1 n—1 n—1
S(k)w S(k Sk)w
> lim sup k=0 ( ) k+1 h” i f( k=1 ( ) ( )Zk,I ( ) k)

n—soo

neo X0 0 S(k) "o S(k) o S(k)
i 70 S(k) 0 11 S(k) o
= lmsup? T
e YIZLS(k) Yi—oS(k)
n—1
S(k)w,
> limsup TA=0 S0kt
Nn—o0 Zk:() S(k)

If we combine these inequalities with Equation (7), then a few algebraic manipulations
lead us to

— g+ (g— p)liminf
n—soo

+(g—p)p-

";(1) S(k) @11 Z;é S(k) @41

—(qg— < liminf =X <limsup=—"————— <g—(¢g—p)p-

q—(g—p)g <limin yrls(e SR T < (g—p)p
We now infer via Definition 6 that @ is wCH-random for [¢ — (¢ — p)q,q — (¢ — p) p], and
therefore, indeed, Iycu(®) C [¢—(¢—p)g,9— (g— p)p). O

Proposition 18 also shows that R can only equal wCH in Theorem 13 and Corollary 15,
and not in Theorem 12 and Corollary 14. Indeed, consider any computable precise fore-
casting system @, as in Proposition 18 and any path @ € Q that is CH-random for ¢, ,,
for which then Icy(®) = [p, ¢]. If Theorem 12 or Corollary 14 allowed for R = wCH, then
Iycu(®) would equal Icy(®) = [p, g], which contradicts Proposition 18 because that says
that p < min/y,cu(®) and max lycp(w) < g.

When considering a forecasting system ¢, , as in Proposition 18, but a path @ € € that
is now C-random for ¢, , [which is always possible by Proposition 2], then we can prove
that the smallest interval forecasts Is(®) and Iycp(@) for which @ is respectively almost
S- and wCH-random, do not coincide.

Proposition 20. Consider any two computable real numbers p,q € R such that 0 < p <
g < 1 and any path ® € Qc(@p4). Then Is(®) = Ic(®) = Icu(®) = [p,q] and

p<q—(q—p)g <minlycy(®) and maxlycy(®) < qg—(g—p)p <gq.

So, Propositions 16-20 show that the smallest interval forecasts Ir (@), with R € {ML,
wML,C,S,CH,wCH} and @ € Q, do not always coincide. In order to keep track of those
randomness notions for which we have been able to prove this, we provide an overview
in Figure 4.

We believe that allowing for interval forecasts in the study of algorithmic randomness
allows for a more detailed differentiation between the more common randomness notions
in the literature. For example, instead of only being able to say that some path @ € Q is
Church random but not computably nor Martin-Lof random for some probability p € [0, 1],
we can now also compare the smallest interval forecasts Icp(®), Ic(®) and Iy (o) for
which o is (almost) CH-, C- or ML-random, and for example find that they nevertheless
coincide. This is for example the case for any path @ € Q that is ML-random for ¢/,
[which always exists by Proposition 2]. Indeed, by Corollary 15 and Propositions 5-7, @
is almost ML-, almost C- and CH-random for I, = 1/2, while it is not C-random for 1/2 [7,
Section 9.2], and therefore also not ML-random for 1/2, by Equation (3).

Alternatively, as is indicated by a green arrow in Figure 4, there are also paths ® for
which Ic (@) C Ivi(®), which means that C- and ML-randomness are quite different for
such ®. As already mentioned above, we have been able to reveal such potentially dif-
ferent behaviour for the randomness notions that are connected by the full green arrows
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Prop. 17 CH
/\ A ‘)p 18
ML --------- > wML ---------1 > wCH

C
Prop.k& /Pr(‘)p. 20
S

FIGURE 4. Arrows represent the known hierarchy between the notions
of randomness we consider, and the green, full arrows denote that we
have shown that these relations are strict, in the sense that the cor-
responding smallest interval forecasts Ir (@) do not coincide for every
path @ € Q. The red, dashed arrows indicate that more work is required
to find out whether the relations are strict in that sense.

in Figure 4, and we need a closer investigation for those randomness notions connected by
dashed red arrows.

Consider for example the dashed red arrow connecting C- and CH-randomness. We
know that there are paths @ € Q such that Icy(®) and Ic(w) are the smallest interval
forecasts for which they are CH- and C-random, respectively. Consider, for instance, any
path @ € Q that is C-random for 1/2 [which is always possible by Proposition 2]. By
Equation (3), any such path o is then also CH-random for 1/2. From the discussion after
Corollary 15, we also know that there are paths @ € Q such that Icy(®) and Ic (@) are
the smallest interval forecasts for which they are CH- and almost C-random, respectively,
while not being C-random for I (®). Meanwhile, it is still an open question whether there
are paths @ € Q for which the smallest interval forecasts Icp(®) and Ic(®) for which
they are CH- and (almost) C-random, respectively, do not coincide, implying that then
Icn(@) C Ic(w).

8. CONCLUSIONS AND FUTURE WORK

We have come to the conclusion that various (non-stationary) precise-probabilistic ran-
domness notions in the literature are, in some respects, not all that different: if a path is
random for a computable precise (temporal) forecasting system, then the smallest interval
forecasts for which it is (almost) random will coincide for several randomness notions. The
computability condition on the precise forecasting system is important for this result, but
we do not think it is that big a restriction from a practical point of view. After all, comput-
able forecasting systems are those that can be computed by an algorithm up to any desired
precision, and therefore, they are arguably the only ones that are of practical relevance.

An important concept that made several of our results possible was that of almost ran-
domness, a notion that is closely related to randomness but (slightly) easier to satisfy. In
future work, we would like to take a closer look at the difference between these two no-
tions. In particular, the present discussion, together with our discussion in Section 7 of
Ref. [21], makes us wonder to what extent the distinction between them is relevant in more
practical contexts.

Furthermore, building upon the work by Vladimir Vovk [22, 23], we would like to find
out if there is some path-dependent ‘distance’ between any two computable (imprecise)
forecasting systems @, @’ € ® such that, if a path @ € Q is random for ¢, then it will
be random for @’ if (and only if) the distance between both forecasting systems remains
bounded on w; for this to be possible, we may need to impose additional properties on the
forecasting systems, such as computability and non-degeneracy. When assuming that the
path @ is R-random for a computable precise (temporal) forecasting system ¢, as we do
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in Theorems 12 and 13, we expect such distances to tell us whether @ is random for its
smallest interval forecast ¢’ = I (@), instead of merely almost random.

We also plan to continue investigating the open question whether there is for every path
some smallest interval forecast for which it is (almost) Martin-L6f random. Moreover,
there is still quite some work to be done in finding out whether the randomness notions
considered here are all different from a stationary imprecise-probabilistic perspective: are
there paths for which the smallest interval forecasts for which they are (almost) random, do
not coincide? This corresponds to having a closer look at those pairs of randomness notions
connected by red, dashed arrows in Figure 4; a recent separation result by Barmpalias et
al. [16, Theorem 1.2] seems to indicate the existence of a path @ € Q such that Iym, (@) C
IML((D).

Finally, we wonder whether the results in this paper can be generalised from binary
to arbitrary finite sample spaces: does every non-binary infinite sequence have a smallest
credal set—that is, a smallest closed convex set of probabilities—for which it is (almost)
random? And if so, what does it look like?
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APPENDIX A. COMPUTABILITY THEORY

Computability theory studies what it means for a mathematical object to be ‘implement-
able’. As its basic building blocks, it has recursive natural maps ¢ : Ny — Np, which are
maps that can be computed by a Turing machine [25]. By the Church-Turing thesis, the
natural map ¢ being recursive is equivalent to the existence of an algorithm that, given any
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input n € Ny, outputs the non-negative integer ¢ (n) € No; in what follows, we will often
use this equivalence without explicitly mentioning it. Note that the domain of ¢ can be
replaced by any (countably infinite) set Z that can be effectively encoded as a subset of Ny
[3, 25, 26]; examples of such sets & are givenby N, S, 27,Sx 2", SxNpand S x Z~ x Np.

The notion of a recursive natural map ¢ can also be extended to maps whose codomain
is the set of rational numbers Q. We call a rational map gq: Z — Q recursive if there are
three recursive natural maps a,b,c: 2 — Ny such that

b(d) # 0 and g(d) = (-1)"<‘”ZEZ§ foralld € 2.

Since a finite number of algorithms can always be combined into one algorithm, a rational
map ¢ is recursive if and only if there is some algorithm that, given any input d € 2,
outputs the rational number ¢(d) € Q [27].

We can use recursive rational maps to provide several interpretations of what it means
for a real map r: 2 — R to be ‘implementable’.

We call a real map r: & — R lower semicomputable if there is some recursive rational
map q: 9 x Ng — Q such that

q(d,n+1)>¢g(d,n) and r(d) = liLn q(d,m) foralld € & and n € Ny.
m—soo

This means that there is some algorithm that, given any d € Z as input, allows us to ap-
proach the real number r(d) from below—but without knowing, for any given n € Ny, how
good the lower bound ¢(d,n) is. Correspondingly, we call a real map r upper semicomput-
able if the real map —r is lower semicomputable. A real multiplier process D: S — £ (%)
is called lower (upper) semicomputable if it is lower (upper) semicomputable as a real map
on S x 2" that maps any (s,x) € S x 2 to D(s)(x).

A real map r is called computable if it is both lower and upper semicomputable. Equi-
valently [5], a real map r: 2 — R is computable if and only if there is some recursive
rational map g: 2 x Ny — Q such that

|r(d) —q(d,n)| < 27" forall d € 2 and n € Ny.

By the Church-Turing thesis, this means that there is some algorithm that, given any d € ¥
and N € Ny as input, allows us to approximate the real number r(d) to within a precision
of 27N, A real number x € R is called computable if there is some recursive rational
map ¢: No — Q such that [x —g(n)| < 27" for all n € Ny; this corresponds to the general
definition with 2 a singleton. An interval forecast I € 7 is called computable if the reals
min/ and max/ are both computable; since finitely many algorithms can be combined
into one, this corresponds to the general definition with & a doubleton—such as 2. A
forecasting system ¢ € @ is called computable if the real processes ¢ and ¢ are both
computable; since finitely many algorithms can be combined into one, this corresponds to
the general definition with Z equal to S x 2. A real multiplier process D: S — £ (%) is
called computable if it is computable as a real map on S x 2" that maps any (s,x) € S x 2~
to D(s)(x).

APPENDIX B. PROOFS AND ADDITIONAL MATERIAL

In this part of the Appendix, we have gathered all of the more lengthy proofs that make
use of computability theory, and some additional material necessary for understanding the
argumentation in these proofs. It is divided into three sections: in Section B.1 we provide
some additional material that is used in our proofs, and in Sections B.2-B.3 we have col-
lected most of the proofs for Sections 6 and 7, respectively. Moreover, Section B.2 also
contains the proof of Proposition 7 (which appears at the end of Section 5); we postpone
this proof until the end of Section B.2.3 because it will follow immediately from Propos-
ition 31—whose proof can be found in Section B.2.2—and Theorem 12—whose proof
makes use of a result that is proved in Section B.2.3.



24 FLORIS PERSIAU, GERT DE COOMAN, AND JASPER DE BOCK

B.1. Some additional material about allowable gambles, test supermartingales and
multiplier processes.

In our proofs, we will use an operator to characterise whether a gamble f € £ (%) is
allowed by an interval forecast / € Z or not. We associate with every interval forecast/ € 7
the so-called upper expectation E;: £(2") — R, defined by

E(f) 1= maxEy(f) = max{pf (1) + (1= p)/(0)} forall f € 2(2). O

Clearly, a gamble f € Z(Z") is allowable for an interval forecast € Z if and only if its
upper expectation E;(f) is non-positive, i.e., if and only if E;(f) < 0.

It will be convenient to have the following properties at our disposal. For all f € £ (Z2),
it readily follows from Equation (9) that

E;(f) = max{minZf(1)+ (1 —min/) f(0),maxIf (1) + (1 —max/)f(0)} (10)

_ min/f(1)+ (1 —minZ)f(0) if (1) < f(0)
max/f(1)+ (1 —maxI)f(0) if £(1)> f(0).

The upper expectation operator E; also satisfies the following properties [28, 29].”

an

Proposition 21. Consider any interval forecast I € L. Then for all gambles f,g € L (Z),
all sequences of gambles (f,)ner, € L (2 )N, and all p € R and A > 0:

Cl. minf < E;(f) < max f; [boundedness]
C2. E/(Af)=AE((f); [non-negative homogeneity]
C3. Ei(f+8) < Ei(f) +Eig): [subadditivity]
C4. E;(f+u)=E;(f)+u; [constant additivity]
C5. if f<gthenE[(f) <E[(g); [increasingness]
C6. if lim, e f;, = f then lim, o E;(f,) = E7(f). [continuity]

In our proofs, we will also use the fact that, for every forecasting system ¢ € @, there
is a close connection between test supermartingales 7 € T(¢) and a specific type of real
multiplier processes D. To reveal this connection, we introduce the following terminology:
a real multiplier process D is called a real supermartingale multiplier for the forecasting
system @ if EP(X) (D(s)) <1 for all s € S. Moreover, it is called positive (respectively
non-negative) if D(s)(x) > 0 (respectively D(s)(x) > 0) foralls € Sand x € 2.

Lemma 22. Consider a forecasting system ¢ € ® and a computable positive real super-
martingale multiplier D for ¢. Then D® is a computable positive test supermartingale

Sor ¢.
Proof. The computability of D® follows immediately from Proposition 23 in Ref. [30].
To prove its positivity, recall that D (s) := HZ;&D(xltk)(ka) for all s = (x1,...,x,) €S.
Since D(s)(x) > 0 for all s € S and x € 27, clearly also D®(s) > 0 for all s € S. It now
only remains to prove that D® is a supermartingale for ¢. To this end, note that
Ep(5)(AD®(s)) = E (5 (D (s2) — D°(s))
= © C2 @ -
= E()(D°(5)D(s) = D°(s)) = D (s)E (s (D(s) — 1),
and therefore we have the following chain of equivalences:
F(p(s) (AD@ (S)) <0& D@ (S)E(p(s) (D(S) — 1) <0

D®(5)>0 —
<~ E(o(s) (D(S) — 1) < 0

C4 —

=4 E(p(x) (D(S)) <l1. O

TWe note that C6 is usually presented as a property that requires uniform instead of pointwise convergence.
However, since 2" is a finite sample space, uniform convergence is equivalent to pointwise convergence in this
context.
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B.2. Proofs for Section 6 and of Proposition 7.
B.2.1. Outer bounds on Ix(®) for general forecasting systems.
Lemma 23. Consider any interval forecast I € L such that 0 < maxI and minl < 1, and

any test supermartingale T € T(I). Then

1

T(se)<T _—
(s9) <Ts) max{maxl’ 1 —min/

}for all s € S.

Proof. Since 0 < max/ and min/ < 1, both !/maxs and !/1-min7 are positive real numbers.
Fix any s € S. T being a supermartingale for / implies that

0> E[(AT(s)) > (maxI)AT (s)(1) + (1 — maxI)AT (s)(0)
= (maxI)T (s1)+ (1 —maxI)T (s0) — T(s)
> (maxI)T (s1)—T(s),
where the second inequality follows from Equation (10) and the last one from the fact that

max/ < 1 and T'(s0) > 0. Hence, T (s1) < T(s)/max1.
Similarly, T being a supermartingale for / implies that

0> E;(AT(s)) > (min)AT (s)(1) + (1 — minZ)AT (s)(0)
= (min/)T(s1)+ (1 —minl)T (s0) — T'(s)
> (1 —minl)T(s0) —T(s),
where the second inequality follows from Equation (10) and the last one form the fact that

min/ > 0 and 7'(s1) > 0. Hence, T (s0) < T(s)/(1—min1). O

Lemma 24. Consider any lower semicomputable real process F| : S — R and any recurs-
ive non-negative rational process F»: S — Q. Then the real process F: S — R, defined
by F(s) :== F1(s)Fs(s) for all s € S, is lower semicomputable.

Proof. Fj is lower semicomputable, so there is some recursive rational map g: S x Ng — Q
such that

(i) g(s,n+1) > g(s,n) forall s € S and n € Np;

(i) Fi(s) =lim;eq(s,n) forall s €S.
Consider the map ¢': S x Ny — Q defined by

q (s,n) := q(s,n)F>(s) for all s € S and n € Ny.

Since q is a recursive rational map and since the process F, is recursive and rational, the
map ¢ is recursive and rational as well. Due to (i) and the non-negativity of F», we find
that

qd (s,n+1)=q(s,n+1)F(s) > q(s,n)F>(s) = ¢'(s,n) forall s € S and n € Ny.

Moreover,
lim ¢'(s,n) = lim g(s,n)Fy(s) = Fi (s)F2(s) = F(s) forall s € S,
n—soo n—soo
taking into account (ii), so F is indeed lower semicomputable. O

Lemma 25. Consider any non-negative real process D‘l@ : S — R generated by some lower
semicomputable non-negative real multiplier process D1: S — £(Z") and any recursive
positive rational process Fy : S — Q such that F,(0) = 1. Then the real process F: S — R,
defined by F (s) == D{ (s)F(s) for all s € S, is generated by some lower semicomputable
multiplier process.

Proof. D is lower semicomputable, so there is some recursive rational map g: S x 2~ x
No — Q such that

() q(s,x,n+1) > q(s,x,n) forall s € S, x € Z and n € Ny;

(i) Dy(s)(x) =limy—e0q(s,x,n) forall s € Sandx € 2 .
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To prove that F is generated by a lower semicomputable multiplier process, consider the
map ¢': S x 2" x Ny — Q defined by

F>(sx)
Fy(s)
Since ¢ is a recursive rational map and since the process F; is recursive, positive and

rational, the map ¢’ is well-defined, recursive and rational. Due to (i) and the positivity
of F,, we find that

q (s,x,n) == q(s,x,n) foralls € S,x € Z and n € Ny.

F(sx)
Fy(s)

F(sx)
FQ(S) *q (s,x,n)

q (s, x;n+1)=q(s,x,n+1) > q(s,x,n)

foralls €S, x € 2 and n € Ny.

Moreover,

B _ 200
2(s) F(s)
This tells us that the non-negative multiplier process D: S — .Z(.2"), defined by D(s) ==
D (s) %((S;)) for all s € S, is lower semicomputable. We complete the proof by showing that
F is generated by D. Indeed, since F; is positive and F>([J) = 1, we find that

F(se) =D} (s*)F>(s*) = D} (s)D(s)F>(s) = D (s)F>(s)D(s) = F(s)D(s) for all s € S.
O

lim ¢ (s,x,n) = lim g(s,x,n) forallsc€ Sandx € 2 .
n—soo

n—o0

Lemma 26. Consider any computable real process Fy : S — R and any recursive rational
process F>: S — Q such that 0 < F, < 1. Then the process F: S — R, defined by F (s) ==
Fi(s)Fa(s) for all s € S, is computable.

Proof. Since F| is computable, there is some recursive rational map g: S x Ny — Q such
that |Fy(s) —q(s,n)| <27 for all s € S and n € Ny. Consider the map ¢': S x Ny — Q
defined by

q (s,n) :== q(s,n)F>(s) for all s € S and n € Ny.
Since q is a recursive rational map and since the process F, is recursive and rational, the
map ¢’ is recursive and rational as well. Since 0 < F> < 1, it now follows that

[F(s) =4 (s;n)| = [Fi(s)P2(s) — q(s,n) Fx(s)| = Fa(s)|Fi (s) — q(s,m)]
< |Fi(s)—q(s,n)] <27 forall s € S and n € Ny,

so F' is indeed computable. (]

Lemma 27. Consider any path ® € Q, any R € {ML,wML,C,S}, any forecasting sys-
tem @ € ®, any interval forecast I € L such that minl < max [, and any recursive selection
process S such that, for all s € S, ¢(s) C Iif S(s) =0, and such that lim, e Y1—3 S(@14) <
oo, If  is R-random for @, then it is also R-random for I.

Proof. We assume that @ is R-random for ¢ and set out to prove that it is then also R-
random for /. In line with Definitions 4 and 5, we fix any test supermartingale T € Tg(I)
and show that it remains (computably) bounded on ®.

To this end, we use the selection process S to introduce the process S’ defined by

n—1
S'(s) = Z S(x1) for all s = (x1,...,x,) €S,

k=0
which counts for every situation s € S how many times S(z) = 1 for all strictly preceding
situations ¢ C s. Since S is recursive and only takes values in {0,1}, and since there is
clearly a single algorithm that, for every s € S, can enumerate the finite number of situations
t € S for which 7 C s, the process S’ is recursive and assumes values in the non-negative
integers.
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Since 0 < min/ < max/ < 1, it follows that 0 < max/ and min/ < 1, so we can fix some
rational K > 1 such that K > max{1/max1, 1/1—-mini }. We introduce a new process F’ defined
by

F'(s):=K 50 forall s €.

What are the relevant properties of this process F'? Since K is rational and since the
process S is recursive and takes on non-negative integers, the process F’ is recursive and
rational. Furthermore, since K is positive and since the process S’ is non-negative, the
process F' is positive as well, that is, F'(s) > 0 for all s € S. Also, since K > 1 and
S'(s) € Np forall s €S, F'(s) = K—5®) <1 for all s €S. Finally, note that F'((J) =
K¥O =g0=1.

Next, consider the real process 7”, defined by

T'(s):=T(s)F'(s) forall s €S. (12)

Let us now show that 7’ is a test supermartingale for ¢. First, since T and F’ are non-
negative, so is 7’. Second, 7/(0) = 1, since T(0) = 1 and F'(0O) = 1. Last, to show that
it is a supermartingale for @, we fix any s € S and prove that E () (AT’ (s)) < 0. Note that

AT'(5) = T'(s#) = T'(5) = T(s+)F'(s%) ~ T(s) (5
=T(s)K 509 —T()K 50 = T (50) k5 =56) _7(5)k~5'0)
— K5O [7(s0)k 5O — T(s)} . (13)
We now consider two cases. If S(s) = 1, then
AT (5) 2 k=5'6) [T(s-)K_l - T(s)} . (14)

Since 0 < max/ and min/ < 1, K > max{!/maxz,1/1-mint} and T € Tr (1) C T(I), it follows
from Lemma 23 that

1 1

T(se)<T - -
(s2) < (s)max{maxl’ 1 —min/

} <T(s)K,
) T(s-ll(’1 —T(s) < 0. Hence also, by Equation (14), AT’ (s) < 0, and therefore, by C1,
indeed E () (AT'(s)) < 0.

Otherwise, that is, if S(s) = 0, then

E () (AT'(5)) B E o) (K SOAT(5)) E K5 OE o) (AT (s)). (15)
By assumption, ¢(s) C I since S(s) = 0. Equation (9) therefore leads to the conclusion
that E ) (AT (s)) < Ef(AT(s)) < 0, where the last equality holds because T is a su-
permartingale for /. If we plug this into Equation (15), we find that, in this case too,
E (5 (AT’ (s)) < 0. Hence, T" is indeed a supermartingale for ¢.

To also show that T’ € Tr(¢), in addition to 7" being a test supermartingale for @, we
need to check whether it has the appropriate implementability properties.

If R = ML, then T is a lower semicomputable real process. Since F’ is a recursive non-
negative rational process, it follows from Equation (12) and Lemma 24 that T’ is lower
semicomputable.

If R = wML, then T is generated by a lower semicomputable non-negative real multi-
plier process. Since F’ is a recursive positive rational process with F'(J) = 1, it follows
from Equation (12) and Lemma 25 that 7’ is generated by a lower semicomputable multi-
plier process.

IfR € {C,S}, then T is a computable real process. Since F’ is a recursive rational pro-
cess with 0 < F’ < 1, it follows from Equation (12) and Lemma 26 that 7’ is computable.

We may therefore conclude that, in all cases, T’ € TR((p).
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To conclude the proof, it only remains to show that 7’ is (computably) bounded on @.
By recalling that lim, e ):Z;é S(wyx) < oo by assumption, we can fix some N € Ny such
that lim,, . S’ (@1.,) = N, so

limsup 7’ (;.,) (12 limsup T (@y.,)F'(01.,) = KN limsup T (@y.,). (16)

n—yoc0 n—yo0 n—yoo
We now consider two cases.

If R € {ML,wML,C}, then since o is R-random for ¢ by assumption and since T’ €
Tr(@), it follows from Definition 4 that limsup,_,., T'(®;.,) < o, and therefore also, by
Equation (16), that limsup,,_,,, T (®@;.,) < eo. @ is therefore indeed R-random for /.

If R =S, then since @ was assumed to be S-random for ¢, no computable test su-
permartingale for ¢ is computably unbounded on ®; see Definition 5. Assume towards
contradiction that T € Tg(I) is computably unbounded on ®, meaning that there is some
real growth function 7 such that limsup,,_, [T (®;.,) — T(r)] > 0. Consider the real growth
function 7’ defined by 7'(n) := KV1(n) for all n € Ny. A similar argument as in Equa-
tion (16) then leads to

limsup([T’ (@y.,) — 7' (n)] = KN limsup[T(oy.,) — T(n)] > 0,
n—o0 n—so0
so the test supermartingale T’ for ¢, which is computable [see the argumentation above], is
computably unbounded on ®, a contradiction. @ is therefore indeed R-random for /. [

Proposition 28. For any R € {ML,wML,C, S} and any path ® € Q that is R-random for
a given forecasting system @ € ® it holds that Ir (@) C Iy (®@).

Proof. Consider any R € {ML,wML,C,S} and any path @ € Q that is R-random for a
given forecasting system ¢. Consider any N € Ny, and let Iy := [py,gn], with

DN = max{O, inf @(s) —ZN} < gy = min{l, sup @(s) +2N}.
s€lory]— s€(or.y]

Observe that py+1 > py and gy+1 < gy, and therefore Iy4; C Iy. Since obviously also
limy oo py = limy e infe (g, ] Q(s) and limy e gy = limy_e supse[wl:N]ﬁ(s), we find
that /) (0) = imy_ely = ﬂNeNO Iy. This tells us that if we can show that the path @ is
R-random for the interval forecast Iy, we will be essentially done, because in that case we
will have that Ir (@) C Iy, and therefore also Ir (@) € Nyen, Iv = 1] (®).

So let us now fix any N € Ny and prove that path ® is indeed R-random for the interval
forecast Iy.

To this end, consider the selection process S defined by

{0 if oy C s

S(s) = )
1 otherwise

for all s € S.

Since .y is a fixed situation, the selection process S is recursive. By construction,
limy, e Y g S(@1:4) = X4y S(01) = N < o0. Moreover, forall s € S, ¢(s) C Iy if S(s) =
0 (or equivalently, if Wiy C s), because py < inficq, ] @(s) and sup,cr,, 1 9(s) < gn
by definition. Consequently, since @ is assumed to be R-random for ¢, it follows from
Lemma 27 [with I = Iy] that @ is R-random for Iy. U

Lemma 29. For any path ® € Q, any real sequence F: Nog — R, any M € Ny, and any
selection process S such that lim,,_,. ZZ;(I) S(@y.) = oo, it holds that

n—1 n—1
S(p4)F (k S(wy4)F (k
liminfM :liminf):k:M (1) F (k)

e Y IS(@1) e YL (1)

and

o 0 S@OF () YTy, S(@1)F (K)
imsup = —————— = limsup | .
n—oo Zk:() S((O];k) n—oo Zk:M S((l)];k)
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Proof. We will give the proof for the first equality; the proof for the second equality is very
similar. Since lim,, e ZZ;(I) S(®y.;) = oo, it holds that

ZM o Sl )F (k)
e Yo S(orx) n—veo YL S (014

and therefore
limianZ;éS(wlzk)F(k) — Liminf Yol S(wrx)F (k) +ZZ;}WS(@1:1<)F(/<)
n—so0 ZZ;é S(o;4) n—so0

Yo S(@) Y0 S(or)

f):Z w S(@1)F (k)

e Yo S(on)
:ﬁmianZ 11\451'(‘01 ) F (k) Xy ls(wlzk)

noe Y S(ork) Xz S(@ik)

n—1

- liminf):k Mf(wl k)F(k)

ne Yy S(01)

O

Proposition 30. For any R € {CH,wCH} and any path ® € Q that is R-random for a
given forecasting system @ € @ it holds that I (®) C Iy(®).

Proof. We will give the proof for R = CH. The proof for R = wCH is very similar.®
Consider any path @ € Q that is CH-random for a given forecasting system ¢. Consider
any N € Ny, and let Iy := [py, qn], with

DN = max{O,lir{ginf(p(a)l;n) — 2_N} < gy = min{ 1, limsup @(w;.,) +2_N}.
bl n—oo

Note that py41 > py and gy41 < gy, 50 Iy41 C Iy. Also limy_,e py = liminf,,_,. @(@1.,)
and limy_;e gy = limsup,,_,., @(®1.,), so we find that Io(®) = limy_,e Iy = m;eNo Iy.
This tells us that if we can show that the path @ is CH-random for the interval forecast Iy,
we will be essentially done, because in that case we will have that Icpy (@) C Iy, and there-
fore also Icu(®) C Nyen, Iv = Ip(®@).

So let us now fix an arbitrary N € Ny and show that the path w is indeed CH-random
for the interval forecast Iy. Consider any recursive selection process S that is adequate
along w. Since ® is CH-random for ¢ by assumption, it follows from Definition 6 that

n—1 -1 —
“S(o14) |01 — 0( 0. "o S(01.) [0 — Q.
- YicoS( 1nk_)1[ 1 — (1)) > 0 and limsup YicoS( 1r.lk_)1[ 1 — Q(@1:1)] <0,
e Zk:() S(wlzk) n—ee Zk:o S(wlzk)
(17)
The definition of the py and gy makes sure we can fix some M € Ny such that
PNSQ((Dl:n) <9(1.) < gy foralln > M. (18)

Since S € Scu(®), and therefore lim,,_o ZZ;(I) S(@y.) = oo, it follows from Equation (17)
and Lemma 29 [with F (k) = @11 — @(@;) and F (k) = 01 — (@), respectively, for
all k € Nyp] that

n—1 -1 —
— L S(011) |0k — Q(0). = S(w. — .
i infzk,M (O11) [0k 11 — @(O1:4)] > 0 and limsup Yy S(or) (@1 — Q@) <0,

n—oo iy S(onk) n—oo i S(ork) B

8Simply replace CH by wCH, and consider recursive adequate temporal selection processes S € Sy,cp instead of
the more general set Sc (@) of recursive selection processes that are adequate along .
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so we can infer from Equation (18) that

n—1 n—1

S(O1:1) | Op1 — 1 S(01:1) |01 — O (-
liming ZA=M Elill.k)[ k1 — PN zliminf):"*M ( i:)l[ 1 — (0] >0
n—ree Zk=MS(wl:k) n—ree Zk=MS(wl:k)

and similarly

n—1 n—1 =
S(o1.1) | Ok+1 — S(o1:4) | Ok+1 — (O
limsup Zk:M (n,ll'k)[ e+ 1 CIN)] < limsup Zk:M ( Lf)l[ e+ 1 (P< 1.k>]
n—eo Zk:M S(wl:k) n—eo Zk:M S(wl:k)

Consequently,

<0.

n—1 n—1

S(014) S(o14)
k:/;l/lil( 1) D11 < limsup kz[,‘f,l( 1) @4 1
Zk:M S(wlzk) n—oo Zk:M S((Ol:k)
and therefore also by Lemma 29 [with F (k) = @y for all k € Ny], again since S is ad-
equate along o,

— )

< liminf
PN = n—yoo

Yi 0 S(01:) 01 Y70 S(01:0) Oy <

py < liminf 1 < limsup 1 t

n—yeo Zk:O S(wl:k) n—yoo Zk:O S(wlzk)
Proof of Proposition 8. This proposition is an immediate consequence of Propositions 28
and 30. O

B.2.2. Outer bounds on Ix(®) for computable forecasting systems.

Proposition 31. For any R € {ML,wML,C,S}, any path ® € Q that is R-random for a
computable forecasting system ¢ € ® and any €1,& > 0, it holds that
liminf @(@1.,) — &1, limsupB(1.,) + 82} n1[0,1] € Zg ().
n—oo — n—oo

Proof. Consider any R € {ML,wML,C,S}, any path @ € Q that is R-random for a com-
putable forecasting system ¢ and any €, & > 0. If we let p := liminf, Q((Dl:n) and g :=
limsup,,_,., ®(®;.,), then we need to show that the path @ is R-random for the interval fore-
cast I := [p—¢€,q+ &]N[0,1]; observe that min/ < max/. To this end, fix any rational
numbers r and 7 and any natural number N such that

3 1 1 3 1
p— 181 <r<p-— 581 and g + 582 <r<q+ 182 and 27N < Zmin{el,&‘z}. (19)

Since ¢ is a computable forecasting system, there are two recursive rational maps ¢,g: S X
No — Q such that |@(s) —g(s,n)| <27" and [@(s) —g(s,n)| <27" forall s € S and n € Ny.
Consequently,

1 1
l@(s) —gq(s,N)| <27V < & and [@(s) —q(s,N)| <27V < & foralls €S, (20)
To show that ® is R-random for /, consider the selection process S defined by

1 ifg(s,N)<ror7<g(s,N)
S(s) = =00
0 otherwise

forall s € S.

Since r and 7 are rational numbers, N is a natural number, and ¢ and g are recursive rational
maps, the inequalities in the above expression are decidable for every s € S, so the selec-
tion process S is recursive. We continue by proving that the recursive selection process S
satisfies the conditions in Lemma 27.

Fix any s € S. If S(s) = 0, or equivalently, if r < ¢(s,N) and g(s,N) < 7, then also

3 19 (20) 1 3 a9 0) 1
p=738 < r<g(sN) < @(s)+ e and g+ 16 > F>3(s,N) > 9(s) - 7€,

s0 p—¢&1 < @(s) and Q(s) < g+ &, and therefore ¢(s) C I.
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Moreover, for any n € No, if g(@;.,,N) < r, then

(20) 1 1 a9 1 1 1
P(@1) < (@10, N)+ €1 <r+ € < p—-€+ & =p— €.

ki 4 4 2917, 4
Similarly, if 7 < g(@.,,N), then
?(or:n) < q(@1:n,N) — l82 >7— l82 $s q+ 182 - 182 =q+ l82-
4 4 2274 4

If we recall the definition of p and g, it becomes clear that there is only a finite number of
n € Ny for which ¢(@;,) < p— %81 or g+ }—‘82 < @(wi.y), and as a result, there is only
a finite number of natural numbers n € Ny for which g(®;.,,N) < r or 7 < g(®;.,,N), or,
equivalently, for which S(®;.,) = 1. Consequently, lim,,_,c ZZ;(I) S(oy.) < oo.

By invoking Lemma 27, since @ is assumed to be R-random for ¢, we then infer that @
is R-random for /. O

Proof of Proposition 9. Consider any R € {ML,wML,C,S,CH,wCH} and any path ® €
Q that is R-random for a given computable forecasting system ¢ € ®. In the interest of
notational brevity, we let p := liminf, .. @(®.,) and g := limsup,,_,., @(®1.,), s0 Ip(®) =
[p.q]. We consider two possible cases.

If R € {CH,wCH}, the stated result follows immediately from Proposition 30.

If R € {ML,wML,C,S}, then it follows from Proposition 31 that

[p—e1,q+&]N[0,1] € Ir(w) for all &,& > 0,
and therefore that

R(0) = ﬂIR((D) - ﬂ([p— €1,q+&]NJ0, 1])
£1,6>0

=[0,1]np—e1.9+&]=[p,q =Ip(0). O

£1,6>0
B.2.3. Inner bounds on I (®) for computable forecasting systems.

Proposition 32. If a path o € Q is (W)CH-random for a computable (temporal) forecast-
ing system @ € ®, then

min/(yw)cu(®) < liir_lglfﬁ(a)l;n) and limsup @(®1.,) < maxIwcu(o).

n—yoo
Proof. We will give the proof for R = CH. The proof for R = wCH is very similar.’
Consider any path ® € Qcy(¢) and any € > 0. If, for ease of notation, we let p =
liminf, . @(®;.,) and g := limsup,_,,, ®(®;.,), then it is clearly enough to show that
min/cy(®) < p+ € and ¢ — € < maxIcy(®). We will prove the first inequality; the proof
of the second one is very similar. Fix any rational number r and any natural number N such
that
p+1e<r<p+§eand2*N<ls 1)
2 4 47

Since ¢ is a computable forecasting system, there is some recursive rational map g: S x
No — Q such that [@(s) —g(s,n)| <27 " forall s € S and n € Ny. Consequently,

1
[@(s) —q(s,N)| <27V < ;€ foralls€s. (22)

9Simply replace CH by wCH, and consider the forecasting system ¢ to be a map from the non-negative integers
to the set of interval forecasts Z. Following the line of reasoning of the proof, the computability of @ then results
in the existence of a recursive rational map g: Ny x No — R such that [@(m) —g(m,n)| < 27" for all m,n € No.
Correspondingly, since the first argument of the map g takes non-negative integers instead of situations, the
recursive selection process S becomes temporal, as is needed for the notion of wCH-randomness.
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Consider the selection process S, defined by

1 ifg(s,N
S(s) = it qls, ) <7 forall s € S.
0 otherwise

Since r is a rational number, N is a natural number, and g is a recursive rational map, the
inequality in the above expression is decidable for every s € S, and the selection process S
is recursive. If we recall the definition of p, we see that the subset A := {n € Ny: @(0;.,) <
p+ %8} of Ny is infinite. Observe that

_ (22) _ 1 1 1 1 @

q(o1,N) < @(oy:) + qESpt et E=ptae<r foralln € A,
and therefore also S(w;.,) = 1 for all n € A, so lim,_e ZZ;& S(wy.x) = eo. Consequently,
the CH-randomness of w for ¢ guarantees through Definition 6 that

I Yr=o S(014) [0t — P (@1)]
imsup —
n—ree Yio S(wrx)

Moreover, for any s € S, if S(s) = 1 or, equivalently, if g(s,N) < r, then

<0.

*()(2<2)*( N)+18< +ls(2<l) +3e+ls +¢€
- r+ — — —€&€= .
o(s q\s, 4 4 p 2 2 p
Hence,
n—1 n—1 —
“oS(ox) |01 — (p+€ S(w1.4)[0r+1 — (.
limsupzk*O (01%) [@Os1 — (p+€)] Shmsupzk:o (01:1) [ 1 — O (@1:1)] <0,

n—yo0 ZZ;(I)S(G)1;k) n—so0 ZZ;(l) S((Dl;k)
so, on the one hand,
n—1
S(01.4) @
limsup —k:(r]l_f 1) O
n—so0 Zk:() S((Dl;k)
Since @ is CH-random for Icy(®) by Proposition 5, we can also infer from Definition 6
that, on the other hand,

<p-+e.

n—1
S(w.1)®
min forg (@) < limsup =05 (k) Dert
noee Yimo S(orx)

Hence, indeed, minlcy(w) < p+ €. O

Proof of Proposition 10. By Corollary 4, it is enough to show that

minlcy () < lirginf@(wlz,,) and limsup @(®;.,) < maxIcy(®).
n—reo n—yoo T
Since @ is assumed to be R-random for ¢ [with R € {ML,wML,C,CH}] and since ¢ is
assumed to be computable, it follows from Equation (3) that @ is CH-random for ¢. The
above then immediately follows from Proposition 32. O

Proof of Proposition 11. By Corollary 4, it is enough to show that

minlycy (@) < lirginf@(a)h,,) and limsup @(®;.,) < max Lycp(®).
n—reo n—yoo T
Since @ is assumed to be R-random for ¢ [with R € {ML,wML,C,S,CH,wCH}] and
since ¢ is assumed to be computable (and temporal), it follows from Equation (3) that @ is
wCH-random for ¢. The inequalities above then immediately follow from Proposition 32.
O

We are now, as promised at the end of Section 5, in a better position to furnish a short
proof for Proposition 7.
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Proof of Proposition 7. Assume that the path @ € Q is ML-random for a given computable
precise forecasting system ¢ € ®. We let, for ease of notation, p := liminf,_,. @(®;.,)
and ¢ == limsup,_,., (®;.,), and then infer from Theorem 12 that ;. (®) = [p,q].

First of all, consider any interval forecast / € Z for which @ is almost ML-random.
Then it follows from Definition 3 that

[min] — &, max] + &]N[0,1] € Zy(w) for all g, & >0,
and therefore also that

hvL(w) = NIy (o) C m [minI— 81,111&)(14—82} N [07 1]
€1,6>0
=1[0,1]N ﬂ [min/ — &, max/+ & =1I.
£1,6>0

It is therefore enough to show that @ is almost ML-random for the interval forecast Iy, (@).

We infer from Proposition 31 that @ is ML-random for any interval forecast of the
form [p —€1,9+ &] N[0, 1] with &,& > 0, which tells us that o is indeed almost ML-
random for the interval forecast Iy (®) = [p, g|; see Definition 3. O

B.3. Proofs and additional material for Section 7.

B.3.1. C-randomness versus ML-randomness.

Lemma 33. For every computable interval forecast I € T such that 0 < max/ and minl <
1, there is a so-called universal lower semicomputable test supermartingale U for I, with
the property that any path ® € Q is not ML-random for I if and only if lim,_,. U (®;.,) =

oo,

Proof. This follows immediately from Corollary 32 in Ref. [8] since a computable in-
terval forecast I € 7 such that 0 < max/ and min/ < 1 is a special case of a so-called
non-degenerate computable forecasting system; a forecasting system ¢ is called non-
degenerate if (s) < 1and @(s) > 0forall s € S. O

Lemma 34 ([31, Proposition 21]). Consider any path ® € Q and any interval forecast I C
(0,1). If w is recursive, then ® is not C-random for I.

Proposition 35. A path @ € Q is C-random for a forecasting system @ € P if and only if
no recursive positive rational test supermartingale T € Tc (@) is unbounded on ®.

Proof. By Definition 4, a path ® € Q is C-random for a forecasting system ¢ € & if no
computable test supermartingale T € Tc(¢) is unbounded on @. By Proposition 6 in
Ref. [24], the path ® is C-random for ¢ if and only if there is no recursive positive ra-
tional strict test supermartingale 7 € T(¢) such that lim, . T(®).,) = o, where a real
process M: S — R is called a strict supermartingale for ¢ if E 4, (AM(s)) < O for every
situation s € S. As a consequence, whenever we restrict the betting strategies in Defin-
ition 4 to a set that is smaller than the one in Definition 4, but larger than the one in
Proposition 6 in Ref. [24], we obtain a definition for computably random sequences that is
equivalent to Definition 4. (]

For the following lemma and propositions, we draw inspiration from Schnort’s discus-
sion of the difference between Martin-Lof randomness and its conjugate notion in terms of
upper semicomputable test supermartingales [20].

Lemma 36. For every recursive positive rational supermartingale M for /2, every positive
real y € R~ and every situation s € S for which M(t) <y for all t C s, there is a recursive
path ® € [s]| such that M(®.,) <y for all n € Ny.
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Proof. The path @ € Q will be constructed by an induction argument. We begin by let-
ting @y, = s. Now, assume that ®;., has already been constructed in such a way that
M(wy;) <y for all k < n; note that this condition is satisfied trivially for n < |s|. Since M
is a supermartingale for 1/2, there is always some x, € .2 for which M(®;.,x,) < M(@1.,).
Indeed, assume towards contradiction that AM(®;.,)(x) > 0 for all x € 27, then also
E\p(AM(01:0)) = TAM (1.,)(1) + 1AM (®1.,)(0) > 0, which is impossible. Since M is
a recursive rational process, we can determine such an x, € 2" recursively: if M(®;.,1) <
M(w.,), let x, = 1, and otherwise, if M(®;.,1) > M(®,.,) and then M(®;.,0) < M(w;.,),
let x, = 0. Put @;.41 = ©1.,Xy, thus guaranteeing that M(®y.,+1) = M(@1.4x,) < M( o)
<y, and therefore M (w;.;) <yforallk <n+1.

To show that @ is recursive, it suffices to prove that there is an algorithm that, given
any n € N, outputs the binary digit @,. By construction, if n < |s|, then ®, = s,,. Otherwise,
that is, if n > |s|, then there is by construction a unique recursive way to extend Oy.5| = s up
to any arbitrary length N € Ny in a finite number of steps, which then allows to output @,,
and thus concludes the proof. O

Proposition 37. For any computable interval forecast I C (0,1), there is a path ® € Q
that is C-random for 1/2, but not ML-random for I.

Proof. Fix any computable interval forecast I C (0,1). By Lemma 33, there is a lower
semicomputable test supermartingale U € Ty (/) that is unbounded on every path @ € Q
that is not ML-random for /. Let (77) ¢eN, be an enumeration (not necessarily recursive) of
all recursive positive rational test supermartingales for 1/2; this is always possible because
the set of all recursive processes is countable [26, 32].

Taking into account Proposition 35, it is enough to find a path @ € Q for which it
holds that limsup,,_,, U (®;.,) = oo and for which at the same time limsup,,_,., Ty (®1.,) < o
for all £ € Nyg. We will ‘construct’ such a path using an induction method on k € Nj.
To kickstart the induction, for k = 0, we let n; := 0 and ®).,, '= 0. Next, we consider
any k € Ny, and we will assume that @1, , with 0 = ng <n; <--- < ny € Ny, has already
been defined in such a way that

k k
U(®rn,) > kand Y 270 (@) < Y 27 forall n < ny; (23)
(=0 (=0
we will call this the induction condition for k. Note that the induction condition is trivially
satisfied for k =0, since U(OJ) =1 > 0 and Tp(O) = 1 < 1. We are now going to ‘construct’
an nyy 1 and @y, in such a way that the induction condition will also be satisfied for k+1,
and in this way ‘construct’ the path ® inductively.
We begin by showing that the process T, defined by

k
T{(s) == Y. 2707 (s) for all s € S, (24)
(=0
is a recursive positive rational supermartingale for 1/2. Since this 7} is a finite weighted
sum of recursive positive rational test supermartingales for 1/2 with positive rational coef-
ficients, it is a recursive positive rational process. We are therefore left with proving the
supermartingale property:

k k
Es(AT{(5)) = Eyps (): 2—<"z+f>m(s)> =Y 27 (tOE, ,(AT)(s)) < Oforall s €,
=0 (=0

where the last inequality holds because all Ty, with ¢ € Ny, are supermartingales for 1/2.
We conclude that 7} is indeed a recursive positive rational supermartingale for 1/2.

Now for the actual ‘construction’ of nxy; and @y, . We already know from Equa-
tion (23), the induction condition for k, that T}/(®;.,) < Z’gzo 2-¢ for all n < n;. Now
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invoke Lemma 36 to find that there is a recursive path @' such that

k
O], = Opn, and T} (0],,) < Y 27" for all n € Ny. (25)
=0

Since @' is recursive, it follows from Lemma 34 that it is not C-random for I, and hence,
by Proposition 3, it is also not ML-random for /. Consequently, limsup,_,.,U(®].,) =
oo, and therefore, there is some natural number n;, | > n; such that U (co{:nkﬂ) >k+1.
Now let @y, = a){:nk+l , and observe that this leaves @y, unchanged. It now holds by
construction that

25)
In ) < Y 27 forall n < myyy.

(=0 (=0 (=0
(26)
Consider the recursive positive rational test supermartingale Ty | € Tc(1/2). By repeatedly
applying Lemma 23, we obtain that Ty 1(®1.,) < 2Tj41(01—1) < -+ <2"T(0) = 2" for
all n € Ny, and therefore

k K :
Z 2_(,1{,_;,_[)7,@((01:”) (g) Z 2—(n4+€)Té(w/ ) (2:4) Tk/(w{;

o=tk T 1 (@) (k)

e for all n < ngy .

These inequalities, together with Equation (26), now lead to

k1 k+l
Z 2—(ng+é)D(w1:n) < Z 27 forall n < nyy .

If we recall that also U(@y.p,,,) = U (a){:nkﬂ) > k41, we see that the induction condition
is satisfied for k+ 1 as well.

In our construction, we have made sure that nz | > ny, for all k € Ny, and this makes sure
that the consecutive situations @, kK € Ny define a unique path @. It now only remains
to show that this path does satisfy all the requirements.

If we recall that np < nj <--- <mnp <myq < ..., then we see that, on the one hand,

(23)
limsupU (®i.,) > limsupU(@y.,,) > limsupk = oo,
n—yoo k—roo k—ro0
which tells us that, indeed, ® is not ML-random for the interval forecast I.

On the other hand, that ny < ny < --- <ng <mngy < ..., implies that for all n € Ny there
is some k € Ny such that n < np < ngy < ..., and it therefore follows from Equation (23)
that

k k
li 2= 0T (@) < i 27" =2 forall n € Ny.
klfi,[;) o ].n)—kg?o;) oratin < fNo

Consequently, for all k,n € N,

k
Tk(wl:n) = 2nk+k27(nk+k> Tk(wl:n) S 2nk+k Z 27(11[4»()])(0)1:")
=0
k

< 2%k 1im Y 27O T (@), ) < 2HRHT

< e n) S
This shows that, for every k € Ny, the recursive positive rational test supermartingale Ty
for 1/2 is bounded above on @ by 2"***+1. Hence, @ is indeed C-random for 1/2. O

Proof of Proposition 17. Fix any two real numbers p,q € R such that 0 < p < ¢ < 1, then
there is a computable interval forecast I’ C (0,1) such that [p,q] C I’. By Proposition 37,
there is a path @ € Q that is C-random for 1/2 but not ML-random for ’.

To show that Ic (@) = 1/2, simply observe that since 1/2 € Z¢(®) and since Ic (o) is non-
empty because Properties 2 and 4 hold for R = C, it follows that Ic(®) = (N Zc (@) = 1/2.
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To conclude, assume towards contradiction that @ is ML-random for [p,q]. Since
[p,g] CI' and Property 1 holds for R = C, we find that I’ € Ty (), a contradiction. [

B.3.2. S-randomness versus wCH-randomness.

For any o, B € (0,1), we define the gamble f, g on 2" by

Sap(l) = \/l% and f, 5(0) == =Pfa-w .
T e+ JT—a)1—p) P Jap+ /(- a)(1-B)

Lemma 38 ([7, Lemma 35]). For any a,f € (0,1), we consider the gamble f, g on %
defined in Equation (27). Then for any o, € (0,1) and I € Z, the following statements
hold:

() Ea(fap) =1 fap(0)>0and fop(1) >0;
(i) fa,p(1) > fa,p(0) if and only if o < B;
(i) if max/ < & < B, then E(fop) < 1;
(iv) if a < <minl, then E;(fg o) < 1;
V) fop(0)fp.a(0) = fap (D) fpall) > (1 - 3(a—pB)?)

The following proof uses ideas from Ref. [7], which are in their turn inspired by Ref. [22].

27

-1

Proof of Proposition 20. Since @, , is clearly a computable precise forecasting system and
since @ is C-random for ¢, ,, Equation (3) implies that ® € Qcu(¢,4), so it already
follows from Proposition 18 that Icy(®) = [p,q], p < ¢ — (¢ — p)g < minlycu(w) and
max Iycy(®) < g—(¢—p)p < q. That @ is C-random for the computable precise fore-
casting system ¢, , also implies, taking into account Corollary 14, that Ic(®) = Icu(®),
s0 Ic(®) = Icn(®) = [p, q].

Since Ic(®) = [p,q], Corollary 4 implies that Is(®) C [p,q]. It now only remains to
prove that Is(w) = [p,g|. This is what we now set out to do.

First, since we already know that min/s(®) > p, we assume towards contradiction that
min/s(®@) > p. Since p > 0, there is then some positive rational number r € Q such that
0 < p <r<minls(®w) < 1. By Proposition 6 and Definition 3, ® must be S-random
for the interval forecast [r, 1]. Let us now prove that this is impossible, by constructing a
computable test supermartingale for [r, 1] that is computably unbounded on .

Let 0 < € < 1 be any rational number [which there always is] such that p+ 3¢ < r. We
define a multiplier process D by D(0J) := 1 and

rr— if =1 .
D(x1.) = Jrr—e o for all x1., € S withn € N,
1 ifx, =0

where, for any a, 8 € (0,1), the gamble f, g € £ (2") is defined by Equation (27). The
multiplier process D is computable because r and € are rational. D is furthermore positive
by Lemma 38(i), since 1 >r>0and 1 >r—e>p+2e>0.

To prove that D is a supermartingale multiplier for [r, 1], we show that E|,.;(D(s)) < 1
for all s = x1., € S with n € Ny. There are three possible cases.

If n = 0 and therefore s = [J, we find that E|,,;)(D(0)) = Ep,,;j(1) <.

If n > 0 and x, = 0, then E |, (D(s)) = E[ (1) € 1.

If n> 0 and x, = 1, it follows from Lemma 38(iv) that E,.;1(D(s)) = E,1](frr—e) < 1.

So D is indeed a supermartingale multiplier for [r, 1]. Since we had already established
that D is computable and positive, it follows from Lemma 22 that D® is a positive comput-
able test supermartingale for [r, 1].
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We will now show that this D® is computably unbounded on . Consider the multiplier
process D' defined by D'(0J) := 1 and

D' (x1) = {fr‘” %fx,, =1 for all x;., € S withn € N.
1 ifx, =0

We first prove that D' is a positive computable supermartingale multiplier for the fore-
casting system ¢, ,. The argumentation is fairly similar to the one given above for D
and [r,1]. Computability follows from the rationality of r and €. Positivity follows from
Lemma 38(i) since 1 > r>0and 1 > r—g > 0. To prove that D’ is a supermartingale mul-
tiplier for ¢, 4, we need to show that Eg (s (D'(s)) < 1forall s =x., €S with n € Ny.

The cases where s = [, or where n > 0 and x,, = 0, are again trivial.

If n>0and x, = 1, then D' (x1.,) = fr—¢ r and @p 4(x1.4) = p, 50, since p < r—e <r, it
follows from Lemma 38(iii) that E,, (. )(D'(x1:0)) = Ep(fr—e,r) < 1.

So, D' is indeed a positive computable supermartingale multiplier for ¢, ;. Taking into
account Lemma 22, we can conclude that D'® is a positive computable test supermartingale
for ¢, 4. This computable test supermartingale D’ © must furthermore be bounded above
on @, because of the assumed C-randomness of the path @ for ¢ 4.

Let us now show that the product process D®D’® is computably unbounded on ®, which
will then immediately imply that D® must be computably unbounded too.

Let B be any positive rational upper bound on D'® along ®. Consider the rational
number & = (1— %82)71, then 8 > 1 because 0 < £ < 1, and Lemma 38(v) guarantees
that

frfe,r( 1 )fr,rfe ( 1) = frfe,r(o)fr,rfe (0) >4.
Hence,
=1 ifn=0
D(x1,)D (x1;){ =1 ifn>0andx,=0 forallx.,, €S with n € Ny. (28)
>6 ifn>0andx,=1

Now recall that Icpy(®) = [p,q], so we infer from Proposition 5 [with S = 1] that p <
liminf, . % ZZ;(I) @y+1. Consider any rational ¢ such that 0 < o < p [which there always
is], then there is some M € N such that o0 < %ZZ;& O+ and therefore also an < Y| _| w
for all n > M. Then, for any n > M,

D (@1:041)D" (@1011) = I”ID(wlzk)(warl) ﬁD/(wlzk)(wkH)
k=0 i=0
= ﬁ [D(@1:4) (@ 1)D' (@14) (@%+1)]
k=0

(28) 1 " 5>1
> Hawk _ 5Zk:1“’k ; Stxn’
k=1
and therefore, since D'® is positive and bounded above by B along ®, also
an

>
~ D'(01:041)

Now, let 7: Ng — Rx( be defined by 7(0) =0 and t(n+1) := B~18*" for all n € Ny. Then
T is computable because o, 6 and B are rational, and 7 is non-decreasing and unbounded
because B >0, § > 1 and a > 0. So, 7 is a real growth function for which D®(w;.,) > t(n)
for all n > M + 1, and therefore also limsup,,_,.,[D®(®;.,) — t(n)] > 0. We conclude that
the computable test supermartingale D® for [r, 1] is indeed computably unbounded on o,
so o cannot be S-random for [r, 1].

This tells us that, necessarily, min/s(®) = p. In a similar way, we will now prove that
g = maxIs(), and therefore indeed Is(®) = [p, q].

D®(@i:ns1) > B 18% foralln > M.
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First, since we already know that max s(®) < ¢, we assume towards contradiction that
max/s(®) < g. Since g < 1, there is then some positive rational number r € Q such that
0 < maxIs(w) < r < g < 1. By Proposition 6 and Definition 3, @ must be S-random
for the interval forecast [0, r]. Let us now prove that this is impossible, by constructing a
computable test supermartingale for [0, 7] that is computably unbounded on ®.

Let 0 < € < 1 be any rational number [which there always is] such that » < g —3e. We
define a multiplier process D by D((J) := 1 and

D(x1.) = {l %fx,,_ ! for all x;., € Swithn € N,

Srore ifx,=
where, for any o, B € (0, 1), the gamble f,, g € £ (2") is again defined by Equation (27).
The multiplier process D is computable because r and € are rational. D is furthermore
positive by Lemma 38(i), since 0 <r <1 and 0 < r+¢& < g—2¢ < 1. To prove that D
is a supermartingale multiplier for [0, 7], we show that E|y,j(D(s)) < 1 for all s = x., €S
with n € Ny. There are three possible cases.

Cl

If n = 0 and therefore s = [J, we find that E|y ,;(D(0)) = Ejo (1) = 1.

If n > 0 and x, = 1, then Epg 1(D(s)) = Ejo.4(1) € 1.

If n > 0 and x, = 0, it follows from Lemma 38(iii) that E g ,(D(s)) = E[o ;) (frrre) < 1.

So D is indeed a supermartingale multiplier for [0, 7]. Since we had already established
that D is computable and positive, it follows from Lemma 22 that D® is a positive comput-
able test supermartingale for [0, r].

We will now show that this D® is computably unbounded on @. Consider the multiplier
process D' defined by D'(0J) := 1 and

1 ifx,=1
D' (x1.) = 1 n for all x1., € S withn € N.
Sroeer ifx,=

We first prove that D' is a positive computable supermartingale multiplier for the fore-
casting system ¢, ,. The argumentation is fairly similar to the one given above for D
and [0,r]. Computability follows from the rationality of r and €. Positivity follows from
Lemma 38(i) since 0 < r < 1 and 0 < r+ €& < 1. To prove that D’ is a supermartingale mul-
tiplier for ¢, 4, we need to show that E, () (D'(s)) < 1 for all s =x1., € S with n € Ny.

The cases where s = [, or where n > 0 and x,, = 1, are again trivial.

If n> 0 and x, = 0, then D/ (x1.,) = fyte,r and @p 4(x1.4) = ¢, s0, since r < r+€ < g, it
follows from Lemma 38(iv) that Eg, () (D' (x1:n)) = Eq(fr+e,r) < 1.

So, D' is indeed a positive computable supermartingale multiplier for ¢, ,. Taking into
account Lemma 22, we can conclude that D'® is a positive computable test supermartingale
for ¢, 4. This computable test supermartingale D’ © must furthermore be bounded above
on @, because of the assumed C-randomness of the path @ for ¢ 4.

Let us now show that the product process D®D’® is computably unbounded on ®, which
will then immediately imply that D® must be computably unbounded too.

Let B be any positive rational upper bound on D'® along ®. Consider the rational
number & = (1— %82)71, then § > 1 because 0 < & < 1, and Lemma 38(v) guarantees
that

fr+€.,r( 1 )fr,r+8 ( 1) = fr+s,r(0)fr-,r+8 (0) >8.

Hence,
=1 ifn=0
D(x1:0)D' (x1:2) >8 ifn>0andx, =0 forallxj, €S withn € Ny. (29)
=1 ifn>0andx,=1

Now recall that Icpy(®) = [p,q], so we infer from Proposition 5 [with § = 1] that ¢ >
limsup,,_,.. % Zz;(l) 1. Consider any rational & such that 1 > o« > g [which there always



THE SMALLEST PROBABILITY INTERVALS FOR WHICH A BINARY SEQUENCE IS RANDOM 39

is], then there is some M € N such that o¢ > %ZZ;& 1 and therefore also an > Y7 | @
for all n > M. Then, for any n > M,

n n
D (@1:041)D" (@1:041) = [ [ D(@14) (@11) [ [ D (@1:1) (@4 1)
k=0 k=0

= [[[D(@1) (@s1)D' (01:4) (0411
k=0
(229) ﬁSl*wk = §Timi(1—) — gn—Xi (@) 5;1 3(1*06){
k=1

and therefore, since D'® is positive and bounded above by B along ®, also

5(l—a)n B B
> >pB s foralln > M.

D' (@1 41)
Now, let 7: Ny — Rsq be defined by 7(0) =0 and t(n+ 1) := B~' 8= for all n €
Np. Then 7 is computable because o, d and B are rational, and T is non-decreasing and
unbounded because B> 0,6 > 1 and 1 — o > 0. So, 7 is a real growth function for which
D®(@y.,) > t(n) for all n > M+ 1, and therefore also limsup,_,..[D®(®1.,) — T(n)] > 0.
We conclude that the computable test supermartingale D® for [0, 7] is indeed computably
unbounded on ®, so ® cannot be S-random for [0, r].

This tells us that, indeed, maxIs(®) = g.

D@(a)l:n—H)
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