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Preface

In the past months, I put a great deal of time in thinking about what to put
into this preface. I for example came up with the idea of comparing my act
of writing this dissertation with me being a whale that would be happy to be
pulled ashore, after having spent too much time at the dark bottom of the
sea; I probably lent this picture from Wim Opbrouck’s performance ‘Ik Ben
De Walvis’. Bruno Bauwens provided me with a different picture: writing a
dissertation is like eating a whole cake. At first it seems undoable, but if you
cut it into pieces, and start eating it piece by piece, you will eventually finish
it; for your information, I really like to eat tarte maison. On another more
humoristic note, I thought about including a before and after image of my
face that would reveal how much I aged while writing this dissertation. It’s
only recently that it became clear to me what I would do with this preface. In
order for it to be(come) meaningful, I would try to be precise, and in order
to be precise, I have to be elaborate. In what follows, I will try thanking a
number of people for a number of specific reasons, and I will sometimes do
so in my mother’s tongue, since that is the language that binds some of us.

Aan mijn ouders Ronny Albert Josephine Persiau en Martine Rooman
geef ik graag de volgende gedachte(n) mee. Enkele jaren geleden schreef
Janne op de achterkant van een postkaart de 5 basisbehoeften van een mens
volgens Al Pesso: plaats, voeding, steun, bescherming en begrenzing. Hoe-
wel ik de afgelopen jaren beschouw als mijn laattijdige puberteit—waarin
mijn kijk op en mening over vele zaken verschilt van die van jullie—, doet
deze kaart me al geruime tijd nadenken over wat ons verbindt en wat jullie
meegegeven hebben. Een paar jaar geleden las ik ‘De ondraaglijke lichtheid
van het bestaan’ van Milan Kundera, en beluisterde ik een bespreking waarin
uitgelegd wordt dat dit boek (ondermeer) gaat over hoezeer een mensenleven
anders kan zijn/verlopen door enkele kleine ingrepen/wijzigingen. Het voelt
echter prettig om stil te staan bij wat er (al) is en mogelijk is, en niet bij wat
er niet is of (geweest) kon zijn. Het is enorm dankbaar om terug te kijken
op hoe ik onder jullie hoede en veilige, warme vleugels deels tot wasdom
ben gekomen, vertrekkende van een weliswaar nieuwsgierig kind dat moeite
had met verandering en het onbekende. Bedankt om Charlotte en mij vijf
jaar geleden op dergelijke wijze af te zetten bij wat jullie ‘de start van het
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(volwassen) leven’ noemen. In het bijzonder wil ik jullie bedanken om een
manier te tonen waarop een mens zorg kan dragen voor zichzelf, voor de
herhaaldelijke hulp bij verhuizen, om me uit te leggen hoe je een strijkijzer
hanteert (onderbroeken en keukenhanddoeken dienen wel écht niet gestre-
ken te worden), voor het ontvangen van mijn tranen na een relatiebreuk, en
om zo goed voor elkaar te blijven zorgen terwijl ik in Gent zat. Het is fijn om
te weten dat er iemand mee over je schouder kijkt, om te weten dat je niet
alleen bent, om terug te kunnen keren naar een nest.

Dear Jasper and Gert, thanks for having given me a chance and the trust
to continue your research on Imprecise Probabilities in Algorithmic Ran-
domness. I remember Gert using two metaphors for describing this line of
research: he considered it both a playground he liked playing in, and his
newborn baby. I can only say that I had a great deal of fun in the past 5
years, and that I hope you’re happy about the way I took care of the baby.
The past 5 years have actually been about way more than just fun, it was
also about finding a passion, which has felt as a great gift in life, and which
I’m extremely grateful for. It’s been nice to be surrounded by people I look
up to, and who I want to/can learn from. I consider you both—in your very
own way—very generous people. In particular, I thank Jasper for his support
and involvement—especially at the start and at the end of my PhD—, for
trusting me with co-organising the SIPTA School 2024, and for sharing (and
applying) his impressive mathematical (clockwork) precision. In particular, I
thank Gert for letting me be me—especially in those cases when I was not
having the best mood—, for letting me feel that you believe in me, and for
your clever statements and sentences that stuck in my head and provided me
with reflection and understanding.

For my research stay in the beautiful city of Montpellier, I want to thank
Alexander Shen for sharing his house and for providing me with many rele-
vant pointers to the literature that allowed me to better position my research.
For my research stay at Carnegie Mellon University, I thank Francesca Zaffora
Blando for the time she was willing to spend on discussing research. Your—
what I call feminine—way of lucidly and calmly explaining and discussing
things is really inspiring. I really enjoy(ed) working together.

To my non-professorial colleagues of FLip—Alexander, Natan, Arne,
Keano and Adrian—I write that it’s a privilege to be surrounded by so many
young, bright and rather funny mathematicians. In the past year, it’s been
pleasant to work on this dissertation in the morning, and to look forward to
sharing lunch with you at noon (which consists of eating my daily cheese
sandwich). In particular, I thank Alexander and Natan for so generously
sharing the hurdles they faced and the mistakes they made while writing
their dissertations; you definitely made writing this one a lot easier. In ad-
dition, I want to thank Alexander for sharing an—what he long considered
his—office with me. It has been nice to get to know you a bit better. Moreover,
I immensely enjoyed working together on our take on the SIPTA School 2024,
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and I’m immensely proud about both the process and the outcome.
To my beloved friends, doing a PhD in mathematics has only been pleas-

ant by the counterbalance of your sheer existence. I am extremely grateful for
receiving your love, for your openness to discuss ideas and your thoughts, for
sharing, analysing and exploring (y)our emotions, for going on new exciting
adventures (with old exciting people—Kae Tempest), for you being you, and
of course for just having a dance and fun. It moves me how much I learned
from you.

Liefste Jannevrouw. Zoals zo vaak geschreven wordt over een doctoraat:
‘what a ride’. Hoewel de bovenstaande oplijsting een verzameling is van
dankbaarheden voor verscheidene vrienden, beschouw ik ze allen als van
toepassing op jou. In het bijzonder dank ik je om me te laten zien en voelen
dat er vele mogelijkheden zijn in het leven, dat er heel veel kan en niet moet.
Het afgelopen jaar was mede dankzij jou(w duwtjes en sleeptouw) de max.

Floris Persiau
September 2024
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Summary

This dissertation is concerned with the study of ‘Imprecise Probabilities
in Algorithmic Randomness’. To explain what it’s all about, we’ll start by
unpacking the title.

The field of Imprecise Probabilities questions whether precise-
probabilistic uncertainty models are always sufficient to capture one’s
uncertainty, and puts forward alternative and (even) more general uncer-
tainty models that allow for reasoning in an informative and conservative
way, even in those situations where it’s infeasible or inappropriate to specify
a single probability (measure). In particular, in this thesis, we consider a
sequence of discrete-time outcome variables whose states assume values in
an arbitrary but finite state space, and we model our uncertainty about these
values by adopting so-called forecasting systems, which associate with every
possible finite outcome sequence a possibly different set of probability mass
functions—which is called a credal set—to express our uncertainty about
the next unknown outcome. If a forecasting system only specifies a single
probability mass function for every finite outcome sequence, then it’s called
precise; every such precise forecasting system defines a unique probability
measure on the elements of the standard Borel (sigma) algebra, and for every
probability measure on this algebra there’s at least one forecasting system
that generates it.

The field of Algorithmic Randomness, on the other hand, studies what it
means for an infinite outcome sequence to be random. Consider for example
infinite binary sequences that are generated by flipping a fair coin—which
corresponds to probability 1/2: the infinite binary sequence 01010101. . .
doesn’t seem random at all, whereas the sequence 10001011. . . seems more
random. Algorithmic randomness notions try to formalise our intuition be-
hind random sequences, by defining what it means for an infinite sequence
to be random for an uncertainty model. Classically, these uncertainty models
are probability measures (or precise forecasting systems).

It’s the endeavour of this dissertation to allow for imprecise-probabilistic
forecasting systems in several algorithmic randomness notions, and to see
and study what happens when doing so, building on initial work that has
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been done in the intersection of both fields.
After introducing the necessary tools from imprecise probability the-

ory and computability theory in a first part, we adopt three approaches to
algorithmic randomness: a martingale-theoretic, a frequentist and a test-
theoretic one. Under the first martingale-theoretic approach to algorithmic
randomness, a sequence is random for a forecasting system if there’s no im-
plementable betting strategy for getting arbitrarily rich along this sequence
without borrowing, where the bets that are allowed, are determined by the
forecasting system. By changing the type of implementability that’s imposed
on the betting strategies and the way of getting arbitrarily rich, we obtain
4 different randomness notions: Martin-Löf randomness, weak Martin-Löf
randomness, computable randomness and Schnorr randomness. We explain
that they are natural imprecise-probabilistic generalisations of several classi-
cal precise-probabilistic randomness notions, and show that they satisfy the
same relations as their precise-probabilistic counterparts. Moreover, as yet
another argument in favour of our approach, we prove several other proper-
ties, which are again reminiscent of the classical ones: for every computable
forecasting system there’s a so-called universal betting strategy such that
a sequence is Martin-Löf random for the forecasting system if and only if
this particular betting strategy doesn’t allow you to get arbitrarily rich along
the sequence, the randomness of a sequence with respect to a computable
forecasting system only depends on the forecasts that are specified along the
sequence, these randomness notions are reasonably robust with respect to
changes to both the forecasting systems and the betting strategies, etc.

Under a more frequentist approach to algorithmic randomness, a se-
quence is random for a forecasting system if the sequence and its com-
putably selectable subsequences satisfy an imprecise-probabilistic version
of the law of large numbers. By changing what it means for a subsequence
to be computably selectable, we obtain 2 different randomness notions:
Church randomness and weak Church randomness. We explain that they are
imprecise-probabilistic generalisations of classical precise-probabilistic ran-
domness notions, show how they relate to each other and to the martingale-
theoretic randomness notions—which relation is analogous to the ones for
their precise-probabilistic counterparts—, show that they have an equivalent
alternative frequentist and martingale-theoretic characterisation, and show
that they satisfy similar properties as the martingale-theoretic ones.

As should be clear by now, there are many ways to come up with a notion
of randomness. What makes a randomness notion interesting then? Of
course, its definition should have an intuitive interpretation and should come
with a number of interesting properties. Furthermore, an interesting notion
of randomness typically carries several equivalent characterisations; we show
that this holds for some of our martingale-theoretic randomness notions.
Under a test-theoretic approach to algorithmic randomness, a sequence is
random for a forecasting system if it passes all implementable statistical
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tests that are associated with the forecasting system. By changing what it
means for a statistical test to be implementable, we obtain 2 randomness
notions: Martin-Löf test randomness and Schnorr test randomness. Under
the restriction of computable forecasting systems, we show that these test-
theoretic definitions coincide with the corresponding martingale-theoretic
ones—thereby generalising classical equivalence results by Schnorr and Levin
[1, 2, 3]—and that Martin-Löf test randomness coincides with Levin’s notion
of uniform randomness [4, 5, 6]—which considers effectively compact classes
of probability measures.

Next, we move away from the classical/standard approach to algorithmic
randomness by questioning whether it’s always possible/opportune to define
the randomness of a sequence with respect to a forecasting system, which
specifies credal sets for all finite outcome sequences that could have been
observed. We answer this question in the negative, and address it by adopting
a so-called prequential approach to randomness, which is based on the work
by Dawid and Vovk [7, 8, 9] and which allows to define the randomness of an
infinite sequence only with respect to the credal sets that are actually forecast
along the sequence. In particular, we develop a prequential version of both
the martingale- and test-theoretic approach to Martin-Löf randomness—
which we call game- and test-randomness, respectively—, show that both
randomness notions coincide, and prove that they also coincide in a specific
sense with the standard version of Martin-Löf randomness when imposing
some mild (computability) conditions on the forecasting systems.

In a final part, we zoom out and question whether imprecise forecasting
systems are really needed to capture a sequence’s randomness. We answer
this question both in the positive and in the negative. On the one hand, for
our martingale-theoretic and frequentist notions of randomness, we show the
existence of sequences that are random for an imprecise forecasting system,
but that aren’t random for any computable precise forecasting system. On the
other hand, we show that a sequence is martingale-theoretically random for
a forecasting system if and only if it’s random for some compatible (typically
non-computable) precise forecasting system. These answers lay bare the
importance of the computability assumption on the forecasting systems. We
finish our exposition by explaining why computable forecasting systems are
to be favoured from the point of view of statistics whose aim it is to learn an
uncertainty model from data.
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Samenvatting

Dit proefschrift richt zich op de studie van ‘Imprecieze waarschijnlijkheden
in algoritmische toevalligheid’. Om uit te leggen waarover het gaat, starten
we met het ontleden van de titel.

Het veld van imprecieze waarschijnlijkheden betwist of precieze onzeker-
heidsmodellen altijd voldoende zijn om iemands onzekerheid te beschrijven,
en schuift alternatieve en (zelfs) algemenere onzekerheidsmodellen naar vo-
ren die het mogelijk maken om op een informatieve en conservatieve manier
te redeneren, zelfs in situaties waarin het niet haalbaar of zelfs ongepast is om
een enkele waarschijnlijkheid(smaat) op te geven. In het bijzonder kijken we
naar discrete-tijdsvariabelen waarvan de toestanden waarden aannemen in
een eindige toestandsruimte, en modelleren we onze onzekerheid over deze
waarden door zogenaamde voorspellingssystemen te adopteren, die met
elke mogelijke eindige uitkomstenrij een mogelijks andere verzameling van
massafuncties associëren—wat een credale verzameling wordt genoemd—
om onze onzekerheid over de volgende onbekende uitkomst te beschrijven.
Indien een voorspellingssysteem maar een enkele massafunctie specificeert
voor elke eindige uitkomstenrij, dan wordt het precies genoemd; elk precies
voorspellingssysteem definieert een unieke waarschijnlijkheidsmaat op de
elementen van de gebruikelijke borelalgebra, en voor elke waarschijnlijk-
heidsmaat op deze algebra is er minstens één voorspellingssysteem dat ze
genereert.

Het veld van algoritmische toevalligheid bestudeert daarentegen wat het
betekent voor een oneindige uitkomstenrij om toevallig te zijn. Beschouw
bijvoorbeeld oneindige binaire rijen die worden gegenereerd door het op-
gooien van een eerlijk muntstuk—wat overeenkomt met de kans 1/2: de
oneindige binaire rij 01010101. . . lijkt helemaal niet toevallig te zijn, terwijl
de rij 10001011. . . toevalliger lijkt. Noties van algoritmische toevalligheid
proberen onze intuïtie achter toevallige rijen te formaliseren door te de-
finiëren wat het betekent voor een oneindige rij om toevallig te zijn voor
een onzekerheidsmodel. Klassiek gezien zijn deze onzekerheidsmodellen
waarschijnlijkheidsmaten (of precieze voorspellingssystemen).

Het is de betrachting van deze dissertatie om imprecieze voorspellings-
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systemen toe te staan in diverse noties van algoritmische toevalligheid, en
om te zien en te bestuderen wat er gebeurt wanneer we daarin slagen.

Na in een eerste deel het nodige materiaal uit de theorie van imprecieze
waarschijnlijktheorie en berekenbaarheidstheorie te introduceren, volgen
we drie aanpakken van algoritmische toevalligheid: een martingaaltheoreti-
sche, een frequentistische en een testtheoretische aanpak. Onder de eerste,
martingaaltheoretische, aanpak van algoritmische toevalligheid wordt een
rij als toevallig beschouwd voor een voorspellingssysteem als er geen imple-
menteerbare gokstrategie bestaat om willekeurig rijk te worden langsheen
deze rij zonder te lenen, waarbij de toegestane gokken worden bepaald door
het voorspellingssysteem. Door het soort implementeerbaarheid dat wordt
opgelegd aan de gokstrategieën en de manier waarop ze je willekeurig rijk
moeten laten worden, te veranderen, krijgen we vier verschillende toeval-
ligheidsnoties: Martin-Löf-toevalligheid, zwakke Martin-Löf-toevalligheid,
berekenbare toevalligheid en Schnorr-toevalligheid. We leggen uit dat deze
noties natuurlijke imprecieze veralgemeningen zijn van verscheidene klas-
sieke precieze toevalligheidsnoties, en tonen aan dat ze voldoen aan dezelfde
relaties als hun precieze tegenhangers. Bovendien, als extra argument ten
gunste van onze aanpak, bewijzen we verschillende andere eigenschappen,
die weer doen denken aan de klassieke eigenschappen: voor elk berekenbaar
voorspellingssysteem is er een zogenaamde universele gokstrategie zoda-
nig dat een rij Martin-Löf-toevallig is voor het voorspellingssysteem als en
slechts als deze specifieke gokstrategie je niet in staat stelt om willekeurig
rijk te worden langsheen de rij; de toevalligheid van een rij ten opzichte van
een berekenbaar voorspellingssysteem hangt alleen af van de voorspellingen
die langsheen de rij worden gespecificeerd; deze toevalligheidsnoties zijn
tamelijk robuust met betrekking tot veranderingen in zowel de voorspellings-
systemen als de gokstrategieën; enzovoort.

Onder een frequentistische aanpak van algoritmische toevalligheid wordt
een rij als toevallig beschouwd voor een voorspellingssysteem indien de rij
en haar deelrijen die op berekbare wijze selecteerbaar zijn, voldoen aan een
‘imprecieze’ versie van de wet van de grote aantallen. Door te veranderen
wat het betekent dat een deelrij op berekenbare wijze selecteerbaar is, ver-
krijgen we twee verschillende toevalligheidsnoties: Church-toevalligheid en
zwakke Church-toevalligheid. We leggen uit dat deze noties ‘imprecieze’
veralgemeningen zijn van klassieke precieze toevalligheidsnoties, tonen aan
hoe ze zich tot elkaar en tot de martingaaltheoretische toevalligheidsnoties
verhouden—wat analoog is met de relaties voor hun precieze tegenhangers—,
tonen aan dat ze een alternatieve equivalente frequentistische en marting-
aaltheoretische karakterisering hebben, en tonen aan dat ze vergelijkbare
eigenschappen hebben als de martingaaltheoretische toevalligheidsnoties.

Zoals ondertussen duidelijk zou moeten zijn, zijn er veel manieren om
een notie van toevalligheid vast te leggen. Wat maakt een toevalligheidsnotie
dan interessant? Natuurlijk moet de definitie een intuïtieve interpretatie
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hebben en moet ze gepaard gaan met een aantal interessante eigenschappen.
Bovendien heeft een interessante notie van toevalligheid doorgaans verschil-
lende equivalente karakteriseringen; we tonen aan dat dit geldt voor enkele
van onze martingaaltheoretische toevalligheidsnoties. Onder een testtheo-
retische aanpak van algoritmische toevalligheid wordt een rij als toevallig
beschouwd voor een voorspellingssysteem als ze alle implementeerbare sta-
tistische testen doorstaat die geassocieerd zijn met het voorspellingssysteem.
Door te veranderen wat het betekent dat een statistische test implementeer-
baar is, krijgen we twee toevalligheidsnoties: Martin-Löf-test-toevalligheid
en Schnorr-test-toevalligheid. We tonen aan dat, onder de beperking van
berekenbare voorspellingssystemen, deze testtheoretische definities samen-
vallen met de overeenkomstige martingaaltheoretische definities—wat een
veralgemening vormt van klassieke equivalentieresultaten van Schnorr en
Levin—en dat Martin-Löf-test-toevalligheid samenvalt met Levins notie van
uniforme toevalligheid—die effectief compacte klassen van waarschijnlijk-
heidsmaten beschouwt.

Vervolgens stappen we af van de klassieke aanpak van algoritmische
toevalligheid door ons af te vragen of het altijd mogelijk/gepast is om de
toevalligheid van een rij te definiëren met betrekking tot een voorspellings-
systeem dat credale verzamelingen specificeert voor alle eindige uitkom-
stenrijen die in principe waargenomen kunnen worden. We moeten een
negatief antwoord op deze vraag geven, en volgen daarom een zogenaamde
prequentiële aanpak van toevalligheid, die gestoeld is op het werk van Dawid
en Vovk en die het mogelijk maakt om de toevalligheid van een oneindige rij
te definiëren met betrekking tot enkel de credale verzamelingen die daadwer-
kelijk langsheen de rij worden gespecificeerd. In het bijzonder ontwikkelen
we een prequentiële versie van zowel de martingaaltheoretische als de test-
theoretische aanpak van Martin-Löf-toevalligheid—die we respectievelijk
speltoevalligheid en testtoevalligheid noemen—, tonen we aan dat beide
toevalligheidsnoties samenvallen, en bewijzen we dat ze ook samenvallen
met de standaardversie van Martin-Löf-toevalligheid wanneer enkele milde
(berekenbaarheids)voorwaarden worden opgelegd aan de voorspellingssys-
temen.

In een laatste deel nemen we een stap terug en stellen we de vraag of
imprecieze voorspellingssystemen weldegelijk nodig zijn om de toevalligheid
van een rij te vatten. We geven zowel een positief als een negatief antwoord
op deze vraag. Enerzijds tonen we voor onze martingaaltheoretische en fre-
quentistische noties van toevalligheid aan dat er rijen zijn die toevallig zijn
voor een imprecies voorspellingssysteem, maar die niet toevallig zijn voor
enig berekenbaar precies voorspellingssysteem. Anderzijds tonen we aan dat
een rij martingaaltheoretisch toevallig is voor een voorspellingssysteem als
en slechts als ze toevallig is voor een compatibel (typisch onberekenbaar)
precies voorspellingssysteem. Deze antwoorden onthullen het belang van
de berekenbaarheidsvoorwaarde op de voorspellingssystemen. We eindigen
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onze uiteenzetting met een argument waarom berekenbare voorspellings-
systemen de voorkeur verdienen vanuit het oogpunt van statistiek, die erop
gericht is om een onzekerheidsmodel te leren uit data.
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Introduction

In line with so many expositions on and introductions to algorithmic ran-
domness [10, 11, 12, 13], we get things moving by putting forward an infinite
binary sequence

10001000000110100011011100110001101001001001010010...

and by asking a question: (when) do you consider this sequence to be gener-
ated by flipping a fair coin? Or put differently, (when) would you say that the
sequence agrees with probability 1/2, where 1/2 is the probability for the coin
landing heads? If you were given the infinite binary sequence 0101010101...,
then you’d probably be inclined to answer this question in the negative.
Meanwhile, the above infinite binary sequence looks at least more random.
So, what sequences do (and don’t) you deem random? The field of algo-
rithmic randomness tries to answer this question by putting forward formal
definitions of what it means for an infinite sequence to be random for an
uncertainty model. Classically, these uncertainty models are probability mea-
sures, including the special case of those that describe the process of flipping
a (possibly un)fair coin.

In recent decades, however, there has been a scholarly push towards the
development of alternative and (even) more general uncertainty models, the
study of which belongs to the field called imprecise probabilities [14, 15, 16,
17]. Such models typically allow for reasoning in an informative and con-
servative way, even in those situations where it’s infeasible or inappropriate
to specify a single probability (measure); such situations may arise because
of having available only a limited amount of data [18], dealing with incom-
plete datasets [19, 20], conflicting expert judgements [21], time constraints,
realism in expert judgements, etc. In this dissertation, we’ll embrace such
uncertainty models and push the field of algorithmic randomness beyond
precise probabilities: what happens when we allow for such imprecise proba-
bility models in the field of algorithmic randomness? In particular, how do
we allow for imprecise uncertainty models in several classical randomness
definitions, and how do the corresponding generalisations shine new light
on our understanding of random sequences?
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Introduction

This introductory chapter consists of 4 parts. In Section 1, we provide
a historical overview of some of the key developments in the field of algo-
rithmic randomness, and explain and substantiate how and why we want
to allow for imprecise uncertainty models in several randomness notions.
Section 27 gives an overview of the six chapters this dissertation consists of,
and Section 38 lists my publications that led to this dissertation. We conclude
this chapter in Section 410 by providing some information on how we manage
the internal and external references in this work.

1 History, context and motivation

We’ll start in Section 1.1 by describing the origin of and some developments in
the field of algorithmic randomness. Afterwards, in Section 1.24, we explain
why precise uncertainty models aren’t always sufficient to describe one’s
uncertainty, and motivate the usage of imprecise uncertainty models in
algorithmic randomness notions. We end with an overview of the pioneering
works that allow for ‘Imprecise Probabilities in Algorithmic Randomness’,
which this dissertation builds upon.

1.1 Algorithmic randomness: some history

As early as 1919, Richard von Mises wondered about how to give a
mathematical account of the notion of an individual random sequence
(x1, x2, . . . , xn , ...) 2XN [22, 23], with X some arbitrary but finite non-empty
set; X may for example substitute for the binary outcome set correspond-
ing with the flipping of a (possibly un)fair coin—as we considered above—,
or for the senary set that corresponds to the possible outcomes of rolling
a die. This question was widely discussed during the following 20 years.
In von Mises’ opinion, random sequences should be considered infinite
in order to construct a simple and elegant mathematical theory, and he
formulated the following two conditions such sequences need to satisfy
in order to be random for a probability mass function m : X ! [0,1] [24].
First, the relative frequency of every outcome x 2 X along the sequence
should converge to the probability m(x) of x. Second, these limiting values
must remain the same in all subsequences that can be obtained from the
sequence by so-called place selection rules; infinite sequences that satisfy
both requirements are called collectives. Consider for example again the
infinite binary sequence 0101010101... Clearly, the limiting relative frequency
of ones and zeros along the whole sequence equals 1/2, whereas along the
subsequence obtained by only selecting the outcomes at odd positions, that
is, (x1, x3, x5, . . . ) = 00000. . . , the limiting relative frequency of ones equals 0.
Hence, according to von Mises’ notion, this sequence isn’t random. This is
also clear from an intuitive point of view. However, when considering the dis-
played infinite binary sequence at the beginning of this Introduction again,
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intuition is no longer so readily available. Moreover, the question remains
what set of place selection rules must be adopted. Obviously, we mustn’t
allow for all selection rules, since this would always allow for the selection of
a subsequence that consists only of zeros or ones. Consequently, no infinite
binary sequence would then be random for a probability mass function.

In 1937, Abraham Wald proved the existence of random infinite sequences
when the set of place selection rules is countable [23, 25, 26]. Still, it hadn’t
been decided yet what countable set of place selection rules should be
adopted. It was Alonzo Church who suggested in 1940—based on Wald’s
work—to adopt the countable set of computable selection rules [23, 25, 27];
an infinite sequence is then random for a probability mass function m if the
relative frequency of every outcome x 2X along all computably selectable
infinite subsequences converges to m(x), where ‘computably selectable’ es-
sentially means that there’s some finite algorithm that decides which out-
comes to keep and which to discard. This notion of randomness is currently
known as Church stochasticity.

Such frequentist notions of randomness weren’t free from debate though.
To test the randomness of an infinite sequence, as is obvious from the above
definition, von Mises highly prioritises the law of large numbers by requiring
convergence of relative frequencies along a number of its subsequences.
Meanwhile, such random sequences don’t necessarily comply with other
statistical laws. As proven by Jean Ville [28, 29], there are infinite binary
sequences that satisfy the above requirements for probability 1/2, but for
which the running frequency of ones along the sequence converges to 1/2

from below. Such random sequences seem to posses a clear pattern, and
disobey another statistical law, which is known as the law of the iterated
algorithm. For this reason, Jean Ville criticised this type of randomness
definitions, and argued that besides the law of large numbers, a random
sequence also ought to satisfy other statistical laws [25]. Nowadays, Church
stochasticity is generally considered to be too weak a randomness notion,
and is therefore called a stochasticity notion instead of a randomness notion.

Objections of this kind against Church stochasticity led to the develop-
ment of many other randomness notions. Some of the most well-known and
well-studied amongst these are Martin-Löf randomness, computable ran-
domness and Schnorr randomness [2, 30]. The reasons for this are twofold:
they have an intuitive interpretation and they can be defined in several equiv-
alent ways [31, 32]. From a test-theoretic point of view, for example, an infinite
sequence is random for a probability mass function m if it passes all imple-
mentable statistical tests that are associated with m. On the other hand, if
we adopt a martingale-theoretic approach, then a sequence is random for a
probability mass function m if there’s no implementable betting strategy for
getting arbitrarily rich along this sequence without borrowing, where the bets
that are allowed are determined by m. The randomness notions mentioned
above will, amongst other things, differ in what type of implementability is
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imposed on the betting strategies and the statistical tests.
The above frequentist, martingale- and test-theoretic randomness no-

tions don’t only allow for defining the randomness of an infinite sequence
with respect to a stationary probability mass function m. In general, the clas-
sical approach consists in allowing for non-stationary probability mass func-
tions that describe one’s uncertainty about the next unknown outcome Xn 2
X, which may depend on the already observed outcomes (x1, . . . , xn°1) or
only on n. Such (conditional) uncertainty models that associate with every
observed finite outcome sequence (x1, . . . , xn°1) a possibly different probabil-
ity mass function m are called (precise) forecasting systems. For those readers
who are used to working with probability measures, it’s worth mentioning
that every such forecasting system defines a unique probability measure on
the elements of the standard Borel (sigma) algebra over the setXN. Vice versa,
for every probability measure on this algebra there’s at least one forecasting
system that generates it; the connection is one-to-one when restricting at-
tention to positive measures and to forecasting systems that never assign a
probability zero. Consequently, forecasting systems are slightly more expres-
sive in this sense, since they provide/contain full conditional information.

1.2 Imprecise probabilities in algorithmic randomness: context
and motivation

Algorithmic randomness notions basically try to capture our intuition behind
random sequences. Meanwhile, as we’ll illustrate below, precise probability
models aren’t always sufficiently expressive to capture that intuition. In
particular, we’ll support that claim by explaining what imprecise uncertainty
models we’ll adopt and how they remedy issues that originate from only
allowing for precise (or fully specified) probabilities.

In addition to probability mass functions, we consider closed and convex
sets of probability mass functions, which are called credal sets. In what
follows, we explain why we deem them natural and necessary in this context,
and we’ll do so by adopting a frequentist, a subjective and a martingale-
theoretic approach.

Let’s start by assuming a simple stationary description of a sequence’s
randomness, that is, by defining the randomness of a sequence for a single
probability mass function. Since all randomness notions typically impose
or imply adherence to the law of large numbers, this assumption implies
convergence of the relative frequencies of every outcome along the sequence.
However, such behaviour isn’t always satisfied in our material world. In
fact, such violations aren’t even rare; consider for example air temperature
fluctuations over long time intervals [33], or the relative occurrence of vowels
in messages drawn from Internet job postings [34]. When insisting on a
simple stationary description, this problem is easily addressed by defining
the randomness of a sequence with respect to a credal set, because then the
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credal set only imposes imprecise bounds on the relative frequencies of the
outcomes along the sequence, which allows for the fluctuation of relative
frequencies.

As another argument in favour of allowing for credal sets, imagine you
have to estimate the probability for heads of a possibly unfair coin. Are you
willing to specify a probability based on the observation of 5 tosses? In this
case, I’d be more inclined to put forward an interval of probabilities—which
corresponds to a credal set. This example reveals that probabilities aren’t
always sufficiently expressive, because a subject may be incapable of having
precise credences, which can result from dealing with a small amount of
data.

On the other hand, we can also do away with the stationarity assump-
tion, and consider a possibly non-stationary precise forecasting system. As
touched upon above, a martingale-theoretic approach to randomness bases
the randomness of a sequence with respect to a forecasting system on the
impossibility of getting arbitrarily rich by adopting an implementable betting
strategy, where the bets that are allowed are determined by the forecasting
system. When a forecasting system outputs a probability mass function asso-
ciated with a finite outcome sequence (x1, . . . , xn°1), this functions as an in-
clination to accept or reject bets on the following unknown outcome Xn 2X;
in particular, it provides fair prices for the a priori unknown rewards associ-
ated with these bets, and regards bets with positive fair prices as acceptable.
However, it’s for example clear from the behaviour of the stock market that
fair prices are in general not sufficiently expressive, because maximum buy-
ing prices (bid) and minimum selling prices (ask) typically don’t coincide.
Here as well, we can remedy this issue by adopting credal sets, because they
allow for associating maximum acceptable buying and minimum acceptable
selling prices with every bet, whose values don’t necessarily have to coincide.

In general, because of the aforementioned reasons, we’ll consider so-
called imprecise forecasting systems, which associate with every finite out-
come sequence (x1, . . . , xn°1) a possibly different credal set. In 2017, Gert
de Cooman and Jasper De Bock succeeded in allowing for such imprecise
forecasting systems in a frequentist and martingale-theoretic approach to
algorithmic randomness [35]. That is, they defined what it means for an
infinite binary sequence to be Church stochastic and computably random
for a forecasting system. As we’ve found out later thanks to Alexander Shen,
while De Cooman and De Bock were the first to introduce imprecision in
frequentist and martingale-theoretic approaches to algorithmic randomness
[35, 36], they weren’t the first to move beyond probabilities in a test-theoretic
approach to algorithmic randomness [37]. In 1966, Martin-Löf constructed
so-called Bernoulli tests, which test the randomness of a sequence with re-
spect to the set of all Bernoulli measures, that is, the set of measures generated
by single probability mass functions m [4, 30]. He showed that if a sequence
withstands these tests, then it’s a von Mises’ collective relative to some proba-
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bility mass function m [4]. Consequently, in the above sense, Bernoulli tests
allow to test whether a sequence is random for some Bernoulli measure. In
1973, Levin generalised this result by putting forward a test-theoretic notion
of randomness—which is nowadays known as uniform randomness—that
allows for so-called ‘effectively compact classes of probability measures’ [4, 5,
6];1 the set of all Bernoulli measures is a specific example of such an effec-
tively compact class of probability measures. In particular, there are class
tests such that a sequence passes this test if and only if it’s random with re-
spect to some probability measure in the considered class. While De Cooman
and De Bock thus weren’t the first to move beyond probabilities in the field
of algorithmic randomness, we find it important to emphasize that their en-
deavour to allow for imprecise probabilities in algorithmic randomness has a
different motivation: whereas previous approaches test whether a sequence
is random for some member in a class of probability measures, De Cooman
and De Bock take forecasting systems as their central and elementary object
to work with, without necessarily considering it to be composed of precise
forecasting systems.

In this dissertation, in which we build upon the work by Levin, Martin-Löf,
Schnorr, Church, Wald, De Cooman and De Bock, we’ll allow for imprecise
uncertainty models in various frequentist, test- and martingale-theoretic
notions of randomness. We’ll argue that these definitions are natural since (i)
they coincide with the classical definitions when considering precise (com-
putable) forecasting systems, and since (ii) they have similar properties as the
classical precise-probabilistic definitions. In particular, we’ll study how all
definitions relate to each other, and these relationships will be reminiscent
of the classical (precise-probabilistic) relations. Given the state of the art
in algorithmic randomness, some of the properties and relations will seem
unsurprising. That’s not to say, however, that proving them is a straightfor-
ward matter, especially since a number of the techniques used for precise
(and therefore additive) probabilities and their (linear) expectations become
unworkable, or require a fundamentally different approach, when dealing
with imprecise or game-theoretic probabilities and expectations, which are
typically non-additive and non-linear. The fact that we can identify new ways
of establishing these properties and relations in a more general and arguably
more abstract setting would argue in favour of our method of approach.
Moreover, we’re able to ask and address some questions for which imprecise
probabilities are pivotal. For instance, should or could the randomness of a
sequence always be defined with respect to a precise uncertainty model? And
how do imprecise probability models change our understanding of random
sequences?

1As is nowadays standard in the precise-probabilistic randomness setting [38, 39, 40], this
imprecise-probabilistic notion of uniform randomness has also been defined and studied in
the (even) more general setting of computable Polish spaces, which are also called constructive
metric spaces [6, Sections 7 and 8].
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2 Overview of the chapters

2 Overview of the chapters

Besides this introductory chapter and the conclusions, this dissertation con-
sists of six chapters that are numbered by the six sides of a die—as you have
already noticed or will duly notice. This section contains a brief description
of every such chapter.

Chapter 13 formally introduces most of the mathematical objects and
concepts that are used in the other five chapters, and therefore forms the
central pillar of this dissertation. In particular, we introduce credal sets, equip
them with both a frequentist and a betting interpretation, extend them to
forecasting systems, explain how they function as an inclination to accept or
reject bets, formalise betting strategies and the corresponding capital pro-
cesses in so-called sub- and supermartingales, and use them to introduce
(global) upper and lower expectations. We end the chapter by explaining
what it means for some of the above objects to be implementable; that is,
we resort to computability theory and explain the concepts of recursiveness,
lower semicomputability and computability. Throughout this chapter, which
thus contains a collection of results that we borrow from imprecise prob-
ability theory and computability theory, we’ve interwoven pointers to the
algorithmic randomness literature both to draft a compelling story and to
justify why we introduce and consider something.

At the start of Chapter 49, we have everything ready to allow for impre-
cise uncertainty models in algorithmic randomness notions a first time in
this dissertation. We introduce imprecise-probabilistic martingale-theoretic
versions of (weak) Martin-Löf, computable and Schnorr randomness, study
some of their properties, and examine how robust these notions are with
respect to changes to the forecasting systems and the betting strategies at
hand.

In Chapter 85, we allow for imprecise forecasting systems in algorithmic
randomness notions a second time, but now adopt a frequentist approach.
We define a rather general frequentist notion of randomness that requires a
sequence and some of its subsequences to satisfy an imprecise-probabilistic
version of the law of large numbers. In particular, when we consider all
(totally) computably selectable infinite subsequences, we obtain an imprecise-
probabilistic version of (weak) Church stochasticity. We explain how these
frequentist randomness notions relate to the other martingale-theoretic ones,
and show that they have an equivalent alternative frequentist and martingale-
theoretic characterisation.

We adopt a third, test-theoretic, approach to randomness in Chapter 111,
where we allow for imprecise forecasting systems in test-theoretic versions
of Martin-Löf and Schnorr randomness. We show that these test-theoretic
definitions coincide with the corresponding martingale-theoretic ones when
restricting attention to (non-degenerate) computable forecasting systems,
thereby generalising classical equivalence results by Schnorr and Levin. More-
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over, while still restricting our attention to computable forecasting systems,
we prove that our imprecise-probabilistic test-theoretic version of Martin-Löf
randomness—which considers forecasting systems—coincides with Levin’s
notion of uniform randomness—which considers effectively compact classes
of probability measures—; in particular, every given computable forecasting
system turns out to correspond with a specific effectively compact class of
probability measures.

In Chapter 143, we question whether it’s always desirable to define the
randomness of an infinite sequence with respect to a forecasting system,
which associates a credal set with every finite outcome sequence that could
have been observed instead of merely those that actually have been observed
(namely the finite precursors of the infinite sequence whose randomness we
are actually considering). Why should the randomness of a sequence depend
on forecasts for situations that have never been observed? We address this
question by developing a so-called prequential version of both the martingale-
and test-theoretic approach to Martin-Löf randomness, which we’ll call game-
and test-randomness respectively. We show that both notions coincide, and
explain how they relate to the standard version of Martin-Löf randomness.

After having allowed for imprecise probabilities in several approaches to
and notions of algorithmic randomness, we reach a finale in Chapter 179
by questioning the need for imprecise probabilities in algorithmic random-
ness. In a first part, we show that for every non-precise stationary forecasting
system—that is, a credal set that doesn’t correspond to a single probability
mass function—there’s a sequence that is random for this stationary impre-
cise forecasting system but not for any computable (possibly non-stationary)
precise forecasting system. In this sense, imprecision is needed to capture
some sequences’ randomness. In a second part, we show that things change
drastically when allowing for non-computable forecasting systems: for every
imprecise forecasting system there’s a non-computable compatible precise
forecasting system that has the exact same set of random sequences. In this
sense, you could naively say that imprecise probabilities aren’t needed in
algorithmic randomness. We however stand our ground by explaining why
non-computable uncertainty models are rather awkward, and we do so by
resorting to the practical grounds of statistics.

3 List of publications

This dissertation gathers (part of) the research I—in cooperation with fellow
researchers—have developed during my past five years as a PhD student.
Many of the presented results can be found elsewhere, although they’re often
only stated and proved in the specific and more simple case of binary state
spaces. This thesis aims to generalise and unite these results in a single
place. Specifically, this dissertation encompasses results from the following
publications.
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3 List of publications

(i) Floris Persiau, Jasper De Bock & Gert de Cooman. Computable random-
ness is about more than probabilities. In: Lecture Notes in Computer
Science (2020). See [42] for an extended version

(ii) Floris Persiau, Jasper De Bock & Gert de Cooman. A remarkable equiv-
alence between non-stationary precise and stationary imprecise un-
certainty models in computable randomness. In: Proceedings of the
Twelfth International Symposium on Imprecise Probability: Theories
and Applications. 2021

(iii) Floris Persiau, Jasper De Bock & Gert de Cooman. On the
(dis)similarities between stationary imprecise and non-stationary pre-
cise uncertainty models in algorithmic randomness. In: International
Journal of Approximate Reasoning (2022)

(iv) Floris Persiau & Gert de Cooman. Imprecision in martingale-theoretic
prequential randomness. In: Proceedings of the Thirteenth Interna-
tional Symposium on Imprecise Probability: Theories and Applications.
2023

(v) Floris Persiau & Gert de Cooman. Imprecision in martingale- and
test-theoretic prequential randomness. In: International Journal of
Approximate Reasoning (2024)

(vi) Gert de Cooman, Floris Persiau & Jasper De Bock. Randomness and
imprecision: from supermartingales to randomness tests. Submitted
for publication. 2024

Chapter 49 is largely based on (i), Chapter 85 on (i) and (iii), Chapter 111
on (vi), Chapter 143 on (iv) and (v), and Chapter 179 on (ii) and (iii).

The present work also includes some novel ideas, proofs and results that
haven’t been published yet. The three most significant amongst these, we
believe, are listed below.

• We equip our imprecise-probabilistic frequentist notion of Church
stochasticity in Section 11.292 with an interesting equivalent frequen-
tist characterisation which differs substantially from our original fre-
quentist definition.

• In [36, Theorem 37], De Cooman and De Bock came up with a beautiful
result that leads them to say that randomness is ‘inherently imprecise’,
because there are infinite binary sequences that are random for a prob-
ability interval but not for any computable (possibly non-stationary)
precise forecasting system. In Section 19181, we generalise this result
from binary to arbitrary finite state spaces, and thereby allow for more
general credal sets instead of probability intervals; to do so, we use a
drastically different proof strategy.

• In (ii) and (iii), we showed that an infinite binary sequence is
martingale-theoretically random for an imprecise forecasting system
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if and only if it’s random for a compatible precise forecasting system.
Hence, an imprecise forecasting system can (also) be seen as a set of
precise compatible forecasting systems from the vantage point of al-
gorithmic randomness. We generalise this statement to arbitrary state
spaces in Section 20192, and we do so by adopting a way more simple
proof strategy that was suggested to us by Alexander Shen.

More modest, but still noteworthy contributions are listed below.

• We provide a lucid explanation for the implementability of several
mathematical objects in Section 740, and in particular for the com-
putability of forecasting systems in Section 7.446.

• In Section 1066, we study the robustness of several martingale-theoretic
randomness notions with respect to changes in the forecasting systems
and betting strategies at hand.

• When restricting our attention to stationary forecasting systems—that
is, to credal sets—we’re able to provide the frequentist notion of Church
stochasticity with an equivalent martingale-theoretic characterisation
[see Section 12.3106].

Furthermore, there’s some published work that we decided not to include
in this dissertation. The reasons for not doing so are twofold. First of all, we
wanted to keep the length of this dissertation within reasonable (and read-
able) bounds. Secondly, and perhaps more importantly, the work presented
here is all stated in the setting of arbitrary but finite state spaces. The results
in the publications below, on the other hand, haven’t yet been generalised
from binary to arbitrary finite state spaces. Moreover, the last contribution
only adopts precise-probabilistic uncertainty models. Hence, to bring a com-
pact, coherent and cohesive story, we decided to omit the material in the
below publications from this dissertation.

(vii) Floris Persiau, Jasper De Bock & Gert de Cooman. The smallest prob-
ability interval a sequence is random for: a study for six types of ran-
domness. In: Symbolic and Quantitative Approaches to Reasoning with
Uncertainty. See [48] for an extended version. 2021

(viii) Floris Persiau, Gert de Cooman & Jasper De Bock. A comparative study
of the smallest probability intervals a binary sequence is random for.
Submitted for publication. 2024

(ix) Floris Persiau & Francesca Zaffora Blando. Randomness and invariance.
Accepted for publication in the Journal of Logic and Computation. 2024

4 (Internal) references

As you have probably (pun intended) already noticed by now, external refer-
ences are denoted by a number between square brackets; the full bibliograph-
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ical details of these references are available at the corresponding numbers in
the Bibliography, which starts on p. 217. So, for instance, [51] points to a book
on the Game-Theoretic Foundations for Probability and Finance written by
Glenn Shafer and Vladimir Vovk.

This dissertation also contains many internal references to chapters,
(sub)sections, equations, figures, theorems, propositions, lemmas, corol-
laries and examples. We’ll first spend some words on the numbering sys-
tem that we’ve adopted. As mentioned before, this dissertation consists
of six chapters—excluding the Introduction and Conclusions—which are
numbered from 1 to 6 by the sides of a die. The sections are continuously
numbered from 12 to 21199; for instance, Section 850 is the first section of
Chapter 49. This numbering continues up to subsection level; for instance,
Section 14.3126 is the third subsection of Section 14119. In every section,
a single counter is used to number equations, figures, theorems, proposi-
tions, lemmas, corollaries and examples, which results for each one of them
in a unique identification label consisting of two numbers; for instance,
Eq. (17.10)155 can be found after Lemma 17.8154 in Section 17150.

Still, locating the referenced material can be a rather cumbersome affair.
For this reason, we resort to Quaeghebeur’s [52] system of locational clues, as
has become a tradition for doctoral dissertations and monographs written
by members of FLip2 [16, 52, 53, 54, 55, 56, 57, 58]. We accompany internal
references with a subscript number that indicates the page on which the
referred content can be found; for instance, Theorem 14.1120 can be found
on p. 120. If the content we refer to is on the previous or subsequent page,
then the subscript number is replaced by the symbols x or y, respectively,
and if it’s on the same page, then no number or symbol is added; for instance,
this text is part of Section 4x.

2The Foundations Lab for imprecise probabilities; a research group at Ghent University
formerly known as SYSTeMS.
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Computable uncertainty
modelling

In a nutshell, this dissertation contains a study of a specific type of phenom-
ena that are prone to uncertainty; in this chapter we’ll introduce some (basic)
terminology and mathematical notation that will allow us to do so. Examples
of such phenomena are the flipping of a coin, rolling a die, your favourite
newspaper’s rating of the new album by Stromae, or one of my supervisors’
mood after proofreading my dissertation. For every such phenomenon, the
set of possible realisations is called the state space and is generically de-
noted by X. Throughout this dissertation, we’ll always assume the state
space X to be non-empty and finite (1 ∑ |X| <1) and exhaustive; possible
state spaces that correspond to the previous examples are X = {heads,tails},
X = { , , , , , }, X = {F,FF,FFF,FFFF,FFFFF} and X = {,,/},
respectively. How then to describe a subject’s uncertainty about the uncer-
tain outcomes of such phenomena?

5 Uncertainty about a single variable

We start this endeavour by discussing a number of ways to describe the/your
uncertainty related to the unknown outcome of a single phenomenon. To
this end, consider a (single) variable X that assumes some (yet) unknown
outcome x in the state space X.3

3In line with de Finetti’s approach [59], and in contradistinction with what the measure-
theoretic approach to probability theory would have us do, we don’t define or see a ‘variable’ as
a map, but rather as a primitive notion: something that assumes a value in some set. This is also
the reason why we don’t use the term ‘random variable’, because that would definitely confuse
some readers into using unnecessary measure-theoretic associations.
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Computable uncertainty modelling

5.1 Probability mass functions

Classically, a subject describes his uncertainty about the unknown outcome
of such a variable X by providing a probability mass function m : X! [0,1]
that associates a probability m(x) 2 [0,1] with every possible outcome x 2X
for X in such a way that

P
x2X m(x) = 1. We denote the collection of all

probability mass functions on X byM(X). A probability mass function m 2
M(X) is called positive if m(x) > 0 for all x 2 X. m is called rational if
m(x) 2Q4 for all x 2X; we’ll then typically denote it by mrat. The collection of
all rational probability mass functions is denoted byMrat(X). In the case of a
binary state space such as X = {a,b}, a probability mass function m 2M(X)
is fully specified by the specification of the single probability p = m(a) that’s
associated with the outcome X = a, since then automatically m(b) = 1°p.
Note thatM(X) can be identified with the so-called unit simplex, and that
a probability mass function m can then be identified with a point in the
simplex; this is visualised in Figures 5.1(a) and 5.1(b) for a binary and ternary
state space, respectively.

m(a)

m(b)

1

1

0

M(X)

m

p

1°p

(a) X = {a,b}

m(a)
m(b)

m(c)

1
1

1

M(X)
m

(b) X = {a,b,c}

Figure 5.1. The purple regions depict the setM(X) of all probability mass functions,
the pink dot depicts a probability mass function m 2M(X), and the orange markings
represent the probabilities p = m(a) and 1°p = m(b).

Probability mass functions can be given a frequentist interpretation. They
are then considered to be physical properties of a phenomenon, not depend-
ing on a subject. More precisely, the frequentist probability of an outcome
is the relative frequency of the times this outcome occurs in a long series of
observations of a phenomenon [14, Section 2.1]; this interpretation will shim-
mer through in Section 1187, where we introduce a very general frequentist
notion of randomness. In our present context, however, we’ll mainly adopt a

4Q denotes the set of rational numbers,Q∏0 that of the non-negative5rational numbers and
Q>0 that of the positive rational numbers.

5R denotes the set of real numbers. A real number x 2 R is called non-negative if x ∏ 0
and positive if x > 0. R∏0 and R>0 denote the set of non-negative and positive real numbers,
respectively.
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5 Uncertainty about a single variable

subjective interpretation, which we’ll introduce in the following subsection
by associating so-called linear expectations with probability mass functions.

5.2 Linear expectations

We can equip a subject’s (pronouns he/him)6 specification of a probability
mass function m with a so-called betting interpretation; it characterises the
gambles he’s willing to offer to an opponent (pronouns she/her). To this end,
any map f : X! R from the state space to the real numbers will be called
a gamble; note that, in particular, every probability mass function can be
interpreted as a non-negative gamble whose entries sum to one. f (X ) is then
an unknown reward that’s associated with the unknown outcome of a variable
X ; we’ll assume that gambles are expressed in units of some linear utility scale.
We denote the set of all gambles by L(X). Any constant gamble f 2L(X)
will also be identified with the real number c 2R for which f (x) = c for all x 2
X. A gamble f 2L(X) is called rational if f (x) 2Q for all x 2X. The set of
all rational gambles will be denoted by Lrat(X). A gamble f 2L(X) is called
positive if f (x) > 0 for all x 2X—and we then also write f > 0; it is called
non-negative if f (x) ∏ 0 for all x 2X—and we then also write f ∏ 0. From
time to time we’ll also make use of the set L1(X) :=

©
f 2L(X) : 0 ∑ f ∑ 1

™
,

which includes the setM(X) of all probability mass functions. With every
outcome x 2X, we associate the gamble Ix 2L(X) that assumes the value 1
on x and 0 elsewhere, and call it the indicator of x; note that the indicators
Ix , with x 2 X, correspond to the extreme elements of the closed convex
setM(X). With every probability mass function m 2M(X), we associate a
linear expectation Em : L(X) !R that’s defined by

Em( f ) :=
X

x2X
m(x) f (x) for all f 2L(X). (5.2)

Under the frequentist interpretation, the linear expectation Em( f ) of a
gamble f 2L(X) corresponds to the average gain associated with f in a
long series of observations of a phenomenon. For our present purposes,
however, it’s inconvenient that the interpretation of the uncertainty models
we work with depends on a long series of observations; this will become
clear in Section 6.224 when introducing so-called forecasting systems that
associate a possibly different local uncertainty model with every finite series
of observations. Therefore, we also introduce a betting interpretation, which
only considers a single observation. To this end, we start by observing that
it’s a matter of straightforward verification that the linear expectation Em
satisfies the following properties [60, Section 2.2.2].

6These pronouns help us lighten our exposition, by having several options at our disposal
to refer to a subject.
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Computable uncertainty modelling

Proposition 5.3. Consider a probability mass function m 2M(X). Then for
all f , g 2L(X) and µ,∏ 2R:

m1. min f ∑ Em( f ) ∑ max f ; [boundedness]

m2. Em(µ f +∏g ) =µEm( f )+∏Em(g ). [linearity]

More generally, any functional E : L(X) ! R that satisfies m1 and m2 is
called a linear expectation; this is compatible with our earlier definition
because it can actually be proven that for every such linear expectation E
there’s a probability mass function m such that E ( f ) = Em( f ) for all f 2L(X)
[61, Section 1.6.1]. Our subject’s probability mass function m can then be
interpreted as providing a fair price Em( f ) for every gamble f 2L(X) [60,
Section 2.2.2], expressed in units of the linear utility scale for gambles.7 This
means that he’s willing to accept the uncertain pay-off f (X )°r for any buying
price r ∑ Em( f ), and to accept the uncertain pay-off q ° f (X ) for any selling
price q ∏ Em( f ).8

From the perspective of an opponent who bets against our subject, and
who thus can adopt a gamble f 2L(X) if our subject is willing to accept
the gamble ° f 2L(X), this implies that our subject is willing to offer her
any uncertain reward f (X ) for which Em( f ) ∑ 0 [to see so, let q = 0 in the
previous paragraph], and we’ll call such rewards—or gambles—allowable
for an opponent with respect to the subject’s specification of the probability
mass function m.

So, by his specification of a probability mass function m 2M(X), a
subject only allows his opponent to pick those gambles that he expects to
have non-positive gain, that is, he offers those gambles f 2L(X) for which
Em( f ) ∑ 0. This collection of gambles corresponds to a closed half-space; for
the binary case, this is a half-plane, as is depicted in Figure 5.4y.

With this betting interpretation at our disposal, we introduce a betting
game on a single binary variable X . There are three players involved: Fore-
caster (who will take up our subject’s part), Sceptic (who is his opponent) and
Reality; we borrow this terminology from the field of game-theoretic prob-
abilities [51]. Forecaster initiates the game by providing a probability mass

7Although we mostly adopt this subjective interpretation for probability mass functions,
thus focusing more on linear expectations than on the probability mass functions they are
derived from, we nevertheless choose to take probability mass functions as our primitive objects
instead of linear expectations. Our reasons for doing so are twofold: we believe that researchers
are in general less acquainted with the latter, and we find it more intuitive to introduce the
implementability of uncertainty models starting from probability mass functions (and credal
sets) in Section 7.446. A similar choice is made further on in Sections 5.3y and 5.419, where we
first introduce credal sets—which are sets of probability mass functions— and then continue by
introducing upper and lower expectations.

8In the (im)precise probabilities literature, a linear expectation is usually interpreted as
providing a subject’s coinciding supremum acceptable buying prices and infimum acceptable
selling prices. However, in our context, as will for example be clear from Propositions 10.973,
10.1478, 10.1678 and 10.2282, this subtlety isn’t important, and we choose to work with maximum
acceptable buying prices and minimum acceptable selling prices.
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m

m(a)/ f (a)

m(b)/ f (b)

°1 1

°1

1

0

Em( f ) ∑ 0

Figure 5.4. Let X = {a,b} and (m(a),m(b)) = (0.6,0.4). The pink dot depicts the
probability mass function m and the green halfplane depicts all gambles that are
allowable by a subject’s specification of m.

function m 2M(X), which describes, as we explained, his beliefs about—
and betting commitments related to—the uncertain outcome X 2X. Next,
Sceptic, being Forecaster’s opponent, is allowed to pick any gamble f 2L(X)
that Forecaster is willing to offer, in the specific sense that Em( f ) ∑ 0. This
leads to an uncertain (possibly negative) gain f (X ) for Sceptic and ° f (X )
for Forecaster. Finally, Reality reveals the outcome x 2X, which leads to an
actual (possibly negative) gain f (x) for Sceptic and ° f (x) for Forecaster.

5.3 Credal sets

We won’t restrict Forecaster to only adopting probability mass functions to
express his beliefs about the uncertain outcome X 2X. We’ll also allow him
to adopt so-called credal sets C µM(X) to do so, which are non-empty closed
convex sets of probability mass functions; we provide graphical examples for
a binary and ternary state space in Figures 5.5(a) and 5.5(b)y, respectively.
We denote the set of all credal sets byC(X). In the case of a binary state space
such as X = {a,b}, a credal set C 2C(X) is fully specified by the specification
of the set of probabilities I = {m(a) 2 [0,1] : m 2C } that’s associated with the
outcome a, since then automatically C =

©
m 2M(X) : m(a) 2 I

™
. Since the

credal set C is closed and convex, I can then be identified with the closed
probability interval [minm2C m(a),maxm2C m(a)] µ [0,1], and is called an
interval forecast; all such closed probability intervals are collected in the
set I.

A credal set C 2C(X) is called non-degenerate if no outcome x 2X has
probability zero with respect to every probability mass function m 2C , that is,
if maxm2C m(x) = maxm2C Em(Ix ) > 0 for all x 2X. A credal set C 2C(X) is
called rational, and is then typically denoted by Crat, if there’s a finite number
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(a) X = {a,b}
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C

(b) X = {a,b,c}

Figure 5.5. The purple regions depict the setM(X) of all probability mass functions,
the pink subset depicts a credal set C µM(X), and the orange interval represents the
interval forecast I = [minm2C m(a),maxm2C m(a)].

of rational probability mass functions {m1, . . . ,mn} µMrat(X), with n 2N9,
such that the (closed) convex hull of {m1, . . . ,mn} equals C , which implies that
maxm2C Em( f ) = max1∑i∑n Emi ( f ) and minm2C Em( f ) = min1∑i∑n Emi ( f ) for
all f 2L(X). The set of all rational credal sets is denoted by Crat(X), and
the set of all finite non-empty subsets of rational probability mass func-
tions is denoted by Pfin(Mrat(X)); note that both sets are countable. In
what follows, for ease of notation, we’ll make use of the convex hull operator
CH: Pfin(M(X)) !C(X), with Pfin(M(X)) the set of all finite non-empty
subsets of probability mass functions; a credal set C 2C(X) is then rational
if and only if there’s some finite non-empty set {m1, . . . ,mn} 2Pfin(Mrat(X))
such that CH({m1, . . . ,mn}) = C . As is guaranteed by Hadwiger’s Lemma
[62], the set Crat(X) of all rational credal sets is dense in C(X) under
the Hausdorff distance, where the Hausdorff distance between credal sets
dH : C(X)£C(X) !R∏0 is defined by

dH
°
C ,C 0¢ := max

Ω
max
m2C

d(m,C 0), max
m02C 0

d(m0,C )
æ

for all C ,C 0 2C(X),

with d(m,C 0) := minm02C 0 km °m0ktv for all m 2M(X) and C 0 2C(X), and
the total variation norm k•ktv : L(X) !R∏0 defined by k f ktv := 1

2
P

x2X| f (x)|
for all f 2L(X).

Lemma 5.6. Crat(X) is dense in C(X) under the Hausdorff distance.

Proof. Consider any credal set C 2C(X) and any real ≤> 0. By Hadwiger’s lemma [62,
Chapter 13, Satz 3], there’s a finite set of probability mass functions {m1, . . . ,mn } µ
M(X) such that dH(C ,CH({m1, . . . ,mn })) ∑ ≤/2. Since the rational numbers are a
dense subset of the real numbers, there’s a finite set of rational probability mass

9N denotes the set of natural numbers, andN0 :=N[ {0} the set of non-negative integers;
we denote the set of integers by Z
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5 Uncertainty about a single variable

functions
©
m0

1, . . . ,m0
n
™
µMrat(X) such that kmi °m0

i ktv ∑ ≤/2 for all 1 ∑ i ∑ n. It’s
then immediate from the triangle inequality for the Hausdorff distance and [63,
Proposition 4] that

dH
°
C ,CH

°©
m0

1, . . . ,m0
n
™¢¢

∑ dH(C ,CH({m1, . . . ,mn }))+dH
°
CH({m1, . . . ,mn }),CH

°©
m0

1, . . . ,m0
n
™¢¢

∑ ≤

2
+dH

°
CH({m1, . . . ,mn }),CH

°©
m0

1, . . . ,m0
n
™¢¢

[63]= ≤

2
+max

Ω
max

1∑i∑n
d

°
mi ,CH

°©
m0

1, . . . ,m0
n
™¢¢

, max
1∑ j∑n

d
≥
m0

j ,CH({m1, . . . ,mn })
¥æ

∑ ≤

2
+max

Ω
max

1∑i∑n
d(mi , {m0

i }), max
1∑ j∑n

d(m0
j , {m j })

æ

= ≤

2
+ max

1∑i∑n
kmi °m0

i ktv ∑ ≤

2
+ ≤

2
= ≤.

Credal sets can be given various interpretations. Under a frequentist
interpretation, they can be seen as bounds on the relative frequencies of
the outcomes in a long series of observations of a phenomenon; these rel-
ative frequencies then don’t necessarily have to converge. More precisely,
the relative frequencies of the outcomes in a long series of observations of a
phenomenon should converge to the credal set under d ; this interpretation
will shimmer through in Section 1187, where we introduce a very general
frequentist notion of randomness. Note that this frequentist interpretation
for a credal set C coincides with the one for a probability mass function m
if C = {m}. Again, for our purposes, it’s inconvenient that the above inter-
pretation depends on a long series of observations; as mentioned earlier,
this will become clear in Section 6.224 when introducing forecasting systems.
Therefore, we’ll make use of a betting interpretation, which only depends
on a single observation. To this end, we associate so-called upper and lower
expectations with credal sets.

5.4 (Local) upper and lower expectations

When C consists of a single probability mass function m 2M(X), that is,
when C = {m}, we considered the linear expectation Em . As a generalisation,
we associate with every credal set C the upper expectation EC : L(X) ! R

defined by
EC ( f ) := max

m2C
Em( f ) for all f 2L(X). (5.7)

As a closely related operator, we consider the lower expectation EC : L(X) !
R defined by

EC ( f ) := min
m2C

Em( f ) for all f 2L(X). (5.8)

It’s clear that upper and lower expectations are related to each other through
the following conjugacy relationship: EC ( f ) = °EC (° f ) for all f 2 L(X).
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Computable uncertainty modelling

Moreover, with this notation at our disposal, a credal set C 2C(X) is non-
degenerate if and only if EC (Ix ) > 0 for all x 2X.

Under a frequentist interpretation, the upper expectation EC ( f ) and
lower expectation EC ( f ) of a gamble f 2 L(X) can respectively be seen
as an upper and lower bound for the average gain associated with f in a
long series of observations of a phenomenon; this average gain then doesn’t
necessarily have to converge. Similar to before, we now work towards a
betting interpretation, which only requires a single observation. To this end,
we start by observing that it’s a matter of straightforward verification that
the upper and lower expectation EC and EC satisfy the following so-called
coherence properties [17, Section 2.6.1].

Proposition 5.9. Consider a credal set C 2 C(X). Then for all f , g 2
L(X),

°
fn

¢
n2N0

2L(X)N0 10, µ 2R and ∏ 2R∏0:

C1. min f ∑ EC ( f ) ∑ EC ( f ) ∑ max f ; [boundedness]

C2. EC (∏ f ) =∏EC ( f ) and EC (∏ f ) =∏EC ( f ); [non-negative homogeneity]

C3. EC ( f )+EC (g ) ∑ EC ( f + g ) ∑ EC ( f )+EC (g ) ∑
EC ( f + g ) ∑ EC ( f )+EC (g ); [(mixed) sub- and superadditivity]

C4. EC ( f +µ) = EC ( f )+µ and EC ( f +µ) = EC ( f )+µ; [constant additivity]

C5. if f ∑ g , then EC ( f ) ∑ EC (g ) and EC ( f ) ∑ EC (g ). [monotonicity]

C6. if limn!1 max| fn ° f | = 0 then limn!1 EC ( fn) = EC ( f )
and limn!1 EC ( fn) = EC ( f ). [uniform continuity]

Any functional E : L(X) !R—with corresponding functional E : L(X) !R

defined by E( f ) := °E(° f ) for all f 2L(X)—that satisfies EC ( f ) ∑ max f
[C1], EC (∏ f ) =∏EC ( f ) [C2] and EC ( f + g ) ∑ EC ( f )+EC (g ) [C3] for all f , g 2
L(X) and ∏ 2 R∏0 is called an upper expectation [60, Section 2.2.1]; it
can be proven that for every upper expectation E there’s a unique credal
set C 2 C(X) such that E( f ) = EC ( f ) for all f 2 L(X) [60, Section 2.2.2].
A subject’s specification of a credal set C can then be interpreted as pro-
viding a maximum acceptable buying price EC ( f ) and a minimum accept-
able selling price EC ( f ) for every gamble f 2 L(X). This means that
he’s willing to accept the uncertain pay-off f (X )° r for any buying price
r ∑ minm2C Em( f ) = EC ( f ), and to accept the uncertain pay-off q ° f (X ) for
any selling price q ∏ maxm2C Em( f ) = EC ( f ). Under a sensitivity analysis
interpretation [60, Section 2.2], a subject’s specification of a credal set C can
then be seen as an inclination to buy and sell gambles, which he’ll do in a
very conservative way: he’ll only buy (or sell) those gambles for prices that
are in agreement with every probability mass function m in the set C .

From the perspective of an opponent who bets against our subject, and
who thus can adopt a gamble f 2L(X) if our subject is willing to accept the

10For any two sets A and B , we denote by AB the collection of all total maps from B to A.
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5 Uncertainty about a single variable

gamble ° f 2L(X), this implies that our subject is willing to offer her any
uncertain reward f (X ) for which maxm2C Em( f ) = EC ( f ) ∑ 0 [to see so, let
q = 0 in the previous paragraph], and we’ll call such rewards—or gambles—
allowable for an opponent with respect to a subject’s specification of the
credal set C . Under a sensitivity analysis interpretation [60, Section 2.2], a
subject’s specification of a credal set C can then be seen as an inclination
to offer gambles, which he’ll do in a very conservative way: he’ll only offer
those gambles that he would offer with respect to every probability mass
function m in the set C .

If for two credal sets C ,C 0 2C(X) it holds that C µC 0, then we say that
C 0 is less informative—or more conservative—than C 0; equivalently, C 0 is less
informative than C if and only if EC ( f ) ∑ EC 0 ( f ) for all f 2 L(X). If the
credal set C consists of a single probability mass function m 2M(X), then a
gamble f 2L(X) is allowable if Em( f ) ∑ 0, which is in agreement with our
discussion in Section 5.215. Under the betting interpretation, this is a most
informative—or least conservative—model for a subject’s uncertainty, since
buying and selling prices coincide. If the credal set C coincides with the set
of all probability mass functionsM(X), then we call C the vacuous credal
set and often write Cv instead, and then EC ( f ) = max f and EC ( f ) = min f
for all f 2L(X), because

max f
C1x∏ ECv ( f ) ∏ max

x2X
EIx ( f ) = max

x2X
f (x)

and

min f
C1x∑ ECv ( f ) ∑ min

x2X
EIx ( f ) = min

x2X
f (x).

Under the betting interpretation, this is a least informative—or most
conservative—model for Forecaster’s uncertainty because the buying and
selling prices are maximally apart, and this corresponds to a guaranteed non-
positive profit for Sceptic, i.e., max f = EC ( f ) ∑ 0 for all allowable gambles
f 2L(X).

With the betting interpretation at our disposal, we can now easily gener-
alise the previous betting game on a single variable X as introduced at the
end of Section 5.215. There are again three players involved: Forecaster, Scep-
tic and Reality. This time, Forecaster initiates the game by providing a credal
set C 2C(X). Next, Sceptic is allowed to pick any gamble f 2L(X) that’s
allowed by Forecaster, in the specific sense that EC ( f ) ∑ 0; this collection of
gambles is depicted in Figure 5.10y for a binary state space, and corresponds
to the intersection of the half-spaces of gambles that are associated with every
probability mass function m 2C . This leads to an uncertain (possibly nega-
tive) gain f (X ) for Sceptic and ° f (X ) for Forecaster. Finally, Reality reveals
the outcome x 2X, which leads to an actual (possibly negative) gain f (x) for
Sceptic and ° f (x) for Forecaster.
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m(a)/ f (a)

m(b)/ f (b)
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Figure 5.10. Let X = {a,b}, I = [1/4, 3/4] and C =
©
m 2M(X) : m(a) 2 I

™
. The pink

region depicts the credal set C , and the green region depicts the gambles f 2L(X)
that are allowable by C .

Having equipped credal sets with a betting interpretation, we touch upon
the seemingly trivial but definitely non-obvious and central question in the
field of Algorithmic Randomness a first time: how to test/define the agree-
ment between a subject’s specification of an (imprecise) uncertainty model
and an uncertain phenomenon. Usually, and confusingly, the very same
question is formulated as follows: when do we consider a phenomenon to be
random for an uncertainty model? To answer that question, we’ll consider
an infinite sequence of uncertain phenomena (that all take values in some
finite state space). This approach finds its origins in the work by von Mises,
who’s considered one of the founding fathers of the field of algorithmic ran-
domness, and had the (different) aim of providing probabilities with a proper
frequentist interpretation [24].

“The rational concept of probability, which is the only basis of
probability calculus, applies only to problems in which either
the same event repeats itself again and again, or a great number
of uniform elements are involved at the same time. Using the
language of physics, we may say that in order to apply the theory
of probability we must have a practically unlimited sequence of
uniform observations.” [24, p. 11]

Whereas von Mised considered an infinite repetition of some uncertain
phenomenon, and thus assumes a fixed probability mass function m (or
credal set C ), the field of algorithmic randomness allows to consider non-
stationary probability mass functions (or credal sets).
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6 Uncertainty about a sequence of variables

6 Uncertainty about a sequence of variables

As a first step to answering the just mentioned randomness question, we con-
sider in this section an infinite sequence of uncertain phenomena (that have
a common finite state space); and we explain how to describe the uncertainty
about it. That is, we consider an infinite sequence of variables X1, . . . , Xn , . . .,
where every variable Xn takes values in a fixed but arbitrary finite state space
X; we generically denote such values by xn .

6.1 Paths and situations

We’re interested in the corresponding infinite outcome sequences
(x1, . . . , xn , . . . ), and, in particular, in their possible randomness. We de-
note such a sequence generically by ! and call it a path. All such paths
are collected in the set ≠ :=XN, which we’ll also call the sample space. For
any path ! = (x1, . . . , xn , . . . ) 2 ≠, we let !1:n := (x1, . . . , xn) and !n := xn for
all n 2N. For n = 0, the empty sequence !1:0 :=!0 := () is called the initial
situation, and we also denote it by ⇤. For any n 2 N0, a finite outcome
sequence (x1, . . . , xn) 2 Xn is called a situation, also generically denoted
by s, and its length is then denoted by |s| := n. All situations are collected
in the set S := S

n2N0 X
n . For any situation s = (x1, . . . , xn) 2 S, we let

s1:k = (x1, . . . , xk ) and sk = xk for all 1 ∑ k ∑ n, and x1:0 = x0 = ⇤. Also, for
any s = (x1, . . . , xn) 2 S and x 2X, we use sx to denote the concatenation
(x1, . . . , xn , x). Figure 6.1 depicts situations and paths in the so-called event
tree for a binary state space.

!

⇤

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 6.1. Let X = {0,1}. Each grey node in the event tree corresponds to a situa-
tion s 2S, and the path (0,1,0, . . . ) 2≠ is depicted in yellow.

For any situation s 2S and any path ! 2≠, we say that ! goes through s
if there’s some n 2N0 such that !1:n = s, and we then also write s v !. We
denote by ÇsÉ the so-called cylinder set of all paths ! 2≠ that go through s.
More generally, if S µ S is some set of situations, then we denote by ÇSÉ :=S

s2SÇsÉ the set of all paths that go through (some situation in) S.
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For any two situations s, t 2S, we write s v t when every path that goes
through t also goes through s, and we then say that the situation s precedes
the situation t ; so s is a precursor of t . An equivalent condition is of course
that ÇtÉ µ ÇsÉ. We may then also write t w s and say that t follows s. For
any situation s 2 S, we denote the set {t 2 S : s v t } of all situations that
follow s by [s]. We say that s strictly precedes t , and write s @ t , when s v t
and s 6= t . If neither s v t nor t v s, then we say that the situations s and t are
incomparable, and write s “ t . Equivalently, s and t are incomparable if and
only if ÇsÉ\ÇtÉ=?, so there’s no path that goes through both s and t .

A subset S of S is called a partial cut—the term ‘prefix free set’ is also
commonly used in the algorithmic randomness literature—, and is then
also denoted by K , if all its elements are mutually incomparable, or in other
words constitute an anti-chain for the partial order v, meaning that s “ t ,
or equivalently, ÇsÉ\ ÇtÉ = ?, for all s, t 2 S with s 6= t ; the corresponding
collection of cylinder sets {ÇsÉ : s 2 K } constitutes a partition of ÇKÉ. For any
situation s 2S and any subset S µS, there are a number of possibilities. We
say that s precedes S, and write s v S, if s precedes some situation in S: so
(9t 2 S)s v t . Similarly, we say that s strictly precedes S, and write s @ S, if s
strictly precedes some situation in S and doesn’t follow any situation in S:
(9t 2 S)s @ t and (@t 2 S)t v s; for a partial cut K it holds that s @ K , (9t 2
K )s @ t . We say that s follows S, and write s w S, if s follows some situation
in S: (9t 2 S)s w t ; if S is a partial cut, then the situation t is necessarily unique.
Similarly for s strictly follows S, written as s A S. Of course, the situations in a
partial cut K are the only ones that both precede and follow K . And, finally,
we say that s is incomparable with S, and write s “ S, if s neither follows nor
precedes (any situation in) S: (8t 2 S)s “ t .

As is quite often done, we provide the set of all paths ≠ with the Cantor
topology, whose base is the collection {ÇsÉ : s 2S} of all cylinder sets; see for
instance Ref. [32, Sec. 1.2]. The corresponding Borel algebra B(≠) is the
æ-algebra generated by this Cantor topology. A subset A µ≠, which we call
a (global) event, is then open if there’s a subset S µS such that A = ÇSÉ; it’s
closed if there’s a subset S µS such that ≠\ A = ÇSÉ. If an event A µ≠ is both
open and closed, then it’s clopen; this is equivalent to the existence of a finite
set of situations S µS such that A = ÇSÉ [32, p. 4]. In particular, all cylinder
sets ÇsÉ are clopen in this topology.

6.2 Forecasting systems

The randomness of a path ! 2≠ is always defined with respect to an uncer-
tainty model. Classically, this uncertainty model is often simply a probability
mass function m 2M(X), which, for every x 2X and any n 2N, specifies a
probability m(x) for the outcome Xn = x, and this independent of the out-
come(s) at any other time instance(s). As explained in Section 12, we can
generalise this by considering a credal set C 2C(X) instead. Another general-
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6 Uncertainty about a sequence of variables

isation of the classical approach consists in allowing for non-stationary prob-
ability mass functions for describing the uncertainty related to the variables
Xn , which may depend on the already observed outcomes s = (x1, . . . , xn°1)
or on their length |s| = n; in associating a probability mass function with
every situation, the event tree is turned into a so-called precise probability
tree. Each of these generalisations can themselves be seen as a special case
of an even more general approach, which consists in providing every situ-
ation s 2 S with a (possibly different) credal set in C(X), denoted by '(s).
This credal set '(s) 2C(X) then describes the uncertainty about the a priori
unknown outcome of X |s|+1, given that the situation s has been observed.
We call such general uncertainty models forecasting systems, and provide a
graphical representation in Figure 6.3.

Definition 6.2. A forecasting system is a map ' : S!C(X) that associates
with every situation s 2S a credal set '(s) 2C(X), and, in doing so, turns the
event tree into a so-called imprecise probability tree. We denote by ©(X) the
set of all such forecasting systems.

⇤
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010 011
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110 111

'(⇤)

'(0) '(1)

'(00) '(11)'(10)'(01)

Figure 6.3. Let X = {0,1}. The arc around every situation s 2 S in the imprecise
probability tree corresponds to a credal set'(s) 2C that is specified by the forecasting
system '.

A forecasting system ' 2©(X) is called precise if '(s) consists of a single
probability mass function for every s 2S, and we then also denote it by 'pr;
the set of all precise forecasting systems is denoted by ©pr(X). A precise
forecasting system 'pr 2©pr(X) is called positive if 'pr(s) is a positive prob-
ability mass function for all s 2 S. A forecasting system ' 2©(X) is called
non-degenerate if '(s) is non-degenerate for all s 2S, and it’s called degen-
erate otherwise. So, a forecasting system ' is degenerate as soon as there’s
some situation s and some outcome x for which E'(s)(Ix ) = 0, meaning that
according to Forecaster, after observing s, the next outcome can’t be x. A
forecasting system ' 2©(X) is called rational if '(s) 2Crat(X) for all s 2S,
and we then also denote it by 'rat; the set of all rational forecasting systems
is denoted by ©rat(X). A forecasting system ' 2©(X) is called stationary if
there’s some credal set C 2C(X) such that '(s) =C for all s 2S; for ease of

25



Computable uncertainty modelling

notation, we’ll then denote this forecasting system simply by C ; the case of a
single probability mass function m corresponds to a stationary forecasting
system with C = {m}. A forecasting system ' 2 ©(X) is called temporal if
its credal sets '(s) only depend on the situations s 2S through their length
|s|, meaning that '(s) = '(t) for any two situations s, t 2 S that have the
same length |s| = |t |. Allowing ourselves a slight abuse of notation, we’ll also
consider a temporal forecasting system ' : S!C(X) to be a map from the
non-negative integers to the set of credal sets C(X), thus enabling us to write
'(n) instead of '(s) for all n 2N0 and s 2S with |s| = n.

In the case of a binary state space such as X = {a,b}, we recall from
Section 5.317 that every credal set C 2 C(X) can be fully specified by the
specification of an interval forecast I 2 I that’s associated with the out-
come X = a. Accordingly, a forecasting system ' : S!C(X) can then be
fully specified by associating an interval forecast Is 2 I with every situa-
tion s 2 S. In Section 20.1196, where we’ll restrict our attention to binary
state spaces, we’ll therefore consider forecasting systems to be maps from
situations to interval forecasts, and will allow ourselves to write ' : S!I;
if the forecasting system ' is moreover precise, then we’ll allow ourselves to
write ' : S! [0,1]. If the forecasting system ' : S!I is stationary, that is,
if there is some I 2I such that '(s) = I for all s 2S, then we’ll also denote
this forecasting system simply by I , and mutatis mutandis for stationary
precise forecasting systems ' : S! [0,1] for which there is—by definition—a
probability p 2 [0,1] such that '(s) = p for all s 2 S; we’ll also call 1/2 the
fair-coin forecasting system and denote it by '1/2. In this binary setting, we
also associate with every forecasting system' 2©(X) two precise forecasting
systems ',' 2 ©pr(X) defined by '(s) := min'(s) and '(s) := max'(s) for
all s 2S. Clearly, a forecasting system ' 2©(X) is then precise if and only if
'(s) ='(s) for all s 2S.

If for two forecasting systems ','§ 2©(X) it holds that '(s) µ'§(s) for
all s 2 S, then we say that '§ is less informative—or more conservative—
than ', and denote this by ' µ '§. In this case, if ' is precise, then we
also say that ' is compatible with '§, and denote this by ' 2 '§; every
forecasting system ' 2 ©(X) can then be seen as a specification of a set©
'pr : 'pr 2©pr(X) and 'pr 2'

™
of (compatible) precise forecasting systems.

For those readers only familiar with probability measures µ : ≠! [0,1],
it’s also worth noting that, through Ionescu Tulcea’s extension theorem [64,
Thm. II.9.2], every precise forecasting system 'pr 2 ©pr(X)—which corre-
sponds to a conditional specification of probabilities—uniquely determines
a probability measure µ'pr on the Borel algebra B(≠) (of sets of paths) gener-
ated by the cylinder sets, and that this probability measure is completely de-
fined by its values on the cylinder sets. In particular, for these cylinder sets ÇsÉ
themselves, with s 2S, it assumes the valuesµ'pr (ÇsÉ) =Q|s|°1

k=0 'pr(s1:k )(sk+1);
if 'pr(s)(x) 6= 0 for all s 2S and x 2X, then the probability measure µ'pr only
assumes positive values on the cylinder sets. Vice versa, any probability
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6 Uncertainty about a sequence of variables

measure µ that associates positive probability with every cylinder set ÇsÉ µ≠,
with s 2 S, determines a unique precise forecasting system 'µ defined as
'µ (s)(x) = µ(ÇsxÉ)/µ(ÇsÉ) for all s 2S and x 2X. If all probabilities that make up
a precise forecasting system 'pr stay away from zero, that is, if 'pr(s)(x) 6= 0
for all s 2 S and x 2X, then specifying 'pr is equivalent to specifying the
probability measure µ'pr on the Borel algebra B(≠), in the sense that, as dis-
cussed above, 'pr uniquely determines µ'pr on B(≠), and µ'pr —which then
assumes positive values on the cylinder sets—determines the unique precise
forecasting system 'µ'pr for which 'µ'pr (s)(x) = µ'pr (ÇsxÉ)/µ'pr (ÇsÉ) ='pr(s)(x)
for all s 2S and x 2X. In classical (measure-theoretic) notions of random-
ness, one will typically focus on measures instead of forecasting systems. In
our (game-theoretic) approach, however, forecasting systems take centre
stage.

Forecasting systems can also be given a betting interpretation, which is
the topic of the next section.

6.3 Betting strategies: sub- and supermartingales

In order to equip a forecasting system with a betting interpretation, which
we’ll do by extending the betting game in Section 5.419 to an infinite betting
game involving a sequence of successively revealed variables X1, . . . , Xn , . . . ,
we require a bit more terminology.

It will be useful to be able to deal with objects that depend on the situa-
tions. Formally, we define a process F as a map on the set S of all situations.
In particular, a real process F : S!R is a map from situations to real num-
bers; the set of all real processes is denoted by F. A real process F is called
bounded below if there’s some natural number N 2N0 such that F ∏°N for
all s 2S. In particular, a real process F is called non-negative if F (s) ∏ 0 for
all s 2 S; it’s called positive if F (s) > 0 for all s 2 S. We call a non-negative
real process F a test process if additionally F (⇤) = 1. A zero-one valued pro-
cess S—with S(s) 2 {0,1} for all s 2S—is called a selection process; the set of
all selection processes is denoted by S. If a process F depends only on the
situations s 2 S through their length |s|, we call it temporal, and then also
write F (n) instead of F (s) for all n 2N0 and s 2Swith n = |s|. Note that this
is compatible with our terminology for forecasting systems; these are in fact
also processes that map situations to credal sets.

We’re now ready to consider a sequential version of the betting game
in Section 5.419. We again consider three players: Forecaster, Sceptic and
Reality. Forecaster’s part in the game now consists in providing a forecasting
system ' 2©(X). Subsequently, Sceptic is allowed to adopt any betting strat-
egy that, for every situation s 2S, selects an allowable gamble fs 2L(X) that
Forecaster is bound to offer by his specification of the credal set '(s) 2C(X);
that is, she selects a gamble processæ : S!L(X) for which E'(s)(æ(s)) ∑ 0 for
all s 2S. Afterwards, Reality reveals the successive outcomes Xn = xn at each
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successive time instant n 2N, leading to the sequence != (x1, . . . , xn , . . . ). At
every time instant n, after Reality has revealed the outcome xn , Sceptic uses
the gamble æ(x1:n) that corresponds to her betting strategy. Next, Reality re-
veals the subsequent outcome Xn+1 = xn+1 2X and the reward æ(x1:n)(xn+1)
goes to Sceptic. If we assume that she starts with capital c 2R, then her total
capital at that stage in the game becomes c +Pn

k=0æ(x1:k )(xk+1). Moreover,
we’ll prohibit Sceptic from borrowing.11 To do so, it’s useful to look at a gam-
ble process’s corresponding capital process; it’s these processes that will take
centre stage throughout this dissertation.

In order to formalise these capital processes for Sceptic, we associate with
every real process F a process difference ¢F : S!L(X), which is the gamble
process that maps any s 2S to the gamble¢F (s) := F (s ·)°F (s), where we use
F (s ·) to denote the gamble on X whose value, for any x 2X, is given by F (sx).
Note that F (x1:n) = F (⇤)+Pn°1

k=0¢F (x1:k )(xk+1) for all x1:n 2S, with n 2N0.
Given a forecasting system ' 2 ©(X), we call a real process M a su-

permartingale for ' if E'(s)(¢M(s)) ∑ 0 for all s 2 S—or equivalently, if
E'(s)(M(s ·)) ∑ M(s) for all s 2S [use C420]; it’s called a strict supermartingale
for ' if E'(s)(¢M(s)) < 0 for all s 2S—or equivalently, if E'(s)(M(s ·)) < M(s)
for all s 2S. A real process M is called a (strict) submartingale for ' if °M is
a (strict) supermartingale for ', meaning by conjugacy that E'(s)(¢M(s)) ∏ 0
(E'(s)(¢M(s)) > 0) for all s 2 S. A real process M is called a martingale for
' it it’s both a super- and a submartingale for '. All supermartingales and
submartingales for ' are respectively collected in the sets M(') and M(').

Supermartingales correspond to Sceptic’s allowed betting strategies; for
that reason, in what follows, we’ll also refer to supermartingales as betting
strategies. Indeed, assume that Forecaster adopts the forecasting system ' 2
©(X), consider a time instant n 2N0, and consider the situation where Reality
has revealed a finite outcome sequence x1:n 2S. A supermartingale M for '
then specifies a gamble ¢M(x1:n) 2L(X) that Sceptic is allowed to pick. If
she does, and Reality reveals the outcome xn+1 2X, the (possibly negative)
amount ¢M(x1:n)(xn+1) goes to Sceptic and her total capital becomes

M(x1:n+1) = M(x1:n)+¢M(x1:n)(xn+1) = M(⇤)+
nX

k=0
¢M(x1:k )(xk+1),

with M(⇤) her initial capital. So, supermartingales can be seen as the possi-
ble evolutions of Sceptic’s capital; submartingales, on the other hand, cor-
respond to the possible evolutions of Forecaster’s capital. As the following
proposition reveals, the more conservative the forecasting system ' 2©(X)
that Forecaster puts forwards, the less betting strategies Sceptic has at her
disposal.

11We need the Axiom of dependent choice for doing so. We’ll make use of it several other
times throughout this dissertation, although without always providing an explicit mention.
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Proposition 6.4. Consider any two forecasting systems ',√ 2 ©(X) such
that 'µ√. Then any supermartingale for √ is also a supermartingale for ',
so M(√) µM(').

Proof. Consider any supermartingale M for √, which means that E√(s)(¢M(s ·)) ∑ 0

for all s 2 S, or equivalently [use C420], that E√(s)(M(s ·)) ∑ M(s) for all s 2 S. Now
simply observe that also

E'(s)(M(s ·)) = sup
m2'(s)

Em (M(s ·)) ∑ sup
m2√(s)

Em (M(s ·)) = E√(s)(M(s ·)) ∑ M(s),

where the first inequality holds because '(s) µ√(s) for all s 2S.

In the context of randomness, we’ll also want to prevent Sceptic from
borrowing, leading us to focus on non-negative supermartingales. Further-
more, as long as it’s positive, the exact value of the initial capital will not
matter. For these reasons, as an important special case, we consider test
supermartingales T : S!R for '. These are non-negative supermartingales
for ' for which T (⇤) := 1. We collect all test supermartingales for ' in the
set T('). It’s exactly these capital processes that will be used in Chapter 49
to define several (martingale-theoretic) notions of randomness.

In one of these randomness notions, we’ll adopt a particular way of defin-
ing such test supermartingales by focusing on ‘multiplicative’ rather than ‘ad-
ditive’ betting strategies. For this reason, in addition to process differences—
which we regard as additive betting strategies—, we introduce the notion of
a multiplier process, which is a non-negative gamble process—and which
we(’ll) regard as a multiplicative betting strategy. With every such multi-
plier process D : S!L(X), we associate a test process D} : S!R, defined
by the initial condition D}(⇤) := 1 and, for all s 2 S and x 2X, by the re-
cursion equation D}(sx) := D}(s)D(s)(x), and we say that D} is generated
by D; in this setting, it’s also immediate that D}(x1:n) =Qn°1

k=0 D(x1:k )(xk+1)
for all x1:n 2 S, with n 2 N. In particular, every positive test process F is
generated by a (positive) multiplier process DF .

Proposition 6.5. Consider any positive test process F . Then there’s a unique
positive multiplier process DF : S!L(X) : s 7! F (s ·)

F (s) such that F (s) = D}
F (s)

for all s 2S.

Proof. Fix any positive test process F . Obviously, DF is well-defined and positive
because F is. Moreover, F (⇤) = 1 = D}

F (⇤) and

F (x1:n ) =
n°1Y

k=0

F (x1:k+1)
F (x1:k )

=
n°1Y

k=0
DF (x1:k )(xk+1) = D}

F (x1:n )

for all x1:n 2S and n 2N. From the positivity of F it’s also immediate that DF is the
unique positive multiplier process for which F (s) = D}

F (s) for all s 2S.
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So, we say that a test supermartingale T 2 T(') is generated by a mul-
tiplier process if there’s some non-negative gamble process D such that
T (x1:n) = D}(x1:n) for all x1:n 2 S, with n 2 N. Any multiplier process D
that satisfies the condition that E'(s)(D(s)) ∑ 1 for all s 2S, is called a super-
martingale multiplier for the forecasting system '; it’s called a strict super-
martingale multiplier for ' if E'(s)(D(s)) < 1 for all s 2 S. As the following
Proposition shows, a positive multiplier process D is a supermartingale mul-
tiplier for a forecasting system ' 2©(X) if and only if D} is a positive test
supermartingale for '.

Proposition 6.6. Consider a multiplier process D and a forecasting system
' 2©(X). If D is a (positive (strict)) supermartingale multiplier for', then the
test process D} is a (positive (strict)) test supermartingale for '. And if D}
is a positive (strict) test supermartingale for ', then D is a positive (strict)
supermartingale multiplier for '.

Proof. Let’s start by assuming that D is a supermartingale multiplier for '. For every
s 2S, since

¢D}(s)(x) = D}(sx)°D}(s) = D}(s)D(s)(x)°D}(s) = D}(s)[D(s)(x)°1]

for all x 2X, we see that ¢D}(s) = D}(s)[D(s)°1] and therefore, that

E'(s)(¢D}(s)) = E'(s)(D}(s)[D(s)°1])
C220= D}(s)E'(s)(D(s)°1)

C420= D}(s)
h

E'(s)(D(s))°1
i
∑ 0,

where the inequality holds since E'(s)(D(s)) ∑ 1 for all s 2S. Since D} is non-negative
and D}(⇤) = 1 by definition, we conclude that D} is a test supermartingale for '.
Furthermore, if D(s)(x) > 0 for all s 2 S and x 2X by assumption, then it immedi-
ately follows from the definition that the test supermartingale D} is positive as well.
Moreover, if additionally E'(s)(D(s)) < 1 for all s 2S, then

E'(s)(¢D}(s)) = D}(s)
h

E'(s)(D(s))°1
i D}>0

< 0,

and hence, D} is a positive strict test supermartingale for '.
Let’s continue by assuming that D} is a positive test supermartingale for '. It’s

immediate from Proposition 6.5x that D is positive. For every s 2 S, since D(s) =
1+ ¢D}(s)

D}(s)
, we see that

E'(s)(D(s)) = E'(s)

√
1+ ¢D}(s)

D}(s)

!
C220,C420= 1+ 1

D}(s)
E'(s)(¢D}(s)) ∑ 1,

where the inequality holds because E'(s)(¢D}(s)) ∑ 0 for all s 2 S. We conclude
that D is a positive supermartingale multiplier for '. Moreover, if additionally
E'(s)(¢D}(s)) < 0 for all s 2S, then

E'(s)(D(s)) = 1+ 1

D}(s)
E'(s)(¢D}(s)) < 1,
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and hence, D is a positive strict supermartingale multiplier for '.

It’s test supermartingales and (positive) supermartingale multipliers that
we’ll use to introduce several imprecise-probabilistic martingale-theoretic
notions of randomness in Chapter 49. On this martingale-theoretic account,
a path ! 2≠ will be considered random for a forecasting system ' 2©(X)
if Sceptic won’t be able to adopt any betting strategy (chosen from a well-
chosen proper subset of all betting strategies) that makes her rich without
bounds along !. As indicated before, it’s the capital processes T 2T(') that
correspond to/result from betting strategies that will take centre stage in our
martingale-theoretic notions of randomness. For such notions, if we want
for every forecasting system ' at least one path to be random, then we need
to sufficiently restrict these betting strategies; we’ll explain in Section 850
what restricted sets we’ll allow Sceptic to choose from. In the following two
examples, we’ll explore what minimal conditions we have to impose on T 2
T(') to end up with a non-vacuous randomness notion. As the following
example shows, we should indeed at least impose non-negativity, because
no binary path is random for the prototypical stationary precise forecasting
system '1/2 if we don’t impose a lower bound on the capital processes that
correspond to Sceptic’s allowed betting strategies.

Example 6.7. Consider the binary state space X = {0,1}, any path ! 2 ≠
and the fair-coin forecasting system '1/2. Then the so-called ‘martingale
betting system’ will guarantee the existence of a betting strategy that gives
an unbounded profit on !. Assume that ! contains an infinite number of
ones; if it contains only an infinite number of zeros, then reverse the bets
in the following betting strategy. Let the betting strategy æ : S!L(X) be
recursively defined as æ(⇤)(0) =°1, æ(⇤)(1) = 1 and

æ(sx) :=
(

2æ(s) if x = 0

æ(⇤) if x = 1
for all s 2S and x 2X.

This betting strategy doubles the stakes if loss occurs—that is, if 0 is the last
observed entry—and resets the stakes to the initial bet if gain occurs—that is,
if 1 is the last observed outcome. By construction, Sceptic’s initial capital has
increased by one unit by the time she observes outcome 1 for the first time,
has increased by two units by the time she observes outcome 1 for the second
time, and so on. So, Sceptic has increased her capital by n units by the time
she observes outcome 1 for the n-th time. Since ! is assumed to contain
an infinite number of ones, this provides an unbounded gain for Sceptic on
!. ¶

Imposing non-negativity does however not suffice to obtain a non-trivial
notion of randomness, since, as the following example reveals, no binary
path is random for the fair-coin forecasting system '1/2 if we consider the
class of all test supermartingales T('1/2).

31



Computable uncertainty modelling

Example 6.8. Consider the binary state space X = {0,1}, any path ! 2 ≠
and the fair-coin forecasting system '1/2. Let the temporal multiplier pro-
cess D : S!L(X) be defined as

D(n)(x) :=
(

1
2 if x = 1°!1:n+1
3
2 if x =!1:n+1

for all n 2N0 and x 2X.

By construction, D(s)(x) > 0 and E1/2(D(s)) = 1
2

° 1
2 + 3

2

¢
= 1 for all s 2 S and

x 2X, and hence, by Proposition 6.630, D} is a positive test supermartingale
for '1/2. Also, by construction, limn!1 D}(!1:n) = limn!1

° 3
2

¢n =1. ¶
So, since no binary path is random for the fair-coin forecasting system'1/2

if we allow for all test supermartingales, to what set should we restrict Scep-
tic’s betting strategies? Interesting martingale-theoretic notions of random-
ness are typically obtained by additionally imposing some computability
constraints, as we’ll explain at the beginning of Section 740.

But before we get to that, let us move on with the topic of this section,
which is how to model uncertainty about a sequence of variables. In particu-
lar, we’ll use super- and submartingales in Section 6.4 to associate upper and
lower expectations–and corresponding upper and lower probabilities—with
forecasting systems. These uncertainty models will especially come in handy
in Chapter 111 to equip some of our martingale-theoretic randomness no-
tions with a measure-theoretic characterisation in Chapter 111. Classically,
in a precise-probabilistic measure-theoretic setting, the randomness of a
path ! 2≠ with respect to a precise forecasting system 'pr 2©pr(X) is de-
fined by means of so-called null covers: a path ! isn’t random for 'pr if, for
every positive threshold ± > 0, there’s some computable/effective way to
specify a set of paths that contains ! and whose probability is smaller than ±.
To do this in our (imprecise-probabilistic) setting, we’ll make use of upper
probabilities instead of probabilities to express what it means for a set of
paths to be small with respect to a forecasting system.

6.4 (Global) upper and lower expectations

Recall that we associated (local) upper and lower expectations with credal
sets in Section 5.419. In our current (global) setting, we can also associate
(global) upper and lower expectations with forecasting systems, which then
take global gambles u 2 L(≠) on the sample space ≠ as their argument,
instead of local gambles f 2L(X) on the state space X.

Global gambles. A (global) gamble u : ≠!R is a bounded map from the
set≠ of all paths to the real numbers. All such gambles are collected in the
set L(≠). If a global gamble u 2L(≠) is constant, that is, if there’s some c 2R
such that u(!) = c for all! 2≠, then we also allow ourselves to write c instead
of u. With every (global) event A µ ≠, we associate the gamble IA 2L(≠)
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that assumes the value 1 on A and 0 elsewhere, and call it the indicator of A;
observe that, since 0 ∑ IA(!) ∑ 1 for any ! 2≠, IA is bounded and therefore
indeed a gamble. The complement ≠\ A of an event A µ≠ is denoted by Ac

and its indicator IAc satisfies IAc = 1° IA . Also, with every so-called local
gamble f 2L(X) and any situation s 2 S, we associate the global gamble
fs 2L(≠), defined by

fs (!) :=
(

f (x) if ! 2 ÇsxÉ with x 2X
0 otherwise, so if ! › ÇsÉ

for all ! 2≠, (6.9)

which is equivalent to writing that fs =
P

x2X f (x)IÇsxÉ.

Global upper and lower expectations. We’re now ready to associate a
(global) upper and lower expectation with every forecasting system ' 2
©(X). We do so by adopting the so-called game-theoretic conditional
upper expectation E'(•|•) : L(≠) £S ! R and conditional lower expecta-
tion E'(•|•) : L(≠)£S!R, which are defined by12

E'(u|s) := inf
n

M(s) : M 2M(') and liminf
n!1

M(!1:n) ∏ u(!) for all ! 2 ÇsÉ
o

(6.10)

and

E'(u|s) := sup
Ω

M(s) : M 2M(') and limsup
n!1

M(!1:n) ∑ u(!) for all ! 2 ÇsÉ
æ

(6.11)

for all u 2L(≠) and s 2S. These global conditional upper and lower expecta-
tions are related to each other through the following conjugacy relationship
[66, Eq. (5)]: E'(u|s) =°E'(°u|s) for all u 2L(≠) and s 2S. For any gamble
u 2L(≠), we’ll also refer to the conditional upper expectation E'(u|⇤) and
the conditional lower expectation E'(u|⇤) as simply the (global) upper and
lower expectation of u, respectively, and we then denote them by E'(u) and
E'(u).

Extensive discussions in related contexts about why these expressions
are relevant can be found in Refs. [14, 51, 65, 66, 67, 68, 69, 70, 71, 72]. For our
present purposes, it suffices to know that the global conditional upper ex-
pectation E'(u|s) of a gamble u 2L(≠) is the infimum capital Sceptic has to
start with in s such that there’s an allowed betting strategy [supermartingale]

12Several versions of these definitions exist, which differ only in the type of supermartingales
that are used (real-valued, extended real-valued, unbounded, bounded, bounded below); see
for example De Cooman & De Bock [36], Shafer & Vovk [51], T’Joens, De Bock & De Cooman
[65], De Cooman, De Bock & Lopatatzidis [66], and T’Joens, De Bock & De Cooman [67]. For
gambles, however, all these definitions are equivalent; see De Cooman, De Bock & Lopatatzidis
[66, Proposition 10] and T’Joens, De Bock & De Cooman [65, Proposition 36]. This allows us to
apply properties that were proved for these alternative expressions in our context as well.
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that guarantees her ending up with a higher capital than the reward that’s
associated with u, along all paths that go through s. So, in particular, E'(u)
is Forecaster’s infimum selling price for the gamble u. Indeed, consider any
supermartingale M 2M(') such that liminfn!1 M(!1:n) ∏ u(!) for all ! 2≠.
By his specification of the forecasting system ', Forecaster allows Sceptic to
play the betting strategy that corresponds to M °M(⇤), which is worth more
than the gamble u °M(⇤), implying that he’s willing to offer her this gamble,
and thus to sell u for M(⇤). The global conditional lower expectation E'(u|s)
of a gamble u 2L(≠), on the other hand, is the supremum capital Forecaster
has to start with in s such that he has a betting strategy [submartingale]
that guarantees him ending up with a lower capital than the reward that’s
associated with u, along all paths that go through s. In particular, E'(u) is
Forecaster’s supremum buying price for the gamble u. Indeed, consider any
submartingale M 2M(') such that limsupn!1 M(!1:n) ∑ u(!) for all ! 2≠.
By his specification of the forecasting system ', Forecaster accepts the bet-
ting strategy that corresponds to M °M(⇤) [and he allows Sceptic to play the
betting strategy that corresponds to the supermartingale M(⇤)°M ], which
is worth less than the gamble u °M(⇤), implying that he’s willing to accept
this gamble, and thus to buy u for M(⇤).

Conveniently, E'(•|•) and E'(•|•) satisfy a number of properties, the first
six of which resemble C1 to C620.

Proposition 6.12. Consider a forecasting system ' 2©(X). Then for all u, v 2
L(≠), (un)n2N0 2L(≠)N0 , f 2L(X), s 2S and ∏ 2R∏0:

E1. inf!2ÇsÉ u(!) ∑ E'(u|s) ∑ E'(u|s) ∑ sup!2ÇsÉ u(!); [boundedness]

E2. E'(∏u|s) =∏E'(u|s) and E'(∏u|s) =∏E'(u|s);
[non-negative homogeneity]

E3. E'(u + v |s) ∑ E'(u|s)+E'(v |s) and E'(u|s)+E'(v |s) ∑ E'(u + v |s);
[sub- and superadditivity]

E4. E'(u + v |s) = E'(u|s)+ vs and E'(u + v |s) = E'(u|s)+ vs if
v assumes the constant value vs on ÇsÉ; [constant additivity]

E5. if u(!) ∑ v(!) for all ! 2 ÇsÉ, then E'(u|s) ∑ E'(v |s) and
E'(u|s) ∑ E'(v |s); [monotonicity]

E6. E'(u|s) = E'(uIÇsÉ|s) and E'(u|s) = E'(uIÇsÉ|s); [restriction]

E7. if un % u point-wise on ÇsÉ, then E'(u|s) = limn!1 E'(un |s);
[convergence]

E8. E'( fs |s) = E'(s)( f ) and E'( fs |s) = E'(s)( f ); [locality]

E9. E'(s)(E'(u|s ·)) = E'(u|s) and E'(s)(E'(u|s ·)) = E'(u|s).
[super- and submartingale]

Proof. From De Cooman, De Bock & Lopatatzidis [66, Equation (5) and Proposition
10], it follows that the conditional upper expectation E'(u|s), with u 2L(≠) and
s 2S, can be equivalently defined in terms of bounded below supermartingales. By
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T’Joens, De Bock & De Cooman [65, Proposition 36], this equivalence continues
to hold when considering extended real-valued bounded below supermartingales.
Consequently, E1 to E3x follow from conjugacy and Proposition 14 in Ref. [66]. E4x
follows from conjugacy and Proposition 4.4.3 in Ref. [14]: E'(u + v |s) = E'(uIÇsÉ+
v IÇsÉ|s) = E'(uIÇsÉ+ vs IÇsÉ|s) = E'(u + vs |s) = E'(u|s)+ vs , where the first and third
equality follow from EC6 in Ref. [14], and where the fourth inequality follows from EC5
in Ref. [14]. E5x follows from conjugacy and Proposition 13 in Ref. [65]. E6x follows
from conjugacy and Proposition 4.4.3 in Ref. [14]. E7x follows from Theorem 23 in
Ref. [65] and E6x. E8x follows from conjugacy and Proposition 14 in Ref. [65]. And
E9x follows from conjugacy, E6x, E8x, and Theorem 15 in Ref. [65].

As yet another property, we see that more conservative forecasting sys-
tems lead to more conservative (larger) upper expectations.

Proposition 6.13. Consider any two forecasting systems ',√ 2 ©(X) such
that 'µ√. Then E'(u|s) ∑ E√(u|s) for all global gambles u 2L(≠) and all
situations s 2S.

Proof. Use Eq. (6.10)33:

E'(u|s) = inf
n

M(s) : M 2M(') and liminf
n!1 M(!1:n ) ∏ u(!) for all ! 2 ÇsÉ

o

∑ inf
n

M(s) : M 2M(√) and liminf
n!1 M(!1:n ) ∏ u(!) for all ! 2 ÇsÉ

o
= E√(u|s),

where the inequality holds becauseM(√) µM(') by Proposition 6.429.

Global upper and lower probabilities. Global conditional upper and lower
expectations allow us to also define their corresponding conditional upper
and lower probabilities: for any event A µ≠, any forecasting system ', and
any situation s 2 S, P'(A|s) := E'(IA |s) and P'(A|s) := E'(IA |s). For any
event A µ≠ , we’ll also refer to the conditional upper probability P'(A|⇤)
and the conditional lower probability P'(A|⇤) as simply the (global) upper
and lower probability of A, respectively, and we then denote them by P'(A)
and P'(A).

Conveniently, P'(•|•) and P'(•|•) satisfy the following properties, with the
first five being special instantiations of properties E1, E3, E5, E7 and E9 in
Proposition 6.12x.

Corollary 6.14. Consider a forecasting system ' 2©(X). Then for all A, An ,
B µ≠, with n 2N0, and s 2S:

P1. inf!2ÇsÉ IA(!) ∑ P'(A|s) ∑ P'(A|s) ∑ sup!2ÇsÉ IA(!); [boundedness]

P2. P'(A[B |s) ∑ P'(A|s)+P'(B |s) and P'(A|s)+P'(B |s) ∑ P'(A[B |s);
[subadditivity]

P3. if A\ÇsÉ µ B \ÇsÉ, then P'(A|s) ∑ P'(B |s) and P'(A|s) ∑ P'(B |s);
[monotonicity]
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P4. if IAn % IA point-wise on ÇsÉ, then P'(A|s) = limn!1 P'(An |s);
[convergence]

P5. E'(s)(P'(A|s ·)) = P'(A|s) and E'(s)(P'(A|s ·)) = P'(A|s);
[super- and submartingale]

P6. P'(Ac ) = 1°P'(A). [complement]

Proof. To prove P6, observe that by E434 and conjugacy,

P'(Ac ) = E'(IAc ) = E'(1° IA) = 1+E'(°IA) = 1°E'(IA) = 1°P'(A)

for all A µ≠.

When considering events that are open in the Cantor topology, that is,
events A µ ≠ for which there’s some subset S µ S such that A = ÇSÉ, we’ll
make use of the following additional properties of P'(•|•).

Corollary 6.15. Consider any forecasting system ' 2 ©(X), any subset S µ
S, and any s 2 S. Then the following statements hold for the real pro-
cess P'(ÇSÉ|•) : S!R:

(i) s w S ) P'(ÇSÉ|s) = 1 and s “ S ) P'(ÇSÉ|s) = 0;
(ii) liminfn!1 P'(ÇSÉ|!1:n) ∏ IÇSÉ(!) for all ! 2≠.

Proof. For (i), observe on the one hand that s w S implies that the global gamble IÇSÉ
assumes the constant value 1 on ÇsÉ, and use P1x. If, on the other hand, s “ S,
then IÇSÉ assumes the constant value 0 on ÇsÉ, and the desired result again follows
from P1x.

For (ii), observe that it follows from P1x that P'(ÇSÉ|•) ∏ 0. It therefore suffices
to consider any ! 2 ÇSÉ and to prove that then liminfn!1 P'(ÇSÉ|!1:n ) = 1. But if
! 2 ÇSÉ, then there must be some s 2 S such that! 2 ÇsÉ. Hence, for all n ∏ |s|,!1:n w S
and therefore, by (i), also P'(ÇSÉ|!1:n ) = 1.

It will also prove useful to have expressions for the upper and lower
probabilities of cylinder sets. Unlike those for more general global events,
they turn out to be particularly simple and elegant.

Proposition 6.16. Consider any forecasting system ' 2©(X) and any situa-
tion s 2S, then

P'(ÇsÉ) =
|s|°1Y

k=0
E'(s1:k )(Isk+1 ) and P'(ÇsÉ) =

|s|°1Y

k=0
E'(s1:k )(Isk+1 ).

Proof. We give the proof for the upper probability. The proof for the lower probability
is completely similar.

First of all, fix any ` 2 {0,1, . . . , |s|°1}. For any x 2X,

P'°
ÇsÉ|s1:` x

¢
= E'(IÇsÉ|s1:` x)

E634= E'(IÇsÉIÇs1:` xÉ|s1:` x) = E'(IÇsÉIs`+1 (x)|s1:` x)

E234= E'(IÇsÉ|s1:` x)Is`+1 (x) = E'(IÇsÉ|s1:`+1)Is`+1 (x)
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= P'°
ÇsÉ|s1:`+1

¢
Is`+1 (x).

Hence,
P'°

ÇsÉ|s1:` ·
¢
= P'°

ÇsÉ|s1:`+1
¢
Is`+1 , (6.17)

so we can infer from the recursion equation in P5x that

P'°
ÇsÉ|s1:`

¢
= E'(s1:`)(P'°

ÇsÉ|s1:` ·
¢
)

Eq. (6.17)= E'(s1:`)(P'°
ÇsÉ|s1:`+1

¢
Is`+1 )

= P'°
ÇsÉ|s1:`+1

¢
E'(s1:`)(Is`+1 ),

where the third equality follows from C220 and the fact that P'°
ÇsÉ|s1:`+1

¢
∏ 0

[use P135]. A simple iteration on ` now shows that, indeed,

P'(ÇsÉ) = P'(ÇsÉ|⇤) = P'(ÇsÉ|s)
|s|°1Y

k=0
E'(s1:k )(Isk+1 )

=
|s|°1Y

k=0
E'(s1:k )(Isk+1 ),

where the last equality follows from P'(ÇsÉ|s) = 1, as is guaranteed by P135, or alter-
natively, by Corollary 6.15(i)x.

We’ll also make use of the following elegant and powerful inequality, the
idea for which in its simplest form is due to Ville [28]; its proof is based on
Shafer and Vovk’s work on game-theoretic probabilities [51, 69].

Proposition 6.18 (Ville’s inequality). Consider any forecasting system ', any
non-negative supermartingale T for ', and any C > 0, then

P'

√(
! 2≠ : sup

n2N0

T (!1:n) ∏C

)!
∑ 1

C
T (⇤).

Proof. Let GC :=
©
! 2≠ : supn2N0

T (!1:n ) ∏C
™

. Consider any 0 < ≤<C , and let T≤ be
the real process given for all s 2S by

T≤(s) :=
(

T (t ) if there’s some first t v s such that T (t ) ∏C °≤
T (s) if T (t ) <C °≤ for all t v s,

so T≤ is the version of T that mimics the behaviour of T but is stopped—kept
constant—as soon as it reaches a value of at least C ° ≤. Observe that T≤(⇤) =
T (⇤), and that 1

C°≤T≤ is still a non-negative supermartingale for '. For any ! 2
GC , we have that supn2N0

T (!1:n ) ∏ C > C ° ≤, so there’s some n 2 N0 such that
T (!1:n ) >C °≤, implying that T≤(!1:m ) = T≤(!1:n ) ∏C °≤ for all m ∏ n, and therefore
liminfn!1 1

C°≤T≤(!1:n ) ∏ 1. Hence

liminf
n!1

1
C °≤T≤(!1:n ) ∏ IGC (!) for all ! 2≠,

and therefore Eq. (6.10)33 tells us that P'(GC ) ∑ 1
C°≤T≤(⇤) = 1

C°≤T (⇤). Since this
holds for all 0 < ≤<C , we’re done.
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Almost sure events. (Global) upper and lower probabilities allow for an
imprecise-probabilistic generalisation of ‘almost sure events’; in the precise-
probabilistic setting, an event A µ≠ is said to happen almost surely for a
probability measure µ if it has probability 1, that is, if µ(A) = 1. We say
that an event A is almost sure for a forecasting system ' if P'(A) = 1; if the
forecasting system ' isn’t important, or clear from the context, we simply say
that A is almost sure. Since we know by P636 that P'(Ac ) = 1°P'(A) for all
A µ≠, an event A is almost sure if and only if P'(Ac ) = 0. This alternative
characterisation is often more convenient in proofs, and we’ll use it implicitly.

There are three features of almost sure events that will be useful to us.
The first is that they are never empty.

Lemma 6.19. Any almost sure event A µ≠ is non-empty.

Proof. Assume ex absurdo that A is empty. This would imply that Ac =≠ and there-
fore, since A is almost sure, that P'(≠) = 0. But it follows from P135 that, actually,
P'(≠) = 1.

The second feature is that countable intersections of almost sure events
are still almost sure. We start with finite intersections.

Lemma 6.20. Consider two almost sure events A,B µ≠, then their intersection
A\B is almost sure as well.

Proof. Since A and B are almost sure events, we know that P'(Ac ) = 0 and P'(Bc ) = 0.
By invoking P1 and P235, it follows that

0
P135∑ P'°

(A\B)c ¢
= P'°

Ac [Bc ¢ P235∑ P'°
Ac ¢

+P'°
Bc ¢

= 0.

So P'((A\B)c ) = 0 and, therefore, A\B is almost sure.

By combining this result with P436, we obtain the version for countable
intersections.

Corollary 6.21. For any sequence (An)n2N0 of almost sure events, their inter-
section

T
n2N0 An is almost sure as well.

Proof. For any n 2 N0, we know from Lemma 6.20 that the event
Tn

k=0 Ak is al-
most sure and, therefore, that 0 = P'((

Tn
k=0 Ak )c ) = P'(

Sn
k=0 Ac

k ). Since the se-
quence (ISn

k=0 Ac
k

)n2N0 in L(≠) is non-decreasing and converges pointwise to the

gamble IS
n2N0 Ac

n
2L(≠), it follows from P436 that

P'

√√
\

n2N0

An

!c!
= P'

√
[

n2N0

Ac
n

!
= lim

n!1P'

√
n[

k=0
Ac

k

!
= 0,

so
T

n2N0 An is indeed almost sure.
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The third feature is that, for any countable collection of betting strategies,
it’s almost sure that none of them allow Sceptic to get rich without bounds.

Lemma 6.22. Consider any forecasting system ' 2 ©(X) and any se-
quence (Tk )k2N0 of test supermartingales for '. Then the event

\

k2N0

Ω
! 2≠ : limsup

n!1
Tk (!1:n) <1

æ
µ≠

is almost sure for '.

Proof. Fix any k 2N0 and consider the event

Ak :=
Ω
! 2≠ : limsup

n!1
Tk (!1:n ) <1

æ
.

We’ll be done if we can show that P'(Ak ) = 1, or equivalently, that P'(Ac
k ) = 0, since it

will then be immediate from Corollary 6.21x that the event
T

n2N0 An is almost sure.
To that end, we now construct, for any real Æ> 1, a test supermartingale TÆ

k for '.
Let

TÆ
k (s) :=

(
Æ if Tk (t ) ∏Æ for some precursor t v s of s

Tk (s) if Tk (t ) <Æ for all precursors t v s of s
for all s 2S.

It’s a matter of direct verification to show that TÆ
k is indeed a test supermartingale

for '. It’s clear that, for any ! 2 Ac
k , Tk will eventually exceed Æ on !, and therefore

limn!1 TÆ
k (!1:n ) =Æ for all! 2 Ac

k . This implies that liminfn!1 TÆ
k (!1:n ) ∏ÆIAc (!)

for all ! 2≠, and therefore

0
P135∑ P'(Ac

k ) = E'
≥
IAc

k

¥ E234= 1
Æ

E'
≥
ÆIAc

k

¥
∑ 1
Æ

TÆ
k (⇤) = 1

Æ
,

where the last inequality follows from Eq. (6.10)33, and the last equality from the fact
that TÆ

k is a test supermartingale. Since this statement holds for all real Æ> 1, this

implies that, indeed, P'(Ac
k ) = 0.

Connection with measures. Although we’ve already highlighted the close
connection between precise forecasting systems and measures at the end of
Section 6.224, it will be enlightening to elaborate on this connection. First
recall from Section 6.224 that every precise forecasting system 'pr has a
corresponding countably additive probability measure µ'pr on the Borel al-
gebra B(≠). Our global upper and lower expectation E'pr (•) and E'pr (•)
then both coincide with the usual measure-theoretic global expectation
that’s associated with µ'pr , at least on all global gambles u 2 L(≠) that
are measurable with respect to B(≠) [58, Section 4.8, Theorem 5.3.1 and
Corollaries 5.2.5 and 5.3.4], and we then write E'pr (u) := E'pr (u) = E'pr (u).
Similarly, our global upper and lower probability P'pr (•) and P'pr (•) then
both coincide with µ'pr , at least on all events A 2 B(≠), and we then
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write P'pr (A) := P'pr (A) = P'pr (A). In particular, for any partial cut K µ S,
since the global gamble IÇK É 2L(≠) is obviously measurable with respect to
B(≠), we then have that

E'pr (IÇK É) = P'pr (ÇKÉ) = P'pr (ÇKÉ) = P'pr (ÇKÉ)

=µ'pr (ÇKÉ) =
X

s2K

|s|°1Y

k=0
'pr(s1:k )(sk+1). (6.23)

This connection will be particularly useful in Chapter 111, where we not
only equip some of the martingale-theoretic notions of randomness that are
introduced in Chapter 49 with a measure-theoretic characterisation, but
also explain that the measure-theoretic randomness tests that we introduce
to do so, coincide with the ones found in the classical precise-probabilistic
literature when restricting our attention to precise forecasting systems.

The above close connection between precise forecasting systems and
measures is also a particular instantiation of a more general result. First of
all, recall from our discussion in Section 6.224 that an arbitrary forecasting
system ' 2 ©(X) can be seen as a set of compatible precise forecasting
systems. Now, for every forecasting system ', the corresponding upper
expectation E'(•) coincides with the upper envelope sup'pr2'E'pr (•) of the
global expectations E'pr that correspond to a compatible precise forecasting
system 'pr 2 ', and this on all global gambles that are measurable with
respect to B(≠) [70, Theorem 13]. In particular, for any event A 2B(≠), we
then have that

P'(A) = sup
'pr2'

µ'pr (A). (6.24)

Via the conjugacy relationship for global upper and lower expectations,
we then immediately have that E'(u) = inf'pr2'E'pr (u) for all global gam-
bles u 2 L(≠) that are measurable with respect to B(≠), and P'(A) =
inf'pr2'P'pr (A) for all events A 2B(≠). So, in this sense, for every forecasting

system ' 2©(X), the global lower and upper expectations E'(•) and E'(•)
provide tight lower and upper bounds on the global expectations E'pr (•) de-
termined by the precise forecasting systems 'pr that are compatible with ',
and similarly for P'pr (•), P'pr (•) and µ'pr (•). This for example implies that an
event A 2B(≠) is almost sure for a forecasting system ' [P'(A) = 1] if and
only if A is almost sure for all measures µ'pr with 'pr 2' [µ'pr (A) = 1 for all
'pr 2'].

7 Computability theory

After introducing global upper and lower expectations in the previous section,
which will be especially useful for generalising measure-theoretic notions of
randomness in Chapter 111, let’s continue with introducing the remaining
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necessary mathematical tools for defining non-trivial martingale-theoretic
(and measure-theoretic) notions of randomness. As is clear from Examples
6.731 and 6.832, Sceptic can’t adopt just any betting strategy to test a path’s
randomness: for instance, as we’ve seen in Example 6.832, if we allow for all
test supermartingales, then no binary path is random for the fair-coin fore-
casting system '1/2. Consequently, imposing non-negativity and requiring
unit initial capital doesn’t suffice to obtain a non-trivial martingale-theoretic
notion of randomness. Again, to what set should we restrict Sceptic’s betting
strategies then?

As is common knowledge nowadays, random paths do exist when restrict-
ing Sceptic’s betting strategies to a countable class [32, p. 235]. The question
then still remains what countable class to adopt. According to common sense,
when making statements, Sceptic makes use of an alphabet that has a finite
number of letters, and uses these to formulate finite sentences, of which
there are only a countably infinite number. Sensible martingale-theoretic
algorithmic randomness notions typically adopt this idea by imposing that
Sceptic should be able to describe her betting strategies in a finite way. This
idea originates from a seminal paper by Alonzo Church, where he advocated
that a path’s randomness should be tested by ‘effectively calculable’ functions;
the Spielsystem below refers to the betting strategies as considered and put
forward by von Mises [22].

“It may be held that the representation of a Spielsystem by an
arbitrary function ¡ is too broad. To a player who would beat
the wheel at roulette a system is unusable which corresponds to a
mathematical function known to exist but not given by explicit
definition; and even the explicit definition is of no use unless it
provides a means of calculating the particular values of the func-
tion. As a less frivolous example, the scientist concerned with
making predictions or probable predictions of some phenomenon
must employ an effectively calculable function: if the law of the
phenomenon isn’t approximable by such a function, prediction
is impossible. Thus a Spielsystem should be represented mathe-
matically, not as a function, or even as a definition of a function,
but as an effective algorithm for the calculation of the values of a
function.” [27, p. 133]

7.1 (Partial) recursive maps

To understand what it means for a mathematical object to be ‘effectively
calculable’, we introduce some basic notions/definitions and results from
computability theory. It considers as basic building blocks partial recur-
sive natural maps ¡ : N! N, which are maps that can be computed by a
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Turing machine.13 This means that there’s some Turing machine that halts
on the input n 2 N—which we denote by ¡(n)#—and outputs the natural
number ¡(n) 2N if ¡(n) is defined, and doesn’t halt otherwise—which we
denote by ¡(n)". By the Church-Turing (hypo)thesis, this is equivalent to
the existence of a finite algorithm that, given any input n 2N, outputs the
natural number ¡(n) 2N if ¡(n) is defined, and never finishes otherwise; in
what follows, we’ll often use this equivalence without mentioning it explicitly.
If the Turing machine halts for all inputs n 2N, that is, if the Turing machine
computes the natural number¡(n) in a finite number of steps for every n 2N,
then the map ¡ is defined for all arguments and we call it total recursive, or
simply recursive [32, Chapter 2].

Instead of maps from N to N, we’ll also consider maps with domain or
codomain N, S, S£N, Q, Mrat(X), Crat(X), Pfin(Mrat(X)), or any other
(countably in)finite set whose elements can be encoded by the natural num-
bers; we’ll denote such a generic set by D, and also call it an encodable
set.14 The choice of encoding isn’t important, provided we can algorithmi-
cally decide whether a natural number is an encoding of an object and, if
this is the case, we can find an encoding of the same object with respect to
any other encoding [74, p. xvi]. A function ¡ : D !D0 is then called par-
tial recursive if there’s a Turing machine that, when given a natural-valued
encoding of any d 2D, outputs a natural-valued encoding of ¡(d) 2D0 if
¡(d) is defined, and never halts otherwise. By the Church-Turing thesis, this
is again equivalent to the existence of a finite algorithm that, when given
the input d 2D, outputs the object ¡(d) 2D0 if ¡(d) is defined, and never
finishes otherwise. If the Turing machine halts on all natural numbers that
encode some element d 2D, or equivalently, if the finite algorithm outputs
an element¡(d) 2D0 for every d 2D, then we call¡ total recursive, or simply
recursive. In practice, in line with the approach of Pour-El & Richards [75],
we’ll provide or describe an algorithm whenever we want to establish a map’s
recursive character.

WhenD0 =Q, then for any rational number Æ 2Q and any two recursive

13A Turing machine is an accurate mathematical model of a general purpose computer,
and can do everything that a real computer based on classical physics can do [73]. If a Turing
machine is provided with an additional infinite read-only oracle tape, which it can access one
bit at a time while performing its computation, then we call it an oracle machine [32]. Oracle
machines thus allow for accessing information that cannot be described in a finitary manner. In
what follows, when we want to stress that a Turing machine has no access to such information,
we’ll say that such information is not accessible by an oracle.

14The (partial) map N!D that corresponds to this encoding doesn’t have to be one-to-one,
it merely has to be surjective. We thus require that every element in the (countably in)finite
setD has to be associated with at least one natural number. Several natural numbers may thus
be associated with the same element, and not every natural number has to correspond to an
element in the set. Moreover, we remark that our choice to use natural numbers for our encoding
is a bit arbitrary. Instead of the natural numbers, we could for example as well have chosen the
countably infinite set of binary strings; this is however of no real importance since there’s an
obvious (encodable) bijection between both sets.
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rational maps q1, q2 : D!Q, the following rational maps are clearly recursive
as well: q1 + q2, q1 · q2, q1/q2 with q2(d) 6= 0 for all d 2D, max{q1, q2}, Æq1
and dq1e.15 Since a finite number of algorithms can always be combined into
one, it follows from the foregoing that the rational maps min{q1, q2} and bq1c
are also recursive.

For D = S and D0 = Crat(X), a rational forecasting system 'rat : S!
Crat(X) is called recursive if there’s a recursive map q : S! Pfin(Mrat(X))
such that CH

°
q(s)

¢
='rat(s) for all s 2S. Any finite description of such a map

q that establishes the recursiveness of the forecasting system ' in the above
sense, will also be called a code for '. In the specific case of a stationary
rational forecasting system Crat, Crat is recursive by definition because there’s
a finite set of rational probability mass functions {m1, . . . ,mn} 2Pfin(Mrat(X))
such that CH({m1, . . . ,mn}) =Crat; any such finite set of rational probability
mass functions that establishes the recursive character of a credal set Crat in
the above sense will then also be called a code for Crat.

If we consider a gamble that’s rational as well, then we can check the
supermartingale (multiplier) property in a recursive manner.

Lemma 7.1. There’s a single algorithm that, when provided with a code for a
recursive rational credal set Crat 2Crat(X) and a rational gamble f 2Lrat(X),
outputs a rational q 2Q such that q = ECrat ( f ).

Proof. Let {m1, . . . ,mn } 2 Pfin(Mrat(X)) be a code for Crat. Then, ECrat ( f ) =
maxmrat2{m1,...,mn } Emrat ( f ) = maxmrat2{m1,...,mn }

P
x2X mrat(x) f (x), which is clearly

rational. Let q := maxmrat2{m1,...,mn }
P

x2X mrat(x) f (x). The single algorithm that
performs this operation then consists of taking the maximum of the inproduct be-
tween mrat and f , where mrat ranges over the finite set {m1, . . . ,mn }.

We’ll consider one other particular case that will be of interest to us.
Observe that the set of all recursive rational maps q : D ! Q is countably
infinite and can substitute forD andD0, which implies that the recursiveness
of maps that take rational recursive maps as their domain and/or image is
well-defined. By the Church–Turing thesis, a map (q : D!Q) ! (q 0 : D0 !
Q) is then recursive if there’s some finite algorithm that outputs a finite
description of the rational recursive map q 0 in a finite number of steps, when
it’s given a finite description of the rational recursive map q as an input.

We’ll also come across the implementability of (countably in)finite fami-
lies of recursive maps: for any indexed family (¡d 00 )d 002D00 , with ¡d 00 : D!D0

for all d 00 2D00, we say that ¡d 00 is (partial) recursive uniformly in d 00 2D00 if
there’s a (partial) recursive function ¡ : D00 £D ! D0 such that ¡d 00 (•) =
¡(d 00, •) for all d 00 2 D00. In particular, there’s a sequence (¡n)n2N, with

15The floor function b•c : R!Z is the function that outputs for every real number x 2R the
greatest integer less than or equal to x. Similarly, the ceiling function d•e : R!Z maps every real
number x 2R to the smallest integer greater than or equal to x.
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¡n : D !D0 partial recursive uniformly in n 2 N, that contains all partial
recursive functions ¡ : D!D0.

Lemma 7.2 ([32, Proposition 2.1.2]). For any two encodable setsD andD0

there’s a partial recursive function ¡ : N£D!D0 such that for any partial
recursive function ¡0 : D!D0 there’s some n 2N for which ¡0 =¡(n, •).

7.2 Recursive(ly enumerable) and effectively open sets

(Partial) recursive functions allow for defining notions of implementability
for subsets of countable sets and for subsets of effectively second countable
spaces, as we’ll now explain.

Countable sets

A subset D µD is called recursively enumerable if there’s some Turing ma-
chine that halts on every natural number that encodes an element d 2 D,
but never halts on any natural number that encodes an element d 2D \ D
[32, Definition 2.2.1]. For any non-empty D µD, this is equivalent to the
existence of a finite algorithm that enumerates (finite descriptions of) the ele-
ments of the set D , meaning that there’s some total recursive map ¡ : N!D
such that D =¡(N), with ¡(N) :=

©
¡(n) : n 2N

™
[32, Proposition 2.2.2]. If both

the set D and its complement D \ D are recursively enumerable, then we
call D recursive. This is equivalent to the existence of a recursive indica-
tor ID : D! {0,1} that outputs 1 for all d 2 D , and outputs 0 otherwise [32, p.
11].

For any indexed family (Dd 0 )d 02D0 , with Dd 0 µD for all d 0 2D0 andD0 a
countable set whose elements can be encoded by the natural numbers, we
say that Dd 0 is recursive(ly enumerable) uniformly in d 0 2D0 if there’s a recur-
sive(ly enumerable) set DµD0 £D such that Dd 0 =

©
d 2D : (d 0,d) 2D

™
for

all d 0 2D0; if moreover Dd 0 6=? for all d 0 2D0, then this implies the existence
of some recursive map q : N£D0 !D such that Dd 0 =

©
q(n,d 0) : n 2N

™
for

all d 0 2D0. In particular, there’s a sequence (Dn)n2N, with Dn µD recursively
enumerable uniformly in n 2 N, that contains all recursively enumerable
subsets D µD.

Corollary 7.3. For any encodable setD, there’s a sequence (Dn)n2N, with Dn µ
D recursively enumerable uniformly in n 2N, such that for any recursively
enumerable subset D µD there’s some n 2N for which D = Dn.

Proof. Consider the partial recursive function ¡ : N£D!N from Lemma 7.2 [thus
withD0 =N], and let D :=

©
(n,d) 2N£D : ¡(n,d)#

™
and Dn := {d 2D : (n,d) 2D} for

all n 2N; D is obviously recursively enumerable, and hence, Dn µD is recursively
enumerable uniformly in n 2N. Consider any recursively enumerable subset D µD.
Then there’s a Turing machine that halts on every natural number that encodes an
element d 2 D , but never halts on any natural number that encodes an element d 2
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D \ D. This is equivalent to the existence of a partial recursive function ¡0 : D!N

such that D =
©
d 2D : ¡0(d)#

™
. Then there’s some n 2N such that ¡0 = ¡(n, •), and,

for this same n, D =
©
d 2D : ¡(n,d)#

™
= Dn .

Effectively second countable spaces

A topological space (X ,ø) is called effectively second countable if its topology ø
has a countable base D that can be encoded by the natural numbers. A
subset G µ X is called effectively open if there’s a recursively enumerable
subset D µD such that G =S

d2D d . A subset G µ X is called effectively closed
if X \G is effectively open. Consider, as an example, the Cantor topology on≠
generated by the countable base D = {ÇsÉ µ≠ : s 2S}; for ease of notation
and manipulation, we write and considerD =S instead. A set of paths G µ≠
is then effectively open if there’s some recursively enumerable subset S µS
such that G = ÇSÉ.

For any indexed family (Gd 0 )d 02D0 , with Gd 0 µ X for all d 0 2D0, we say that
Gd 0 is effectively open uniformly in d 0 2D0 if there’s some recursively enu-
merable set DµD0 £D such that Gd 0 =S©

d 2D : (d 0,d) 2D
™

for all d 0 2D0.
In particular, if D0 = N (or D0 = N0), then we also say that the (Gn)n2N (or
(Gn)n2N0 ) constitute a computable sequence of effectively open sets. Interest-
ingly, there’s a computable sequence of effectively open sets that contains all
effectively open sets, in the following sense.

Corollary 7.4. For any effectively second countable space (X ,ø) with encodable
baseD, there’s a computable sequence of effectively open sets (Gn)n2N, with
Gn µ X for all n 2N, such that for any effectively open set G µ X there’s some
n 2N for which G =Gn.

Proof. This follows immediately from Corollary 7.3x.

7.3 Lower (and upper) semicomputable extended real maps

We’ll also use recursive maps and recursively enumerable sets to provide
notions of implementability for (extended) real maps of the form r : D!
R[ {+1}, the co-domain of which isn’t countably infinite. Such a map r is
called lower semicomputable if there’s a recursive rational map q : D£N!Q

such that q(d ,n +1) ∏ q(d ,n) and r (d) = limm!1 q(d ,m) for all d 2D and
n 2 N; as a shorthand notation, we’ll then write q(d , •) % r (d). Any finite
description of such a map q that establishes the lower semicomputability of
the map r in the above sense, will also be called a code for r . We may always
assume that this approximation from below is strictly increasing.

Lemma 7.5. There’s a single algorithm that, upon the input of a code for
a lower semicomputable extended real map r : D ! R[ {+1}, outputs a
(finite description of a) recursive rational map q : D £N ! Q such that
limm!1 q(d ,m) = r (d) and q(d ,n) < q(d ,n +1) for all d 2D and n 2N.
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Proof. Start from a code q 0 : D£N!Q for the map r that is lower semicomputable,
which implies that q 0(d , •) % r (d) for all d 2 D, and output (a finite description
of) the recursive rational map q : D£N!Q defined by q(d ,n) := q 0(d ,n)°2°n for
all d 2D and n 2N. Then limm!1 q(d ,m) = limm!1 q 0(d ,m) = r (d) and q(d ,n) <
q 0(d ,n)°2°(n+1) ∑ q 0(d ,n +1)°2°(n+1) = q(d ,n +1) for all d 2D and n 2N.

Equivalently, a real map r : D!R is lower semicomputable if and only
if the set

©
(d , q) 2D£Q : r (d) > q

™
is recursively enumerable [32, Section

5.2]; in this case, it’s equivalent to say that the set {(d , x) 2D£R : r (d) > x}
is effectively open [with X = D £ R and encodable countable base©
{d}£ (°1,Æ) µD£R : d 2D and Æ 2Q

™
]. An (extended) real map r : D!

R[ {°1} is called upper semicomputable if °r is lower semicomputable.
For any indexed family (rd 0 )d 02D0 , with rd 0 : D!R[ {+1} for all d 0 2D0,

we say that rd 0 is lower semicomputable uniformly in d 0 2 D0 if there’s a
lower semicomputable map r : D0 £D!R[ {+1} such that rd 0 (•) = r (d 0, •)
for all d 0 2 D0. In particular, when we restrict ourselves to non-negative
extended real maps, there’s a sequence (rn)n2N, with rn : D! [0,+1] lower
semicomputable uniformly in n 2N, that contains all lower semicomputable
non-negative extended real maps r : D! [0,+1].

Lemma 7.6 ([9, Lemma 13]). For any encodable setD there’s a lower semicom-
putable function r : N£D! [0,+1] such that for any lower semicomputable
function r 0 : D ! [0,+1] there’s some n 2 N for which r 0(d) = r (n,d) for
all d 2D.

7.4 Computable maps

If a real map r : D! R is both lower and upper semicomputable, then we
call it computable; obviously then, every computable real map is lower semi-
computable, and every recursive rational map is computable. Computability
is equivalent to the existence of a recursive rational map q : D£N!Q such
that |r (d)°q(d , N )|∑ 2°N for all d 2D and N 2N [36, Propositions 3 and 4].
Any finite description of such a map q that establishes the computability of
the map r in the above sense, will also be called a code for r . This is also equiv-
alent to the existence of two recursive maps q : D£N!Q and e : D£N!N

such that |r (d)°q(d ,`)|∑ 2°N for all d 2D, N 2N and `∏ e(d , N ) [36, Propo-
sition 3]. A real number Æ 2 R is then called computable if it’s computable
as a real map on a singleton, or equivalently, if there’s a recursive rational
map q : N!Q such that |Æ°q(N )|∑ 2°N for all N 2N. For any computable
real number Æ 2 R and any two computable real maps r1,r2 : D ! R, the
following real maps are computable as well: r1+r2, r1 ·r2, r1/r2 with r2(d) 6= 0
for all d 2D, max{r1,r2},Ær1, exp(r1), and log2(r1) with r1(d) > 0 for all d 2D
[75, Section 0.2].

To show that a real map r : D ! R is computable or lower semicom-
putable, we can also use computable real maps rather than recursive ra-
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tional maps. If there’s some computable real map q : D£N! R such that
|r (d)° q(d , N )| ∑ 2°N for all d 2D and N 2N, then the real map r is com-
putable and we say that q converges effectively to r [75, Section 0.2]; the
opposite direction is trivially true as well: if the real map r is computable,
then there’s a recursive rational map q : D £N ! Q—which is obviously
computable and real-valued—such that |r (d)°q(d , N )|∑ 2°N for all d 2D
and N 2N. Equivalently, the real map r is computable if and only if there’s a
computable real map q : D£N!R and a recursive map e : D£N!N such
that |r (d)° q(d ,`)| ∑ 2°N for all d 2D, N 2 N and ` ∏ e(d , N ) [75, Section
0.2], and we then also say that q converges effectively to r .16 Finally, if there’s
some computable real map q : D £N ! R such that q(d ,n + 1) ∏ q(d ,n)
and r (d) = limm!1 q(d ,m) for all d 2D and n 2 N, then the real map r is
lower semicomputable [37].

For any indexed family (rd 0 )d 02D0 , with rd 0 : D ! R for all d 0 2 D0, we
say that rd 0 is computable uniformly in d 0 2D0 if there’s a computable map
r : D0 £D!R such that rd 0 (•) = r (d 0, •) for all d 0 2D0. In particular, ifD0 =N
(or D0 = N0), then we also say that the (rn)n2N (or (rn)n2N0 ) constitute a
computable sequence of computable real maps; if, moreover,D is a singleton,
then we also say that (rn)n2N (or (rn)n2N0 ) is a computable sequence of real
numbers.

Forecasting systems

So far, we’ve only defined computability for real maps, but, instead of the
reals, we could have considered any uncountable codomain that has some
dense encodable subset D. In particular, we’ll consider computable fore-
casting systems ' 2©(X). To this end, letD :=Pfin(Mrat(X)); recall that the
corresponding set Crat(X) of closed convex hulls is dense in C(X) under the
Hausdorff distance [Lemma 5.618]. A forecasting system ' 2 ©(X) is then
called computable if there’s a recursive map q : S£N!Pfin(Mrat(X)) such
that dH

°
'(s),CH

°
q(s, N )

¢¢
∑ 2°N for all s 2S and N 2N. Any finite descrip-

tion of such a map q that establishes the computability of the forecasting
system ' in the above sense, will also be called a code for '. In the specific
case of a stationary forecasting system C , C is computable if there’s a recursive
map q : N! Pfin(Mrat(X)) such that dH

°
C ,CH

°
q(N )

¢¢
∑ 2°N for all N 2N;

any finite description of such a map q that establishes the computability of
the credal set C in the above sense will then also be called a code for C .

If we consider a gamble f 2L(X) that’s computable as well, then the
upper expectation EC ( f ) is computable when given a code for C and f .

16This second criterion for effective convergence is weaker than the first one: for any real
map r : D! R and recursive rational map q : D£N!Q such that |r (d)°q(d , N )| ∑ 2°N for
all d 2D and N 2N, it holds that |r (d)°q(d ,`)|∑ 2°N for all d 2D, N 2N and `∏ N =: e(d , N ).
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Lemma 7.7. There’s a single algorithm that, upon the input of a code for a
computable credal set C 2 C(X) and a code for a computable gamble f 2
L(X), outputs a code for EC ( f ); that is, a finite description of a recursive
rational map q : N!Q such that |EC ( f )°q(N )|∑ 2°N for all N 2N.

Proof. Let qC : N!Pfin(Mrat(X)) and q f : X£N!Q be recursive maps that estab-
lish the computability of C and f , respectively. Let

N f := 1+max
x2X

d|q f (x,1)|e 2N

and

q : N!Q : n 7! E CH
°
qC (n+2+N f )

¢(q f (•,n +1)).

By Lemma 7.143 and by the definition of N f , q is clearly recursive when given
the codes qC and q f . Since | f (x)°q f (x,1)|∑ 2°1 for all x 2 X, it holds that
| f (x)|° |q f (x,1)| < 2°1 for all x 2X, and hence, 0 ∑ maxx2X | f (x)| < N f , which im-
plies that 0 ∑ ( f +N f )/(2N f ) ∑ 1. For all N 2N,

EC ( f )
C220,C420= 2N f EC

µ f +N f

2N f

∂
°N f

∑ 2N f

√
E CH

°
qC (N+2+N f )

¢
√

f +N f

2N f

!
+2°

°
N+2+N f

¢!
°N f

C220,C420= E CH
°
qC (N+2+N f )

¢° f
¢
+N f 2°

°
N+1+N f

¢

C520∑ E CH
°
qC (N+2+N f )

¢
≥
q f (•, N +1)+2°(N+1)

¥
+N f 2°

°
N+1+N f

¢

∑ E CH
°
qC (N+2+N f )

¢
≥
q f (•, N +1)+2°(N+1)

¥
+2°(N+1)

C420= E CH
°
qC (N+2+N f )

¢
≥
q f (•, N +1)

¥
+2°N

= q(N )+2°N ,

where the first inequality holds by Corollary 7.9 because dH
°
C ,CH

°
qC (N )

¢¢
∑ 2°N

for all N 2N, and where the last inequality holds because N < 2N for all N 2N. In a
completely analogous way, we can prove that EC ( f ) ∏ q(N )°2°N for all N 2N, and
therefore |EC ( f )°q(N )|∑ 2°N for all N 2N.

Lemma 7.8 ([76, Section 4.1]). Consider any credal sets C ,C 0 2C(X). Then
dH

°
C ,C 0¢= max f 2L1(X)|EC ( f )°EC 0 ( f )|.

Corollary 7.9. Consider any credal sets C ,C 0 2 C(X) and any gamble f 2
L1(X). Then, |EC ( f )°EC 0 ( f )|∑ dH

°
C ,C 0¢.
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What sequences do we consider to be random for a forecasting system ' 2
©(X)? Or put differently, when do we say that a sequence agrees with a
forecasting system ' 2©(X). In this chapter, we formally address and an-
swer this question a first time in this dissertation by introducing several
(imprecise-probabilistic) martingale-theoretic randomness notions. After
reading Chapter 13, which contains all the mathematical machinery that
will allow us to define several such randomness notions, it should already be
clear that it’s Sceptic who will test the compatibility between a path ! 2≠
and Forecaster’s forecasting system ' 2©(X). Generally speaking, for all of
these martingale-theoretic randomness notions, a path ! 2≠ is considered
to be random for a forecasting system ' 2 ©(X) if Sceptic has no imple-
mentable allowed betting strategy that makes her arbitrarily rich along !,
without borrowing. All these randomness notions are thus based on the
following intuition: a path shouldn’t be called random for ' if Sceptic can
get arbitrarily rich in a betting game by exploiting a pattern/structure in the
outcomes along !. These randomness notions will differ in how Sceptic’s
betting strategies are implementable, and in how she shouldn’t be able to
become arbitrarily rich along a path ! 2≠.

In Section 8y, we’ll explain in which ways we’ll require Sceptic’s betting
strategies to be implementable, and in which ways she shouldn’t be able to
get arbitrarily rich. This will allow us to introduce four (different) martingale-
theoretic randomness notions: Martin-Löf (ML) , weak Martin-Löf (wML),
computable (C) and Schnorr (S) randomness. All these randomness notions
are imprecise-probabilistic generalisations of classical precise-probabilistic
ones, and we’ll provide pointers to the relevant literature to highlight this
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feature.
Afterwards, in Section 954, we show how these randomness notions relate

to each other, and discuss a number of their properties. Section 1066, which
is the last section of this chapter, contains a collection of properties that
are all related to the robustness of the considered randomness notions: to
what extent can we change a set of implementable betting strategies and the
way they should allow Sceptic to get infinitely rich, without changing the
randomness notion at hand? Some of the results in Sections 954 and 1066
will spark insight and raise questions that form the starting point for later
chapters, where these questions will be addressed.

8 Martingale-theoretic randomness definitions

Recall that, loosely speaking, a path ! 2≠ is considered to be martingale-
theoretically random for a forecasting system ' 2©(X) if Sceptic can adopt
no allowable implementable betting strategy that makes her arbitrarily rich
along !, without borrowing. The four martingale-theoretic randomness no-
tions that we’ll introduce in this section will differ only in how they formalise
what it means to be implementable, and what it means to become arbitrarily
rich. To formalise the implementability constraints, we introduce a number
of sets of implementable allowed betting strategies; we’ll do so by considering
implementable real processes first. A real process F : S! R can be imple-
mentable by being recursive, lower semicomputable, upper semicomputable
or computable, but also, if it’s generated by a multiplier process D , by D being
of one of these four types. In what follows, it will be useful to consider the
following sets of implementable real processes:

FML all lower semicomputable test processes;

FwML all positive test processes generated by lower
semicomputable multiplier processes;

FC =FS all computable positive test processes.

From the discussion in Section 740 of Chapter 13, it’s clear that if F is com-
putable, then it is lower semicomputable as well; so FS =FC µFML. What is
less immediate, is that all four sets are in fact nested.

Proposition 8.1. FS =FC µFwML µFML.

Proof. It follows immediately from Lemma 8.2 below that FwML µFML, and from
Proposition 6.529 above and Lemma 8.3y below that FC µFwML.

Lemma 8.2. Consider any multiplier process D. If D is lower semicomputable,
then so is D}.
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Proof. Assume that the multiplier process D is lower semicomputable. This implies
that there’s a recursive rational map q : S£X£N!Q such that q(s, x, •) % D(s)(x) for
all s 2S and x 2X. Since D(s)(x) ∏ 0 for all s 2S and x 2X, we may assume without
loss of generality that q(s, x,n) ∏ 0 too for all s 2S, x 2X and n 2N [otherwise replace
q(s, x,n) by max{0, q(s, x,n)} for all s 2 S, x 2 X and n 2 N]. We now construct a
recursive rational map q 0 : S£N!Q as follows: for any s 2S and any n 2N, we let
q 0(s,n) :=Q|s|°1

k=0 q(s1:k , sk+1,n). Then, since also D}(s) =Q|s|°1
k=0 D(s1:k )(sk+1) and

q(s1:k , sk+1, •) % D(s1:k )(sk+1) for all k 2 {0,1, . . . , |s|°1}, we find that q 0(s, •) % D}(s)
for all s 2S, so D} is indeed lower semicomputable.

Lemma 8.3. Consider any positive test process F : S!R. If F is computable,
then so is the positive multiplier process DF : S!L(X) defined by DF (s)(x) :=
F (sx)/F (s) for all s 2S and x 2X.

Proof. Since F is positive, it follows trivially that DF is positive as well. Assume
that the positive test process F is computable. The positive real maps S£X !
R>0 : (s, x) 7! F (s) and S£X! R>0 : (s, x) 7! F (sx) are then obviously computable,
and so, therefore, is DF as the quotient of both.

As a result, for any R 2 {ML,wML,C,S}, the set FR is countably infinite, be-
cause the lower semicomputable non-negative test processes are countable
in number by Lemma 7.646.

With these sets of implementable real processes at our notational dis-
posal, we gather Sceptic’s implementable allowed betting strategies for the
notions of Martin-Löf (ML-), weak Martin-Löf (wML-), computable (C-) and
Schnorr (S-)randomness—for every forecasting system ' 2 ©(X)—in the
following sets:

TML(') :=FML \T(') all lower semicomputable test
supermartingales for ';

TwML(') :=FwML \T(') all positive test supermartingales for '
generated by lower semicomputable
positive supermartingale multipliers for ';

TC(') :=FC \T(') all computable positive test
supermartingales for ';

TS(') :=FS \T(') all computable positive test
supermartingales for '.

By recalling that FS = FC µ FwML µ FML, it readily follows that these
sets of betting strategies satisfy the following relations for any forecasting
system ' 2©(X).

Corollary 8.4. Consider any forecasting system ' 2 ©(X), then TS(') =
TC(') µTwML(') µTML(').

Proof. This is an immediate corollary of Proposition 8.1x.
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Martingale-theoretic notions of randomness

Since TR(') µFR for any R 2 {ML,wML,C,S}, it’s immediate that the sets
TR(') are countably infinite as well.

Now, for a path ! 2≠ to be R-random for a forecasting system ' 2©(X),
with R 2 {ML,wML,C}, we require that Sceptic’s running capital must never
be unbounded on ! for any implementable allowed betting strategy; that is,
no test supermartingale T 2TR(') must be unbounded on !, meaning that
limsupn!1 T (!1:n) =1. Intuitively, for the path ! to be random, Sceptic
must thus not be able to get arbitrarily rich by exploiting a pattern in ! by
betting on its outcomes.

Definition 8.5. For any R 2 {ML,wML,C}, a path! 2≠ is R-random for a fore-
casting system ' 2©(X) if no test supermartingale T 2TR(') is unbounded
on !.

In the classical, precise-probabilistic randomness literature, these random-
ness notions are usually only defined for computable precise forecasting
systems. In our imprecise-probabilistic setting, however, we choose to con-
tinue speaking of Martin-Löf, weak Martin-Löf and Schnorr randomness both
when adopting computable and non-computable forecasting systems, where
the non-computable forecasting systems aren’t accessible by an oracle; the
converse is typically assumed in the field of algorithmic randomness.17 We
do so for reasons of generality, because some results continue to hold for non-
computable forecasting systems as well. This being said, it will turn out to be
important whether a forecasting system is effectively implementable or not,
as will become apparent in several propositions and theorems throughout
this dissertation.

As we mentioned in the introduction to this chapter, the above martingale-
theoretic randomness notions are all imprecise-probabilistic generalisations
of precise-probabilistic martingale-theoretic randomness notions. Martin-
Löf randomness was originally introduced by Per Martin-Löf in a precise-
probabilistic measure-theoretic context [30], so our terminology in the
present martingale-theoretic setting could come across as unjustified. How-
ever, as was proved (independently) by Peter Schnorr [1, 2] and Leonid Levin
[3], the test-theoretic definition coincides with the martingale-theoretic one
when restricting attention to non-degenerate (precise) computable forecast-
ing systems; see the discussion in Section 14119 and Section 18168 further on
for more details. Historically speaking, Martin-Löf randomness is considered
to be the first satisfactory notion of randomness, and is arguably the most
well-studied one. However, not everyone has been satisfied with this notion
of randomness: Peter Schnorr formulated the following critique; in the quote

17The absence of this assumption is particularly useful in some of the results and discussions
in Chapter 179. For most of the results in the other chapters, we could as well have considered
non-computable forecasting systems that are accessible by an oracle; this would actually enable
us to generalise some of our results from computable forecasting systems to arbitrary forecasting
systems.
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8 Martingale-theoretic randomness definitions

below, a (1)-test stands for a lower semicomputable martingale, and being
weakly computable corresponds to being lower semicomputable.

“The algorithmic structure of a (1)-test F is not symmetrical.
There’s no reason why a martingale F should be weakly com-
putable and °F should not be so. Taking this into consideration
we make the following definition.” [1, p. 250]

This led him to introduce two different precise-probabilistic martingale-
theoretic notions of randomness, which are nowadays known as computable
randomness and Schnorr randomness [1, 2]. Both notions take into account
his critique by requiring that the tests should be both lower and upper semi-
computable, which boils down to the tests being computable. Above, we
introduced an imprecise-probabilistic generalisation of computable ran-
domness, and we’ll do the same below for Schnorr randomness. Recall that
we’ve also already introduced yet another imprecise-probabilistic martingale-
theoretic notion, which we called weak Martin-Löf randomness. Its precise-
probabilistic counterpart is less well studied, and known under the name of
Hitchcock randomness [32, 77].18

We continue by introducing an imprecise-probabilistic martingale-
theoretic generalisation of Schnorr randomness, which differs from the pre-
vious randomness notions in the way Sceptic shouldn’t be able to become
arbitrarily rich. As mentioned above, the original precise-probabilistic notion
was introduced by Peter Schnorr, and is based on the following consideration:

“Our considerations in Section 5 should have made clear that a
reasonable concept of test function has to include the martin-
gale property (2.2). Computability and the martingale property
suffice to characterise effective tests. But which sequences are re-
fused by an effective test? In analogy to (2.3) one would define
that a sequence z does not withstand the test F if and only if
limsupn F (z(n)) =1. However, if the sequence F (z(n)) increases
so slowly that no one working with effective methods only would
observe its growth, then the sequence z behaves as if it withstands
the test F . The definition of RF has to reflect this fact. That is, we
have to make constructive the notion limsupn F (z(n)) =1.” [1, p.
256]

18When De Cooman & De Bock [36] started allowing for imprecise uncertainty models in
the field of algorithmic randomness, they were unaware of the standard name given to this
(non-standard) randomness notion. Their attention was however drawn to this randomness
notion since it (also) allows for an interesting intersection property [36, Proposition 31]. In this
dissertation, we choose to stick to their terminology, in order to remain consistent with their
and our own work [36, 43, 44, 47, 48, 49].
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Martingale-theoretic notions of randomness

So, for Schnorr randomness, to make constructive the notion of un-
boundedness, we require instead that Sceptic’s running capital shouldn’t
be computably unbounded on ! for any implementable allowed betting
strategy. More formally, we require that no test supermartingale T 2TS(')
should be computably unbounded on !, where computably unbounded
on ! means that limsupn!1[T (!1:n)°ø(n)] ∏ 0 for some real growth func-
tion ø : N0 !R∏0, which is a non-negative real map that’s

(i) computable;
(ii) non-decreasing, so ø(n +1) ∏ ø(n) for all n 2N0;

(iii) unbounded, so limn!1ø(n) =1.19

Since any real growth function ø is unbounded, it expresses a computable rate
at which T becomes unbounded on !. Clearly, if T 2 TS(') is computably
unbounded on ! 2≠, then it is also unbounded on !.

Now, intuitively, and analogously to the definition for computable ran-
domness, a path ! 2≠ is considered to be S-random for a forecasting sys-
tem ' 2©(X) if Sceptic can adopt no computable (positive) betting strategy
T 2 TC(') = TS(') that allows her to get arbitrarily rich, but now at some
computable rate.

Definition 8.6. A path ! 2≠ is S-random for a forecasting system ' 2©(X)
if no test supermartingale T 2TS(') is computably unbounded on !.

Here too, in our imprecise-probabilistic setting, we continue to speak
of Schnorr randomness, even when the forecasting systems are non-
computable; we also continue to not assume that the non-computable fore-
casting systems are accessible by an oracle.

If the forecasting system ' is stationary in any of the above randomness
notions R 2 {ML,wML,C,S}, that is, if there’s some credal set C 2C(X) such
that '(s) = C for all s 2 S, then we’ll often simply say that a path ! 2 ≠ is
R-random for the credal set C , instead of saying that it is R-random for the
stationary forecasting system '.

9 Basic properties of the martingale-theoretic randomness
definitions

Let’s have a first look at what properties are implied by our imprecise-
probabilistic martingale-theoretic randomness notions. In a first part, we’ll
fix some forecasting system ' 2©(X), and describe the relations between
the four aforementioned randomness notions, as well as examine how many
paths are random for '. In a second part, we keep some path ! 2≠ fixed,
and consider what forecasting systems make it R-random.

19Since the map ø is non-decreasing, its unboundedness is equivalent to limn!1 ø(n) =1.
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9 Basic properties of the martingale-theoretic randomness definitions

So, we start by fixing some forecasting system ' 2 ©(X). It turns out
there’s an ordering on our four martingale-theoretic notions of randomness.
To describe this ordering, we introduce, for every R 2 {ML,wML,C,S} and
the forecasting system ', the corresponding set of R-random paths ≠R(') :=©
! 2≠ : ! is R-random for '

™
; they satisfy the following inclusions.

Proposition 9.1. Consider any forecasting system ' 2©(X). Then

≠ML(') µ≠wML(') µ≠C(') µ≠S(').20

Proof. This is an immediate corollary of Definitions 8.552 and 8.6x, Corollary 8.451
and the fact that computably unbounded implies unbounded.

Thus, if a path ! 2≠ is ML-random for a forecasting system ', then it’s
also wML-, C- and S-random for '. Consequently, for any given forecasting
system ', it’s more difficult for a path ! 2 ≠ to be ML-random than for
it to be wML-, C- or S-random, and therefore there are at most as many
paths that are ML-random as there are wML-, C- or S-random paths. This
makes us say that ML-randomness is a stronger notion of randomness than
wML-, C- and S-randomness. And similarly, mutatis mutandis, for the other
randomness notions. Conversely, we say that S-randomness is a weaker
notion of randomness than C-, wML- and ML-randomness, and similarly for
the other randomness notions.

So, given that it’s more difficult for a path ! 2≠ to be ML-random than
for it to be S-random, how many paths are then ML-random for a forecasting
system ' 2©(X)? And, more generally, how many paths are R-random for
a forecasting system ' 2 ©(X)? We answer this question by showing that
any Forecaster who specifies a forecasting system ' 2©(X) is consistent in
the sense that he believes himself to be well-calibrated: in the imprecise
probability tree generated by his own forecasts, the set of R-random paths
is almost sure, so he’s almost sure that Sceptic won’t be able to become
arbitrarily rich by exploiting his—–Forecaster’s—–forecasts.

Proposition 9.2. Consider any R 2 {ML,wML,C,S} and any forecasting sys-
tem ' 2 ©(X). Then the set of R-random paths ! 2 ≠ is almost sure
for ': P'(≠R(')) = 1.

Proof. By Proposition 9.1, it suffices to prove this property for R = ML, because then
immediately

1 = P'(≠ML('))
P335∑ P'(≠R('))

P135∑ 1

20Examples can be found in the classical precise-probabilistic literature showing that the
inclusions between these randomness notions are strict. In particular, the dissertation of Yongge
Wang [78] contains an overview of old and novel results that show that (i) there’s a path that’s
C-random for 1/2 but not ML-random for 1/2, and (ii) there’s a path that’s S-random for 1/2

but not CH-random for 1/2. It’s only recently that an example has been given of a path that’s
wML-random for 1/2 but not ML-random for 1/2 [79]. For the attentive reader, I indeed don’t
know whether the inclusion between wML-randomness and C-randomness is strict.
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Martingale-theoretic notions of randomness

for all R 2 {ML,wML,C,S}, and hence, P'(≠R(')) = 1 for all R 2 {ML,wML,C,S}.
By recalling that the set TML(') is countable and by observing that ≠ML(') =©

! 2≠ : (8T 2TML(')) limsupn!1 T (!1:n ) <1
™

, the statement for R = ML is imme-
diate from Lemma 6.2239.

Consequently, for any R 2 {ML,wML,C,S} and any forecasting system ' 2
©(X), the R-random paths ≠R(') are legion in a measure-theoretic sense.
This also implies that Definitions 8.552 and 8.654 are meaningful, in the sense
that every forecasting system ' 2©(X) has at least one R-random path.

Corollary 9.3. Consider any R 2 {ML,wML,C,S} and any forecasting sys-
tem ' 2 ©(X). Then there’s at least one path ! 2 ≠ that’s R-random
for ': ≠R(') 6=?.

Proof. This is an immediate corollary of Proposition 9.2x and Lemma 6.1938.

Let’s now fix some path ! 2≠, and consider what forecasting systems
make it R-random. As a converse to the previous corollary—which states
that every forecasting system makes at least one path random—, there’s for
every path ! 2≠ at least one forecasting system ' 2©(X) for which it’s R-
random, with R 2 {ML,wML,C,S}. The reason is that all paths are R-random
for the (maximally imprecise) vacuous forecasting system 'v 2©(X), which
is the stationary forecasting system defined by 'v(s) := Cv for all s 2 S. To
understand why this perhaps surprising result holds, it suffices to realise that
the test supermartingales T(Cv) that correspond with Cv can never increase.
These betting strategies therefore don’t allow Sceptic to increase her capital,
let alone become arbitrarily rich.

Proposition 9.4. Consider any R 2 {ML,wML,C,S}. All paths are R-random
for the vacuous credal set Cv 2C(X): ≠R(Cv) =≠.

Proof. It holds for every test supermartingale T 2TR(Cv) that¢T (s)(x) ∑ max¢T (s) =
ECv (¢T (s)) ∑ 0 for all s 2S and x 2X, and hence, T is bounded above by T (⇤) = 1
on any path ! 2≠. If we now invoke Definitions 8.552 and 8.654, we find that every
path ! 2≠ is R-random for Cv.

Moreover, any path ! 2≠ that’s R-random for a forecasting system ' 2
©(X), is not only also R-random for the vacuous forecasting system 'v, but
also R-random for any other forecasting system that’s less informative—or
more conservative—than '. Consequently, the more precise a forecasting
system is, the fewer R-random paths it has.

Proposition 9.5. Consider any R 2 {ML,wML,C,S} and any forecasting sys-
tems ','0 2©(X). If 'µ'0, then ≠R(') µ≠R('0).

Proof. Since 'µ'0 by assumption, it follows from Proposition 6.429 that TR('0) µ
TR('), and hence, the result follows trivially from Definitions 8.552 and 8.654.
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9 Basic properties of the martingale-theoretic randomness definitions

When concentrating on stationary forecasting systems in particular,
Propositions 9.4 and 9.5x tell us that every path ! 2≠ is R-random for at
least one credal set—the vacuous one Cv =M(X)—and that if a path ! 2≠
is R-random for a credal set C 2 C(X), then it will also be R-random for
any credal set C 0 2C(X) for which C µC 0. It’s therefore natural to wonder
whether every path ! 2 ≠ has some smallest credal set C that makes it R-
random, that is, such that ! 2 ≠R(C ). This is the central topic of Ref. [47]
where we only consider binary state spaces; we decided not to include these
results in this dissertation both to limit the number of pages and to focus on
results that hold for arbitrary finite state spaces.

We’ll consider one more property of the randomness of a path ! 2≠ in
this section. To pave the way, we start by repeating that our four imprecise-
probabilistic martingale-theoretic randomness notions define the random-
ness of a path ! 2≠ with respect to a forecasting system ' 2©(X). Recall
from Section 6.224 that, for every s 2S, the forecasting system ' provides a
description of a subject’s uncertainty about the unknown outcome of X |s|+1,
given that he has observed the situation s. However, as the following two
propositions show, not all forecasts that make up the forecasting system '
are important to the randomness of a path!; the randomness of a path! 2≠
with respect to a forecasting system ' 2©(X) is preserved when changing
' on situations that aren’t on !, provided we restrict our attention to (non-
degenerate) computable forecasting systems.

Proposition 9.6. Consider any R 2 {ML,wML} and any non-degenerate com-
putable forecasting system ' 2©(X). If a path ! 2≠ is R-random for ', then
it is R-random for any other computable forecasting system '0 2 ©(X) for
which '0(!1:n) ='(!1:n) for all n 2N0.

Proof. Consider any computable forecasting system '0 2©(X) for which '0(!1:n ) =
'(!1:n ) for all n 2 N0, and assume towards contradiction that there’s some test
supermartingale T 0 2 TR('0) that’s unbounded on !. We can safely assume that

T 0(s) ∏ 2°2|s|2 for all s 2S: if R = ML, then simply consider the lower semicomputable
test supermartingale (T 0+1)/2 2TML('), and if R = wML, then this is immediate from
Lemma 9.959 and Proposition 6.630. Since the forecasting systems ','0 2©(X) are
computable, there are two recursive rational maps q, q 0 : S£N!Pfin(Mrat(X)) such
that dH

°
'(s),CH

°
q(s,n)

¢¢
∑ 2°n and dH

°
'0(s),CH

°
q 0(s,n)

¢¢
∑ 2°n for all s 2 S and

n 2N. By Lemma 9.1160, there’s a recursive rational map qH : S£N£N!Q such that

ØØdH
°
CH

°
q(s,n)

¢
,CH

°
q 0(s,n)

¢¢
°qH(s,n, N )

ØØ∑ 2°N for all s 2S and n, N 2N. (9.7)

Let the map F 0 : S!Q∏0 be defined, for all s 2S, by

F 0(s) :=

8
<
:

1+2°|s|
2

if qH(s1:k , N'(s1:k )+3, N'(s1:k )+3) ∑ 2°N'(s1:k )°1 for
all 0 ∑ k ∑ |s|°1

0 otherwise,
(9.8)
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with N' : S!N as in Lemma 9.1260. Since N' and qH are recursive rational maps,
the conditions in the above equation can be checked recursively, and hence, the
rational map F 0 is recursive. Let T : S!R : s 7! T 0(s)F 0(s).

In a first step, we show that T 2T('). T starts with unit capital since T 0(⇤)F 0(⇤) =
1 · (1+1)/2 = 1, and is non-negative since T 0(s) ∏ 0 and F 0(s) ∏ 0 for all s 2S. It remains
to prove the supermartingale property. Fix any s 2 S. We consider two cases. If
F 0(s ·) = 0, then E'(T (s ·)) = E'(0) = 0 ∑ T (s), where the second equality holds by
C120. Otherwise, that is, if F 0(s ·) = 1+2°|s|°1/2, then the condition in Eq. (9.8)x is true
for 0 ∑ k ∑ |s|, and hence,

dH
°
'0(s1:k ),'(s1:k )

¢

∑ dH
°
'0(s1:k ),CH

°
q 0°s1:k , N'(s1:k )+3

¢¢¢

+dH
°
CH

°
q 0°s1:k , N'(s1:k )+3

¢¢
,CH

°
q
°
s1:k , N'(s1:k )+3

¢¢¢

+dH
°
CH

°
q
°
s1:k , N'(s1:k )+3

¢¢
,'(s1:k )

¢

Eq. (9.7)x∑ 2°N'(s1:k )°3 +
≥
qH(s1:k , N'(s1:k )+3, N'(s1:k )+3)+2°N'(s1:k )°3

¥

+2°N'(s1:k )°3

∑ 2°N'(s1:k )°3 +2°N'(s1:k )°1 +2°N'(s1:k )°3 +2°N'(s1:k )°3

∑ 2°N'(s1:k ) for all 0 ∑ k ∑ |s|.

By recalling that T 0 2 T('0) and that T 0(s) ∏ 2°2|s|2 for all s 2 S, it follows from
Lemma 9.12(i)60 that

E'(s)(T (s ·))
C220= 1+2°|s|°1

2
E'(s)

°
T 0(s ·)

¢
∑ 1+2°|s|

2
T 0(s) = T (s) for all s 2S,

so we conclude that T 2T(').
In a second step, we show that T is lower semicomputable if R = ML and that

it’s generated by a lower semicomputable multiplier process if R = wML. If R = ML,
then T 0 is a lower semicomputable non-negative real process. Since F 0 is a recursive
non-negative real process, which implies that it is lower semicomputable as well,
it follows from Lemma 9.1563 that T is lower semicomputable. Else, if R = wML,
then T 0 is generated by a lower semicomputable multiplier process. By observing
that F 0 is a recursive non-negative rational process such that F 0(⇤) = 1 and that, for
any s 2 S, F 0(s) = 0 if F 0(t) = 0 for some t v s, it follows from Lemma 9.1663 that
T is generated by a lower semicomputable multiplier process. We conclude that T
is a lower semicomputable test supermartingale for ' if R = ML and that it’s a test
supermartingale for ' generated by a lower semicomputable multiplier process if
R = wML.

In a third and last step, we show that T is unbounded on !, then contra-
dicting that ! is R-random for ' by Definition 8.552 and Lemma 9.1764. To
do so, it suffices to show that T (!1:n ) = T 0(!1:n )(1+2°n )/2 for all n 2 N0, be-
cause then, since limsupn!1 T 0(!1:n ) =1 by assumption, limsupn!1 T (!1:n ) =
1
2 limsupn!1 T 0(!1:n ) =1. By recalling that '(!1:n ) = '0(!1:n ) for all n 2 N0, we
easily obtain for all n 2N0 that

qH(!1:n , N'(!1:n )+3, N'(!1:n )+3)
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Eq. (9.7)57∑ dH
°
CH

°
q
°
!1:n , N'(!1:n )+3

¢¢
,CH

°
q 0°!1:n , N'(!1:n )+3

¢¢¢

+2°N'(!1:n )°3

∑ dH
°
CH

°
q
°
!1:n , N'(!1:n )+3

¢¢
,'(!1:n )

¢
+dH

°
'(!1:n ),'0(!1:n )

¢

+dH
°
'0(!1:n ),CH

°
q 0(!1:n , N (!1:n )+3)

¢¢
+2°N'(!1:n )°3

∑ 2°N'(!1:n )°3 +0+2°N'(!1:n )°3 +2°N'(!1:n )°3

∑ 2°N'(!1:n )°1.

This implies that F 0(!1:n ) = (1+2°n )/2 for all n 2 N0 and therefore, indeed, that
T (!1:n ) = T 0(!1:n )(1+2°n )/2 for all n 2N0.

Lemma 9.9. Consider any forecasting system ' 2©(X). For every lower semi-
computable supermartingale multiplier D for ', there’s a lower semicom-
putable positive strict supermartingale multiplier D 0 for ' such that D 0}(s) ∏
2°2|s|2 for all s 2S and such that, for any path! 2≠, limsupn!1 D 0}(!1:n) =
1 if limsupn!1 D}(!1:n) =1.

Proof. Consider any lower semicomputable supermartingale multiplier D for '. Let
the gamble process D 0 : S!L(X) be defined by

D 0(s) :=
°
1°2°|s|°1¢

D(s)+2°|s|°2 for all s 2S.

Since 1°2°|s|°1 > 0 and 2°|s|°2 > 0 for all s 2 S, D 0 is lower semicomputable and
positive because D is lower semicomputable and non-negative. Moreover, for any
s 2S,

E'(s)(D 0(s))
C220,C420=

°
1°2°|s|°1¢

E'(s)(D(s))+2°|s|°2 ∑
°
1°2°|s|°1¢

+2°|s|°2 < 1,

where the first inequality holds because D is a supermartingale multiplier for '. We
conclude that D 0 is a lower semicomputable positive strict supermartingale multiplier
for '.

Consider any s 2S. Since 1°2°|t |°1 > 0 and D(t ) ∏ 0 for all t 2S, it follows that

D 0}(s) =
|s|°1Y

k=0
D 0(s1:k )(sk+1)

∏
|s|°1Y

k=0
2°|s1:k |°2 = 2

P|s|°1
k=0 (°k°2) ∏ 2°|s|·(|s|°1)°2|s| = 2°|s|

2°|s| ∏ 2°2|s|2 .

Consider any path! 2≠ such that limsupn!1 D}(!1:n ) =1. By Lemma 9.10y
there’s some ≤> 0 such that

Qn°1
k=0

°
1°2°k°1¢

=Qn
k=1

°
1°2°k ¢

> ≤ for all n 2N, and
therefore it holds for all n 2N that

limsup
n!1

D 0}(!1:n ) = limsup
n!1

n°1Y

k=0
D 0(!1:k )(!k+1)

∏ limsup
n!1

n°1Y

k=0

°
1°2°k°1¢

D(!1:k )(!k+1)
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∏ ≤ limsup
n!1

n°1Y

k=0
D(!1:k )(!k+1)

= ≤ limsup
n!1

D}(!1:n ) =1,

completing the proof.

Lemma 9.10. Consider any x 2 [0,1). Then,
Qk

n=1(1°xn) ∏Q1
n=1(1°xn) > 0

for all k 2N.

Proof. We start by observing that the sequence
°Qm

n=1(1°xn )
¢

m2N—which we’ll
also denote by (cm )m2N—is non-increasing and bounded below by zero, and hence,
limm!1 cm = Q1

n=1
°
1°xn¢

is a well-defined non-negative real number and ck ∏
limm!1 cm for all k 2N.

We continue by showing that limm!1 cm is a positive real number. Since ln(y) ∏
1° 1

y for all y 2R>0, it holds for every m 2N that

ln(cm ) =
mX

n=1
ln

°
1°xn¢

∏
mX

n=1

µ
1° 1

1°xn

∂

=
mX

n=1

°xn

1°xn ∏ °1
1°x

mX

n=1
xn = °x

(1°x)2 =:Æx 2R.

Consequently, cm ∏ expÆx for all m 2N, and hence,
Q1

n=1
°
1°xn¢

= limm!1 cm ∏
expÆx > 0.

Lemma 9.11. There’s a single algorithm that, when provided with a code for
two rational credal sets Crat,C 0

rat 2Crat(X), outputs a code for the computable
real dH

°
Crat,C 0

rat

¢
.

Proof. It’s commonly known [63] that there’s a single algorithm that upon the input
of two finite sets of rational probability mass functions outputs—after a finite number
of steps—the computable Hausdorff distance between the two convex polytopes
generated by these sets, and hence, this result is immediate.

Lemma 9.12. Consider any non-degenerate computable forecasting sys-
tem ' 2©(X). Then there’s a recursive natural map N' : S!N such that, for
any forecasting system '0 2©(X) and all s 2S,

(i)
°
1+2°|s|°1¢E'(s)

°
T 0(s ·)

¢
∑

°
1+2°|s|

¢
T 0(s) if dH

°
'(t ),'0(t )

¢
∑ 2°N'(t ) for

all t v s and T 0 2T('0) such that T 0(s) ∏ 2°2|s|2 ;
(ii)

°
1+2°|s|°1¢E'0(s)(T (s ·)) ∑

°
1+2°|s|¢T (s) if dH

°
'(s),'0(t )

¢
∑ 2°N'(t ) for

all t v s and T 2T(') such that T (s) ∏ 2°2|s|2 .

Proof. Since ' is assumed to be non-degenerate and computable, consider the re-
cursive natural maps E',C' : S!N from Lemma 9.1362. Let N : S!N0 be defined
as

N (s) := min

(
n 2N0 : 2°n ∑ 2°|s|°1°2|s|2

°
1+2°|s|°1

¢
maxC'(s ·)

)
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for all s 2 S. This map is recursive because C' is. Let N' : S ! N : s 7!
max

©
N (s),E'(s)

™
, which is clearly a recursive natural process. Now, fix any forecasting

system '0 2©(X).
To show (i)x, fix any T 0 2T('0) and any s 2S such that dH

°
'(t ),'0(t )

¢
∑ 2°N'(t )

for all t v s and such that T 0(s) ∏ 2°2|s|2 . Since T 0 is positive, it holds that maxT 0(s ·) >
0, and hence,

°
1+2°|s|°1¢

E'(s)
°
T 0(s ·)

¢

C220=
°
1+2°|s|°1¢

maxT 0(s ·)E'(s)

µ
T 0(s ·)

maxT 0(s ·)

∂

∑
°
1+2°|s|°1¢

maxT 0(s ·)
∑

E'0(s)

µ
T 0(s ·)

maxT 0(s ·)

∂
+2°N'(s)

∏

C220=
°
1+2°|s|°1¢

E'0(s)(T 0(s ·))+2°N'(s)°1+2°|s|°1¢
maxT 0(s ·)

∑
°
1+2°|s|°1¢

E'0(s)(T 0(s ·))+2°N (s)°1+2°|s|°1¢
maxT 0(s ·)

∑
°
1+2°|s|°1¢

T 0(s)+
2°|s|°1°2|s|2 °

1+2°|s|°1¢
maxT 0(s ·)

°
1+2°|s|°1

¢
maxC'(s ·)

∑
°
1+2°|s|°1¢

T 0(s)+2°|s|°1°2|s|2

∑
°
1+2°|s|°1¢

T 0(s)+2°|s|°1T 0(s)

=
°
1+2°|s|

¢
T 0(s),

where the first inequality follows from Corollary 7.948, and the fourth inequality
from Lemma 9.13y: since dH

°
'(t ),'0(t )

¢
∑ 2°N'(t ) ∑ 2°E'(t ) for all t @ sx with

x 2 X, it holds by Lemma 9.13y that T 0(sx) ∑ C'(sx) for all x 2 X, and hence,
maxT 0(s ·) ∑ maxC'(s ·).

To show (ii)x, fix any T 2T(') and any s 2S such that dH
°
'(t ),'0(t )

¢
∑ 2°N'(t )

for all t v s and such that T (s) ∏ 2°2|s|2 . Since T is positive, it holds that maxT (s ·) > 0,
and hence,

°
1+2°|s|°1¢

E'0(s)(T (s ·))

C220=
°
1+2°|s|°1¢

maxT (s ·)E'0(s)

µ
T (s ·)

maxT (s ·)

∂

∑
°
1+2°|s|°1¢

maxT (s ·)
∑

E'(s)

µ
T (s ·)

maxT (s ·)

∂
+2°N'(s)

∏

C220=
°
1+2°|s|°1¢

E'(s)(T (s ·))+2°N'(s)°1+2°|s|°1¢
maxT (s ·)

∑
°
1+2°|s|°1¢

E'(s)(T (s ·))+2°N (s)°1+2°|s|°1¢
maxT (s ·)

∑
°
1+2°|s|°1¢

T (s)+
2°|s|°1°2|s|2 °

1+2°|s|°1¢
maxT (s ·)

°
1+2°|s|°1

¢
maxC'(s ·)

∑
°
1+2°|s|°1¢

T (s)+2°|s|°1°2|s|2

∑
°
1+2°|s|°1¢

T (s)+2°|s|°1T (s)

=
°
1+2°|s|

¢
T (s),
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where the first inequality follows from Corollary 7.948, and the fourth inequality from
Lemma 9.13: since dH

°
'(t ),'(t )

¢
= 0 ∑ 2°E'(t ) for all t @ sx with x 2X, it holds by

Lemma 9.13 that T (sx) ∑C'(sx) for all x 2X, and hence, maxT (s ·) ∑ maxC'(s ·).

Lemma 9.13. For every non-degenerate computable forecasting system ' 2
©(X) there are recursive natural maps E',C' : S!N, with C'(⇤) = 1, such
that for every non-negative supermartingale M 2M('0), with '0 2 ©(X), it
holds for all s 2 S that M(s) ∑ M(⇤)C'(s) if dH

°
'(t ),'0(t ))

¢
∑ 2°E'(t ) for

all t @ s.

Proof. Let E' : S!N be a recursive natural map as in Lemma 9.14, so 0 < E'(s)(Ix )°
2°E'(s) for all s 2S and x 2X. Define the map C 0 : S!R by letting

C 0(s) :=
|s|°1Y

k=0

1

E'(s1:k )(Isk+1 )°2°E'(s1:k )
for all s 2S.

This map is well-defined, real-valued and clearly positive. Clearly, C 0(⇤) = 1. Since
' is computable and {Ix }x2X is a finite set of rational gambles, it follows from
Lemma 7.747 that the map S£X! R : (s, x) 7! E'(s)(Ix ) is computable. Since sub-

tracting S!Q : s 7! 2°E'(s), taking the inverse and taking a finite product are com-
putable operations, this implies that C 0 is computable as well. Let’s now fix any
non-negative supermartingale M 2M('0), with '0 2©(X), and any s 2S such that
dH

°
'(t ),'0(t ))

¢
∑ 2°E'(t ) for all t @ s, and prove that M(s) ∑ M(⇤)C 0(s). By invoking

Lemma 7.848, we infer that

E'(t )(Ix )°E'0(t )(Ix ) ∑ max
f 2L1(X)

|E'(t )( f )°E'0(t )( f )| = dH
°
'(t ),'0(t )

¢
∑ 2°E'(t )

for all t @ s and x 2X,

which implies that E'0(t )(Ix ) ∏ E'(t )(Ix )°2°E'(t ) > 0 for all t @ s and x 2X. Hence,
for any t @ s and x 2X,

M(t x)
C220=

E'0(t )(M(t x)Ix )

E'0(t )(Ix )

C520∑
E'0(t )(M(t ·))

E'0(t )(Ix )
∑ M(t )

E'0(t )(Ix )
∑ M(t )

E'(t )(Ix )°2°E'(t )
,

where the second inequality follows from the supermartingale property. A simple
induction argument now shows that indeed M(s) ∑ M(⇤)C 0(s).

Since C 0 is a computable real map, there’s a recursive rational map q : S£N!Q

such that |C 0(s)° q(s,n)| ∑ 2°n for all s 2 S and n 2 N. Let C' : S! N be defined
as C'(⇤) = 1 and C'(s) := dq(s,1)+ 1/2e for all s 2 S \ {⇤}. By recalling that C 0 is
positive and q is recursive, it’s easy to see that C' is natural-valued, positive and recur-
sive. Furthermore, we have that M(⇤) = M(⇤)C'(⇤) and that M(s) ∑ M(⇤)C 0(s) ∑
M(⇤)

°
q(s,1)+1/2

¢
∑ M(⇤)C'(s) for all s 2S\ {⇤}.

Lemma 9.14. For every non-degenerate computable forecasting system ' 2
©(X) there’s a recursive natural map E' : S ! N such that 2°E'(s) <
minx2X E'(s)(Ix ) for all s 2S.
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Proof. Since ' is computable, {Ix }x2X is a finite set of rational gambles and taking
the minimum is a computable operation, it follows from Lemma 7.747 that the map
S!R : s 7! minx2X E'(s)(Ix ) is computable, and therefore lower semicomputable as
well. Consequently, there’s a recursive rational map q : S£N!Q such that q(s, •) %
minx2X E'(s)(Ix ) for all s 2S.

By the non-degeneracy of ', E'(s)(Ix ) > 0 for all s 2 S and x 2 X, and hence,
minx2X E'(s)(Ix ) > 0 for all s 2 S. This implies the existence of a recursive natural

map E : S!N such that 2°E(s) < minx2X E'(s)(Ix ) for all s 2S: for every s 2S, find
some n 2 N for which q(s,n) > 0 [you can do this in a finite number of steps since
q(s, •) % minx2X E'(s)(Ix ) > 0], and let E(s) equal some natural number N 2 N for

which 2°N < q(s,n).

Lemma 9.15. Consider any two lower semicomputable non-negative real
processes F1,F2 : S!R. Then the non-negative real process F : S!R defined,
for all s 2S, by F (s) := F1(s)F2(s) is lower semicomputable.

Proof. Since F1 and F2 are lower semicomputable, there are two recursive rational
maps q, q 0 : S£N! Q such that q(s, •) % F1(s) and q 0(s, •) % F2(s) for all s 2 S; by
the non-negativity of both F1 and F2, we can safely assume that q ∏ 0 and q 0 ∏ 0
[otherwise, consider max{q,0} and max{q 0,0}]. Consider the map q§ : S£N! Q

defined by
q§(s,n) = q(s,n)q 0(s,n) for all s 2S and n 2N.

Since q and q 0 are recursive non-negative non-decreasing rational maps, the map q§

is recursive, non-negative, non-decreasing and rational as well. Last, it’s immediate
that limn!1 q§(s,n) = limn!1 q(s,n)q 0(s,n) = F1(s)F2(s) = F (s), and therefore we
conclude that F is lower semicomputable.

Lemma 9.16. Consider any lower semicomputable multiplier process
D1 : S!L(X) and any recursive non-negative rational process F2 : S! R

such that F2(⇤) = 1 and, for any s 2 S, F2(s) = 0 if F2(t) = 0 for some t v s.
Then there’s a lower semicomputable multiplier process D : S!L(X) such
that D}(s) := F2(s)D}

1 (s) for all s 2S.

Proof. Since D1 is lower semicomputable, there’s some recursive rational map q :
S£X£N! Q such that q(s, x, •) % D1(s)(x) for all s 2 S and x 2 X; by the non-
negativity of D1, we can safely assume that q ∏ 0 [otherwise, consider max{q,0}].
Since F2 is recursive, non-negative and rational, it follows that the map q 0 : S£X!R

defined by

q 0(s, x) :=
( F2(sx)

F2(s) if F2(t ) > 0 for all t v s

0 otherwise
for all s 2S and x 2X

is well-defined, non-negative, rational and recursive.
Consider now the map q§ : S£X£N!Q defined by

q§(s, x,n) = q(s, x,n)q 0(s, x) for all s 2S, x 2X and n 2N.
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Since q and q 0 are recursive, non-negative, rational maps and since q is non-
decreasing in n, the map q§ is recursive, non-negative, non-decreasing in n and
rational as well. For every s 2S and x 2X, it furthermore holds that

lim
n!1q§(s, x,n) = lim

n!1q(s, x,n)q 0(s, x, ) =
(

D1(s)(x) F2(sx)
F2(s) if F2(t ) > 0 for all t v s

0 otherwise.

Consequently, the (non-negative) multiplier process D : S!L(X) defined by

D(s)(x) :=
(

D1(s)(x) F2(sx)
F2(s) if F2(t ) > 0 for all t v s

0 otherwise
for all s 2S and x 2X

is lower semicomputable. Finally, since F2(⇤) = 1, it holds for every s 2S that

F2(s)D}
1 (s) = F2(s)

|s|°1Y

k=0
D1(s1:k )(sk+1)

=
( F2(s)

F2(⇤)
Q|s|°1

k=0 D1(s1:k )(sk+1) if F2(t ) > 0 for all t v s

0 otherwise

=
(Q|s|°1

k=0 D1(s1:k )(sk+1) F2(s1:k+1)
F2(s1:k ) if F2(t ) > 0 for all t v s

0 otherwise

=
|s|°1Y

k=0
D(s1:k )(sk+1) = D}(s).

Lemma 9.17. Consider any forecasting system ' 2 ©(X). For every lower
semicomputable multiplier process D that generates a test supermartin-
gale D} for ', there’s a lower semicomputable positive supermartingale mul-
tiplier D 0 for ' such that, for any path ! 2 ≠, limsupn!1 D 0}(!1:n) = 1
if limsupn!1 D}(!1:n) =1.

Proof. Consider any lower semicomputable multiplier process D that generates a
test supermartingale D} for '. Since D is lower semicomputable, there’s a recursive
map q : S£X£N!Q such that q(s, x, •) % D(s)(x) for all s 2S and x 2X. Let the
map q 0 : S£X£N!Q be defined by

q 0(s, x,n) :=
(

max
©

q(s, x,n),0
™

if q(t , y,n) > 0 for all t y v s

0 otherwise

for all s 2S, x 2X and n 2N.

By construction, q 0 is non-negative. Moreover, also by construction, q 0 is non-
decreasing in its third argument and recursive because q is non-decreasing in its
third argument and recursive. Let the map D 0 : S!L(X) be defined by D 0(s)(x) :=
limn!1 q 0(s, x,n) for all s 2S and x 2X, which is clearly a lower semicomputable
multiplier process. Then, by construction,

D 0(s)(x) =
(

D(s)(x) if D(t )(y) > 0 for all t y v s

0 otherwise
for all s 2S and x 2X.
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In a next step, we’ll show that D 0 is a supermartingale multiplier for '. To this end, fix
any s 2S. If D(t )(y) > 0 for all t y v s, then D}(s) > 0 and

D 0(s) = D(s) = D}(s ·)
D}(s)

= D}(s)+¢D}(s)

D}(s)
= 1+ ¢D}(s)

D}(s)
,

and hence,

E'(s)(D 0(s))
C220,C420= 1+ 1

D}(s)
E'(s)(¢D}(s)) ∑ 1,

where the inequality holds because D} is a test supermartingale for '. Otherwise, if
D(t)(y) = 0 for some t y v s, then D 0(s) = 0, and hence, E'(s)(D 0(s)) = 0 due to C120.
We conclude that D 0 is a lower semicomputable supermartingale multiplier for '.

Consider any path ! 2≠ such that limsupn!1 D}(!1:n ) =1. Consequently,
it holds that D(!1:n )(!n+1) > 0 for all n 2 N0, and therefore also D 0(!1:n )(!n+1) =
D(!1:n )(!n+1) for all n 2N0, which implies that limsupn!1 D 0}(!1:n ) =1.

By invoking Lemma 9.959, we find that there’s a lower semicomputable positive
supermartingale multiplier D 00 for ' such that limsupn!1 D 00}(!1:n ) =1.

For C- and S-randomness, we can drop the requirement of non-
degeneracy: if a path ! 2≠ is C-random, respectively S-random, for a com-
putable forecasting system ' 2 ©(X), then it is C-random, respectively S-
random, for any other computable forecasting system that specifies the same
forecasts along !.

Proposition 9.18. Consider any R 2 {C,S} and any computable forecasting
system' 2©(X). If a path! 2≠ is R-random for ', then it is R-random for any
other computable forecasting system '0 2©(X) for which '0(!1:n) ='(!1:n)
for all n 2N0.

Proof. Assume towards contradiction that there’s some computable test supermartin-
gale T 0 2 TR('0) that’s (computably) unbounded on !; we can safely assume that
T 0 > 0 [otherwise, consider the computable test supermartingale (T 0+1)/2 2TR('0)].
Let T : S!R be defined as

T (s) := T 0(s)
|s|°1Y

k=0

E'0(s1:k )(T 0(s1:k ·))

E'(s1:k )(T 0(s1:k ·))
for all s 2S.

Since '(!1:n ) ='0(!1:n ) for all n 2N0, it holds that T (!1:n ) = T 0(!1:n ) for all n 2N0,
and hence, T is (computably) unbounded on ! since T 0 is. So we’re done if we can
prove that T 2TR(').

Since T 0 is computable and positive, and since the forecasting systems ' and
'0 are computable, it follows from C120 and Lemma 7.747 that the real processes
S!R : s 7! E'(s)(T 0(s ·)) and S!R : s 7! E'0(s)(T 0(s ·)) are positive and computable.
This implies that the real process S!R : s 7!Q|s|°1

k=0
E'0(s1:k )(T 0(s1:k ·))/E'(s1:k )(T 0(s1:k ·))

is well-defined, positive and computable, and hence, T is positive and computable as
the product of two computable positive real processes. Moreover, T (⇤) = T 0(⇤) = 1.
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So it only remains to check the supermartingale property to conclude that T 2TR(').
To this end, fix any s 2S, and observe that

E'(s)(T (s ·))
C220= E'(s)(T 0(s ·))

|s|Y

k=0

E'0(s1:k )(T 0(s1:k ·))

E'(s1:k )(T 0(s1:k ·))

= E'0(s)(T 0(s ·))
|s|°1Y

k=0

E'0(s1:k )(T 0(s1:k ·))

E'(s1:k )(T 0(s1:k ·))

∑ T 0(s)
|s|°1Y

k=0

E'0(s1:k )(T 0(s1:k ·))

E'(s1:k )(T 0(s1:k ·))
= T (s),

where the inequality follows from the supermartingale property of T 0.

Propositions 9.657 and 9.18x above tell us that the randomness of a
path ! 2≠ with respect to a forecasting system ' 2©(X) only depends on
the forecasts that the forecasting system ' specifies along the path, provided
that we restrict our attention to (non-degenerate) computable forecasting sys-
tems. This is in line with Dawid’s Weak Prequential Principle [8], which states
that any criterion for assessing the ‘agreement’ between Forecaster’s forecasts
and Reality’s outcomes should depend only on the actual observed sequences
(C1, . . . ,Cn , . . . ) 2C(X)N and != (x1, . . . , xn , . . . ) 2≠, and not on the strategies
(if any) which might have produced these, such as a (non-degenerate) com-
putable forecasting system ' 2©(X). As Vovk & Shen [9] show, it’s possible
to devise randomness notions for which this so-called ‘Prequential Princi-
ple’ is built-in; this will lead us to introduce several prequential imprecise-
probabilistic randomness notions in Chapter 143 that, instead of defining
the randomness of a path! 2≠with respect to a forecasting system' 2©(X),
define the randomness of an infinite sequence (C1, x1, . . . ,Cn , xn , . . . ) of (ratio-
nal) credal sets Cn and subsequent outcomes xn .

10 Robustness of the martingale-theoretic randomness defi-
nitions ...

We continue by examining how robust our four imprecise-probabilistic
martingale-theoretic notions are with respect to changes in Forecaster’s fore-
casting system and Sceptic’s allowed betting strategies: what changes can we
make to the definitions without changing the set of R-random paths? More
specifically, in Section 10.1y, for any (non-degenerate computable) fore-
casting system ' 2©(X) and any R 2 {ML,wML,C,S}, we explore what other
forecasting systems '0 2©(X) have the same set of R-random paths, that is,
what (other) forecasting systems '0 2©(X) satisfy ≠R(') =≠R('0). In Sec-
tion 10.272, for any forecasting system ' 2©(X) and any R 2 {ML,wML,C,S},
we investigate to what extent we can change Sceptic’s allowed betting strate-
gies TR(') and the way she shouldn’t be able to get arbitrarily rich, without
changing the notion of R-randomness.
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10.1 ... in terms of changes to the forecasting systems

We’ll start by restricting our attention to non-degenerate computable forecast-
ing systems ' 2©(X). When considering the randomness of a path ! 2≠
with respect to such a forecasting system ', there are other ways we can
change ' while preserving the randomness of !, aside from changing '
on situations that aren’t on ! [see Propositions 9.657 and 9.1865]: we can
replace ' by a (recursive) rational forecasting system. As the proposition
below shows, there’s for every non-degenerate computable forecasting sys-
tem ' 2©(X) some rational recursive forecasting system 'rat 2©rat(X) that
has the exact same set of random paths. So, in this sense, you could say
that rational forecasting systems are enough to capture the essence of our
martingale-theoretic randomness notions.

Proposition 10.1. For every non-degenerate computable forecasting sys-
tem ' 2 ©(X) there’s a recursive rational forecasting system 'rat 2 ©rat(X)
such that, for any R 2 {ML,wML,C,S}, a path ! 2≠ is R-random for ' if and
only if it’s R-random for 'rat: ≠R(') =≠R('rat).

Proof. Since ' is computable, there’s a recursive rational map q : S £ N !
Pfin(Mrat(X)) such that dH

°
'(s),CH

°
q(s,n)

¢¢
∑ 2°n for all s 2S and n 2N. Since '

is non-degenerate as well, we can fix some recursive natural map N' : S!N with
the properties as in Lemma 9.1260. Let 'rat 2 ©rat(X) be defined by 'rat(s) :=
CH

°
q(s, N'(s))

¢
for all s 2S. This rational forecasting system is obviously recursive

and dH
°
'(s),'rat(s)

¢
∑ 2°N'(s) for all s 2S.

To show that ≠R(') ∂≠R('rat), consider any path ! 2≠ that’s R-random for 'rat
and assume towards contradiction that there’s some test supermartingale T 2TR(')
that’s (computably) unbounded on !. We can safely assume that T (s) ∏ 2°2|s|2 for all
s 2S: if R 2 {ML,C,S}, then simply consider the test supermartingale (T+1)/2 2TR('),
and if R = wML, then this is immediate from Lemma 9.959 and Proposition 6.630.
Define the map T 0 : S!R as

T 0(s) := T (s)
1+2°|s|

2
for all s 2S. (10.2)

In a first step, we prove that T 0 2 TR('rat); in a second step, we prove that T 0 is
(computably) unbounded on !. T 0 starts with unit capital since T (⇤)(1+1)/2 = 1,

and is positive since T 0(s) = T (s)(1+2°|s|)/2 ∏ 2°2|s|2 (1+2°|s|)/2 > 0 for all s 2S. To estab-
lish its supermartingale character, simply observe that by Lemma 9.12(ii)60, since
dH

°
'(s),'rat(s)

¢
∑ 2°N'(s) and T (s) ∏ 2°2|s|2 for all s 2S and since T 2TR('), it holds

that

E'rat(s)(T 0(s ·))
C220= 1+2°|s|°1

2
E'rat(s)(T (s ·)) ∑ 1+2°|s|

2
T (s) = T 0(s) for all s 2S,

so we conclude that T 0 2T('rat). To also show that T 0 2TR('rat), in addition to T 0 be-
ing a test supermartingale for 'rat, we also need to check its implementability. If R =
ML, then T is a lower semicomputable real process. Since F 0 : S!R : s 7! (1+2°|s|)/2 is
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a recursive non-negative real process, which implies that it is lower semicomputable
as well, it follows from Eq. (10.2)x and Lemma 9.1563 that T 0 is lower semicom-
putable. Else, if R = wML, then T is generated by a lower semicomputable positive
multiplier process. By observing that F 0 is a recursive positive rational process such
that F 0(⇤) = 1, it follows from Eq. (10.2)x, Proposition 6.630 and Lemma 9.1663 that
the positive test supermartingale T 0 for 'rat is generated by a lower semicomputable
positive supermartingale multiplier for'rat. Otherwise, that is, if R 2 {C,S}, then T is a
computable real process. By observing that F 0 is a computable real process, it follows
from Eq. (10.2)x and the discussion in the first paragraph of Section 7.446 that T 0 is
computable as the product of both processes. We conclude that T 0 2TR('rat).

In a second step, we consider two cases. If it holds that R 2 {ML,wML,C}, then
limsupn!1 T (!1:n ) =1 by assumption, which implies that limsupn!1 T 0(!1:n ) =
1
2 limsupn!1 T (!1:n ) = 1, a contradiction. Otherwise, that is, if R = S, then by
assumption there’s some real growth function ø such that limsupn!1(T (!1:n )°
ø(n)) ∏ 0. Consider the real growth function ø0 defined by ø0(n) := ø(n)/2 for all n 2N0.
It then holds that limsupn!1(T 0(!1:n )°ø0(n)) = 1

2 limsupn!1(T (!1:n )°ø(n)) ∏ 0,
a contradiction.

To show that≠R(') µ≠R('rat), simply reverse the roles of' and'rat in the above
line of reasoning [except for N'] and use Lemma 9.12(i)60.

We do away next with assuming the forecasting systems to be non-
degenerate and computable. For this more (and most) general collection of
forecasting systems, it turns out that the randomness of a path doesn’t de-
pend on a finite number of forecasts, that is, the randomness of a path ! 2≠
for a forecasting system ' 2 ©(X) is preserved when changing the fore-
casts '(s) 2C(X) in a finite number of situations s 2S.

Proposition 10.3. Consider any R 2 {ML,wML,C,S} and any two forecasting
system ','0 2©(X). Then ≠R(') =≠R('0) if '(s) = '0(s) for all but finitely
many s 2S.

Proof. We’ll prove that≠R('0) µ≠R('); in a similar way, it can be shown that≠R(') =
≠R('0), leading us to conclude that ≠R(') = ≠R('0). To this end, consider any
path ! 2 ≠R('0) and any test supermartingale T 2 TR('). By Definitions 8.552
and 8.654, we’re done if we can prove that T remains (computably) bounded on !,
which is what we set out to do.

By assumption, there’s only a finite number of situations s 2S for which '(s) 6=
'0(s), and therefore there are also only a finite number of situations s 2S for which
E'0(s)(¢T (s)) > 0. The desired result is now immediate from Lemma 10.4.

Lemma 10.4. Consider any R 2 {ML,wML,C,S}, any two forecasting sys-
tem ','0 2 ©(X), any test supermartingale T 2 TR('), and any path ! 2
≠R('0). If E'0(s)(T (s ·)) ∑ T (s) for all but finitely many situations s 2S, then T
remains bounded on ! if R 2 {ML,wML,C} and computably bounded on !
if R = S.
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Proof. By assumption, there’s only a finite number of situations s 2 S for which
E'0(s)(¢T (s)) > 0. By Lemma 10.5, we can then fix natural numbers N ,K 2N such
that the test process T 0 : S!R, defined by

T 0(s) :=
(

1 if |s|∑ N
1
K T (s) if |s| > N

for all s 2S,

is a test supermartingale for '0. We continue by proving that T 0 2TR('0).
Observe that T 0 is positive if R 2 {wML,C,S}, because then T 2 TR(') µ FR is

positive and because K > 0.
Let’s now prove that T 0 is implementable in the same way as T is. If R = ML, then

T 2TML(') µFML is lower semicomputable, so it follows from Lemma 10.6y that T 0

is lower semicomputable as well. If R = wML, then T 2TwML(') µFwML is generated
by a lower semicomputable multiplier process, so it follows from Lemma 10.771 that
T 0 is generated by a lower semicomputable multiplier process as well, and hence, by
Proposition 6.630, T 0 is generated by a lower semicomputable positive supermartin-
gale multiplier for'0. And finally, if R = C or R = S, then T 2TC(') =TS(') µFC =FS
is a computable process, and it’s therefore obvious that this is true for T 0 as well.

We conclude that, indeed, T 0 2TR('0). We now consider two possibilities. If R 2
{ML,wML,C}, then since ! is R-random for '0 by assumption, T 0 can’t be unbounded
on ! by Definition 8.552. Since also

limsup
n!1

T 0(!1:n ) <1) limsup
n!1

T (!1:n )
K

<1 K>0) limsup
n!1

T (!1:n ) <1,

it then follows that T doesn’t become unbounded on !.
If R = S, then since ! is R-random for '0 by assumption, T 0 can’t be computably

unbounded on ! by Definition 8.654. Consider now any real growth function ø and
an associated real growth function ø0 defined by ø0(n) := ø(n)/K for all n 2N0. It then
holds that

limsup
n!1

[T 0(!1:n )°ø0(n)] < 0 ) limsup
n!1

hT (!1:n )
K

° ø(n)
K

i
< 0

K>0) limsup
n!1

h
T (!1:n )°ø(n)

i
< 0,

and hence, since T 0 isn’t computably unbounded on ! for the real growth function ø0,
T doesn’t become computably unbounded on ! for ø. Since this holds for any real
growth function ø, we conclude that T doesn’t become computably unbounded
on !.

Lemma 10.5. Consider any forecasting system' 2©(X) and any non-negative
test process F . If E'(s)(F (s ·)) ∑ F (s) for all but finitely many situations s 2S,
then there are natural numbers N ,K 2N such that the process F̃ , defined by

F̃ (s) :=
(

1 if |s|∑ N
1
K F (s) if |s| > N

for all s 2S,

is a test supermartingale for '.
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Proof. Assume that there’s only a finite number of situations s 2 S for which
E'(s)(F (s ·)) > F (s). Then we can fix some N 2 N such that E'(s)(F (s ·)) ∑ F (s) for
all s 2S with |s| > N . Let K 2N be any positive natural number such that K > F (s) for
all s 2Swith |s| = N +1, and consider the non-negative test process F̃ : S!R defined
by

F̃ (s) :=
(

1 if |s|∑ N
1
K F (s) if |s| > N

for all s 2S.

To prove that F̃ is a supermartingale for ', we fix some s 2 S, and consider three
mutually exclusive possibilities: |s| < N , |s| = N and |s| > N . If |s| < N , then

E'(s)
°
¢F̃ (s)

¢
= E'(s)(0)

C120= 0.

If |s| = N , then

E'(s)(¢F̃ (s)) = E'(s)
°
F̃ (s •)° F̃ (s)

¢
= E'(s)

≥ 1
K

F (s •)°1
¥ C520∑ E'(s)(1°1)

C120= 0,

where the inequality holds because K > F (t ) ∏ 0 for all t 2Swith |t | = N +1. Finally, if
|s| > N , then

E'(s)(¢F̃ (s)) = E'(s)

≥ 1
K
¢F (s)

¥ C220= 1
K

E'(s)(¢F (s)) ∑ 0,

where in the second equality and final inequality, we also used the fact that K > 0.

Lemma 10.6. Consider any lower semicomputable real process F and any two
natural numbers N ,K 2N. Then the real process F̃ , defined by

F̃ (s) :=
(

1 if |s|∑ N
1
K F (s) if |s| > N

for all s 2S,

is lower semicomputable as well.

Proof. Since the real process F is lower semicomputable, there’s a recursive rational
map q : S£N!Q such that q(s,n+1) ∏ q(s,n) and F (s) = limm!1 q(s,m) for all s 2S
and n 2N. Consider now the recursive rational map q̃ : S£N!Q defined by

q̃(s,n) :=
(

1 if |s|∑ N
1
K q(s,n) if |s| > N

for all s 2S and n 2N.

Then for all s 2S and n 2N,

q̃(s,n +1) =
(

1 if |s|∑ N
1
K q(s,n +1) if |s| > N

∏
(

1 if |s|∑ N
1
K q(s,n) if |s| > N

= q̃(s,n)

and

lim
m!1 q̃(s,m) =

(
1 if |s|∑ N

limm!1 1
K q(s,m) if |s| > N

=
(

1 if |s|∑ N
1
K F (s) if |s| > N

= F̃ (s),

and therefore, F̃ is lower semicomputable as well.
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Lemma 10.7. Consider any test process F that’s generated by a lower semi-
computable multiplier process, and any two natural numbers N ,K 2N. Then
the test process F̃ , defined by

F̃ (s) :=
(

1 if |s|∑ N
1
K F (s) if |s| > N

for all s 2S,

is generated by a lower semicomputable multiplier process as well.

Proof. Let D be the lower semicomputable multiplier process that generates F , mean-
ing that F = D}.

Since D is lower semicomputable, there’s a recursive rational map q : S£X£N!
Q such that q(s, x,n + 1) ∏ q(s, x,n) and D(s)(x) = limm!1 q(s, x,m) for all s 2 S,
x 2X and n 2N. Since D is a multiplier process, it’s non-negative, and hence, we can
safely assume that the recursive rational map q is non-negative as well; otherwise, we
just replace it by the recursive rational map max{q,0}. Moreover, since F is generated
by the multiplier process D, it readily follows that F̃ is generated by the multiplier
process D̃ defined by

D̃(s)(x) :=

8
><
>:

1 if |s| < N
1
K F (sx) if |s| = N

D(s)(x) if |s| > N

for all s 2S and x 2X.

So it suffices to prove that D̃ is lower semicomputable. To that end, consider the
recursive rational map q̃ : S£X£N!Q defined for all s = x1:m 2S, x 2X and n 2N
by

q̃(s, x,n) :=

8
>><
>>:

1 if |s| < N
1
K

≥QN°1
k=0 q(x1:k , xk+1,n)

¥
q(s, x,n) if |s| = N

q(s, x,n) if |s| > N .

Then for all s = x1:m 2S, x 2X and n 2N,

q̃(s, x,n +1) =

8
>><
>>:

1 if |s| < N
1
K

≥QN°1
k=0 q(x1:k , xk+1,n +1)

¥
q(s, x,n +1) if |s| = N

q(s, x,n +1) if |s| > N

∏

8
>><
>>:

1 if |s| < N
1
K

≥QN°1
k=0 q(x1:k , xk+1,n)

¥
q(s, x,n) if |s| = N

q(s, x,n) if |s| > N

= q̃(s, x,n),

where the inequality holds because K > 0 and q ∏ 0, and

lim
m!1 q̃(s, x,m) =

8
>><
>>:

1 if |s| < N
1
K limm!1

≥QN°1
k=0 q(x1:k , xk+1,m)

¥
q(s, x,m) if |s| = N

limm!1 q(s, x,m) if |s| > N
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=

8
>><
>>:

1 if |s| < N
1
K

≥QN°1
k=0 D(x1:k )(xk+1)

¥
D(s)(x) if |s| = N

D(s)(x) if |s| > N

=

8
><
>:

1 if |s| < N
1
K F (sx) if |s| = N

D(s)(x) if |s| > N

= D̃(s)(x),

so we see that D̃ is lower semicomputable, as needed.

Another result that fits into this section, but which can be found in Sec-
tion 20192 instead, goes as follows: for any R 2 {ML,wML,C,S} and any fore-
casting system ' 2©(X), there’s a precise forecasting system 'pr 2 ' such
that≠R('pr) =≠R(') [Theorem 20.1193]. Based on this result, you could jump
to the conclusion that precise forecasting systems are enough to capture the
essence of these randomness notions. As we’ll explain in Chapter 179, more
subtlety is required though when examining the necessity of allowing for
imprecise forecasting systems in algorithmic randomness; we postpone the
proof and discussion of this result to that chapter, where we believe it shows
to better advantage.

10.2 ... in terms of changes to the betting strategies

Our imprecise-probabilistic martingale-theoretic randomness notions are
not only to some extent robust with respect to changes in the forecasting
system, as we explained in the previous section, but also reasonably robust
with respect to (i) changing Sceptic’s allowed betting strategies and (ii) the
way she shouldn’t be able to get arbitrarily rich, as we’ll explain here. In what
follows, for every R 2 {ML,wML,C,S}, we typically start by showing how to
weaken the conditions on (i) Sceptic’s allowed betting strategies and (ii) the
way she shouldn’t be able to get arbitrarily rich, without changing the notion
of R-randomness. We continue by proving such an equivalence result for a
stronger set of conditions on (i) and (ii).

Martin-Löf randomness

For the notion of ML-randomness, we can extend Sceptic’s set of betting
strategies by not requiring initial unit capital, and by imposing boundedness
below instead of non-negativity.

Proposition 10.8. A path ! 2 ≠ is ML-random for a forecasting system
' 2©(X) if and only if there’s no lower semicomputable bounded below su-
permartingale M 2M(') such that limsupn!1 M(!1:n) =1.
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Proof. It clearly suffices to prove the ‘only if’-part. To this end, assume the existence
of a lower semicomputable bounded below supermartingale M 2M(') such that
limsupn!1 M(!1:n ) = 1. Then we’ll show that ! isn’t ML-random for '. Since
M is bounded below, there’s a natural B 2 N such that M + B > 0. Let A 2 N

be such that (M(⇤)+B)/A ∑ 1, and let the real process T : S ! R be defined by
T (⇤) := 1 and T (s) := (M(s)+B)/A for all s 2 S \ {⇤}. Clearly, limsupn!1 T (!1:n ) =
1
A limsupn!1 M(!1:n ) + B

A = 1, so we’re done if we can show that T 2 TML(').
Clearly, T (⇤) = 1, T ∏ (M+B)/A > 0 and T is lower semicomputable. Furthermore,
for all s 2S,

E'(s)(T (s ·))
C220,C420= 1

A
E'(s)(M(s ·))+ B

A
∑ M(s)+B

A
∑

(
1 if s =⇤
T (s) otherwise

= T (s),

so we conclude that T 2TML(').

In the other direction, we can restrict Sceptic’s allowed betting strate-
gies by requiring positivity and satisfaction of the strict supermartingale
property. Moreover, for a path ! 2≠ to be ML-random for a forecasting sys-
tem ' 2©(X), we can (merely) require that her running capital must never
converge to infinity on ! for any implementable allowed betting strategy, in
the sense that there’s some allowed betting strategy T 2 TML(') such that
limn!1 T (!1:n) =1.

Proposition 10.9. A path ! 2 ≠ is ML-random for a forecasting system
' 2 ©(X) if and only if there’s no lower semicomputable positive strict test
supermartingale T 2TML(') such that limn!1 T (!1:n) =1.

Proof. By Definition 8.552, it clearly suffices to prove the ‘if’-part. To this end, assume
that ! isn’t ML-random for ', so assume the existence of a lower semicomputable
test supermartingale T 2TML(') such that limsupn!1 T (!1:n ) =1. Then we have
to show that there is a lower semicomputable positive strict test supermartingale
T§ 2TML(') such that limn!1 T§(!1:n ) =1.

In a first step, we consider the test supermartingale T 0 2 T(') as defined in
Lemma 10.10y—for which limn!1 T 0(!1:n ) =1—and prove that it is lower semi-
computable. Since T is lower semicomputable, there’s a recursive rational map
q : S£N! Q such that q(s, •) % T (s) for all s 2 S. For any k 2 N, we consider the
recursive rational map q(k) : S£N!Q, defined for all s 2S and n 2N by

q(k)(s,n) :=
(

2k if max`2{0,...,|s|} q(s1:`,n) > 2k

q(s,n) otherwise.

By construction, q(k) is recursive uniformly in k 2N and non-decreasing in its second
argument because q is recursive and non-decreasing in its second argument. For any
k 2N,

q(k)(s, •) %
(

2k if max`2{0,...,|s|} T (s1:`) > 2k

T (s) otherwise,
= T (k)(s),

73



Martingale-theoretic notions of randomness

with T (k) as defined in Lemma 10.10, and hence, T (k) is lower semicomputable
uniformly in k 2N. It is now immediate from Lemma 10.11y that T 0 is lower semi-
computable as an infinite (weighted) sum of uniformly lower semicomputable non-
negative maps 2°k T (k). We conclude that T 0 2TML(').

In a second step, we just observe that by Lemma 10.1276 there is a lower semicom-
putable positive strict test supermartingale T§ for ' such that limn!1 T§(!1:n ) =
1
2 limn!1 T 0(!1:n ) =1.

Lemma 10.10. Consider any forecasting system ' and any (positive) test
supermartingale T 2T('). Let T (k) : S!R be defined as

T (k)(s) =
(

2k if max`2{0,...,|s|} T (s1:`) > 2k

T (s) otherwise,
for all k 2N and s 2S,

and let T 0 : S ! R be defined as T 0(s) := P1
k=1 2°k T (k)(s) for all s 2 S.

Then T 0 is a (positive) test supermartingale for ', and limn!1 T 0(!1:n) =1
for every path ! 2≠ for which limsupn!1 T (!1:n) =1.

Proof. We start by showing that T (k) 2T(') for every k 2N. To this end, observe that
T (k) is non-negative because T is non-negative, and T (k)(⇤) = 1 because T (⇤) = 1;
observe that T (k) is positive if T is positive. Furthermore, for every s 2 S, since
E'(s)(¢T (s)) ∑ 0, it will follow that also E'(s)(¢T (k)(s)) ∑ 0. To prove this, we consider

two cases. The first case is that T (k)(s) = 2k . Since T (k)(sx) ∑ 2k for all x 2X, it follows
that ¢T (k)(s) ∑ 0, and as a consequence, E'(s)(¢T (k)(s)) ∑ 0 due to C120. The second

case is that T (k)(s) = T (s) 6= 2k . This means that max`2{0,...,|s|} T (s1:`) ∑ 2k . Then

for all x 2X, it follows that T (k)(sx) = T (sx) if T (sx) ∑ 2k and T (k)(sx) = 2k < T (sx)
otherwise, and hence, in both cases: T (k)(sx) ∑ T (sx). Since T (k)(s) = T (s), this
implies that ¢T (k)(s) ∑¢T (s), and therefore that E'(s)(¢T (k)(s)) ∑ E'(s)(¢T (s)) ∑ 0
due to C520 and since T is a supermartingale for '. In summary, T (k) is a (positive)
test supermartingale for '.

We continue by showing that T 0 2 T('). Since T (k)(s) is non-negative and
bounded above by max`2{0,...,|s|} T (s1:`) for every k 2 N and s 2 S, it follows that,
for every s 2 S, T 0(s) is non-negative and bounded above by max`2{0,...,|s|} T (s1:`),
so T 0(s) is a well-defined and non-negative real number for every s 2 S; note
that T 0 is positive if T is positive. Since T (k)(⇤) = 1 for all k 2 N, it follows that
T 0(⇤) = 1. To prove the supermartingale property, we start by observing that, since
T 0(s) = limn!1

Pn
k=1 2°k T (k)(s) is well-defined and real for every s 2 S, it follows

that for every s 2S and x 2X:

¢T 0(s)(x) = T 0(sx)°T 0(s) = lim
n!1

nX

k=1
2°k T (k)(sx)° lim

n!1

nX

k=1
2°k T (k)(s)

= lim
n!1

nX

k=1
2°k¢T (k)(s)

is well-defined and real. Since X is finite, this implies that
©Pn

k=1 2°k¢T (k)(s)
™

n2N0
converges uniformly to ¢T 0(s). Hence, for every s 2S, since the upper expectation
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E'(s) is continuous with respect to uniform convergence [C620], it follows that

E'(s)(¢T 0(s)) = E'(s)

≥
lim

n!1

nX

k=1
2°k¢T (k)(s)

¥

C620= lim
n!1E'(s)

≥ nX

k=1
2°k¢T (k)(s)

¥

C220,C320∑ limsup
n!1

nX

k=1
2°k E'(s)(¢T (k)(s)) ∑ 0,

where the last inequality follows from the fact that E'(s)(¢T (k)(s)) ∑ 0 for all k 2N.

We conclude that T 0 2T(').
Fix any ! 2≠ for which limsupn!1 T (!1:n ) =1. We finish this proof by show-

ing that also limn!1 T 0(!1:n ) = 1. We’ll do so by showing that for every N 2 N0
there’s a K 2 N0 such that T 0(!1:n ) ∏ N for all n ∏ K . To this end, fix any N 2 N0.
Since limsupn!1 T (!1:n ) =1, there’s a K 2N0 such that T (!1:K ) > 2N , and hence,
T (k)(!1:n ) = 2k for all k 2 {1, . . . , N } and n ∏ K . This implies that for all n ∏ K , it holds
that

T 0(!1:n ) =
X

k2N
2°k T (k)(!1:n ) ∏

NX

k=1
2°k T (k)(!1:n ) = N ,

where the inequality holds because T (k) ∏ 0 for all k 2N.

Lemma 10.11. Consider any non-negative lower semicomputable extended
real map r : N£D! [0,1]. Then the map r 0 : D! [0,1] : d 7!P1

k=1 r (k,d)
is lower semicomputable.

Proof. Start from a (recursive) code q : N£D£N!Q for the lower semicomputable
map r , so q(k,d , •) % r (k,d) for all (k,d) 2 N£D; we can assume without loss of
generality that q is non-negative everywhere [if it isn’t, replace it by max{q,0}]. Let
the map q 0 : D£N!Q be defined as

q 0(d ,n) :=
nX

k=1
q(k,d ,n) for all d 2D and n 2N.

This map is obviously rational and recursive because q is. It’s non-decreasing in its
second argument, because

q 0(d ,n +1) =
n+1X

k=1
q(k,d ,n +1) ∏

n+1X

k=1
q(k,d ,n) ∏

nX

k=1
q(k,d ,n) = q(d ,n)

for all d 2D and n 2N.

To conclude that the map r 0 is lower semicomputable, we’ll show that
limn!1 q 0(d ,n) = r 0(d). To this end, fix any d 2D. We start by observing that

lim
n!1q 0(d ,n) = lim

n!1

nX

k=1
q(k,d ,n) ∑

1X

k=1
r (k,d) = r 0(d).
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There are now two distinct possibilities.
The first possibility is that r 0(d) =1. Then, for every N 2N there’s some M 2N

such that
PM

k=1 r (k,d) ∏ N +1. Moreover, it follows from the assumptions that for

every k 2 {1, . . . , M }, there’s some Nk such that r (k,d)° 1
M < q(k,d , Nk ). If we now let

N := max{M , N1, . . . , NM }, then

lim
n!1q 0(d ,n) ∏ q 0(d , N ) =

NX

k=1
q(k,d , N ) ∏

MX

k=1
q(k,d , N ) ∏

MX

k=1
q(k,d , Nk )

∏
MX

k=1

µ
r (k,d)° 1

M

∂
∏ N +1°M

1
M

= N ,

and therefore limn!1 q 0(d ,n) =1= r 0(d).
The second possibility is that r 0(d) 2R, which implies that r (k,d) 2R for all k 2N.

Then, for every ≤> 0 there’s some M 2N such that
PM

k=1 r (k,d) ∏ r 0(d)° ≤
2 . Moreover,

it follows from the assumptions that for every k 2 {1, . . . , M }, there’s some Nk such that
r (k,d)° ≤

2
1

M < q(k,d , Nk ). If we now let N := max{M , N1, . . . , NM }, then

lim
n!1q 0(d ,n) ∏ q 0(d , N ) =

NX

k=1
q(k,d , N ) ∏

MX

k=1
q(k,d , N ) ∏

MX

k=1
q(k,d , Nk )

∏
MX

k=1

µ
r (k,d)° ≤

2
1

M

∂
∏ r 0(d)° ≤

2
°M

≤

2
1

M
= r 0(d)°≤,

and therefore limn!1 q 0(d ,n) = r 0(d).

Lemma 10.12. Consider any forecasting system '. For every lower semicom-
putable test supermartingale T 2 TML(') there is a lower semicomputable
positive strict test supermartingale T 0 2TML(') such that

liminf
n!1

T 0(!1:n) = 1
2

liminf
n!1

T (!1:n)

and

limsup
n!1

T 0(!1:n) = 1
2

limsup
n!1

T (!1:n).

Proof. Consider any lower semicomputable test supermartingale T 2 TML(') and
let the real process T 0 : S ! R be defined by T 0(s) :=

°
T (s)+2°|s|

¢
/2 for all s 2 S.

Clearly, liminfn!1 T 0(!1:n ) = 1
2 liminfn!1 T (!1:n ) and limsupn!1 T 0(!1:n ) =

1
2 limsupn!1 T (!1:n ), so we’re done if we can show that T 0 is a lower semicom-
putable positive strict test supermartingale for'. It’s immediate that T 0(⇤) = (1+1)/2 =
1 and T 0(s) ∏ 2°|s|/2 > 0 for all s 2 S, and T 0 is lower semicomputable because T is.
Furthermore, for all s 2S,

E'(s)(T 0(s ·))
C220,C420=

E'(s)(T (s ·))+2°|s|°1

2

∑ T (s)+2°|s|°1

2
< T (s)+2°|s|

2
= T 0(s),

where the first inequality holds because T 2TML(').
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As a consequence, whenever we restrict Sceptic’s allowed betting strate-
gies to a set that’s smaller than the one in Proposition 10.872, but larger than
the one in Proposition 10.973, and whenever we require the corresponding
betting strategies not to converge to infinity instead of being bounded, we
obtain a definition for ML-random sequences that is equivalent to Defini-
tion 8.552; similar remarks will hold for the other three randomness notions
that we study below.

When restricting our attention to non-degenerate computable forecast-
ing systems ' 2 ©(X), then ML-randomness allows for yet another inter-
esting characterisation; as Corollary 14.24129 shows,21 and similarly to the
precise-probabilistic version of ML-randomness [30, 32], there exists a so-
called universal lower semicomputable test supermartingale U 2 TML(')
that conclusively tests the ML-randomness of any path ! 2≠ for the fore-
casting system ': ! is ML-random for ' if and only if limn!1U (!1:n) 6=1.
From Lemma 10.12x, it’s furthermore clear that we can assume this univer-
sal lower semicomputable test supermartingale to be a positive strict test
supermartingale, and hence, in this way, when restricting our attention to
non-degenerate computable forecasting systems, we obtain an equivalent
characterisation of ML-randomness that imposes even more restrictions on
Sceptic’s allowed betting strategies than in Proposition 10.973.

Weak Martin-Löf randomness

For the notion of wML-randomness, we can extend Sceptic’s set of betting
strategies by imposing non-negativity instead of positivity, and by not requir-
ing satisfaction of the supermartingale multiplier property.

Proposition 10.13. A path ! 2≠ is wML-random for a forecasting system ' 2
©(X) if and only if there’s no lower semicomputable multiplier process D that
generates a test supermartingale D} for ' such that limsupn!1 D}(!1:n) =
1.

Proof. It clearly suffices to prove the ‘only if’-part. To this end, assume the existence
of a lower semicomputable multiplier process D that generates a test supermartin-
gale D} for ' such that limsupn!1 D}(!1:n ) =1. Then, by Definition 8.552 and
Proposition 6.630, we have to prove that there’s some lower semicomputable positive
supermartingale multiplier D 0 for ' such that limsupn!1 D 0}(!1:n ) =1, which is
immediate from Lemma 9.1764.

We can also strengthen the conditions on the betting strategies Sceptic
can choose from without changing the randomness notion. It turns out we
can impose satisfaction of the strict supermartingale (multiplier) property.

21This forward reference could be perceived as awkward by some readers. However, all
readers can rest assured that this paragraph only discusses this corollary, and isn’t used further
on in any proof.
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Proposition 10.14. A path ! 2≠ is wML-random for a forecasting system
' 2©(X) if and only if there’s no lower semicomputable positive strict super-
martingale multiplier D for ' that generates a positive strict test supermartin-
gale D} for ' such that limsupn!1 D}(!1:n) =1.

Proof. It clearly suffices to prove the ‘if’-part. To this end, assume that ! isn’t wML-
random for ', so, by Definition 8.552 and Proposition 6.630, assume the existence
of a lower semicomputable positive supermartingale multiplier D for ' such that
limsupn!1 D}(!1:n ) =1. Then, by Proposition 6.630, we have to prove that there’s
some lower semicomputable positive strict supermartingale multiplier D 0 for ' such
that limsupn!1 D 0}(!1:n ) =1, which is immediate from Lemma 9.959.

Computable randomness

Analogously to ML-randomness, C-randomness is preserved when consid-
ering betting strategies that are bounded below, but that aren’t necessarily
non-negative, and neither necessarily start with unit capital.

Proposition 10.15. A path ! 2≠ is C-random for a forecasting system ' 2
©(X) if and only if there’s no computable bounded below supermartingale
M 2M(') such that limsupn!1 M(!1:n) =1.

Proof. It clearly suffices to prove the ‘only if’-part. To this end, assume the ex-
istence of a computable bounded below supermartingale M 2 M(') such that
limsupn!1 M(!1:n ) = 1. Then we’ll show that ! isn’t C-random for '. Since
M is bounded below, there’s a natural B 2 N such that M + B > 0. Let A 2 N

be such that (M(⇤)+B)/A ∑ 1, and let the real process T : S ! R be defined by
T (⇤) := 1 and T (s) := (M(s)+B)/A for all s 2 S \ {⇤}. Clearly, limsupn!1 T (!1:n ) =
1
A limsupn!1 M(!1:n )+ B

A =1, so we’re done if we can show that T 2TC('). Clearly,
T (⇤) = 1, T ∏ (M+B)/A > 0 and T is computable. Furthermore, for all s 2S,

E'(s)(T (s ·))
C220,C420= 1

A
E'(s)(M(s ·))+ B

A
∑ M(s)+B

A
∑

(
1 if s =⇤
T (s) otherwise

= T (s),

so we conclude that T 2TC(').

On the other hand, similarly to ML- and wML-randomness, we can re-
quire positivity and satisfaction of the strict supermartingale property; note
that positivity is already part of our standard definition of C-randomness.
Furthermore, in contrast with ML- and wML-randomness, we can impose
recursiveness and rationality on the betting strategies without changing the
notion of C-randomness. Moreover, as with ML-randomness, we can (also)
require Sceptic’s running capital never to converge to infinity, instead of
never to be unbounded.

Proposition 10.16. A path ! 2 ≠ is C-random for a forecasting system
' 2 ©(X) if and only if there’s no recursive positive rational strict test su-
permartingale T 2TC(') such that limn!1 T (!1:n) =1.
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Proof. By Definition 8.552, it clearly suffices to prove the ‘if’-part. To this end, as-
sume that ! isn’t C-random for ', so assume the existence of a computable posi-
tive test supermartingale T 2 TC(') such that limsupn!1 T (!1:n ) = 1. Then we
have to prove that there is a recursive positive rational strict test supermartingale
T§ 2 TC(') such that limn!1 T§(!1:n ) = 1. By applying Lemma 10.17 to T , we
know there’s a recursive positive rational strict test supermartingale T 0 2T(') such
that |7T 0(s) ° T (s)| ∑ 7 · 2°|s| for all s 2 S. Since limsupn!1 T (!1:n ) = 1, it fol-
lows that limsupn!1 T 0(!1:n ) =1. By applying Lemma 10.20y to T 0, it therefore
follows that there’s a computable positive test supermartingale T 00 2 TC(') such
that limn!1 T 00(!1:n ) = 1. By again applying Lemma 10.17, this time to T 00, we
know there’s a recursive positive rational strict test supermartingale T§ 2T(') such
that |7T§(s)°T 00(s)|∑ 7 for all s 2S; since recursiveness implies computability, it’s
immediate that T§ 2 TC('). Since limn!1 T 00(!1:n ) = 1, it follows that, indeed,
limn!1 T§(!1:n ) =1.

Lemma 10.17. Fix any forecasting system ' 2©(X). For every computable
test supermartingale T 2T('), there’s a recursive positive rational strict test
supermartingale T 0 2T(') such that |7T 0(s)°T (s)|∑ 7 ·2°|s| for all s 2S.

Proof. Consider any computable test supermartingale T 2 T('). Since T is com-
putable, there’s some recursive rational map q : S£N!Q such that

|T (s)°q(s, N )|∑ 2°N for all s 2S and N 2N. (10.18)

Observe that, since T (⇤) = 1, we can assume without loss of generality that q(⇤,1) = 1.
Define the rational process T 0 : S!Q by letting

T 0(s) = q(s, |s|+1)+6 ·2°|s|

7
for all s 2S.

Since the maps |•| and q are recursive, so is the rational process T 0. Furthermore, it
follows from Eq. (10.18) that

q(sx, |sx|+1) ∑ T (sx)+ 1
4
·2°|s|

T (s) ∑ q(s, |s|+1)+ 1
2

2°|s|

9
>=
>;

for all s 2S and x 2X. (10.19)

Moreover, T 0(⇤) = q(⇤,1)+6
7 = 1, and the bottom inequality in Eq. (10.19) guarantees

that T 0 is positive:

T 0(s) = q(s, |s|+1)+6 ·2°|s|

7
∏ T (s)+5 ·2°|s|

7
∏ 5 ·2°|s|

7
> 0 for all s 2S.

Next, we show that T 0 is a strict supermartingale for '. By combining the inequalities
in Eq. (10.19), we find that for all s 2S,

q(s ·, |s ·|+1)°q(s, |s|+1) ∑ T (s ·)°T (s)+ 3
4
·2°|s|,

and therefore also,

¢T 0(s) = T 0(s ·)°T 0(s) = q(s ·, |s ·|+1)+6 ·2°|s ·|

7
° q(s, |s|+1)+6 ·2°|s|

7
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= q(s ·, |s ·|+1)°q(s, |s|+1)°3 ·2°|s|

7

∑
T (s ·)°T (s)+ 3

4 ·2°|s|°3 ·2°|s|

7
= ¢T (s)

7
° 9 ·2°|s|

28
.

This implies that, indeed, for all s 2S,

E'(s)(¢T 0(s))
C520∑ E'(s)

≥¢T (s)
7

° 9 ·2°|s|

28

¥ C220,C420= 1
7

E'(s)(¢T (s))° 9 ·2°|s|

28
< 0,

where the last strict inequality follows from the supermartingale inequal-
ity E'(s)(¢T (s)) ∑ 0.

This shows that T 0 is a recursive positive rational strict test supermartingale for '.
For the rest of the proof, consider that, by Eq. (10.18)x, indeed

|7T 0(s)°T (s)| =
ØØq(s, |s|+1)+6 ·2°|s|°T (s)

ØØ

∑ 6 ·2°|s| +
ØØq(s, |s|+1)°T (s)

ØØ

∑ 6 ·2°|s| + 1
2

2°|s| ∑ 7 ·2°|s| for all s 2S.

Lemma 10.20. Fix any forecasting system ' 2 ©(X). For every recursive
positive rational test supermartingale T 2T(') there’s a computable positive
test supermartingale T 0 2T(') such that limn!1 T 0(!1:n) =1 for every path
! 2≠ for which limsupn!N0

T (!1:n) =1.

Proof. Consider any recursive positive rational test supermartingale T 2 T('). Let
T 0 and T (k), with k 2N, be defined as in Lemma 10.1074. Then T 0 is a positive test
supermartingale for ', and limn!1 T 0(!1:n ) = 1 for every path ! 2 ≠ for which
limsupn!1 T (!1:n ) =1.

We’re done if we can show that T 0 is computable. To this end, observe that T (k) is
rational and recursive uniformly in k 2N since T is rational and recursive. We now
define the recursive map of rational numbers q : S£N!Q by

q(s,n) :=
nX

k=1
2°k T (k)(s) for all s 2S and n 2N.

Next, we consider the recursive rational map e : S£N!N defined by

e(s, N ) := N + max
`2{0,...,|s|}

ß
T (s1:`)

®
for all N 2N and s 2S.

Then for all n, N 2N and s 2S, n ∏ e(s, N ) implies that

ØØT 0(s)°q(s,n)
ØØ=

ØØØØØT
0(s)°

nX

k=1
2°k T (k)(s)

ØØØØØ

=
1X

k=n+1
2°k T (k)(s)

∑
1X

k=n+1
2°k max

`2{0,...,|s|}
T (s1:`)
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= 2°n max
`2{0,...,|s|}

T (s1:`)

∑ 2°n max
`2{0,...,|s|}

ß
T (s1:`)

®

∑ 2°e(s,N ) max
`2{0,...,|s|}

ß
T (s1:`)

®

= 2°N max`2{0,...,|s|}
ß

T (s1:`)
®

2max`2{0,...,|s|}dT (s1:`)e ∑ 2°N ,

where the last inequality follows from the fact that 2y ∏ y if y ∏ 0. Hence, T 0 is
computable.

Schnorr randomness

Similarly to C-randomness, we can replace the set of allowable betting strate-
gies TS(') by the set of computable bounded below supermartingales for ',
without changing the set of S-random paths for '. Moreover, for a path ! 2≠
to be S-random for a forecasting system' 2©(X), no such betting strategy M
for' should allow Sceptic to get arbitrarily rich at some computable rate—up
to some constant—, as is specified below by writing that there should be no
real growth function ø such that limsupn!1[M(!1:n)°ø(n)] >°1.

Proposition 10.21. A path ! 2≠ is S-random for a forecasting system ' 2
©(X) if and only if there are no computable bounded below supermartingale
M 2M(') and real growth function ø such that limsupn!1[M(!1:n)°ø(n)] >
°1.

Proof. It clearly suffices to prove the ‘only if’-part. To this end, assume the existence of
a computable bounded below supermartingale M 2M(') and a real growth function
ø such that limsupn!1[M(!1:n )°ø(n)] >°1. Then we have to show that ! isn’t S-
random for '. Since M is bounded below, there’s a natural B 2N such that M +B > 0
and limsupn!1[M(!1:n )°ø(n)]+B > 0. Let A 2 N be such that (M(⇤)+B)/A ∑ 1,
let the real process T : S! R be defined by T (⇤) := 1 and T (s) := (M(s)+B)/A for all
s 2S\ {⇤}, and let the real growth function ø0 be defined by ø0 = ø/A. Clearly,

limsup
n!1

£
T (!1:n )°ø0(n)

§
= 1

A

µ
limsup

n!1
[M(!1:n )°ø(n)]+B

∂
> 0,

so we’re done if we can show that T 2 TS('), because then there’s a computable
positive test supermartingale for ' that’s computably unbounded on !. Clearly,
T (⇤) = 1, T ∏ (M+B)/A > 0 and T is computable. Furthermore, for all s 2S,

E'(s)(T (s ·))
C220,C420= 1

A
E'(s)(M(s ·))+ B

A
∑ M(s)+B

A
∑

(
1 if s =⇤
T (s) otherwise

= T (s),

so we conclude that T 2TS(').
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Again analogously to C-randomness, we can replace the set of betting
strategies TS(') for ' by recursive positive rational strict test supermartin-
gales for '. Moreover, we can require the real growth function to be natural-
valued; a path ! 2≠ is then S-random for ' if and only if there’s no such test
supermartingale T for ' that makes Sceptic infinitely rich with respect to
some natural growth function, in the sense that there should be no natural
growth function ¥ : N0 !N0 such that limsupn!1

£
T (!1:n)°¥(n)

§
=1.

Proposition 10.22. A path ! 2 ≠ is S-random for a forecasting system
' 2©(X) if and only if there are no recursive positive rational strict test su-
permartingale T 2TS(') and natural growth function ¥ : N0 !N0 such that
limsupn!1

£
T (!1:n)°¥(n)

§
=1.

Proof. By Definition 8.552, it clearly suffices to prove the ‘if’-part. To this end,
assume that ! isn’t S-random for ', so assume the existence of a computable
positive test supermartingale T 2 TS(') and a real growth function ø such that
limsupn!1[T (!1:n )°ø(n)] ∏ 0. Then we have to prove that there is a recur-
sive positive rational strict test supermartingale T 0 2 TS(') and a natural growth
function ¥ : N0 ! N0 such that limsupn!1

£
T 0(!1:n )°¥(n)

§
= 1. By applying

Lemma 10.1779 to T , we know there’s a recursive positive rational strict test super-
martingale T 0 2TS(') such that |7T 0(s)°T (s)|∑ 7 ·2°|s| for all s 2S. Since ø is com-
putable, there’s a recursive rational map q : N0£N!Q such that |ø(n)°q(n, N )|∑ 2°N

for all N 2N. Let the natural map ¥ : N0 !N0 be defined by ¥(0) := 0 and

¥(n +1) := max
Ω
¥(n),

π
q(n +1,1)

14
°1

∫æ
for all n 2N0.

This map is non-decreasing by definition, recursive because q is, and unbounded
because

lim
n!1¥(n) ∏ limsup

n!1
q(n,1)

14
°2 ∏ lim

n!1
ø(n)°1/2

14
°2 =1,

so we conclude that ¥ is a natural growth function.
We’re done now if we can show that limsupn!1

£
T 0(!1:n )°¥(n)

§
=1. To this

end, observe that for all n 2N0:

¥(n +1) = max
k2{1,...,n+1}

max
Ω

0,
π

q(k,1)
14

°1
∫æ

∑ max
k2{1,...,n+1}

max
Ω

0,
π
ø(k)+1/2

14
°1

∫æ

∑ max
k2{1,...,n+1}

max
Ω

0,
π
ø(k)
14

∫æ

∑
π
ø(n +1)

14

∫
∑ ø(n +1)

14
, (10.23)

where the third inequality holds by the non-decreasingness and non-negativity of
ø. By recalling that limsupn!1[T (!1:n )°ø(n)] ∏ 0, we know there’s a strictly in-
creasing sequence of naturals

°
ni

¢
i2N0

such that T (!1:ni )°ø(ni ) ∏°1 for all i 2N0.
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Consequently,

limsup
n!1

£
T 0(!1:n )°¥(n)

§
∏ limsup

n!1

∑
T (!1:n )

7
°2°n °¥(n)

∏

= limsup
n!1

∑
T (!1:n )

7
°¥(n)

∏

Eq. (10.23)x∏ limsup
n!1

∑
T (!1:n )

7
° ø(n)

14

∏

= limsup
n!1

∑
T (!1:n )°ø(n)

7
+ ø(n)

14

∏

∏ limsup
i!1

∑
T (!1:ni )°ø(ni )

7
+ ø(ni )

14

∏

∏°1
7
+ limsup

i!1

ø(ni )
14

=1.
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Frequentist notions of
randomness

What sequences do we consider to be random for a forecasting sys-
tem ' 2©(X)? In this chapter, we formally address and answer this ques-
tion a second time by introducing a very general (imprecise-probabilistic)
randomness notion that has a frequentist flavour. As a starting point for
introducing this randomness notion, we’ll consider von Mises’ classical
(precise-probabilistic) definition for randomness that appeared in Section 12:
a path ! 2≠ is random for a probability mass function m 2M(X) if

(i) the relative frequencies of every outcome x 2X along! converge to the
probability m(x), that is, limn!1

1
n

Pn
k=1 Ix (!k ) = m(x) for all x 2X;

(ii) every infinite subsequence from ! selected by an admissible selection
process S 2S satisfies (i),

where it will be made precise further on in Section 11.187 what it means for
a selection process S to select an infinite subsequence from a path !. In
the above definition, we cannot allow every selection process S 2 S to be
admissible, because then there would for example be no binary path that’s
random for 1/2 [25, Section 2]. Von Mises, however, left open what selection
processes should be considered admissible.

As proven by Abraham Wald [23], random paths do exist when considering
a countable set of admissible selection processes S1 µS; the corresponding
precise-probabilistic randomness notion is called S1-randomness. In par-
ticular, if we let S1 be the countable set of computable or total computable
selection processes—where the modifier ‘total’ will be explained further
on in Section 11.187—, then we obtain the classical precise-probabilistic
randomness notions known as Church stochasticity [27] and weak Church

85



Frequentist notions of randomness

stochasticity [12], respectively.
To start lifting these randomness notions to an imprecise-probabilistic

context, we’ll make use of the following observation: condition (i) can be
replaced by any of the two criteria below without changing the randomness
notion.

(i’) limn!1
1
n

Pn
k=1 f (!k ) = Em( f ) for all f 2L(X)

and

(i”) limn!1 d
° 1

n
Pn

k=1 I!k , {m}
¢
= 0.

Proof. Fix any path ! 2≠ and any probability mass function m 2M(X).
For (i))(i’), observe that for any f 2L(X), since f =P

x2X f (x)Ix :

lim
n!1

1
n

nX

k=1
f (!k ) =

X

x2X
f (x) lim

n!1
1
n

nX

k=1
Ix (!k ) =

X

x2X
f (x)m(x) = Em ( f ).

For (i’))(i), simply let f := Ix for every x 2X.
For (i),(i”), note that Ix (y) = Iy (x) for all x, y 2X, and hence,

(8x 2X) lim
n!1

1
n

nX

k=1
Ix (!k ) = m(x) , (8x 2X) lim

n!1
1
n

nX

k=1
I!k (x) = m(x)

, lim
n!1

1
n

nX

k=1
I!k = m

, lim
n!1d

√
1
n

nX

k=1
I!k , {m}

!
= 0.

Condition (i’) requires that the running average of the outcomes along! eval-
uated in a gamble f 2L(X) converges to the linear expectation Em( f ) that’s
associated with m and f , whereas condition (i”)—similarly to (i)—requires
that the relative frequencies of the occurrence of outcomes along ! converge
to the probability mass function m. It’s these last two (equivalent) condi-
tions that we’ll examine and generalise in this chapter to obtain (equivalent)
imprecise-probabilistic versions of S1-randomness, which we’ll also call
S1-randomness, and therefore of (weak) Church stochasticity as well.

This chapter is structured as follows. In Section 11y, we formally intro-
duce the imprecise-probabilistic notion of S1-randomness, and we do so
by generalising the statements in (i’) and (i”). We also discuss some of its
properties, which are reminiscent of the results in Sections 954 and 10.167.
Afterwards, in Section 12102, we restrict our attention to Church and to weak
Church stochasticity, and explain how these two frequentist randomness
notions relate to the four aforementioned imprecise-probabilistic martingale-
theoretic randomness notions. When restricting our attention to stationary
forecasting systems, as we do in Section 12.3106, we succeed in equipping
(weak) Church stochasticity with an equivalent martingale-theoretic charac-
terisation by considering a rather natural and simple class of implementable
betting strategies.
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11 S1-randomness

11 S1-randomness

We start in Section 11.1 by generalising condition (i’), and thereby obtain
the rather general imprecise-probabilistic frequentist randomness notion
that we’ve been calling S1-randomness. In Section 11.292, we prove that
this randomness notion has an equivalent characterisation in terms of a
generalisation of condition (i”): a path ! 2≠ is S1-random for a forecasting
system ' 2 ©(X) if and only if ' puts bounds on the relative frequencies
of the outcomes along ! and some of its infinite subsequences. We end by
discussing some properties of S1-randomness in Section 11.395.

11.1 (Equivalent) definition(s)

What does it mean for a selection process S 2S to select an (in)finite subse-
quence from a path ! 2≠. For every n 2N0, the selection process S is said to
select the entry !n+1 along ! if S(!1:n) = 1; when S(!1:n) = 0, then S is said to
merely scan or observe !n+1. We write S(!) for the action of S along !, that
is, S(!) is the sequence, finite or infinite, of all entries from ! selected by S in
the order in which they appear along !. In this way, S can be interpreted as
a map S : ≠!≠[S, which maps every path ! 2≠ to a (possibly different)
path !0 2 ≠ or a situation s 2 S. A selection process S is said to accept a
path ! 2≠ if S(!) 2≠, that is, if it selects an infinite subsequence of !; an
infinite subsequence!0 of! is said to be computably selectable if there’s some
recursive selection process S 2S such that S(!) =!0. A selection process S
is called total if it accepts all paths ! 2≠, that is, if it maps every path ! 2≠
to a possibly different path !0 2≠; it’s called partial otherwise. An example
of a total selection process is given by any temporal selection process S 2S
for which

P1
k=0 S(k) =1, with the identical selection process S = 1 of course

being one of them. For any path ! 2≠ and any countable set of selection
processes S1 Ω S, we denote by S1(!) the subset consisting of all selec-
tion processes S 2S1 that accept !. In particular, for every path ! 2≠, we
collect the recursive selection processes that accept ! in the set SCH(!); the
collection of all recursive selection processes is denoted by SCH. Similarly,
for every path ! 2≠, we collect the recursive total selection processes that
accept ! in the set SwCH(!), but we also just write SwCH since this set is
path-independent.

To work towards an imprecise-probabilistic version of S1-randomness,
observe that condition (ii), where (i’) substitutes for (i), is equivalent to

limsup
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°Em( f )

§
Pn°1

k=0 S(!1:k )
∑ 0 for all f 2L(X) and S 2S1(!).

(11.1)

Proof. It clearly suffices to prove the reverse implication. To this end, fix any path ! 2
≠, any probability mass function m 2M(X), any gamble f 2L(X) and any selection
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process S 2S1(!) that accepts !, and observe that

0 ∏ limsup
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°Em ( f )

§

Pn°1
k=0 S(!1:k )

∏ liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°Em ( f )

§

Pn°1
k=0 S(!1:k )

=° limsup
n!1

Pn°1
k=0 S(!1:k )

£
° f (!k+1)°Em (° f )

§

Pn°1
k=0 S(!1:k )

∏ 0,

where the first and last inequalities are immediate from Eq. (11.1)x by using the
gambles f and ° f , respectively. This, indeed, implies that

lim
n!1

Pn°1
k=0 S(!1:k ) f (!k+1)

Pn°1
k=0 S(!1:k )

= Em ( f ).

This criterium for S1-randomness in Eq. (11.1)x can be translated into
a betting game which consists of a probability mass function m 2M(X), a
single gamble f 2L(X) and a selection process S 2S1. Consider a sequen-
tial betting game as in Section 6.327. There are again three players involved:
Forecaster, Sceptic and Reality. Forecaster starts by specifying a probabil-
ity mass function m 2M(X). Next, Sceptic chooses a gamble f 2 L(X)
and a selection process S 2S1, which determines for every situation s 2S
whether she gambles [S(s) = 1] or not [S(s) = 0]. By his specification of the
probability mass function m, Forecaster is willing to sell the gamble f for
his fair price Em( f ), that is, he’s willing to offer her the gamble f °Em( f ).
Afterwards, Reality reveals the successive outcomes Xn = xn at each succes-
sive time instant n 2N, leading to the sequence != (x1, . . . , xn , . . . ). At every
time instant n, after Reality has revealed the outcome xn , Sceptic plays the
gamble S(x1:n)[ f (Xn+1)°Em( f )], that is, she buys the gamble f (Xn+1) for
Forecaster’s fair price Em( f ) if S(x1:n) = 1, and refrains from betting otherwise
[S(x1:n) = 0]. Next, Reality reveals the subsequent outcome Xn+1 = xn+1 2X
and the reward S(x1:n)[ f (xn+1)°Em( f )] goes to Sceptic. Now, Sceptic is said
to have a winning strategy in this sequential betting game if she can come up
with a gamble f 2L(X) and a selection process S 2S1(!) such that she is
guaranteed to have on average a (non-negligible) positive gain at arbitrarily
large time instants by betting according to the above scheme, in the sense
that

limsup
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°Em( f )

§
Pn°1

k=0 S(!1:k )
> 0.

The path ! is then S1-random for ' if Sceptic has no such winning betting
strategy, that is, if Eq. (11.1)x is satisfied.

We’re now but one step away from an imprecise-probabilistic version
of S1-randomness. Let’s reconsider the above betting game. This time,
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Forecaster is allowed to start the betting game by specifying a forecasting
system ' 2©(X) rather than a probability mass function m 2M(X). Next,
Sceptic chooses a gamble f 2L(X) and a selection process S 2S1. In ev-
ery situation s 2S, by Forecaster’s specification of the forecasting system ',
Sceptic is allowed to buy the gamble f for his minimum acceptable selling
price E'(s)( f ), so he’s willing to offer her the gamble f °E'(s)( f ) in s. After-
wards, Reality reveals the successive outcomes Xn = xn at each successive
time instant n 2N, leading to the sequence != (x1, . . . , xn , . . . ). At every time
instant n, after Reality has revealed the outcome xn , Sceptic plays the gamble
S(x1:n)[ f (Xn+1)°E'(x1:n )( f )], that is, she buys the gamble f (Xn+1) for Fore-
caster’s minimum acceptable selling price E'(x1:n )( f ) in x1:n if S(x1:n) = 1,
and doesn’t bet otherwise [S(x1:n) = 0]. Next, Reality reveals the subsequent
outcome Xn+1 = xn+1 2X and the reward S(x1:n)[ f (xn+1)°E'(x1:n )( f )] goes
to Sceptic. The imprecise-probabilistic version of S1-randomness now
builds upon the following idea: Sceptic is said to have a winning strategy
in this betting game if she can come up with a gamble f and a selection
process S 2 S1(!) such that she is guaranteed to have on average a (non-
negligible) positive gain at arbitrarily large time instants by betting according
to the above scheme, in the sense that

limsup
n!1

Pn°1
k=0 S(!1:k )

h
f (!k+1)°E'(!1:k )( f )

i

Pn°1
k=0 S(!1:k )

> 0,

and the path ! is then considered S1-random for ' if Sceptic has no such
winning betting strategy.

Definition 11.2. Consider any countable set of selection processesS1. Then
a path ! 2 ≠ is S1-random for a forecasting system ' 2 ©(X) if for any
gamble f 2L(X) and any selection process S 2S1(!) that accepts !:

limsup
n!1

Pn°1
k=0 S(!1:k )

h
f (!k+1)°E'(!1:k )( f )

i

Pn°1
k=0 S(!1:k )

∑ 0.

As a continuation of our discussion in Section 1066, we’ll conclude this
section by having a look at how robust the notion of S1-randomness is with
respect to changes to the betting strategies and the forecasting system. We
start by observing that S1-randomness has the below equivalent character-
isation in terms of limit inferiors and conjugate lower expectations, which
we’ll use several times further on.

Proposition 11.3. Consider any countable set of selection processes S1. Then
a path ! 2≠ is S1-random for a forecasting system ' 2©(X) if and only if
for any gamble f 2L(X) and any selection process S 2S1(!) that accepts !:

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§
Pn°1

k=0 S(!1:k )
∏ 0.
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Proof. Fix any path ! 2≠, any forecasting system ' 2©(X), any gamble f 2L(X)
and any selection process S 2 S1(!) that accepts !, and simply observe, using
conjugacy, that

limsup
n!1

Pn°1
k=0 S(!1:k )

h
f (!k+1)°E'(!1:k )( f )

i

Pn°1
k=0 S(!1:k )

∑ 0

,° limsup
n!1

Pn°1
k=0 S(!1:k )

h
f (!k+1)°E'(!1:k )( f )

i

Pn°1
k=0 S(!1:k )

∏ 0

, liminf
n!1

Pn°1
k=0 S(!1:k )

£
° f (!k+1)°E'(!1:k )(° f )

§

Pn°1
k=0 S(!1:k )

∏ 0

Since f can be chosen arbitrarily, the result is immediate.

It turns out that our notion of S1-randomness is also reasonably robust
with respect to weakening the ‘betting strategies’: we can assume the gambles
in Proposition 11.3x to be rational and to be part of L1(X).

Proposition 11.4. Consider any countable set of selection processes S1. Then
a path! 2≠ isS1-random for a forecasting system' 2©(X) if and only if for
any rational gamble f 2Lrat(X)\L1(X) and any selection process S 2S1(!)
that accepts !:

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§
Pn°1

k=0 S(!1:k )
∏ 0.

Proof. Due to Proposition 11.3x, it clearly suffices to prove the ‘if’ part. We give a
proof by contraposition. So assume that ! isn’t S1-random, implying that there is
some gamble f 2L(X) and real ≤> 0 such that

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§

Pn°1
k=0 S(!1:k )

<°2≤.

Let O 2 N be any natural number such that max| f | + ≤ ∑ O, and let f 0 2 Lrat(X)
be any rational gamble such that f ∑ f 0 ∑ f + ≤. Since clearly ( f 0+O)/(2O) 2Lrat(X)
and also 0 ∑ ( f +O)/(2O) ∑ ( f 0+O)/(2O) ∑ ( f +≤+O)/(2O) ∑ 1, it holds that ( f 0+O)/(2O) 2
Lrat(X)\L1(X). Now simply observe that

liminf
n!1

Pn°1
k=0 S(!1:k )

h≥
f 0(!k+1)+O

2O

¥
°E'(!1:k )

≥
f 0+O

2O

¥i

Pn°1
k=0 S(!1:k )

C220,C420= 1
2O

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f 0(!k+1)°E'(!1:k )( f 0)

§

Pn°1
k=0 S(!1:k )

C520∑ 1
2O

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)+≤°E'(!1:k )( f )

§

Pn°1
k=0 S(!1:k )
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= 1
2O

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§

Pn°1
k=0 S(!1:k )

+ ≤

2O

∑° ≤

2O
< 0,

so we’re done.

Our notion of S1-randomness is not only to some extent robust with
respect to changes in the ‘betting strategies’, as the above propositions show,
but also with respect to changes in the forecasting system. It turns out that for
every (computable) forecasting system ' 2©(X) there’s a (recursive) rational
forecasting system 'rat 2©rat(X) that has the exact same set of S1-random
paths. In this sense, you could say that rational forecasting systems suffice to
capture the essence of this randomness notion.

Proposition 11.5. Consider any countable set of selection processes S1 and
any forecasting system ' 2 ©(X). Then there’s a rational forecasting sys-
tem 'rat 2 ©rat(X) such that ≠S1 (') = ≠S1 ('rat). Moreover, if ' is com-
putable, then 'rat can be assumed to be recursive.

Proof. Let 'rat 2 ©rat(X) be any rational forecasting system such that
dH

°
'(s),'rat(s)

¢
∑ 2°|s| for all s 2 S [which is always possible by Lemma 5.618].

Fix any path ! 2 ≠, any rational gamble f 2 Lrat(X) \L1(X) and any se-
lection process S 2 S1(!) that accepts !. Since f 2 L1(X), and therefore
also max f ° f 2L1(X), it follows from Corollary 7.948 and conjugacy that

0 ∑ liminf
n!1

Pn°1
k=0 S(!1:k )

ØØE'(!1:k )( f )°E'rat(!1:k )( f )
ØØ

Pn°1
k=0 S(!1:k )

∑ limsup
n!1

Pn°1
k=0 S(!1:k )

ØØE'(!1:k )( f )°E'rat(!1:k )( f )
ØØ

Pn°1
k=0 S(!1:k )

= limsup
n!1

Pn°1
k=0 S(!1:k )

ØØØE'rat(!1:k )(° f )°E'(!1:k )(° f )
ØØØ

Pn°1
k=0 S(!1:k )

C420= limsup
n!1

Pn°1
k=0 S(!1:k )

ØØØE'rat(!1:k )
°
max f ° f

¢
°E'(!1:k )

°
max f ° f

¢ØØØ
Pn°1

k=0 S(!1:k )

∑ limsup
n!1

Pn°1
k=0 S(!1:k )dH

°
'rat(!1:k ),'(!1:k )

¢

Pn°1
k=0 S(!1:k )

∑ limsup
n!1

Pn°1
k=0 S(!1:k )2°k

Pn°1
k=0 S(!1:k )

∑ limsup
n!1

Pn°1
k=0 2°k

Pn°1
k=0 S(!1:k )

∑ 2limsup
n!1

1
Pn°1

k=0 S(!1:k )
= 0,
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where the last equality holds since S accepts !. Consequently, there is for every ≤> 0
some N 2N such that

ØØØØØ

Pn°1
k=0 S(!1:k )E'(!1:k )( f )

Pn°1
k=0 S(!1:k )

°
Pn°1

k=0 S(!1:k )E'rat(!1:k )( f )
Pn°1

k=0 S(!1:k )

ØØØØØ< ≤ for all n ∏ N ,

and hence, it follows from Proposition 11.490 that ! isS1-random for ' if and only if
it’s S1-random for 'rat. We conclude that ≠S1 (') =≠S1 ('rat).

Moreover, if ' is computable, then there’s a recursive map q : S £ N !
Pfin(Mrat(X)) such that dH

°
'(s),CH

°
q(s, N )

¢¢
∑ 2°N for all s 2 S and N 2 N. So

we can just let 'rat(s) = CH
°
q(s, |s|)

¢
for all s 2S.

11.2 Alternative frequentist characterisation

In this section, we’ll make the frequentist character of our imprecise-
probabilistic version of S1-randomness perhaps (even) more explicit by
proving an equivalent characterisation in terms of running frequencies based
on a generalisation of condition (i”). The material in this section is based on a
question by Alexander Shen, who asked for a characterisation in terms of run-
ning frequencies, which he deems more intuitive and natural. A path ! 2≠
turns out to be S1-random for a forecasting system ' 2©(X) if and only if
the frequencies of the outcomes x 2X along all infinite subsequences of !
selected by the selection processes in S1(!) are bounded by '.

To make this formal, we need some more notation and explanation. For
every path ! 2 ≠ and selection process S 2 S1(!) there is some smallest
natural N 2N such that

PN°1
k=0 S(!1:k ) > 0, which implies that

Pn°1
k=0 S(!1:k ) > 0

for all n ∏ N . Consequently,

√Pn°1
k=0 S(!1:k )I!k+1Pn°1

k=0 S(!1:k )

!

n∏N

is a well-defined sequence of gambles on X, whose values for every x 2X are
the corresponding relative numbers of occurrences along the infinite subse-
quence of ! selected by S; all these gambles are probability mass functions.

Given any collection of credal sets (Ck )1∑k∑n 2 C(X)n ,
with n 2 N, and any collection of non-negative real weights
(∏k )1∑k∑n , their weighted Minkowski sum is given by

Pn
k=1∏kCk :=©Pn

k=1∏k mk : mk 2Ck for all 1 ∑ k ∑ n
™
; it’s easy to verify that every such

sum is still a credal set if
Pn

k=1∏k = 1 [80, Section 3.1]. In particular, for
every ! 2≠, S 2S1(!), ' 2©(X) and the smallest natural N 2N for whichPN°1

k=0 S(!1:k ) > 0, we’ll consider the sequence of weighted Minkowski sums

√Pn°1
k=0 S(!1:k )'(!1:k )

Pn°1
k=0 S(!1:k )

!

n∏N

,
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which corresponds to the running averages of the credal sets that Forecasters’
forecasting system specifies along the infinite subsequence of ! selected
by S; every such Minkowski sum is a credal set.

With these objects at our disposal, we can more formally state our alter-
native frequentist characterisation for S1-randomness: a path ! 2≠ turns
out to be S1-random for a forecasting system ' 2 ©(X) if and only if the
relative frequencies of occurrences—which are probability mass functions—
converge to the running average of forecasts—which are credal sets—along
all infinite subsequences of ! selected by the selection processes in S1(!),
and this, in the following sense.

Proposition 11.6. Consider any countable set of selection processes S1. A
path ! 2≠ is S1-random for a forecasting system ' 2©(X) if and only if for
all selection processes S 2S1(!) that accept !:

lim
n!1

d

√Pn°1
k=0 S(!1:k )I!k+1Pn°1

k=0 S(!1:k )
,

Pn°1
k=0 S(!1:k )'(!1:k )

Pn°1
k=0 S(!1:k )

!
= 0.

Proof. This is an immediate corollary of Proposition 11.389 and Proposition 11.7
below.

This alternative characterisation is a rather straightforward imprecise-
probabilistic generalisation of condition (i”) combined with (ii).

This equivalent characterisation of S1-randomness in terms of frequen-
cies is perhaps made (even) more intuitive when focusing on a stationary
forecasting system C , because then it tells us that a path! 2≠ isS1-random
for the credal set C if and only if the relative frequencies of the outcomes along
all infinite subsequences of ! selected by the selection processes in S1(!)
converge to C . An important point here is that convergence to C with respect
to the distance d doesn’t mean that these frequencies should necessarily
converge to a probability mass function m 2M(X) in C . Loosely speak-
ing, it means that these frequencies will eventually be contained in C but
may continue to oscillate within C . When bringing conditions (i) and (ii) to
mind, this also clearly shows that our notion ofS1-randomness is indeed an
imprecise-probabilistic generalisation of the classical precise-probabilistic
one: a path ! 2≠ is S1-random for a probability mass function m 2M(X)
if the relative frequencies of every outcome x 2X along all infinite subse-
quences of ! selected by the selection processes in S1(!) converge to m(x).

Our proof of the above equivalent alternative characterisation for S1-
randomness relies on the proposition below, which doesn’t require any im-
plementability conditions for the selection processes.
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Proposition 11.7. Consider any path ! 2≠, any forecasting system ' 2©(X),
and any selection process S 2S that accepts !. Then,

lim
n!1

d

√Pn°1
k=0 S(!1:k )I!k+1Pn°1

k=0 S(!1:k )
,

Pn°1
k=0 S(!1:k )'(!1:k )

Pn°1
k=0 S(!1:k )

!
= 0

if and only if

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§
Pn°1

k=0 S(!1:k )
∏ 0 for all f 2L(X).

Proof. For ease of notation, let

mn :=
Pn°1

k=0 S(!1:k )I!k+1
Pn°1

k=0 S(!1:k )
and Cn :=

Pn°1
k=0 S(!1:k )'(!1:k )

Pn°1
k=0 S(!1:k )

for all n 2N for which
Pn°1

k=0 S(!1:k ) > 0. By invoking Lemma 11.8y and conjugacy,

we infer that, for all f 2L(X)and n 2N for which
Pn°1

k=0 S(!1:k ) > 0,

Emn ( f ) =
Pn°1

k=0 S(!1:k ) f (!k+1)
Pn°1

k=0 S(!1:k )

and

ECn ( f ) =
Pn°1

k=0 S(!1:k )E'(!1:k )( f )
Pn°1

k=0 S(!1:k )
.

For the ‘if’-direction, assume ex absurdo the existence of some ≤ > 0 such that
limsupn!1 d(mn ,Cn ) > 2≤. This implies that there’s some infinite subset of naturals
{ni }i2N µ N such that d

°
mni ,Cni

¢
> 2≤ for all i 2 N. By Lemma 11.9y, there’s for

every i 2 N some gamble fni 2L1(X) such that ECni
( fni )°Emni

( fni ) > 2≤. Since
the set L1(X) is compact [81, Example 17.9(a)], there’s some gamble f 2L1(X) and
some infinite set of naturals {n0

i }i2N µ {ni }i2N such that max| f ° fn0
i
| < ≤/2 for all i 2N

[81, Theorem 17.4]. Consequently, for all i 2N,

ECn0i
( f )°Emn0i

( f )
C520∏ ECn0i

( fn0
i
° ≤/2)°Emn0i

( fn0
i
+ ≤/2))

C420= ECn0i
( fn0

i
)°Emn0i

( fn0
i
)°≤

> 2≤°≤= ≤,

and hence, liminfn!1
£
Emn ( f )°ECn ( f )

§
∑°≤< 0.

For the ‘only if’-direction, assume ex absurdo the existence of some ≤ > 0 and
f 2 L(X) such that liminfn!1

£
Emn ( f )°ECn ( f )

§
< °≤. This implies that there’s

some infinite subset of naturals {ni }i2N µN such that ECni
( f )°Emni

( f ) ∏ ≤ for all
i 2N. Let N 2N be such that 0 ∑ ( f +N )/2N ∑ 1. Then, for all i 2N,

d
°
mni ,Cni

¢
∏ ECni

µ
f +N

2N

∂
°Emni

µ
f +N

2N

∂
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C220,C420= 1
2N

h
ECni

°
f
¢
°Emni

°
f
¢i

∏ ≤

2N
,

where the first inequality follows from Lemma 11.9. Hence, it holds that
limsupn!1 d(mn ,Cn ) ∏ ≤

2N > 0.

Lemma 11.8 ([80, Proposition 3]). Consider any credal sets C ,C 0 2 C(X)
and any real 0 ∑ ∏ ∑ 1. Then, E∏C+(1°∏)C 0 ( f ) = ∏EC ( f )+ (1°∏)EC 0 ( f ) for
all f 2L(X).

Lemma 11.9. Consider any probability mass function m 2M(X) and any
credal set C 2C(X). Then, d(m,C ) = max f 2L1(X)

°
EC ( f )°Em( f )

¢
.

Proof. Consider any probability mass function m0 2 M(X). Then it fol-
lows from Lemma 7.848 and the definition of the Hausdorff distance between
credal sets that km ° m0kv = dH

°
{m}, {m0}

¢
= max f 2L1(X)|E {m}( f ) ° E {m0}( f )| =

max f 2L1(X)|Em ( f )°Em0 ( f )|. Hence,

km °m0kv = max
f 2L1(X)

max
©
Em0 ( f )°Em ( f ),Em ( f )°Em0 ( f )

™

= max
f 2L1(X)

max
©
Em0 ( f )°Em ( f ),Em0 (1° f )°Em (1° f )

™

= max
f 2L1(X)

max
g2{ f ,1° f }

Em0 (g )°Em (g )

= max
f 2L1(X)

Em0 ( f )°Em ( f ),

where the last equality holds because, for all f 2L1(X), also 1° f 2L1(X). Conse-
quently,

d(m,C ) = min
m02C

km °m0ktv

= min
m02C

max
f 2L1(X)

°
Em0 ( f )°Em ( f )

¢

= max
f 2L1(X)

min
m02C

°
Em0 ( f )°Em ( f )

¢

= max
f 2L1(X)

°
EC ( f )°Em ( f )

¢
,

where the third inequality holds by von Neumann’s minimax theorem [82] because
C and L1(X) are compact convex sets, and because Em0 ( f )°Em ( f ) is linear and
therefore also continuous in m0 2C and f 2L1(X).

11.3 Properties

It turns out that S1-randomness satisfies similar properties as our
martingale-theoretic randomness notions in Section 954; to state these prop-
erties, we’ll denote the set of paths that are S1-random for a forecasting
system ' 2©(X) by ≠S1 (') :=

©
! 2≠ : ! is S1-random for '

™

Proposition 11.10. Consider any countable set of selection processes S1 and
any two forecasting systems ','0 2©(X). Then,
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(i) P'(≠S1 (')) = 1; [almost all paths are random]

(ii) ≠S1 (') 6=?; [non-emptiness]

(iii) ≠S1 ('v) =≠; [vacuity]

(iv) if 'µ'0, then ≠S1 (') µ≠S1 ('0); [monotonicity]

Proof. Let’s start by proving (i). By Proposition 11.490, a path ! 2≠ isn’t S1-random
for ' if there’s a selection process S 2 S1 that accepts !, a rational gamble f 2
Lrat(X)\L1(X), and a rational ≤ 2 (0,1) such that

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§

Pn°1
k=0 S(!1:k )

<°≤.

If this is the case, then Lemma 11.1298 and Proposition 6.630 tell us that there’s a
positive test supermartingale TS,≤, f such that limsupn!1 TS,≤, f (!1:n ) = 1, with
S 2S1, ≤ 2Q>0 \ (0,1) and f 2Lrat(X); to understand why we can assume without
loss of generality that TS,≤, f only depends on S, ≤ and f (and ', which we consider
fixed in the background), simply observe in Lemma 11.1298 that the choice of 'rat
only depends on ≤ and ', and doesn’t depend on !, and that the choice of B only
depends on ≤ and f , and doesn’t depend on ! either. Since the sets S1,Q>0 \ (0,1)
and Lrat(X) are all countable, the collection T of all such test supermartingales for '
is countable as well. By observing that

A :=
Ω
! 2≠ : (8T 2 T) limsup

n!1
T (!1:n ) <1

æ
µ≠S1 ('),

it follows from Lemma 6.2239, P335 and P135 that

1 = P'(A) ∑ P'°
≠S1 (')

¢
∑ 1.

(ii) is immediate from (i) and Lemma 6.1938.
To prove (iii), observe that for any path ! 2 ≠, any gamble f 2L(X) and any

selection process S 2S1(!) that accepts !:

liminf
n!1

Pn°1
k=0 S(!1:k ) f (!k+1)

Pn°1
k=0 S(!1:k )

∏ min f = ECv ( f ).

Hence, it holds by Proposition 11.389 that every path is S1-random for 'v.
To prove (iv), consider any two forecasting systems ','0 2©(X) such that 'µ'0

and any path ! 2 ≠S1 ('). It follows from Eq. (5.8)19 that E'(s)( f ) ∏ E'0(s)( f ) for
all s 2 S and f 2L(X), and therefore, it holds for any gamble f 2L(X) and any
selection process S 2S1(!) that accepts ! that

liminf
n!1

Pn°1
k=0 S(!1:k )

h
f (!k+1)°E'0(!1:k )( f )

i

Pn°1
k=0 S(!1:k )

∏ liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§

Pn°1
k=0 S(!1:k )

∏ 0,

where the last inequality holds because ! is assumed to be S1-random for ' [see
Proposition 11.389]. Hence, it holds by Proposition 11.389 that ! is S1-random
for '0.
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11 S1-randomness

In Lemma 11.12y below, which is used in the proof of the above propo-
sition but is more generally applicable, and which is based on a result
by De Cooman & De Bock [36, Lemma 22], we make use of so-called al-
most computable forecasting systems; this concept is especially useful in
Propositions 12.2103 and 12.3104, and Corollary 12.4105—which is in its turn
used in Theorem 19.1183—further on. A forecasting system ' 2 ©(X) is
called almost computable if for every ≤ > 0 there’s some recursive map
q : S!Pfin(Mrat(X)) such that dH

°
'(s),CH

°
q(s)

¢¢
∑ ≤ for all s 2S; we recall

that a forecasting system ' 2©(X) is called computable if there’s some recur-
sive map q : S£N! Pfin(Mrat(X)) such that dH

°
'(s),CH

°
q(s, N )

¢¢
∑ 2°N

for all s 2S and N 2N. A forecasting system ' 2©(X) is called almost com-
putable for a selection process S 2S if for every ≤> 0 there’s some recursive
map q : S! Pfin(Mrat(X)) such that, for all s 2 S, dH

°
'(s),CH

°
q(s)

¢¢
∑ ≤

if S(s) = 1; analogously, a rational forecasting system 'rat 2 ©rat(X) is
called recursive for a selection process S 2 S if there’s some recursive map
q : S! Pfin(Mrat(X)) such that, for all s 2 S, 'rat(s) = CH

°
q(s)

¢
if S(s) = 1.

Obviously, if a forecasting system ' 2 ©(X) is computable, then it is al-
most computable as well. The reverse direction doesn’t hold, because—to
give but one example—for every non-computable probability mass func-
tion m 2M(X) there’s a sequence q : N!Mrat(X) of rational probability
mass functions such that limn!1 dH

°
m, q(n)

¢
= 0, and hence, the stationary

forecasting system 'm 2 ©(X) defined by 'm(s) := m for all s 2 S is non-
computable but almost computable. On the other hand, there are forecasting
systems ' 2©(X) that are neither computable nor almost computable—as
the following example shows—, and hence, we conclude that being almost
computable is a strictly weaker condition than being computable and that
being almost computable is not implied by being non-computable, making
it a non-trivial implementability condition.

Example 11.11. Consider the binary state space X = {0,1}, any non-recursive
binary path ! 2 ≠ and any two non-computable reals p1, p2 2 [0,1] such
that p1 < 1/4 and 3/4 < p2. Let the temporal forecasting system ' 2©(X) be
defined by

'(n) :=
(

p1 if !n+1 = 1

p2 if !n+1 = 0
for all n 2N0.

' is obviously non-computable. It’s also not almost computable. Indeed, as-
sume towards contradiction that it is. This implies the existence of a recursive
map q : N0 !Q such that |'(n)°q(n)| < 1/4 for all n 2N0. Consequently,

!n+1 =
(

1 if '(n) = p1

0 if '(n) = p2
=

(
1 if q(n) < 1/2

0 if q(n) > 1/2
for all n 2N0,

so ! is recursive, which is the desired contradiction. ¶

97



Frequentist notions of randomness

If a forecasting system ' 2©(X) is almost computable (respectively al-
most recursive), then it’s almost computable (respectively almost recursive)
for any selection process S 2S, and if a forecasting system' 2©(X) is almost
computable (respectively almost recursive) for a selection process S 2S, then
it’s almost computable (respectively recursive) for any other selection pro-
cess S0 2S that selects fewer situations, in the sense that (S0(s) = 1 ) S(s) = 1)
for all s 2S, which is equivalent to requiring that S0(s) ∑ S(s) for all s 2S.

Lemma 11.12. Consider any forecasting system ' 2 ©(X), any ratio-
nal gamble f 2 Lrat(X), any selection process S 2 S and any ratio-
nal ≤ 2 (0,1). Let 'rat 2 ©rat(X) be any rational forecasting system such
that dH

°
'(s),'rat(s)

¢
< ≤

8 for all s 2S [which we know to exist by Lemma 5.618],
and let B 2N be any natural number such that maxx2X| f (x)|+ ≤

8 ∑ B. Then
the gamble process D : S!L(X) defined by

D(s)(x) := 1° ≤

8B 2 S(s)
h

f (x)+ ≤

8
°E'rat(s)( f )

i
for all s 2S and x 2X

is a positive supermartingale multiplier for ' such that, for every path ! 2≠,
if S accepts ! and

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§
Pn°1

k=0 S(!1:k )
<°≤, (11.13)

then limsupn!1 D}(!1:n) =1. Moreover, if S is recursive and ' is almost
computable for S, then—by the right choice of 'rat—D can be assumed to be
recursive, and thus D} 2TC(') =TS('). If, in addition, S is total, then D}
can be assumed to be computably unbounded on ! instead of just unbounded
on !.

Proof. Let 'rat 2 ©rat(X) be any rational forecasting system such that
dH

°
'(s),'rat(s)

¢
< ≤

8 for all s 2 S, which is always possible by Lemma 5.618. Since
f 2L1(X), and therefore also max f ° f 2L1(X), it follows from Corollary 7.948 and
conjugacy that

ØØE'rat(s)( f )°E'(s)( f )
ØØ=

ØØØE'(s)(° f )°E'rat(s)(° f )
ØØØ

C420=
ØØØE'(s)

°
max f ° f

¢
°E'rat(s)

°
max f ° f

¢ØØØ

< ≤

8
for all s 2S. (11.14)

If' is assumed to be almost computable for S, then we can assume'rat to be recursive
for S. Indeed, if ' is almost computable for S, then there’s some recursive map
q : S ! Pfin(Mrat(X)) such that, for all s 2 S, dH

°
'(s),CH

°
q(s)

¢¢
< ≤

8 if S(s) = 1,
and hence, we just have to make 'rat(s) equal CH

°
q(s)

¢
in all situations s 2 S for

which S(s) = 1.
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11 S1-randomness

Fix any B 2 N such that maxx2X | f (x)| + ≤
8 ∑ B . Let the map D : S!L(X) be

defined by

D(s)(x) := 1° ≤

8B2 S(s)
h

f (x)+ ≤

8
°E'rat(s)( f )

i
for all s 2S and x 2X.

We’ll now show in a number of steps that D is a (recursive) positive supermartingale
multiplier for ' for which limsupn!1 D}(!1:n ) =1.

To this end, we start by observing that D is a positive multiplier process. In-
deed, since ≤ < 1, |S| ∑ 1 and | f (x)+ ≤

8 °EC ( f )| ∑ | f (x)| + ≤
8 + |EC ( f )| ∑ | f (x)| + ≤

8 +
maxx2X | f (x)| ∑ 2B ∑ 4B2 for all x 2 X and C 2 C(X), using C120 for the second
inequality, it’s immediate that, for all s 2S and x 2X,

D(s)(x) = 1° ≤

8B2 S(s)
h

f (x)+ ≤

8
°E'rat(s)( f )

i(
= 1 if S(s) = 0

> 1/2 if S(s) = 1,
(11.15)

and hence, D is a positive multiplier process. We continue by showing that D is a
supermartingale multiplier for '. To this end, observe for any s 2S that

E'(s)(D(s)) = E'(s)

µ
1° ≤

8B2 S(s)
h

f + ≤

8
°E'rat(s)( f )

i∂

C220,C420=
µ
1° ≤

8B2 S(s)
h

E'(s)( f )+ ≤

8
°E'rat(s)( f )

i

| {z }
>0 [Eq. (11.14)x]

∂(
= 1 if S(s) = 0

< 1 if S(s) = 1,

(11.16)

where the second equality also makes use of conjugacy, so we find that D is a positive
supermartingale multiplier for '. In the case that S is recursive and that ' is almost
computable for S, we already know that we can assume that'rat is recursive for S, and
hence, since ≤ is rational, B is natural and f is rational, it follows from Lemma 7.143
that D is recursive. Hence, D} is recursive and therefore computable as well, which
allows us to conclude from Proposition 6.630 that D} 2TC(') =TS(').

It follows from Eq. (11.14)x that, for any ! 2≠ that is accepted by S and satisfies
Eq. (11.13)x,

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)+ ≤

8 °E'rat(!1:k )( f )
§

Pn°1
k=0 S(!1:k )

∑ liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§

Pn°1
k=0 S(!1:k )

+ ≤

4
<°3≤

4
. (11.17)

Fix any! that’s accepted by S and that satisfies Eq. (11.13)x. Then, by Eq. (11.17),
for any m, M 2N0, there’s some N > m such that

PN°1
k=0 S(!1:k ) ∏ M and

PN°1
k=0 S(!1:k )

£
f (!k+1)+ ≤/8°E'rat(!1:k )( f )

§

PN°1
k=0 S(!1:k )

<°3≤
4

. (11.18)

This will allow us to obtain a lower bound for D}(!1:N ). Since D is a positive multi-
plier process, it holds that D}(!1:N ) = exp(K ), with

K :=
N°1X

k=0
ln

≥
1° ≤

8B2 S(!1:k )
h

f (!k+1)+ ≤

8
°E'rat(!1:k )( f )

i¥
.
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Since ln(1+x) ∏ x °x2 for all x > °1/2, we infer from Eq. (11.15)x that

K ∏° ≤

8B2

N°1X

k=0
S(!1:k )

h
f (!k+1)+ ≤

8
°E'rat(!1:k )( f )

i

° ≤2

64B4

N°1X

k=0
S(!1:k )2[ f (!k+1)+ ≤

8
°E'rat(!1:k )( f )]2

and, also taking into account Eq. (11.18)x, S2 = S and
£

f (!k+1)+ ≤/8°E'rat(!1:k )( f )
§2 ∑

4B2,

∏ ≤

8B2
3≤
4

N°1X

k=0
S(!1:k )° ≤2

16B2

N°1X

k=0
S(!1:k ) = ≤2

32B2

N°1X

k=0
S(!1:k ).

Hence,

D}(!1:N ) ∏ exp

√
≤2

32B2

N°1X

k=0
S(!1:k )

!
∏ exp

≥ ≤2

32B2 M
¥
. (11.19)

After recalling that the inequality above holds for any M 2N0 and for arbitrarily large
well-chosen N 2N, we conclude that limsupn!1 D}(!1:n ) =1.

If, in addition, we assume that S is total, then we know by Lemma 11.20 that
there’s some natural growth function øS : N0 !N0 such that

Pn°1
k=0 S(!1:k ) ∏ øS (n) for

all n 2N0. Hence, it follows from the discussion above, and Eq. (11.19) in particular,
that for arbitrary large but well-chosen N 2N:

D}(!1:N ) ∏ exp

√
≤2

32B2 øS (N )

!
.

Let the real growth function ø : N0 ! R∏0 be defined as ø(n) := exp
≥

≤2

32B 2 øS (n)
¥

for
all n 2N0. By recalling that the inequality above holds for arbitrarily large well-chosen

N 2N, we conclude that limsupn!1
h

D}(!1:n )°ø(n)
i
∏ 0.

Lemma 11.20. Consider any recursive total selection process S 2SwCH. Then
there’s some natural growth function øS : N0 !N0 such that

Pn°1
k=0 S(!1:k ) ∏

øS (n) for all ! 2≠ and n 2N0.

Proof. Let øS : N0 ! N0 be defined as øS (n) := mins2Xn
Pn°1

k=0 S(s1:k ) for all n 2 N0.
øS is indeed non-negative and non-decreasing because øS (0) = 0 and øS (n) ∑
mins2Xn

Pn
k=0 S(s1:k ) = mins2Xn+1

Pn
k=0 S(s1:k ) = øS (n + 1) for all n 2 N0. It’s ob-

viously also recursive since S is. So, in order to conclude that øS is a natural growth
function, it only remains to prove that it’s unbounded. To this end, assume towards
contradiction the existence of some N 2N such that limn!1 øS (n) ∑ N . For every
n 2N0, let

An :=
(
! 2≠ :

n°1X

k=0
S(!1:k ) ∑ N

)
.

By assumption, these sets are non-empty. Moreover, observe that

An =
[

(
ÇsÉ µ≠ : s 2Xn and

n°1X

k=0
S(s1:k ) ∑ N

)
for all n 2N0,
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11 S1-randomness

which implies that each An is clopen—and hence in particular closed—in the Cantor
topology as a finite union of cylinder sets. These sets are also clearly nested, that is,
An ∂ An+1 for all n 2N0. Consequently, the family of non-empty closed sets {An }n2N0
has the finite intersection property, and hence,

T
n2N0 An 6=? [81, Theorem 17.4] by

the compactness of≠ in the Cantor topology [81, Theorem 17.8]. So, there exists some
path ! 2≠ such that

Pn°1
k=0 S(!1:k ) ∑ N for all n 2N0, which contradicts that S is total.

By construction, it holds that
Pn°1

k=0 S(s1:k ) ∏ øS (n) for all s 2Xn and n 2N0, and

hence,
Pn°1

k=0 S(!1:k ) ∏ øS (n) for all ! 2≠ and n 2N0, which concludes this proof.

Corollary 11.21. Consider any path ! 2≠, any rational gamble f 2Lrat(X),
any recursive total selection process S 2 SwCH(!) that accepts !, any fore-
casting system ' 2 ©(X) that is almost computable for S, and any R 2
{ML,wML,C,S}. If ! 2≠R('), then

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§
Pn°1

k=0 S(!1:k )
∏ 0. (11.22)

Proof. This is immediate from Lemma 11.1298, Definition 8.654 and Proposition 9.155.

We pay special attention to Proposition 11.10(i)96, which tells that for
any forecasting system ' and any countable set of selection processes S1,
the event that consist of all S1-random paths is almost sure for ', and thus
non-empty. Observe that this extends the work of Wald that we mentioned in
Section 12. Moreover, the S1-random paths, which we now know to exist,
will be used in the proof of Theorem 20.10197.

We end this section by considering a particular property from Sec-
tion 954 that we haven’t (yet) translated to this frequentist setting, that is,
that we didn’t include in Proposition 11.1095: if a path ! 2≠ is R-random
for a (non-degenerate) computable forecasting system ' 2 ©(X), with
R 2 {ML,wML,C,S}, then it’s R-random as well for any other computable
forecasting system '0 2 ©(X) for which '0(!1:n) = '(!1:n) for all n 2 N0—
see Propositions 9.657 and 9.1865. An analogous property trivially holds for
S1-randomness, but now without any computability requirements on the
forecasting system '.

Proposition 11.23. Consider any countable set of selection processes S1

and any forecasting system ' 2 ©(X). If a path ! 2 ≠ is S1-random
for ', then it’s S1-random for any other forecasting system '0 2 ©(X) for
which '0(!1:n) ='(!1:n) for all n 2N0.

Proof. This is immediate from Definition 11.289.

Hence, the notion of S1-randomness is also in line with Dawid’s Weak
Prequential Principle [8], which—as we recall from p. 66—requires that any
criterion for assessing the ‘agreement’ between a forecasting system' 2©(X)
and a path! 2≠ should depend only on the forecasts that' specifies along!.
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12 (Weak) Church randomness

If the countable set of (total) computable selection processes substitutes
for S1, then we obtain an imprecise-probabilistic version of (weak) Church
stochasticity, which we consider here. We provide and discuss their explicit
definitions in Section 12.1, and examine in Section 12.2y how these two
randomness notions relate to the four imprecise-probabilistic martingale-
theoretic randomness notions from Section 850. When restricting our at-
tention to stationary forecasting systems, in Section 12.3106, we succeed in
providing both randomness notions with a martingale-theoretic characteri-
sation.

12.1 Definition

So, we’ll pay special attention to the case where the countable set of selections
processes coincides with the set S(w)CH consisting of all recursive (total)
selection processes; recall from the introduction to Section 740 that these are
sensible choices, because, as Alonzo Church argues, a path’s randomness
should be tested by ‘effectively calculable’ functions. The corresponding
randomness notions will be called Church (CH) and weak Church (wCH)
randomness.

Definition 12.1. A path ! 2 ≠ is (w)CH-random for a forecasting sys-
tem ' 2©(X) if for any gamble f 2L(X) and any recursive (total) selection
process S 2S(w)CH(!) that accepts !:

limsup
n!1

Pn°1
k=0 S(!1:k )

h
f (!k+1)°E'(!1:k )( f )

i

Pn°1
k=0 S(!1:k )

∑ 0.

Church and weak Church randomness are imprecise-probabilistic gener-
alisations of classical randomness notions, which are in the classical precise-
probabilistic literature better known under the name Church stochasticity [27]
and weak Church stochasticity [12], respectively; this claim becomes (even)
more explicit and intuitive when having a look at their alternative frequentist
characterisation in Proposition 11.693. Historically, Church stochasticity is
considered to be the earliest notion of randomness, which originally defined
the randomness of an infinite binary sequence ! 2 {0,1}N with respect to
a precise probability model that assigns a fixed probability p 2 [0,1] to the
outcome Xn = 1 for all n 2 N. According to this notion, an infinite binary
sequence is Church random for p if the relative frequency of ones along every
computably selectable infinite subsequence converges to p [23, 25]. This no-
tion is typically called a stochasticity notion instead of a randomness notion
because it’s generally considered to be too weak to be called a randomness
notion. This nowadays general belief has been best substantiated by Jean
Ville [25, 28, 29], who pointed out the existence of a binary sequence that’s
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Church random for 1/2, and that satisfies the law of large numbers for that
reason, but which fails to satisfy the law of the iterated logarithm, since the
running frequency of ones along the sequence converges to 1/2 from below.
For this reason, Jean Ville criticised Church’s randomness definition, and
argued that besides the law of large numbers, a random sequence also ought
to satisfy other statistical laws [25, 28, 29]. Such discussions led to the de-
velopment of many other notions of randomness, amongst which the ones
introduced in Section 850.

Since the notion of weak Church randomness considers fewer selection
processes than Church randomness does, it’s clear that if a path ! 2 ≠ is
CH-random for a forecasting system ' 2©(X), then it’s also wCH-random
for ', that is, ≠CH(') µ ≠wCH(') for all ' 2 ©(X), where ≠(w)CH(') :=©
! 2≠ : ! is (w)CH-random for '

™
. This means that wCH-randomness is an

even weaker notion of randomness than CH-randomness is, and hence, it’s
also considered too weak a randomness notion from a precise-probabilistic
perspective.

That said, we choose to nevertheless speak of (weak) Church randomness
instead of (weak) Church stochasticity for reasons of notational simplicity,
as it allows us to say that a path ! 2 ≠ is (w)CH-random for a forecasting
system ' 2©(X), which is useful for stating properties that hold for all six
randomness notions, as will for example be the case in Theorem 19.1183.
Moreover, here too, we choose to speak of (w)CH-randomness when adopting
both computable and non-computable forecasting systems, where the non-
computable forecasting systems aren’t accessible by an oracle.

12.2 Relations

From the discussion after Definition 12.1x, we know that≠CH(') µ≠wCH('),
and that both Church and weak Church randomness are considered too
weak a randomness notion from a precise-probabilistic perspective. How do
they relate then to our four previously introduced imprecise-probabilistic
martingale-theoretic randomness notions? If we restrict our attention to
almost computable forecasting systems, then Church randomness turns out
to be weaker than C-randomness, and therefore weaker than wML- and
ML-randomness as well.

Proposition 12.2. Consider any almost computable forecasting system ' 2
©(X). Then

≠ML(') µ≠wML(') µ≠C(') µ≠CH(') µ≠wCH(').

Proof. By Proposition 9.155, it suffices to prove that ≠C(') µ≠CH('). To this end,
consider any ! 2≠C('), and assume towards contradiction that ! ›≠CH('). Defini-
tion 12.1x and Proposition 11.490 then imply the existence of a recursive selection
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process S 2 SCH(!) that accepts !, a rational gamble f 2 Lrat(X)\L1(X) and a
rational ≤ 2 (0,1) such that

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§

Pn°1
k=0 S(!1:k )

<°≤.

From Lemma 11.1298, since every almost computable forecasting system is almost
computable for any (recursive) selection process S 2S, we then infer the existence of
a computable positive test supermartingale T 2TC(') that’s unbounded on !, which
is the desired contradiction.

In particular, the above proposition holds for stationary forecasting sys-
tems C because every such stationary forecasting system is almost com-
putable; this is immediate from the fact that the set of closed convex hulls of
elements in Pfin(Mrat(X)) is dense in C(X) under the Hausdorff distance as
is guaranteed by Lemma 5.618.

S-randomness doesn’t fit in the relations of the above proposition; that
is, S-randomness doesn’t entail and is neither entailed by CH-randomness,
even for almost computable forecasting systems. To show this, it suffices
to prove that (i) there’s an infinite binary sequence that’s S-random for the
((almost) computable stationary) fair-coin forecasting system '1/2, but that
isn’t CH-random for '1/2, as has been done by Wang [78, Theorem 3.3.5(5)],22

and to prove that (ii) there’s an infinite binary sequence that’s CH-random
for the ((almost) computable stationary) fair-coin forecasting system '1/2,
but that isn’t S-random for '1/2, which follows immediately from results
by Ville [28] and Schnorr [2] as has been explained by Wang [78, proof of
Theorem 3.3.5(2)].

If, in addition, we restrict our attention to recursive total selection pro-
cesses, that is, if we consider wCH-randomness, then S-randomness does
turn out to entail wCH-randomness, and hence, all our four martingale-
theoretic randomness notions entail wCH-randomness.

Proposition 12.3. Consider any almost computable forecasting system ' 2
©(X). Then

≠ML(') µ≠wML(') µ≠C(') µ≠S(') µ≠wCH(').

Proof. By Proposition 9.155, it suffices to prove that ≠S(') µ≠wCH('). To this end,
consider any ! 2≠S('), and assume towards contradiction that ! ›≠wCH('). Def-
inition 12.1102 and Proposition 11.490 then imply the existence of a recursive total
selection process S 2SwCH(!) that accepts !, a rational gamble f 2Lrat(X)\L1(X)
and a rational ≤ 2 (0,1) such that

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°E'(!1:k )( f )

§

Pn°1
k=0 S(!1:k )

<°≤.

22Wang’s definition of S-randomness uses martingales instead of supermartingales. It can
however be easily proven that his definition coincides with ours for the fair-coin forecasting
system.
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12 (Weak) Church randomness

From Lemma 11.1298, since every almost computable forecasting system is almost
computable for any (recursive total) selection process S 2 S, we then infer the ex-
istence of a computable positive test supermartingale T 2TS(') that’s computably
unbounded on !, which is the desired contradiction.

Here too, the above proposition holds in particular for stationary fore-
casting systems.

We recall from Proposition 9.155 and the discussion after Defini-
tion 12.1102 that≠ML(') µ≠wML(') µ≠C(') µ≠S(') and≠CH(') µ≠wCH(')
for all' 2©(X). If we restrict our attention to almost computable forecasting
systems, as has been explored in the two propositions above, then our two
‘frequentist-flavoured’ notions of randomness are furthermore related to our
martingale-theoretic notions of randomness; we’ve summarised these results
in the corollary below.

Corollary 12.4. Consider any almost computable forecasting system' 2©(X).
Then

≠ML(') µ≠wML(') µ≠C(') µ≠CH(') µ
µ ≠S(') µ ≠wCH(').23

Proof. This is an immediate corollary of Propositions 9.155, 12.2103 and 12.3x.

The relations ≠C(') µ ≠CH(') and ≠S(') µ ≠wCH(') in Corollary 12.4
do not hold for arbitrary forecasting systems ' 2©(X). Indeed, as our next
example shows, there’s a path ! 2≠ and a precise forecasting system 'pr 2
©pr(X)—that is not (almost) computable—such that! is C-random for'pr—
and therefore also S-random for 'pr—, but that isn’t wCH-random for 'pr—
and therefore also not CH-random for 'pr. Hence, the relations ≠C(') µ
≠CH(') and ≠S(') µ≠wCH(') do in general not hold for forecasting systems
that aren’t almost computable.

Example 12.5. Consider the binary state space X = {0,1}, and a path ! 2XN

that’s C-random for 1/2 [this is always possible by Corollary 9.356]. By Propo-
sition 9.556, ! is also C-random for the interval forecast [1/4, 3/4]. We’ll now
come up with a precise forecasting system 'pr 2©pr(X)—that is not almost
computable—for which ! is C- but not wCH-random. To this end, consider
the countable set of selection processes S1 = S1/2

FC
[ {S = 1} as defined in

Section 20.1196 [see Eqs. (20.7)196 and (20.8)197], and consider any path $ 2≠
that’sS1-random for 7/8 [this is always possible by Proposition 11.10(ii)96]; it

23Examples can be found in the classical precise-probabilistic literature showing that the
inclusions between these randomness notions are strict; see also Footnote 2055. In particular,
the dissertation of Yongge Wang [78] contains an overview of old and novel results that show
that (i) there’s a path that’s CH-random for 1/2 but not C-random for 1/2, (ii) there’s a path that’s
S-random for 1/2 but not CH-random for 1/2, and (iii) there’s a path that’s CH-random for 1/2 but
not S-random for 1/2. It follows from (ii) that there’s a path that’s wCH-random for 1/2 but not
CH-random for 1/2, and it follows from (iii) that there’s a path that’s wCH-random for 1/2 but not
S-random for 1/2.
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Frequentist notions of randomness

follows from Definition 11.289 that limn!1
1
n

Pn°1
k=0 $k+1 = 7/8 [let S = 1 and f

equal I1 and °I1]. Let 'pr 2©pr(X) be defined as

'pr(s) :=
(

3/4 if $|s|+1 = 1
1/4 if $|s|+1 = 0

for all s 2S; (12.6)

see also Eq. (20.6)196. By Theorem 20.10197, ≠C([1/4, 3/4]) = ≠C('pr), and
hence, ! is also C-random for the precise forecasting system 'pr. So it only
remains to show that ! is not wCH-random for 'pr. Since ! is C-random
for 1/2, it follows from Corollary 12.4x that ! is also CH-random for 1/2, and
hence, limn!1

1
n

Pn°1
k=0 !k+1 = 1/2 by Definition 12.1102 [let S = 1 and f equal

I1 and °I1]. Meanwhile,

liminf
n!1

1
n

n°1X

k=0

°
!k+1 °'pr(!1:k )

¢

Eq. (20.6)196= liminf
n!1

1
n

n°1X

k=0

µ
!k+1 °

∑
1
4
+$k+1

µ
3
4
° 1

4

∂∏∂

=°1
4
+ liminf

n!1
1
n

n°1X

k=0

µ
!k+1 °

$k+1

2

∂

=°1
4
+ lim

n!1
1
n

n°1X

k=0
!k+1 °

1
2

lim
n!1

1
n

n°1X

k=0
$k+1

=°1
4
+ 1

2
° 1

2
7
8
=° 3

16
< 0,

so we conclude from Definition 12.1102 and Proposition 11.389 [with f = I1
and S = 1] that ! is not wCH-random for the precise forecasting system
'pr. The precise forecasting system 'pr is then necessarily not almost com-
putable, because otherwise, since ! is C-random for 'pr, it would follow
from Corollary 12.4x that ! is wCH-random for 'pr as well. ¶

12.3 Alternative martingale-theoretic characterisation

When also restricting our attention to stationary forecasting systems, that
is, to credal sets, then we can equip these two frequentist randomness no-
tions with a characterisation in terms of a rather natural class of computable
betting strategies that reminds of—and is similar to—our randomness defi-
nitions in Section 850; the work in this section is based on analogous results
that have been proved in a precise-probabilistic context [32, Section 7.4.3].
More specifically, for every credal set C 2 C(X), we’ll define a set of sim-
ple recursive supermartingales T(w)CH(C ), and prove that a path ! 2 ≠ is
(w)CH-random for ' if and only if no T 2T(w)CH(C ) is unbounded on !.

To do so, we’ll start by formally introducing these simple betting strategies.
A supermartingale multiplier D for a credal set C 2C(X) is called simple if
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12 (Weak) Church randomness

there’s a rational positive gamble f 2Lrat(X), with EC ( f ) < 1, and a recursive
selection process S 2S such that

D(s) =
(

1 if S(s) = 0

f if S(s) = 1
for all s 2S;

it’s additionally called total if S is total. Since the simple supermartingale
multiplier D is clearly positive, it follows from Proposition 6.630 that the test
supermartingale D} generated by D is positive as well; since D is also clearly
recursive, the test supermartingale D} is recursive as well. We now use these
(total) simple supermartingale multipliers to introduce the following two sets
of betting strategies:

TCH(C ) all (recursive positive) test supermartingales for C
generated by simple supermartingale multipliers;

TwCH(C ) all (recursive positive) test supermartingales for C
generated by total simple supermartingale multipliers.

These sets of simple betting strategies now lead to the desired result.

Proposition 12.7. A path ! 2≠ is (w)CH-random for a credal set C 2C(X) if
and only if no test supermartingale T 2T(w)CH(C ) is unbounded on !.

Proof. For the ‘if’-direction, by Definition 12.1102 and Proposition 11.490, assume
towards contradiction the existence of some rational gamble f 2Lrat(X)\L1(X),
some (total) recursive selection process S 2S(w)CH(!) that accepts ! and some ratio-
nal ≤ 2 (0,1) such that

liminf
n!1

Pn°1
k=0 S(!1:k )

£
f (!k+1)°EC ( f )

§

Pn°1
k=0 S(!1:k )

<°≤.

Let Crat be any rational credal set such that dH(C ,Crat) < ≤/8 [which is always possible
by Lemma 5.618], let B 2N be any natural number such that maxx2X | f (x)|+ ≤

8 ∑ B ,
and let the map D : S!R be defined by

D(s)(x) := 1° ≤

8B2 S(s)
h

f (x)+ ≤

8
°ECrat ( f )

i
for all s 2S and x 2X.

Then it’s immediate from Lemma 11.1298 that D} is a recursive positive test super-
martingale for C generated by the positive supermartingale multiplier D and that
limsupn!1 D}(!1:n ) =1. So we’re done if we can show that D} 2T(w)CH(C ). Since
D is a positive supermartingale multiplier for C , it only remains to show that it is
simple (and total). To this end, observe for any s 2S that

D(s) =
(

1 if S(s) = 0

1° ≤
8B 2

°
f + ≤

8 °ECrat ( f )
¢

if S(s) = 1
for all s 2S.

The gamble f 0 2 L(X) defined by f 0 := 1 ° ≤
8B 2

°
f + ≤

8 °ECrat ( f )
¢

is positive
by Eq. (11.15)99 in the proof of Lemma 11.1298 [with 'rat ! Crat], rational by
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Lemma 7.143 and by the rationality of ≤, B , f and Crat, and satisfies EC ( f ) < 1 by
Eq. (11.16)99 in the proof of Lemma 11.1298 [with 'rat !Crat and '!C ] . By recall-
ing that S is recursive, the above implies that D is a simple supermartingale multiplier
for C , and that it’s additionally total if S is total.

For the ‘only if’-direction, assume towards contradiction the existence of a test
supermartingale T = D} 2 T(w)CH(C ) that’s generated by a simple supermartin-
gale multiplier D for C and that’s unbounded on !. Then there’s a rational pos-
itive gamble f 2 Lrat(X), with EC ( f ) < 1, and a recursive (total) selection pro-
cess S 2S such that D(s) = 1+S(s)( f °1) for all s 2S. Since limsupn!1 D}(!1:n ) =
limsupn!1 T (!1:n ) =1, we can assume that S accepts !; otherwise there’s some
M 2N such that D(!1:m ) = 1 for all m ∏ M , which prevents Sceptic from betting and
thus from getting rich without bounds on !. Since D} is positive and unbounded on
!, we infer that

limsup
n!1

n°1X

k=0
S(!1:k ) ln( f (!k+1)) = limsup

n!1

n°1X

k=0
ln

°
1+S(!1:k )

£
f (!k+1)°1

§¢

= limsup
n!1

ln

√
n°1Y

k=0

°
1+S(!1:k )

£
f (!k+1)°1

§¢
!

= limsup
n!1

ln(D}(!1:n )) =1,

and hence,

limsup
n!1

Pn°1
k=0 S(!1:k ) ln( f (!k+1))

Pn°1
k=0 S(!1:k )

∏ 0, (12.8)

because otherwise there’s some ≤> 0 and M 2N such that

Pm°1
k=0 S(!1:k ) ln( f (!k+1))

Pm°1
k=0 S(!1:k )

<°≤ for all m ∏ M

)
m°1X

k=0
S(!1:k ) ln( f (!k+1)) <°≤

m°1X

k=0
S(!1:k ) for all m ∏ M

) limsup
n!1

n°1X

k=0
S(!1:k ) ln( f (!k+1)) =°1,

a contradiction.
Since ln y ∑ y °1 for all y > 0 and f is positive, we have in particular that ln f (x) ∑

f (x)°1 for all x 2X, which implies that EC (ln( f )) ∑ EC ( f °1) = EC ( f )°1 < 0, using
C520 for the first inequality and C420 for the equality. Consequently, it follows from
Eq. (12.8) that

limsup
n!1

Pn°1
k=0 S(!1:k )

h
ln( f (!k+1))°EC (ln( f ))

i

Pn°1
k=0 S(!1:k )

> 0.

By recalling that S is a recursive (total) selection process that accepts !, we conclude
that ! isn’t (w)CH-random for C .
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12 (Weak) Church randomness

The above result also confirms the relation between C- and CH-
randomness in Proposition 12.2103 for (almost computable) stationary fore-
casting systems, because obviously TCH(C ) µTC(C ) for any C 2C(X), and
hence, ≠C(C ) µ≠CH(C ) for any C 2C(X).
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Test-theoretic notions of
randomness

Chapter 49 resolved around generalising the so-called martingale-theoretic
approach to randomness by allowing for imprecise-probabilistic uncertainty
models, where a path ! 2 ≠ is considered to be martingale-theoretically
random for a forecasting system if there’s no specific type of supermartingale
that becomes unbounded on ! in some specific way.

Of course, you can come up with many such martingale-theoretic ran-
domness notions. What makes a randomness notion interesting then? When
is its definition natural? For one thing, according to the classical precise-
probabilistic literature, and as has also been discussed in Sections 850 to 1066,
an interesting randomness notion should have an intuitive interpretation, it
has to satisfy a number of interesting properties, and its definition should be
reasonably robust with respect to changes (to the set of betting strategies).
Another classical criterion is that there should be different ways to approach
and define the algorithmic randomness notions,24 besides the martingale-
theoretic one [23, 31, 32]: via randomness tests [1, 30, 32], via Kolmogorov
complexity [1, 30, 32, 83, 84], via order-preserving transformations of the
event tree associated with a sequence of outcomes [1], via specific limit laws
(such as Lévy’s zero-one law) [85, 86], and so on.

In this chapter, we consider one of these alternative approaches, the
randomness test approach. Intuitively speaking, in a classical precise-
probabilistic setting, a path ! 2≠ is regarded as test-theoretically random
for a precise forecasting system 'pr 2©pr(X) if there’s no computable way

24Although (w)CH-randomness isn’t considered an ‘interesting’ randomness notion from a
precise-probabilistic perspective, this of course reminds of our work in Sections 1187 and 12102
that equips (w)CH-randomness with several equivalent characterisations.
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Test-theoretic notions of randomness

to specify a set of probability zero containing this path [9]. More precisely,
the randomness of a path ! 2 ≠ with respect to a precise forecasting sys-
tem 'pr 2©pr(X) is tested as follows: a path ! is test-theoretically25 random
for 'pr if it’s impossible to specify—in some effectively implementable way—
for every positive threshold ± > 0 a set of paths that contains ! and that’s
small, in the sense that its probability is smaller than ±. In this definition,
such a collection of sets is called a null cover—because the probability of its
intersection is lower than every ±> 0 and therefore zero—or a test, so ran-
domness amounts to testing, for any such test, whether the path in question
does not belong to its intersection.

In Section 13y, we start by showing how we can define specific tests—
or null covers—involving credal sets that allow us to introduce two new
flavours of so-called test(-theoretic) randomness for imprecise-probabilistic
uncertainty models: one reminiscent of the original Martin-Löf approach,
and another of the original Schnorr approach. We then proceed in Sec-
tions 14119 and 15136 to show that the test-theoretic notions of Martin-Löf and
Schnorr randomness, respectively, are, under some computability and non-
degeneracy conditions on the forecasting system, equivalent to the respective
martingale-theoretic notions introduced in Chapter 49. We thus succeed in
extending, to our more general imprecise probabilities context, earlier results
by Schnorr [1] and Levin [4] showing that these test- and martingale-theoretic
randomness notions are essentially equivalent for precise-probabilistic un-
certainty models.26 As a bonus, we use our argumentation in Sections 14.1120
and 14.2121 to prove in Section 14.3126 that there are so-called universal test
supermartingales and universal randomness tests for our generalisations of
Martin-Löf randomness.

We’re actually not the first to allow for imprecise-probabilistic uncer-
tainty models in test-theoretic approaches to algorithmic randomness. An-
other measure-theoretic notion of randomness that allows for imprecise-
probabilistic (as well as non-computable) uncertainty models was put for-
ward by Levin in 1973 and is nowadays known as uniform randomness [4, 5, 6].
This notion of uniform randomness allows for imprecision by considering so-
called ‘effectively compact classes of probability measures’. In Section 14.4130,
after proving the equivalence between our martingale- and test-theoretic
versions of Martin-Löf randomness in Sections 14.1120 and 14.2121, and after
introducing the universal test in Section 14.3126, we prove that our notion of

25We’re well aware that the term ‘test-theoretic’ could be construed as somewhat misleading,
because a martingale can also be considered as constituting a test. An alternative term for
this approach that’s sometimes used in the literature, is ‘measure-theoretic’, but that term
isn’t appropriate in the present imprecise probabilities context either, because as we’ll see
further on, the relevant objects involved are no longer probability measures but sublinear upper
expectation functionals. We’ll therefore stick to the term ‘test-theoretic’ when dealing with
forecasting systems, for lack of a better alternative, and also use the term ‘measure-theoretic’
when dealing with measures.

26Schnorr in fact only proves this for the fair-coin forecasting system '1/2.
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13 Test-theoretic randomness definitions

Martin-Löf test randomness for computable (imprecise-probabilistic) fore-
casting systems can be reinterpreted as a special case of uniform randomness.
Together with the discussion in Sections 14.1120 and 14.2121, this then leads in
effect to a previously non-existing martingale-theoretic account of uniform
randomness, at least in the special case covered by our notion of Martin-Löf
test randomness.

13 Test-theoretic randomness definitions

Let’s turn to a ‘test-theoretic’, or randomness test, approach to defining Martin-
Löf and Schnorr randomness for (imprecise-probabilistic) forecasting sys-
tems, which will be inspired by the existing corresponding notions for fair-
coin, or more generally, computable precise forecasting systems [1, 3, 4, 30,
32]. In Sections 13.1 and 13.2y, we’ll respectively introduce the imprecise-
probabilistic counterparts of Martin-Löf tests (ML-tests) and Schnorr tests
(S-tests), which we’ll then use in Section 13.3119 to define two test-theoretic
randomness notions: Martin-Löf test randomness (ML-test-randomness)
and Schnorr test randomness (S-test-randomness).

13.1 Martin-Löf tests

Let’s begin our discussion of Martin-Löf tests with a few notational con-
ventions that will prove useful for the remainder of this chapter. With any
subset A ofN0 £S, we can associate a sequence An of subsets of S, defined
by

An := {s 2S : (n, s) 2 A} for all n 2N0.

With each such An , we can associate the set of paths
Ö

An
Ü

. If the set A is
recursively enumerable, then we say that the

Ö
An

Ü
constitute a computable

sequence of effectively open sets, as already introduced in Section 7.244.
Under the classical precise-probabilistic approach to algorithmic ran-

domness, a sequence of global events Gn µ ≠ is now a Martin-Löf test
[30] for a computable precise forecasting system 'pr 2©pr(X)—or the mea-
sure µ'pr —if there’s some recursively enumerable subset A of N0 £S such
that Gn =

Ö
An

Ü
and P'pr

°Ö
An

Ü¢
= µ'pr

°Ö
An

Ü¢
∑ 2°n for all n 2 N0 [32, Defi-

nition 6.2.1]. The following definition trivially generalises this idea to our
present—imprecise—context. It will lead in Section 13.3119 further on to a
suitable generalisation of Martin-Löf’s randomness definition that allows
for imprecise-probabilistic forecasting systems. Here too, we’ll continue to
speak of Martin-Löf tests also when ' is no longer precise, computable,
or non-degenerate; in the classical precise-probabilistic literature, this ap-
proach where randomness tests—that are associated with a non-computable
measure—have no access to the measure by an oracle is known as Hippocratic
or Blind randomness [6, 87, 88].

113



Test-theoretic notions of randomness

Definition 13.1 (Martin-Löf test). We call a sequence of global events Gn µ≠
an ML-test for a forecasting system ' 2©(X) if there’s some recursively enu-
merable subset A ofN0£S such that for the associated computable sequence
of effectively open sets

Ö
An

Ü
, we have that Gn =

Ö
An

Ü
and P'

°Ö
An

Ü¢
∑ 2°n

for all n 2N0.

We may always—and often will—assume without loss of generality that the
subsets An of the event tree S that constitute the ML-test are partial cuts.
Moreover, we can even assume the set A to be recursive rather than merely
recursively enumerable, because there’s actually a single algorithm that turns
any recursively enumerable set B µS into a recursive partial cut B 0 µS such
that ÇBÉ= ÇB 0É.27 We refer to Ref. [32, Sec. 2.19] for discussion and proofs; see
also the related discussions in Refs. [1, Korollar 4.10, p. 37] and [74, Lemma 2,
Section 5.6].28

Corollary 13.2. A sequence of global events Gn is an ML-test for a forecasting
system ' 2©(X) if and only if there’s some recursive subset A of N0 £S such
that An is a partial cut, Gn =

Ö
An

Ü
and P'

°Ö
An

Ü¢
∑ 2°n for all n 2N0.

In what follows, we’ll also use the term ML-test to refer to a subset A ofN0£S
that represents the ML-test Gn in the specific sense that Gn =

Ö
An

Ü
for all n 2

N0. Due to Corollary 13.2, we can always assume such subsets A of N0 £S
to be recursive, and the corresponding An to be partial cuts. But we’ll never
assume that these simplifications are in place without explicitly saying so.

13.2 Schnorr tests

In order to propose a suitable generalisation of Schnorr’s definition of a
totally recursive sequential test [1, Def. (8.1), p. 63] for the (precise) fair-coin
forecasting system'1/2 that associates a constant precise forecast'1/2(s) := 1/2

with each situation s 2S, we need a few more notations. Starting from any
subset A ofN0 £S, we let

A<`
n := An \ {t 2S : |t | < `}

A∏`
n := An \ {t 2S : |t |∏ `}

)
for all n,` 2N0. (13.3)

In the important special case that An is a partial cut, the global event
Ö

An
Ü

is the disjoint union of the global events
Ö

A<`
n

Ü
and

Ö
A∏`

n
Ü

, implying that
IÇAnÉ = IÇA<`

n É+ IÇA∏`
n É.

Here as well, we’ll continue to speak of S-tests also when ' is no longer
the precise, computable and non-degenerate '1/2.

27When starting from a recursive subset B µ S, there’s an easy way to obtain a recursive
(sub)set B 0 µS such that ÇBÉ= ÇB 0É: simply consider the set B 0 := {s 2 B : (8t @ s)t › B} µ B .

28In truth, these references actually only consider binary state spaces. Nevertheless, we
still chose to use them since the extension to arbitrary but finite state spaces is obvious and
immediate.
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Definition 13.4 (S-test). We call a sequence of global events Gn µ≠ an S-test
for a forecasting system' 2©(X) if there’s some recursive subset A ofN0£S—
called its representation—and some recursive map e : N0

2 !N0—called its
tail bound—such that Gn =

Ö
An

Ü
and P'

°Ö
An

Ü¢
∑ 2°n for all n 2N0, and

P'°Ö
An

Ü
\
Ö

A<`
n

Ü¢
∑ 2°N for all (N ,n) 2N0

2 and all `∏ e(N ,n). (13.5)

As for the case of ML-tests, we can assume without loss of generality
that the representation A is such that the An are partial cuts, at which pointÖ

An
Ü

\
Ö

A<`
n

Ü
=

Ö
A∏`

n
Ü

in Eq. (13.5). Moreover, we can assume without loss of
generality that there’s no dependence of the tail bound e on the index n of
the

Ö
A∏`

n
Ü

. The proposition below also shows that these simplifications can
be implemented independently.

Proposition 13.6. Consider any S-test Gn for a forecasting system ' 2©(X)
with representation C µN0 £S. Then

(i) it also has a representation A such that
Ö

An
Ü
=

Ö
Cn

Ü
,
Ö

A<l
n

Ü
=

Ö
C<l

n
Ü

and An is a partial cut for all n, l 2N0;

(ii) it has a tail bound e that doesn’t depend on the index n of the
Ö
Cn

Ü
\Ö

C<`
n

Ü
, meaning that e(N ,n) = e(N ,n0) =: e(N ) for all N ,n,n0 2N0, and

that moreover is a growth function.

Proof. By assumption, the representation C is a recursive subset of N0 £S such that
Gn =

Ö
Cn

Ü
and P'°Ö

Cn
Ü¢

∑ 2°n for all n 2N0, and such that there’s some recursive
map e0 : N0

2 !N0 such that P'°Ö
Cn

Ü
\
Ö
C<`

n
Ü¢

∑ 2°N for all (N ,n) 2N0
2 and all `∏

e0(N ,n).
For the proof of the first statement, consider for any n 2N0, the set of situations

An := {s 2Cn : (8t @ s)t ›Cn } µCn ,

which is clearly a partial cut and recursive uniformly in n. Of course, the correspond-
ing A := {(n, s) : n 2N0 and s 2 An } µ C is then recursive. It follows readily from our
construction that

Ö
An

Ü
=

Ö
Cn

Ü
and

Ö
A<`

n
Ü
=

Ö
C<`

n
Ü

for all n,` 2N0.
For the proof of the second statement, define e : N0 !N0 by letting

e(N ) := N + N
max
m=0

N
max
n=0

e0(m,n) for all N 2N0.

Clearly, the map e is recursive because e0 is. It’s non-decreasing because

e(N +1) = N +1+ N+1
max
m=0

N+1
max
n=0

e0(m,n) ∏ N + N
max
m=0

N
max
n=0

e0(m,n) = e(N ) for all N 2N0,

and it’s unbounded because e(N ) ∏ N for all N 2N0. We conclude that e is a growth
function. Now, fix any N 2N0 and n 2N0. Then there are two possibilities. The first is
that n ∑ N , and then for all `∏ e(N ) also `∏ e0(N ,n), and therefore, as we know from
the beginning of this proof,

P'°Ö
Cn

Ü
\
Ö
C<`

n
Ü¢

∑ 2°N .
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The other possibility is that n > N , and then trivially for all `∏ e(N )

P'°Ö
Cn

Ü
\
Ö
C<`

n
Ü¢

∑ P'°Ö
Cn

Ü¢
∑ 2°n ∑ 2°N ,

where the first inequality follows from P335, and the penultimate one, as explained at
the beginning of this proof, follows from the assumption.

We’ll also use the term S-test to refer to its representation A. So, an S-
test is an ML-test with the additional property that it’s always assumed to
be recursive rather than merely recursively enumerable, and that the upper
probabilities of its ‘tail global events’ converge to zero effectively. As indicated
above, we can, and often will, assume that the sets An are partial cuts and
that the tail bound is a univariate growth function. But we’ll never assume
that these simplifications are in place without explicitly saying so.

Let’s now investigate our notion of an S-test in some more detail. First
of all, we study how it relates to Schnorr’s definition of a totally recursive
sequential test [1, Def. (8.1), p. 63] for the (precise) fair-coin forecasting
system '1/2.

Schnorr calls a recursive subset A of N0 £S a totally recursive sequen-
tial test provided that P'1/2

°Ö
An

Ü¢
∑ 2°n for all n 2N0 and, additionally, the

sequence of real numbers P'1/2
°Ö

An
Ü¢

is computable. Our additional con-
dition (13.5)x in Definition 13.4x above therefore seems somewhat more
involved than Schnorr’s additional computability requirement for the se-
quence P'1/2 (

Ö
An

Ü
).

Let’s now show, by means of Propositions 13.7 and 13.10118 below, that
that’s only an illusion. Indeed, in Proposition 13.7 we show that our additional
condition (13.5)x implies the Schnorr-like additional computability require-
ment, even in the case of more general computable imprecise-probabilistic
forecasting systems. And in Proposition 13.10118, we prove that for general
computable but precise forecasting systems the Schnorr-like additional re-
quirement implies our additional effective convergence condition.

Proposition 13.7. If A µ N0 £S is an S-test for a computable forecasting
system ' 2©(X), then the P'

°Ö
An

Ü¢
constitute a computable sequence of real

numbers.

Proof of Proposition 13.7. Given the assumptions, an appropriate instantiation
of our Workhorse Lemma 13.9y [with D ! N0, d ! n, p ! ` and C !©
(n,`, s) 2N0

2 £S : s 2 A<`
n

™
, and therefore C p

d ! A<`
n ] guarantees that the real

map (n,`) 7! P'°Ö
A<`

n
Ü¢

is computable. Moreover, for all n,` 2N0,

ØØP'°Ö
An

Ü¢
°P'°Ö

A<`
n

Ü¢ØØ= P'°
ÇAnÉ

¢
°P'°Ö

A<`
n

Ü¢
∑ P'°Ö

An
Ü

\
Ö

A<`
n

Ü¢
, (13.8)

where the equality follows from P335, and the inequality follows from P235. Since A is
an S-test, we know that it has a tail bound, so there’s some recursive map e : N0

2 !N0
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such that P'°Ö
An

Ü
\
Ö

A>`
n

Ü¢
∑ 2°N for all (N ,n) 2N0

2 and all `∏ e(N ,n), and if we
combine this with the inequality in Eq. (13.8)x, this leads to

ØØP'°Ö
An

Ü¢
°P'°Ö

A<`
n

Ü¢ØØ∑ 2°N for all (N ,n) 2N0
2 and all `∏ e(N ,n).

Since this tells us that the computable real map (n,`) 7! P'°Ö
A<`

n
Ü¢

converges effec-
tively to the sequence of real numbers P'°Ö

An
Ü¢

, we conclude that P'°Ö
An

Ü¢
is a

computable sequence of real numbers.

In the above proof, we made use of the following general and powerful
lemma, various instantiations of which will help us through many a compli-
cated argument further on.

Lemma 13.9 (Workhorse Lemma). Consider any computable forecasting
system ' 2©(X), any countable set D whose elements can be encoded by the
natural numbers, and any recursive set C µD£N0 £S such that |s|∑ p for
all (d , p, s) 2C . Then P'

°Ö
C p

d

Ü
|s

¢
is a computable real uniformly in d, p and s,

with C p
d :=

©
s 2S : (d , p, s) 2C

™
for all p 2N0 and d 2D.

Proof. We start by observing that C p
d is a finite recursive set of situations, uniformly

in d and p. Similarly,
C p

d
0 :=

©
t 2S : |t | = p and C p

d v t
™

is clearly also a finite recursive set of situations, uniformly in d and p. Moreover, it’s a
partial cut.

Another important observation is that there are three mutually exclusive possibil-
ities for any of the sets C p

d and any t 2S. The first possibility is that C p
d v t , which can

be checked recursively, in the sense that there’s a recursive map q : D£N0£S! {0,1}
such that, for all (d , p, t ) 2D£N0 £S , q(d , p, t ) = 1 if C p

d v t , and q(d , p, t ) = 0 other-
wise. In that case, we know from Corollary 6.15(i)36 that P'°Ö

C p
d

Ü
|t

¢
= 1. The second

possibility is that t “C p
d , which can be checked recursively as well. In that case, we

know from Corollary 6.15(i)36 that P'°Ö
C p

d

Ü
|t

¢
= 0. The third, final, and most involved

possibility is that t @C p
d , which can also be checked recursively.

It’s clear from this discussion that the computability of P'°Ö
C p

d

Ü
|s

¢
is trivial when

s “C p
d or C p

d v s, so we’ll from now on only pay attention to the case that s @C p
d . Since,

obviously,
Ö
C p

d
0Ü=

Ö
C p

d

Ü
and in this case also s @C p

d
0, we’ll focus on the computability

of P'°Ö
C p

d
0Ü|s

¢
.

For any t w s with |t | = p, we infer from the discussion above that P'°Ö
C p

d
0Ü|t

¢
= 1

if t 2C p
d
0 and P'°Ö

C p
d
0Ü|t

¢
= 0 otherwise. Clearly then, P'°Ö

C p
d
0Ü|t

¢
is a computable

real uniformly in d , p and t with |t | = p.
In a next step, we find by applying P536 that, for any t w s with |t | = p °1,

P'°Ö
C p

d
0Ü|t

¢
= E'(t )

≥
P'°Ö

C p
d
0Ü|t ·

¢¥
,

which, by Lemma 7.747, is a computable real uniformly in d , p and t with |t | = p °1,
simply because ' is computable.

By applying P536 to situations t w s with successively smaller |t |, we eventually
end up in the situation s after a finite number of steps, which implies that P'°Ö

C p
d

Ü
|s

¢

is a computable real, uniformly in d , p and s.
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The next proposition is concerned with the special case of precise
forecasting systems 'pr 2 ©pr(X). We recall from Section 6.439 that the
martingale-theoretic global upper and lower probabilities then coincide with
the standard probability measure µ'pr associated with the local probability
mass functions implicit in 'pr on all (open) events A 2 B(≠), and that for
each partial cut K , the corresponding set of paths ÇKÉ is open in the Cantor
topology, so P'pr (ÇKÉ) = P'pr (ÇKÉ) = P'pr (ÇKÉ). We’ll use this fact implicitly
and freely in the formulation and proof of the result below.

Proposition 13.10. Consider an ML-test Gn for a computable precise fore-
casting system'pr 2©pr(X). If the P'pr (Gn) constitute a computable sequence
of real numbers, then Gn is an S-test for 'pr.

Proof. By Corollary 13.2114, we may assume without loss of generality that there’s a
recursive A µN0 £S such that An is a partial cut, Gn =

Ö
An

Ü
and P'pr

°Ö
An

Ü¢
∑ 2°n

for all n 2N0. Assume that the P'pr
°Ö

An
Ü¢

constitute a computable sequence of real
numbers. Then, by Definition 13.4115, it suffices to prove that there’s some recursive
map e : N0

2 !N0 such that P'pr
°Ö

A∏`
n

Ü¢
∑ 2°N for all (N ,n) 2N0

2 and all `∏ e(N ,n).
To do so, we start by proving that the real map (n,`) 7! P'pr

°Ö
A∏`

n
Ü¢

is com-
putable and that lim`!1 P'pr

°Ö
A∏`

n
Ü¢

= 0 for all n 2 N0. First of all, observe that
the computability of the forecasting system 'pr, the recursive character of the finite
partial cuts A<`

n and an appropriate instantiation of our Workhorse Lemma 13.9x
[with D ! N0, d ! n, p ! ` and C !

©
(n,`, s) 2N0

2 £S : s 2 A<`
n

™
, and therefore

C p
d ! A<`

n ] allow us to infer that the real map (n,`) 7! P'pr
°Ö

A<`
n

Ü¢
is computable.

Since the forecasting system 'pr is precise, and since IÇAnÉ = IÇA<`
n É + IÇA∏`

n É for
all (n,`) 2N0

2 due to An being a partial cut, we infer from Eq. (6.23)40 that

P'pr
°Ö

A∏`
n

Ü¢
= P'pr

°Ö
An

Ü¢
°P'pr

°Ö
A<`

n
Ü¢

. (13.11)

Since P'pr
°Ö

An
Ü¢

is a computable sequence of real numbers and (n,`) 7!
P'pr

°Ö
A<`

n
Ü¢

is a computable real map, it follows from Eq. (13.11) that (n,`) 7!
P'pr

°Ö
A∏`

n
Ü¢

is a computable real map. Furthermore, since IÇA<`
n É % IÇAnÉ point-wise

as `!1, it follows from P335 and P436 that P'pr
°Ö

A<`
n

Ü¢
% P'pr

°Ö
An

Ü¢
as `!1,

and therefore also that P'pr
°Ö

A∏`
n

Ü¢
& 0 as `!1, for all n 2N0.

We’re now ready to prove that there’s some recursive map e : N0
2 !N0 such that

P'pr
°Ö

A∏`
n

Ü¢
∑ 2°N for all (N ,n) 2N0

2 and all `∏ e(N ,n). Since (n,`) 7! P'pr
°Ö

A∏`
n

Ü¢

is a computable real map, there’s some recursive rational map q : N0
2 £N!Q such

that ØØP'pr
°Ö

A∏`
n

Ü¢
°q(n,`, N )

ØØ∑ 2°N for all (n,`, N ) 2N0
2 £N. (13.12)

Define the map e : N0
2 !N0 by

e(N ,n) := min
n
` 2N0 : q(n,`, N +2) < 2°(N+1)

o
for all (N ,n) 2N0

2. (13.13)

Clearly, if we can prove that the set of natural numbers in the definition above is
always non-empty, then the map e will be well-defined and recursive. To do so, fix
any (N ,n) 2N0

2, and observe that since P'pr
°Ö

A∏`
n

Ü¢
& 0 as `!1, there always is
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some `o 2 N0 such that P'pr
°Ö

A∏`o
n

Ü¢
< 2°(N+2). For this same `o , it then indeed

follows from Eq. (13.12)x that

q(n,`o , N +2) ∑ P'pr
°Ö

A∏`o
n

Ü¢
+2°(N+2) < 2°(N+2) +2°(N+2) = 2°(N+1).

To complete the proof, consider any n, N 2N0 and any `∏ e(N ,n). Then, indeed,

P'pr
°Ö

A∏`
n

Ü¢
∑ P'pr

°Ö
A∏e(N ,n)

n
Ü¢

∑ q(n,e(N ,n), N +2)+2°(N+2)

< 2°(N+1) +2°(N+2) < 2°N ,

where the first inequality follows from ` ∏ e(N ,n) and P335, the second inequality
follows from Eq. (13.12)x, and the third inequality follows from Eq. (13.13)x.

13.3 Defining Martin-Löf and Schnorr test randomness

With the definitions of ML- and S-tests for a forecasting system at hand,
we’re now in a position to generalise both Martin-Löf’s and Schnorr’s defi-
nition for randomness using randomness tests, from fair-coin to imprecise-
probabilistic forecasting systems. Intuitively, for both randomness notions, a
path is test-theoretically random for a forecasting system ' 2©(X) if there’s
no computable way to specify a set of upper probability zero containing this
path; after all, if a path is contained in a null set of paths that have some rare
(but computably specifiable) property, then it indeed shouldn’t be considered
random. In the definition below, a computably specifiable set is taken to be
the intersection of a collection of sets

Ö
An

Ü
, with n 2N0, that constitute an

ML-test or an S-test; the upper probability of this intersection is zero because
it’s bounded above by 2°n for all n 2N0.

Definition 13.14 (Test randomness). Consider a forecasting system' 2©(X).
Then we call a path ! 2≠

(i) ML-test-random for ' if ! 62T
m2N0

Ö
Am

Ü
, for all ML-tests A for ';

(ii) S-test-random for ' if ! 62T
m2N0

Ö
Am

Ü
, for all S-tests A for '.

We want to show in the next two sections that for forecasting systems that
are computable and satisfy a simple additional non-degeneracy condition,
our ‘test-theoretic’ and ‘martingale-theoretic’ notions of both Martin-Löf and
Schnorr randomness are equivalent.

14 Equivalence of Martin-Löf and Martin-Löf test random-
ness

Let’s start by considering ML-randomness. The proof of our claim, in Theo-
rem 14.1y below, that the ‘test-theoretic’ and ‘martingale-theoretic’ versions
for this type of randomness are equivalent, follows the spirit of a reasonably
similar proof in a paper on precise prequential Martin-Löf randomness by
Vovk and Shen [9, Proof of Theorem 1]. It allows us to extend Schnorr’s line of
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reasoning for this equivalence [1, Secs. 5–9] from fair-coin to non-degenerate
computable imprecise-probabilistic forecasting systems.

Theorem 14.1. Consider any path! 2≠ and any non-degenerate computable
forecasting system ' 2 ©(X). Then ! is ML-random for ' if and only if it’s
ML-test-random for '.

Proof. This is immediate from Propositions 14.2 and 14.4y below.

14.1 Martin-Löf test randomness implies Martin-Löf randomness

We begin with the more easily proved side of the equivalence, which relies
rather heavily on Ville’s inequality.

Proposition 14.2. Consider any path ! 2≠ and any forecasting system ' 2
©(X). If ! is ML-test-random for ' then it’s also ML-random for '.

Proof. We give a proof by contraposition. Assume that ! isn’t ML-random for ',
which implies that there’s some lower semicomputable test supermartingale T for '
that becomes unbounded on !, so limsupn!1 T (!1:n ) =1. Now, let’s consider the
set

A :=
©
(n, s) 2N0 £S : T (s) > 2n™

µN0 £S.

That T is a lower semicomputable test supermartingale implies, by
Lemma 14.3(iii)&(i), that A is an ML-test for ' with

Ö
Am

Ü
:=

(
$ 2≠ : sup

n2N0

T ($1:n ) > 2m

)
for all m 2N0.

That limsupn!1 T (!1:n ) =1 then implies that ! 2
Ö

Am
Ü

for all m 2N0, so ! isn’t
ML-test-random for ' either.

Lemma 14.3. Consider any lower semicomputable test supermartingale T
for ', and let A :=

©
(n, s) 2N0 £S : T (s) > 2n™

. Then
(i)

Ö
Am

Ü
=

©
$ 2≠ : supn2N0

T ($1:n) > 2m™
for all m 2N0;

(ii) P'(
Ö

Am
Ü

) ∑ 2°m for all m 2N0;
(iii) A is an ML-test.

Proof. We begin with the proof of (i). Since, by its definition,
Ö

Am
Ü
=S

{ÇsÉ : s 2 Am },
we have the following chain of equivalences for any $ 2≠:

$ 2
Ö

Am
Ü
, (9s 2 Am )($ 2 ÇsÉ) , (9s 2S)($ 2 ÇsÉ and (m, s) 2 A)

, (9s 2S)($ 2 ÇsÉ and T (s) > 2m ) , (9n 2N0)T ($1:n ) > 2m ,

proving (i).
Next, we turn to the proof of (ii). If we recall that T is a non-negative supermartin-

gale for ' with T (⇤) = 1 and let C := 2m > 0 in Ville’s inequality [Proposition 6.1837],
then we find, also taking into account (i) and P335, that indeed,

P'°Ö
Am

Ü¢
= P'

≥n
$ 2≠ : sup

n2N0

T ($1:n ) > 2m
o¥
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∑ P'
≥n
$ 2≠ : sup

n2N0

T ($1:n ) ∏ 2m
o¥

∑ 1
2m T (⇤) = 2°m .

For (iii)x, it now only remains to prove that the set A =©
(n, s) 2N0 £S : T (s) > 2n™

is recursively enumerable. The lower semicomputability
of T implies that the set

©
(s, q) 2S£Q : T (s) > q

™
is recursively enumerable, and

hence, the set A is recursively enumerable as well.

14.2 Martin-Löf randomness implies Martin-Löf test randomness

We’ll now tackle the converse result of Proposition 14.2x, whose proof is
definitely more involved.

Proposition 14.4. Consider any path ! 2≠ and any non-degenerate com-
putable forecasting system ' 2©(X). If ! is ML-random for ' then it’s also
ML-test-random for '.

Proof. Again, we give a proof by contraposition. Assume that ! isn’t ML-test-random
for '. This implies that there’s some ML-test A such that ! 2T

n2N0

Ö
An

Ü
. Then, by

Lemma 14.5, there’s a lower semicomputable test supermartingale T 2TML(') such
that limn!1 T (!1:n ) =1. This tells us that, indeed, ! isn’t ML-random for '.

Lemma 14.5. Consider any non-degenerate computable forecasting sys-
tem ' 2 ©(X) and any ML-test A for '. Then there’s a lower semicom-
putable test supermartingale T 2 TML(') such that, for any path ! 2
≠, limn!1 T (!1:n) =1 if ! 2T

n2N0

Ö
An

Ü
.

Proof. Consider any path ! 2≠ and assume that ! 2T
n2N0

Ö
An

Ü
. The idea behind

the proof is an altered, much simplified and stripped-down version of an argument
borrowed in its essence from a different proof in a paper by Vovk and Shen about
precise prequential Martin-Löf randomness [9, Proof of Theorem 1]. It’s actually quite
straightforward when we ignore its technical complexities: we’ll use the ML-test A
to construct a lower semicomputable test supermartingale W for ' that becomes
unbounded on !. Although it might not appear so at first sight from the way we go
about it, this W is essentially obtained by summing the non-negative supermartin-
gales P'°Ö

An
Ü
|•
¢
, each of which is ‘fully turned on’ as soon as the partial cut An is

reached. The main technical difficulty will be to prove that this W is lower semicom-
putable, and we’ll take care of this task in a roundabout way, in a number of lemmas
[Lemmas 14.11123–14.13124 below].

Back to the proof now. Recall from Corollary 13.2114 that we may assume with-
out loss of generality that the set A is recursive and that the corresponding An are
partial cuts. We also recall from Eq. (13.3)114 the definition of the partial cuts A<`

n :=
{s 2S : (n, s) 2 A and |s| < `} µ An , for all n,` 2N0, with

Ö
An

Ü
=S

`2N0

Ö
A<`

n
Ü

.
We begin by considering the real processes W `

n := P'°Ö
A<`

n
Ü
|•
¢
, where n,` 2N0.

By Lemma 14.11123, each W `
n is a non-negative computable supermartingale. We

infer from P335 that P'°Ö
An

Ü¢
∏ P'°Ö

A<`
n

Ü¢
= W `

n (⇤), and therefore, also invoking
Lemma 14.11(ii)123 and the assumption that P'°Ö

An
Ü¢

∑ 2°n , we get that

0 ∑W `
n (⇤) ∑ 2°n . (14.6)
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Next, fix any s 2S and any ` 2N0, and let W `(s) := 1
2

P1
n=0 W `

n (s). Observe that,

since all the terms W `
n (s) are non-negative by Lemma 14.11(ii)y, W `(s) is a non-

negative extended real number. We first check that it is real-valued, as in principle,
the defining series might converge to 1. Combine Eq. (14.6)x and Lemma 9.1362
[with '0 !' and C' : S!N a recursive natural-valued process for which C'(⇤) = 1]
to find that:

0 ∑W `
n (s) ∑W `

n (⇤)C'(s) ∑C'(s)2°n for all n 2N0, (14.7)

whence also

0 ∑W `(s) = 1
2

1X

n=0
W `

n (s) ∑C'(s), (14.8)

which shows that W `(s) is bounded above, and therefore indeed real. Moreover, it
follows from Lemma 14.11(ii)y that W `(s) ∑W `+1(s) for all ` 2N0, which guarantees
that the limit W (s) := lim`!1W `(s) = sup`2N0

W `(s) exists as an extended real
number. It’s moreover real-valued, because we infer from taking the limit in Eq. (14.8)
that also

0 ∑W (s) ∑C'(s). (14.9)

We’ve thus defined a non-negative real process W , and we infer from Lemma 14.12y
that W is a non-negative lower semicomputable supermartingale for '. In addition,
we infer from Eq. (14.9) that 0 ∑W (⇤) ∑ 1.

Moreover, since ! 2 T
n2N0

Ö
An

Ü
, we see that W is unbounded on !. Indeed,

consider any n 2 N0, then since ! 2
Ö

An
Ü

, we can fix some mn 2 N0 such that
W `

n (!1:m ) = 1 for all m,` ∏ mn [To see this, observe that ! 2
Ö

An
Ü

first of all im-
plies that there’s some (unique) On 2 N0 for which !1:On 2 An , and secondly that
then !1:On 2 A<`

n , `>On ; so if `∏On +1 then !1:m w A<`
n for all m ∏On ; now use

Lemma 14.11(iii)y to find that then also W `
n (!1:m ) = 1 for all m ∏ On . Finally, let

mn :=On +1]. So, if we consider any N 2N0 and let MN := max{mn : n 2 {0,1, . . . , N }},
then

W `(!1:m ) ∏ 1
2

NX

n=0
W `

n (!1:m ) = 1
2

(N +1) for all m,`∏ MN ,

and therefore also

W (!1:m ) ∏ 1
2

(N +1) for all m ∏ MN ,

which shows that, in fact,
lim

m!1W (!1:m ) =1. (14.10)

The relevant condition being E'(⇤)(W (⇤ ·)) ∑W (⇤), we see that replacing W (⇤) ∑ 1
by 1 doesn’t change the supermartingale character of W , and doing so leads to a lower
semicomputable test supermartingale for ' that’s unbounded on !.

We want to draw attention to the fact that the test supermartingale W in
Lemma 14.5x not only becomes unbounded but actually converges to 1 on
every path in the global event

T
n2N0

Ö
An

Ü
associated with the ML-test A. We’ll

come back to this in Section 14.3126, when we show that ML-randomness for
a non-degenerate computable forecasting system can be checked using a
single (universal) lower semicomputable supermartingale; see in particular
Corollary 14.24129.
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14 Equivalence of Martin-Löf and Martin-Löf test randomness

Lemma 14.11. For any n,` 2 N0, consider the real process W `
n , defined in

the proof of Proposition 14.4121 by W `
n := P'

°Ö
A<`

n
Ü
|•
¢
. Then the following

statements hold:
(i) W `

n (s) = E'(s)(W `
n (s ·)) for all s 2S;

(ii) 0 ∑W `
n (s) ∑W `+1

n (s) ∑ 1 for all s 2S;
(iii) W `

n (s) = 1 for all s w A<`
n ;

(iv) the real map (n,`, s) 7!W `
n (s) is computable.

In particular, for all n,` 2 N0, W `
n := P'

°Ö
A<`

n
Ü
|•
¢

is a non-negative com-
putable supermartingale for '.

Proof. Statement (i) follows from P536.
The first and third inequalities in (ii) follow from P135. The second inequality is a

consequence of A<`
n µ A<`+1

n and the monotone character of the conditional lower
expectation P'(•|s) [use P335].

Statement (iii) is an immediate consequence of Corollary 6.15(i)36.
For the proof of (iv), consider that A is recursive and that the forecasting sys-

tem ' is computable, and apply an appropriate instantiation of our Workhorse
Lemma 13.9117 [with D ! N0, d ! n, p ! ` and C !

©
(n,`, s) 2N0

2 £S : s 2 A<`
n

™
,

and therefore C p
d ! A<`

n ].
The rest of the proof is now immediate.

Lemma 14.12. The real process W , defined in the proof of Proposition 14.4121,
is a non-negative lower semicomputable supermartingale for '.

Proof. First of all, recall from Eq. (14.9)x in the proof of Proposition 14.4121 that W
is indeed non-negative.

Next, define, for any m,` 2 N0, the real process V `
m by letting V `

m (s) :=
1
2

Pm
n=0 W `

n (s) for all s 2S. It follows from Lemma 14.11(ii) that V `
m is non-negative.

By Lemma 14.11(iv), the real map (n,`, s) 7! W `
n (s) is computable, so we see that

so is the real map (m,`, s) 7! V `
m (s). Moreover, it’s clear from the definition of the

processes V `
m and W ` that V `

m (s) %W `(s) as m !1, and that

ØØW `(s)°V `
m (s)

ØØ= 1
2

1X

n=m+1
W `

n (s) ∑ 1
2

C'(s)
1X

n=m+1
2°n = 1

2
C'(s)2°m ∑ 2°m+LC' (s)°1

for all `,m 2N0 and all s 2S,

where the first inequality follows from Eq. (14.7)x [with C' : S ! N a recursive
natural-valued process], and the second inequality is based on Lemma 14.13y and
the notations introduced there [with LC' recursive]. If we now consider the recursive
map e : N0 £S!N0 defined by e(N , s) := N +LC' (s)°1, then we find that |W `(s)°
V `

m (s)|∑ 2°N for all (N , s) 2N0 £S and all m ∏ e(N , s), which guarantees that the real
map (`, s) 7!W `(s) is computable.

Now, consider that for any s 2S, W `(s) %W (s) as `!1. Since we’ve just proved
that (`, s) 7! W `(s) is a computable real map, we conclude that the process W is
indeed lower semicomputable, as a point-wise limit of a non-decreasing computable
sequence of computable real processes.
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To complete the proof, we show that W is a supermartingale. It follows from C220,
C320 and the supermartingale character of the W `

n [Lemma 14.11x] that

E'(s)
°
¢V `

m (s)
¢
= E'(s)

≥ 1
2

mX

n=0
¢W `

n (s)
¥
∑ 1

2

mX

n=0
E'(s)

°
¢W `

n (s)
¢
∑ 0 for all s 2S,

so V `
m is also a supermartingale. Since V `

m (s) !W `(s), we also find that ¢V `
m (s) !

¢W `(s) for all s 2S. Since the gambles ¢V `
m (s) are defined on the finite domain X,

this point-wise convergence also implies uniform convergence, so we can infer
from C620 that

E'(s)
°
¢W `(s)

¢
= E'(s)

≥
lim

m!1¢V `
m (s)

¥
= lim

m!1E'(s)
°
¢V `

m (s)
¢
∑ 0 for all s 2S.

This shows that W ` is also a supermartingale. And, since W `(s) ! W (s), we find
that also ¢W `(s) !¢W (s) for all s 2S. Since the gambles ¢W `(s) are defined on the
finite domain X, this point-wise convergence also implies uniform convergence, so
we can again infer from C620 that

E'(s)(¢W (s)) = E'(s)

≥
lim
`!1

¢W `(s)
¥
= lim
`!1

E'(s)
°
¢W `(s)

¢
∑ 0 for all s 2S.

This shows that W is indeed a supermartingale.

Lemma 14.13. If the real process F is computable and F ∏ 1, then there’s a
recursive map LF : S!N such that LF ∏ log2 F , or equivalently, F ∑ 2LF .

Proof. That F is computable implies that the non-negative process log2 F is com-
putable as well. That the non-negative real process log2 F is computable means
that there’s some recursive map qF : S£N!Q such that |log2 F (s)°qF (s,n)|∑ 2°n

for all (s,n) 2 S£N, and therefore in particular that |log2 F ° qF (•,1)| ∑ 1. Hence,
0 ∑ log2 F ∑ 1+ qF (•,1) ∑ 1+ dqF (•),1e and LF := 1+ dqF (•,1)e is a recursive and N-
valued process.

Compared to the classical (precise) setting, computability alone isn’t suffi-
cient in the above proposition, as the following counterexample reveals. This
is, essentially, a consequence of our preferring not to allow for extended real-
valued test supermartingales; see also De Cooman and De Bock’s discussion
in Section 5.3 of Ref. [36].

Example 14.14. Consider the binary state space X = {0,1}, any non-
degenerate computable forecasting system ' 2©(X) and any path ! 2XN

that’s ML-random for '; that there always is such a path follows from Corol-
lary 9.356. Let the degenerate forecasting system 'o 2©(X) be defined by
letting

'o(⇤)(x) :=
(

0 if x =!1

1 if x 6=!1
and 'o(s)(x) :='(s)(x)

for all s 2S\ {⇤} and x 2X. We’ll show that ! is ML-random but not ML-test-
random for this modified forecasting system 'o .
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To show that ! isn’t ML-test-random for 'o , consider the recursive
set A :=S

n2N0 {(n,!1)} µN0 £S, for which An = {!1} for all n 2N0, and there-
fore, obviously, ! 2 T

n2N0

Ö
An

Ü
. A is moreover an ML-test for 'o , because,

by E834, P'o
°Ö

An
Ü¢

= P'o (Ç!1É) = E'o (IÇ!1É) = E'o (⇤)(I!1 ) = E'o (⇤)(I!1 ) =
'o(⇤)(!1) = 0 for all n 2N0. Hence, ! can’t be ML-test-random for 'o .

To show that ! is ML-random for 'o , assume towards contradiction that
there’s some lower semicomputable test supermartingale To for 'o such that
limsupn!1 To(!1:n) = 1. Fix any M 2 N for which max{To(1),To(0)} < M ,
and define the real process T : S ! R by letting T (⇤) := 1 and T (s) :=
M°1To(s) for all s 2 S \ {⇤}; it’s easy to check that T is a lower semi-
computable test supermartingale for '. Clearly, limsupn!1 T (!1:n) =
limsupn!1 M°1To(!1:n) =1, which contradicts the assumption that ! is
ML-random for '. ¶

On the other hand, only imposing non-degeneracy isn’t sufficient either
in the above proposition: as the following counterexample shows, there’s a
positive—and therefore non-degenerate—non-computable precise forecast-
ing system 'pr 2©pr(X) such that every path ! 2≠ is ML-random for 'pr,
while no recursive path ! 2≠ is ML-test-random for 'pr; the construction
below is based on techniques used in the proof of Theorem 20.1193, which
are in their turn based on notes by Alexander Shen.

Example 14.15. We’ll construct such a positive non-computable precise fore-
casting system 'pr 2 ©pr(X)—for which every path is ML-random but for
which no recursive path is ML-test-random—iteratively. Consider the binary
state space X = {0,1}, and let (Fi )i2N be an enumeration of all lower semi-
computable non-negative processes; this is always possible by Lemma 7.646.
We start by considering F1. If F1(sx) > F1(s) for an infinite number of
(s, x) 2 S£X, then we fix some s1 2 S such that F1(s1x) > F1(s1) for some
x 2 X. Let 'pr(s1) be equal to some positive probability mass function
m1 2M(X) for which Em1 (F1(s1 ·)) > F1(s1) [it’s easy to infer from Eq. (5.2)15
that this is always possible]. Otherwise, we let s1 := ⇤. We continue by
considering F2. If F2(sx) > F2(s) for an infinite number of (s, x) 2 S£X,
then we (can) fix some s2 2 S such that |s2| > |s1| + 1 and F2(s2x) > F2(s2)
for some x 2 X, and we let 'pr(s2) be equal to some positive probabil-
ity mass function m2 2M(X) for which Em2 (F2(s2 ·)) > F2(s2). Otherwise,
we let s2 := s1. We continue by considering F3. If F3(sx) > F3(s) for an in-
finite number of (s, x) 2 S£X, then we (can) fix some s3 2 S such that
|s3| > |s2| + 1 and F3(s3x) > F3(s3) for some x 2 X, and we let 'pr(s3) be
equal to some positive probability mass function m3 2M(X) for which
Em3 (F3(s3 ·)) > F3(s3). Otherwise, we let s3 := s2. Repeat this procedure
ad infinitum and let 'pr(s)(x) := 1/2 in all situations s 2 S (and x 2X) that
haven’t been assigned a probability mass function yet. Observe that, since
either si+1 = si or |si+1| > |si | + 1 for all i 2 N, it holds for every s 2 S thatØØ©n 2N0 : 0 ∑ n < |s| and 'pr(s)(1) = 1/2

™ØØ∏ b|s|/2c. In this way, we thus obtain
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a positive precise forecasting system 'pr for which

(91(s, x) 2S£X)Fi (sx) > Fi (s)

) (9s 2S)E'pr(s)(Fi (s ·)) > Fi (s) for all i 2N0, (14.16)

where 91 expresses that there are infinitely many elements in the domain
for which the property holds, and

P'pr (ÇsÉ)
Eq. (6.23)40=

|s|°1Y

k=0
'pr(s1:k )(sk+1) ∑

µ
1
2

∂j
|s|
2

k

for all s 2S. (14.17)

This ends the construction step.
Let’s now first show that every path ! 2XN is ML-random for 'pr. Since

every test supermartingale T 2 TML('pr) is a lower semicomputable non-
negative process, it follows from the construction of 'pr and Eq. (14.16)
that there are only a finite number of (s, x) 2 S£X such that T (sx) > T (s),
which implies that T is bounded above on every path ! 2XN. Hence, every
path ! 2XN is ML-random for 'pr.

We continue by showing that no recursive path ! 2 XN can be ML-
test-random for 'pr. To this end, fix any recursive path ! 2 XN, and let
A :=S

n2N0 {(n,!1:2n)}. Clearly, A is a recursive subset of N0 £S and, by invok-
ing Eq. (14.17), P'pr

°Ö
An

Ü¢
= P'pr (Ç!1:2nÉ) ∑ 2°n for all n 2N0, which implies

that A is an ML-test. Obviously, ! 2T
m2N0

Ö
Am

Ü
, so we indeed conclude that

no recursive path ! 2XN is ML-test-random for 'pr.
We conclude the argument by showing that 'pr is non-computable. To

this end, assume towards contradiction that 'pr is computable, and con-
sider any recursive path ! 2≠; ! is ML-random for 'pr because all paths
are. Since 'pr is also positive, and hence, non-degenerate, it follows from
Proposition 14.4121 that ! is ML-test-random for 'pr, a contradiction. ¶

14.3 Universal Martin-Löf tests and universal lower semicom-
putable test supermartingales

In our definition of ML-randomness of a path ! 2 ≠, all lower semicom-
putable test supermartingales T 2TML(') must remain bounded on !. Sim-
ilarly, for ! to be ML-test-random, we require that ! › T

n2N0

Ö
An

Ü
for all

ML-tests A.
In his seminal paper [30], Martin-Löf proved that test randomness of

a path can also be checked using a single, so-called universal test, which
satisfies our conditions for an ML-test. A few years later, Schnorr proved in
his doctoral thesis on algorithmic randomness for fair-coin forecasts that ML-
randomness can also be checked using a single, so-called universal, lower
semicomputable test supermartingale.

Let’s now prove that something similar is still possible in our more general
context. We begin by proving the existence of a universal ML-test.
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Proposition 14.18. Consider any computable forecasting system ' 2©(X).
Then there’s a so-called universal ML-test U for ' such that a path ! 2≠ is
ML-test-random for ' if and only if ! ›T

n2N0

Ö
Un

Ü
.

Proof of Proposition 14.18. By Corollary 7.344, we know there’s a recursively enumer-
able set A µN0

2 £S that contains all recursively enumerable sets C µN0 £S, in the
sense that for every recursively enumerable set C µN0 £S there’s some mC 2N0 such
that C = mC A , with mA := {(n, s) 2N0 £S : (m,n, s) 2 A} for all m 2 N0. With every
such mA , we associate as usual the sets of situations mAn , defined for all n 2 N0
by mAn := {s 2 S : (n, s) 2 mA }. For reasons explained after Definition 13.1114, we
can and will assume, without changing the map of global events (m,n) 7!

ÖmAn
Ü

,
that all these sets mAn are partial cuts and recursive uniformly in m and n; see also
Corollary 13.2114. For this A , we then have that for every recursively enumerable
set C µN0 £S there’s some mC 2N0 such that

Ö
Cn

Ü
=

ÖmC An
Ü

for all n 2N0.
As a first step in the proof, we show that there’s a single finite algorithm for

turning, for any given m 2N0, the corresponding recursive set mA into an ML-test mB
for '. Let mA<`

n := {s 2S : (m,n, s) 2 A, |s| < `} for all m,n,` 2N0. It’s clear from the
construction that the finite sets mA<`

n are recursive uniformly in m, n and `. Observe
that the computability of the forecasting system', the recursive character of the finite
partial cuts mA<`

n and an appropriate instantiation of our Workhorse Lemma 13.9117
[with D ! N0

2, d ! (m,n), p ! ` and C !
©
(m,n,`, s) 2N0

3 £S : s 2 mA<`
n

™
, and

therefore C p
d ! mA<`

n ] allow us to infer that the real map (m,n,`) 7! P'°ÖmA<`
n

Ü¢
is

computable, meaning that there’s some recursive rational map q : N0
3 £N!Q such

that ØØP'°ÖmA<`
n

Ü¢
°q(m,n,`, N )

ØØ∑ 2°N for all m,n,` 2N0 and N 2N.

Observe that q(m,n,`,n + 2) is a rational approximation for P'°ÖmA<`
n

Ü¢
up to

2°(n+2), since
ØØP'°ÖmA<`

n
Ü¢
°q(m,n,`,n +2)

ØØ∑ 2°(n+2) for all m,n,` 2N0. (14.19)

Now consider the (obviously) recursive map ∏ : N0
3 !N0, defined by

∏(m,n,`) := max
n

p 2 {0, . . . ,`} : (8k 2 {0, . . . , p})q(m,n,k,n +2) ∑ 2°(n+1) +2°(n+2)
o

for all m,n,` 2N0. (14.20)

Observe that ∏(m,n,0) = 0, because

q(m,n,0,n +2) ∑ P'°ÖmA<0
n

Ü¢
+2°(n+2) = P'(?)+2°(n+2) = 2°(n+2),

where the inequality follows from Eq. (14.19), and the last equality from P135; this
argument also ensures that the map ∏ is indeed well-defined. Consequently, by
construction,

q(m,n,∏(m,n,`),n +2) ∑ 2°(n+1) +2°(n+2) for all m,n,` 2N0. (14.21)

Also, the partial maps ∏(m,n, •) are obviously non-decreasing.
Now let mB`

n := mA<∏(m,n,`)
n for all m,n,` 2N0. It follows from Eqs. (14.19) and

(14.21) that

P'°ÖmB`
n
Ü¢

= P'°ÖmA<∏(m,n,`)
n

Ü¢
∑ q(m,n,∏(m,n,`),n +2)+2°(n+2)
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∑
°
2°(n+1) +2°(n+2)¢+2°(n+2) = 2°n .

We now use the sets mB`
n in the obvious manner to define

mBn :=
[

`2N0

mB`
n and mB :=

[

n2N0

{n}£mBn , for all m,n 2N0,

so the set mB µN0 £S is recursively enumerable as a countable union of finite sets
{n}£mB`

n that are recursive uniformly in n and `. Moreover, it follows from P335,
P436 and the non-decreasing character of the partial map ∏(m,n, •) that

P'°ÖmBn
Ü¢

= sup
`2N0

P'°ÖmB`
n
Ü¢

∑ 2°n , for all m,n 2N0, (14.22)

and therefore each mB is an ML-test for '.
As a second step in the proof, we now show that any path! 2≠ is ML-test-random

for ' if and only if ! › T
n2N0

ÖmBn
Ü

for all m 2 N0. Since each mB is an ML-test
for ', it suffices to show by Lemma 14.23y that for every recursively enumerable
subset C µN0 £S for which P'°Ö

Cn
Ü¢

∑ 2°(n+1) for all n 2N0, there’s some mC 2N0
such that

Ö
Cn

Ü
=

ÖmC Bn
Ü

for all n 2N0; this is what we now set out to do.
Since we assumed that C is recursively enumerable, we know that there’s

some mC 2 N0 such that
Ö
Cn

Ü
=

ÖmC An
Ü

for all n 2 N0. This implies that
P'°ÖmC An

Ü¢
= P'°Ö

Cn
Ü¢

∑ 2°(n+1) for all n 2N0, so we see that for this mC :

q(mC ,n,`,n +2) ∑ P'°ÖmC A<`
n

Ü¢
+2°(n+2)

∑ P'°ÖmC An
Ü¢
+2°(n+2)

∑ 2°(n+1) +2°(n+2) for all n,` 2N0,

where the first inequality follows from Eq. (14.19)x, and the second inequality follows
from P335. If we now look at the definition of the map ∏ in Eq. (14.20)x, we see that
∏(mC ,n,`) = ` for all n,` 2N0. Consequently,

mC An =
[

`2N0

mC A<`
n =

[

`2N0

mC A<∏(mC ,n,`)
n =

[

`2N0

mC B`
n = mC Bn for all n 2N0,

and therefore, indeed,
Ö
Cn

Ü
=

ÖmC An
Ü
=

ÖmC Bn
Ü

for all n 2N0.
As a third step in the proof, we show that we can combine the ML-tests mB for ',

with m 2N0, into a single ML-test U for '. To this end, let Un :=S
m2N0

mBn+m+1 =S
m,l2N0

mBl
n+m+1 for all n 2N0. Then U :=S

n2N0 {n}£Un is clearly recursively enu-
merable as a countably infinite union of finite sets {n}£mBl

n+m+1 that are recursive
uniformly in m, n and `, given the construction in the first step of the proof. It’s clear
that

P'°Ö
Un

Ü¢
= P'

≥ [

m2N0

ÖmBn+m+1
Ü¥

= sup
k2N0

P'
≥ k[

m=0

ÖmBn+m+1
Ü¥

∑ sup
k2N0

kX

m=0
P'°ÖmBn+m+1

Ü¢
∑ sup

k2N0

kX

m=0
2°(n+m+1) =

1X

m=0
2°(n+m+1) = 2°n ,

where the second equality follows from P335 and P436, the first inequality follows
from P235, and the second inequality holds by Eq. (14.22).We conclude that U is
indeed an ML-test for '.
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We finish the argument, in a fourth and final step, by proving that any path ! 2≠
is ML-test-random for ' if and only if ! › T

n2N0

Ö
Un

Ü
. To this end, consider any

path ! 2 ≠. For necessity, assume that ! is ML-test-random for '. Then clearly
also ! › T

n2N0

Ö
Un

Ü
by Definition 13.14119, since we’ve just proved that U is an

ML-test for '. For sufficiency, assume that ! › T
n2N0

Ö
Un

Ü
. To prove that ! is ML-

test-random, we must prove, as argued above, that ! ›T
n2N0

ÖmBn
Ü

for all m 2N0.
Assume towards contradiction that there’s some mo 2N0 such that! 2T

n2N0

ÖmoBn
Ü

.
By construction, clearly,

ÖmoBn+mo+1
Ü
µ

Ö
Un

Ü
for all n 2N0. This implies that ! 2Ö

Un
Ü

for all n 2N0, a contradiction.

In the above proof, we made use of the following alternative characterisa-
tion of ML-test-randomness.

Lemma 14.23. A path ! 2≠ is ML-test-random for a forecasting system ' 2
©(X) if and only if ! 62T

m2N0

Ö
Cm

Ü
for all recursively enumerable subsets C

of N0 £S such that P'
°Ö

Cn
Ü¢

∑ 2°(n+1) for all n 2N0.

Proof. It clearly suffices to prove the ‘if’ part. We give a proof by contraposition. So
assume that ! isn’t ML-test-random, meaning that there’s some ML-test A for ' such
that ! 2T

m2N0

Ö
Am

Ü
. Consider the recursively enumerable set C µN0£S defined by

C := {(n, s) 2N0 £S : (n +1, s) 2 A},

then Cn = An+1, and therefore also P'°Ö
Cn

Ü¢
= P'°Ö

An+1
Ü¢

∑ 2°(n+1) for all n 2N0.
Since

T
n2N0

Ö
An

Ü
µ T

n2N0

Ö
An+1

Ü
= T

n2N0

Ö
Cn

Ü
, we see that also ! 2 T

n2N0

Ö
Cn

Ü
.

We continue by proving the existence of a universal lower semicom-
putable supermartingale that, as mentioned in the discussion above
Lemma 14.11123 in Section 14119, tends to infinity on every non-ML-random
path ! 2≠, instead of merely being unbounded there.

Corollary 14.24. Consider any non-degenerate computable forecasting sys-
tem ' 2©(X). Then there’s a so-called universal lower semicomputable test
supermartingale T for ' such that any path ! 2 ≠ isn’t ML-(test-)random
for ' if and only if limn!1 T (!1:n) =1.

Proof. Consider the universal ML-test U in Proposition 14.18127. Lemma 14.5121
then tells us there’s a test supermartingale T 2 TML(')—which we claim does the
job—such that, for any path ! 2≠, limn!1 T (!1:n ) =1 if ! 2T

n2N0

Ö
Un

Ü
.

Indeed, consider any path ! 2≠. Suppose that ! isn’t ML-(test-)random for ',
then we know from (Theorem 14.1120 and) Proposition 14.18127 that ! 2T

n2N0

Ö
Un

Ü
,

and therefore that limn!1 T (!1:n ) =1. Conversely, suppose that limn!1 T (!1:n ) =
1. This tells us that ! isn’t ML-random for ' (and therefore, by Proposition 14.2120,
not ML-test-random for ' either).
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14.4 The relation between uniform and Martin-Löf test random-
ness

Alexander Shen has recently pointed out to us that the idea of testing random-
ness for imprecise-probabilistic uncertainty models has been explored before.
In 1973, Levin [4, 6] introduced a randomness test version of ML-randomness
that allows for testing randomness for so-called effectively compact classes
of measures, leading to a measure-theoretic randomness notion nowadays
known as uniform randomness.

Below, we give a brief account of this notion of uniform randomness,
and explain how our notion of ML-test-randomness, when restricted to com-
putable forecasting systems, fits into that framework. To define uniform
randomness, we first need to define a notion of effective compactness for
sets of probability measures.

Effectively compact classes of probability measures

We denote byM(≠) the set of all probability measures over the Borel alge-
bra B(≠), and recall from the discussion in Section 6.439 that every precise
forecasting system 'pr 2©pr(X) leads to a probability measure µ'pr 2M(≠).
Conversely, for any measure µ 2M(≠), there’s at least one precise forecasting
system 'pr 2©pr(X) such that µ = µ'pr , for instance—as is clear from our
discussion on p. 26—the one defined by

'pr(s)(x) :=
(µ(ÇsxÉ)

µ(ÇsÉ) if µ(ÇsÉ) > 0
1/|X| if µ(ÇsÉ) = 0

for all s 2S and x 2X.

This tells us that we can for our present purposes identify probability mea-
sures and precise forecasting systems (although forecasting systems are more
informative, as they provide ‘full conditional information’ [see also our dis-
cussion on p. 26]), in the sense that:

M(≠) =
©
µ'pr : 'pr 2©pr(X)

™
. (14.25)

With any b bQ£ (Lrat(X)\L1(X))£S£Q, where ‘b’ is taken to mean
‘is a finite subset of’, we associate a so-called basic open set in the set of
probability measuresM(≠), denoted by b(≠), and given by

b(≠) :=
©
µ 2M(≠) : u <µ( fs ) < v for all (u, f , s, v) 2 b

™
,

where µ( fs ) denotes the integral
R

fs (!)dµ(!), which is well-defined since
fs is Borel measurable; we recall that fs = P

x2X f (x)IÇsxÉ 2 L(≠), as has
been defined on p. 33. So the basic open set b(≠) consists of all probability
measures that satisfy the finite collection of conditions characterised by b. We
collect all generators b of basic open sets b(≠) in the (countable) set Pfin(Q£
(Lrat(X)\L1(X))£S£Q). In line with our discussion in Section 7.244 [with

130



14 Equivalence of Martin-Löf and Martin-Löf test randomness

X !M(≠) andD! Pfin(Q£ (Lrat(X)\L1(X))£S£Q)(≠)], a subset Cµ
M(≠) is then called effectively open if there’s a recursively enumerable set B µ
Pfin(Q£ (Lrat(X)\L1(X))£S£Q) such that

S
b2B b(≠) = C. A subset C µ

M(≠) is called effectively closed ifM(≠) \C is effectively open. A subset Cµ
M(≠) is called effectively compact if it’s compact—meaning that every open
cover of C has a finite subcover—and if the set

(
B : B bPfin(Q£ (Lrat(X)\L1(X))£S£Q) and

[

b2B
b(≠) ∂C

)

of all finite open covers of C is recursively enumerable. By the argumentation
around Proposition 5.5 in Ref. [6], it’s immediate that a subset CµM(≠) is
effectively compact if and only if it’s effectively closed.

How does the above exposition relate to Levin’s notion of effective com-
pactness for sets of probability measures, where he only considers the binary
state space X = {0,1}? For our purposes, it suffices to notice that his basic
open sets are a subset of ours: Levin considers finite sets of triples b bQ£S£
Q [6, Definition 5.3], with b(≠) :=

©
µ 2M(≠) : u <µ(s) < v for all (u, s, v) 2 b

™
,

and every such triple (u, s, v) 2Q£S£Q obviously generates the same set of
probability measures as the quadruple (u,1, s, v) 2Q£ (Lrat(X)\L1(X))£
S£Q. Consequently, if a subset C µM(≠) is (effectively) compact in our
topology, then it’s also (effectively) compact in his topology, and if a sub-
set CµM(≠) is (effectively) closed in his topology, then it’s also (effectively)
closed in our topology. Vice versa, if a subset CµM(≠) is effectively compact
in his topology, then it’s also effectively closed in his topology by Proposi-
tion 5.5 in [6], which then implies that C is effectively closed in our topology,
and thus effectively compact in our topology. We conclude that we consider
the exact same collection of effectively compact sets of probability measures
as Levin does.

With any forecasting system ', as already mentioned on p. 26,
we can associate a collection of compatible precise forecasting sys-
tems

©
'pr : 'pr 2©pr(X) and 'pr 2'

™
, and therefore also, a collection of

probability measures C['] :=
©
µ'pr : 'pr 2©pr(X) and 'pr 2'

™
. We begin by

uncovering a sufficient condition on ' for the corresponding collection of
probability measures to be effectively compact.

Proposition 14.26. Consider any computable forecasting system '. Then the
collection of probability measures C['] =

©
µ'pr : 'pr 2©pr(X) and 'pr 2'

™
is

effectively compact.

Proof. It’s equivalent to prove that
©
µ'pr : 'pr 2©pr(X) and 'pr 2'

™
is effectively

closed, which we’ll do by establishing the existence of a recursively enumerable
set B µPfin(Q£ (Lrat(X)\L1(X))£S£Q) such that

S
b2B b(≠) =M(≠) \C['].

Since ' is computable, there’s some recursive map q : S£N! Pfin(Mrat(X))
such that dH

°
'(s),CH

°
q(s, N )

¢¢
∑ 2°N for all s 2S and N 2N. Let
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B :=
[

r2Q\(0,2), f 2Lrat(X)\L1(X),s2S,n2N

nn
(°1,1, s,r ),

≥
r
°
E CH(q(s,n))( f )+2°n¢

, f , s,2
¥oo

.

This set is clearly recursively enumerable by Lemma 7.143.
To show thatM(≠) \C['] µS

b2B b(≠), we start by proving that for any measure
µ 2M(≠) \C['] there must be some t 2S such that µ(ÇtÉ) > 0 and µ(Çt ·É)/µ(ÇtÉ) ›'(t ).
To this end, fix some compatible precise forecasting system 'co 2', and consider the
precise (not necessarily computable) forecasting system '0

pr defined by

'0
pr(s)(x) :=

(µ(ÇsxÉ)
µ(ÇsÉ) if µ(ÇsÉ) > 0

'co(s)(x) if µ(ÇsÉ) = 0
for all s 2S and x 2X.

By construction, as is clear from our discussion on p. 26, µ =µ'
0
pr . Since µ 2M(≠) \

C['] by assumption, there’s some t 2 S such that '0
pr(t) › '(t). Since, for all s 2 S,

'0
pr(s) 2'(s) if µ(ÇsÉ) = 0, we infer that, indeed, µ(ÇtÉ) > 0 and µ(Çt ·É)/µ(ÇtÉ) ›'(t ).

By Lemma 14.31y, since '0
pr(t) › '(t), and hence, d

≥
'0

pr(t ),'(t )
¥
> 0, there’s

a gamble f 0 2 L1(X) such that E'(t )( f 0) < E'0
pr(t )( f 0). Let ± > 0 be any real such

that E'(t )( f 0)+±< E'0
pr(t )( f 0), and consider any rational gamble f 00 2Lrat(X) such

that f 0 ° ±/2 ∑ f 00 ∑ f 0. Let f := max{ f 00,0} 2 Lrat(X). Then, 0 ∑ f = max{ f 00,0} ∑
max{ f 0,0} ∑ 1, so we conclude that f 2Lrat(X)\L1(X). Furthermore, f 0 °±/2 ∑ f =
max{ f 00,0} ∑ max{ f 0,0} = f 0, and hence,

E'(t )( f )
C520∑ E'(t )( f 0) < E'0

pr(t )( f 0)°±

∑ E'0
pr(t )( f +±/2)°± C420= E'0

pr(t )( f )°±/2 < E'0
pr(t )( f ). (14.27)

As a result, since µ(ÇtÉ) > 0,

µ( ft ) =µ
√

X

x2X
f (x)IÇt xÉ

!
=

X

x2X
f (x)µ(Çt xÉ)

=µ(ÇtÉ)
X

x2X
'0

pr(t )(x) f (x) =µ(ÇtÉ)E'0
pr(t )( f )

Eq. (14.27)
> µ(ÇtÉ)E'(t )( f ),

where the second equality follows from the properties of integrals. This implies that
there’s some real ≤ 2 (0,1) such that µ( ft ) >µ(ÇtÉ)E'(t )( f )+≤. Then, for this ≤, there’s
a rational r 2Q\ (0,2) such that

(°1 <)0 ∑µ(ÇtÉ) =µ(1t ) < r <µ(ÇtÉ)+ ≤/4 < 2 (14.28)

and there’s a natural n 2N such that 2°n < ≤/8, and for which then

0
C120∑ E'(t )( f ) ∑ E CH(q(t ,n))( f )+2°n ∑ E'(t )( f )+2°n +2°n < E'(t )( f )+ ≤

4
,

where the second and third inequalities follow from Corollary 7.948 because f 2
L1(X). We then find that

0 ∑ r
≥
E CH(q(t ,n))( f )+2°n

¥
(14.29)
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<
≥
µ(ÇtÉ)+ ≤

4

¥≥
E'(t )( f )+ ≤

4

¥

=µ(ÇtÉ)E'(t )( f )+µ(ÇtÉ)
≤

4
+E'(t )( f )

≤

4
+ ≤2

16
C120∑ µ(ÇtÉ)E'(t )( f )+ ≤

4
+ ≤

4
+ ≤2

16
<µ(ÇtÉ)E'(t )( f )+≤
<µ( ft ) =

X

x2X
µ(Çt xÉ) f (x) ∑

X

x2X
µ(Çt xÉ) =µ(ÇtÉ) < 2. (14.30)

Due to Eqs. (14.28)x and (14.30), we see that µ 2 bµ for

bµ =
n

(°1,1, t ,r ),
≥
r
°
E CH(q(t ,n))( f )+2°n¢

, f , t ,2
¥o

2 B ,

and therefore that µ 2S
b2B b(≠). SoM(≠) \C['] µS

b2B b(≠).
To also prove the converse inequality, namely that

S
b2B b(≠) µM(≠) \C['],

consider any 'pr 2 ©pr(X) such that 'pr 2 '. For any f 2Lrat(X)\L1(X), s 2 S,
n 2N and r 2Q\ (0,2) such that r >µ'pr (ÇsÉ) =µ'pr (1s ), it follows that

µ'pr ( fs ) =
X

x2X
µ'pr (ÇsxÉ) f (x) =µ'pr (ÇsÉ)

X

x2X
'pr(s)(x) f (x)

=µ'pr (ÇsÉ)E'pr(s)( f )

∑ r E'(s)( f ) ∑ r
≥
E CH(q(s,n))( f )+2°n

¥
,

where the first inequality follows from C120 and Eq. (5.7)19, and where the second
inequality follows from Corollary 7.948. This implies that, indeed, µ'pr ›S

b2B b(≠).

Lemma 14.31. Consider any probability mass function m 2M(X) and any
credal set C 2C(X). Then, d(m,C ) ∑ max f 2L1(X) Em( f )°EC ( f ).

Proof. It’s immediate from Lemma 11.995 that

d(m,C ) = max
f 2L1(X)

EC ( f )°Em ( f ) = max
f 2L1(X)

Em (° f )°EC (° f )

C420= max
f 2L1(X)

Em (max f ° f )°EC (max f ° f ) ∑ max
f 02L1(X)

Em ( f 0)°EC ( f 0),

where the second equality follows from the conjugacy relationship, and where the
inequality holds because 0 ∑ max f ° f ∑ 1 for all f 2L1(X).

On the other hand, not every effectively compact set of probability mea-
sures is a collection that corresponds to a (computable) forecasting sys-
tem. Consider, as a counterexample, the binary state space X = {0,1} and
the set Ber :=

©
µ'pr : 'pr 2©pr(X) and (9p 2 [0,1])(8s 2S)'pr(s)(1) = p

™
that

consists of all Bernoulli (iid) probability measures. As is mentioned by Bien-
venu et al. [6, Sec. 5.3], this set Ber is an example of an effectively compact
set of measures.
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But, there’s no forecasting system ' for which it holds that Ber = C['].
Indeed, consider any forecasting system ' for which Ber µ C[']. If we let
mp 2M(X) be defined by (mp (0),mp (1)) = (1°p, p) for all p 2 (0,1), then
necessarily mp 2'(s) for all p 2 (0,1) and all s 2S, which implies that '(s) =
Cv for all s 2 S. This means that ' can only be the vacuous forecasting
system 'v, for which, by Eq. (14.25)130, C['v] =M(≠) 6= Ber.

We conclude in particular that the collections of probability measures that
correspond to computable forecasting systems constitute only a strict subset of
the effectively compact sets of probability measures.

Uniform randomness

Using this notion of effective compactness, we can now introduce uniform
randomness, by associating tests with effectively compact classes of proba-
bility measures.

Definition 14.32 ([6, Def. 5.22]). We call a map √ : ≠ ! [0,+1] a C-
test for an effectively compact class of probability measures C µ M(≠)
if the set

©
! 2≠ : √(!) > r

™
is effectively open uniformly in r 2 Q and ifR

√(!)dµ(!) ∑ 1 for all µ 2C.

A clarification is in order here. The conditions for a C-test √ require in par-
ticular that

©
! 2≠ : √(!) > r

™
should be open, and therefore belong to B(≠),

for all rational r , implying that the map √ is Borel measurable. This implies
that the integral

R
√(!)dµ(!), which we’ll also denote by µ(√), exists.

As explained in Section 2.2 of Ref. [6], the intuition behind C-tests is
as follows: when √(!) is large, this means that the C-test √ finds a lot of
‘regularities’ in !. When constructing a C-test √, we are allowed to declare
whatever we want as a ‘regularity’. However, we shouldn’t find too many
‘regular’ sequences on average: if we declare too many sequences to be
‘regular’, then the average

R
√(!)dµ(!) becomes too big for some measure

µ 2C.
Going from tests to the corresponding randomness notion is now but a

small step.

Definition 14.33 ([6, Defs. 5.2&5.22, Thm. 5.23]). Consider an effectively
compact class of probability measures CµM(≠). Then we call a path ! 2≠
uniformly random for C if √(!) <1 for every C-test √.

With the definition for uniform randomness now in place, we can show
that our definition of ML-test-randomness for a computable forecasting
system ' 2©(X) is a special case, where the effectively compact class C takes
the specific form C['] =

©
µ'pr : 'pr 2©pr(X) and 'pr 2'

™
.

Theorem 14.34. Consider any computable forecasting system ' 2©(X). Then
a path ! 2≠ is ML-test-random for ' if and only if it’s uniformly random for
the effectively compact class of probability measures C['].
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Proof. For the ‘only if’-direction, assume that there’s some C[']-test √ such that
√(!) =1. Then we must show that ! isn’t ML-test-random for '. First of all, that √ is
a C[']-test implies in particular that

©
$ 2≠ : √($) > r

™
is effectively open uniformly

in r 2Q, meaning that there’s some recursively enumerable subset B µQ£S such
that, with Br := {s 2S : (r, s) 2 B},

Ö
Br

Ü
=

©
$ 2≠ : √($) > r

™
for all r 2 Q. This in

turn implies that A :=
©
(n, s) 2N0 £S : (2n , s) 2 B

™
is a recursively enumerable subset

of N0 £S such that, with An := {s 2S : (n, s) 2 A },
Ö

An
Ü
=

©
$ 2≠ : √($) > 2n™

for
all n 2 N0. By construction, √ > 2n IÇAnÉ for all n 2 N0. If we fix any n 2 N0, then
by assumption √(!) =1 > 2n and therefore ! 2

Ö
An

Ü
. Hence, ! 2 T

n2N0

Ö
An

Ü
, so

we’re done if we can prove that A is an ML-test for '. We already know that A is
recursively enumerable. Suppose towards contradiction that there’s some m 2 N0
such that P'°Ö

Am
Ü¢

> 2°m or, equivalently, 2m P'°Ö
Am

Ü¢
> 1. By Eq. (6.24)40, sinceÖ

Am
Ü
2B(≠), it holds that P'°Ö

Am
Ü¢

= sup'pr2'µ
'pr

°Ö
Am

Ü¢
, and therefore there’s

some precise 'pr 2' for which

1 < 2mµ'pr
°Ö

Am
Ü¢

=µ'pr (2m IÇAmÉ) ∑µ'pr (√),

where the last inequality follows from the properties of integrals because√∏ 2m IÇAmÉ.
This contradicts our assumption that √ is a C[']-test.

For the ‘if’-direction, assume that ! 2T
n2N0

Ö
An

Ü
for some ML-test A for '. If

we let Cn :=S
m>n Am for all n 2N0, then clearly the set

C :={(n, s) 2N0 £S : s 2Cn }

={(n, s) 2N0 £S : (9m > n)s 2 Am } =
[

(m,n,s)2N0
2£S :

(m,s)2A and n<m

{(n, s)}

is recursively enumerable because A is, and the
Ö
Cn

Ü
therefore constitute a com-

putable sequence of effectively open sets. Moreover, clearly
Ö
C0

Ü
∂

Ö
C1

Ü
∂ . . ., and

! 2
\

n2N0

Ö
An

Ü
µ

\

n2N

Ö
An

Ü
µ

\

n2N0

[
m>n

Ö
Am

Ü
=

\

n2N0

Ö
Cn

Ü
, (14.35)

where the second inclusion holds because
Ö

An+1
Ü
µS

m>n
Ö

Am
Ü

for all n 2N0. Now
define the map √ : ≠! [0,+1] as √(!) :=P

n2N IÇCnÉ(!) for all ! 2≠. It follows from
Eq. (14.35) that √(!) =1, so we’re done if we can show that √ is a C[']-test.

It follows from the nestedness
Ö
C0

Ü
∂

Ö
C1

Ü
∂ . . . that

©
! 2≠ : √(!) > n

™
=

Ö
Cn+1

Ü

for all n 2N0. Therefore, since the
Ö
Cn

Ü
constitute a computable sequence of effec-

tively open sets, so do the
©
! 2≠ : √(!) > n

™
. By observing that

©
! 2≠ : √(!) > r

™
=

(©
! 2≠ : √(!) > br c

™
=

Ö
Cbr c+1

Ü
if r ∏ 0

≠= ÇSÉ if r < 0
for all r 2Q,

we infer that
©
! 2≠ : √(!) > r

™
is effectively open uniformly in r 2Q. Furthermore, it

holds for any 'pr 2' that

µ'pr (√) =µ'pr
≥ X

n2N
IÇCnÉ

¥
∑µ'pr

≥ X

n2N

X

m>n
IÇAmÉ

¥
∑

X

n2N

X

m>n
µ'pr

°
IÇAmÉ

¢

=
X

n2N

X

m>n
E'pr

°
IÇAmÉ

¢
∑

X

n2N

X

m>n
E'°

IÇAmÉ
¢
∑

X

n2N

X

m>n
2°m =

X

n2N
2°n = 1,

where the first two inequalities follow from the properties of integrals, the second
equality follows from the discussion in Section 6.439, and the third inequality follows
from Proposition 6.1335.
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15 Equivalence of Schnorr and Schnorr test randomness

Next, we turn to Schnorr randomness. Our argumentation that the ‘test-
theoretic’ and ‘martingale-theoretic’ versions for this type of randomness are
equivalent, in Theorem 15.1 below, adapts and simplifies a line of reason-
ing in Downey and Hirschfeldt’s book [32, Thm. 7.1.7], with the aim of still
making it work in our more general context. Here too, it allows us to extend
Schnorr’s argumentation [1, Secs. 5–9] for this equivalence from fair-coin to
computable non-degenerate forecasting systems.

Theorem 15.1. Consider any path! 2≠ and any non-degenerate computable
forecasting system ' 2 ©(X). Then ! is S-random for ' if and only if it’s
S-test-random for '.

Proof. This is immediate from Propositions 15.2 and 15.6y below.

15.1 Schnorr test randomness implies Schnorr randomness

As was the case for ML-randomness, we begin with the implication that’s
easier to prove.

Proposition 15.2. Consider any path ! 2 ≠ and any forecasting sys-
tem ' 2 ©(X). If ! is S-test-random for ' then it’s S-random for '.

Proof. We give a proof by contraposition. Assume that ! isn’t S-random for ', then
Proposition 10.2282 implies that there’s a recursive rational test supermartingale T
and a natural growth function ¥ : N0 !N0 such that

limsup
n!1

[T (!1:n )°¥(n)] =1. (15.3)

Drawing inspiration from Schnorr’s proof [1, Satz (9.4), p. 73] and Downey and
Hirschfeldt’s simplified version of it [32, Thm. 7.1.7], we let

A :=
©
(n, t ) 2N0 £S : T (t ) ∏ ¥(|t |) ∏ 2n™

. (15.4)

Then A is a recursive subset of N0 £S [because the inequalities in the expressions
above are decidable, as all numbers involved are rational]. We also see that, for
any $ 2≠,

$ 2
Ö

An
Ü
, (9m 2N0)$1:m 2 An , (9m 2N0)

°
T ($1:m ) ∏ ¥(m) ∏ 2n¢

. (15.5)

Hence,
Ö

An
Ü
µ

©
$ 2≠ : supm2N0

T ($1:m ) ∏ 2n™
, so we infer from P335 and Ville’s

inequality [Proposition 6.1837] that

P'°Ö
An

Ü¢
∑ P'

√(
$ 2≠ : sup

m2N0

T ($1:m ) ∏ 2n

)!
∑ 2°n for all n 2N0.

This shows that A is an ML-test for '.
Consider any n 2N0. Since ¥ is non-decreasing, there’s some M 2N0 such that

¥(m) ∏ 2n for all m ∏ M , and hence, it follows from Eq. (15.3) that there’s some
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natural M 0 > M such that T (!1:M 0 ) ∏ ¥(M 0) ∏ 2n . Consequently, it’s immediate from
Eq. (15.5)x that ! 2 T

m2N0

Ö
Am

Ü
. So we’ll find that ! isn’t S-test-random for ',

provided we can prove that A is an S-test.
To this end, we’ll show that it has a tail bound. Define the map e : N0

2 !N0 by
letting e(N ,n) := min

©
k 2N0 : ¥(k) ∏ 2N ™

, for all N ,n 2N0. Fix any N ,n 2N0, then we
infer from Eq. (15.4)x that

$ 2
Ö

A∏`
n

Ü
, (9m ∏ `)T ($1:m ) ∏ ¥(m) ∏ 2n ), for all ` 2N0.

Hence, for all `∏ e(N ,n) and all $ 2
Ö

A∏`
n

Ü
, there’s some m ∏ ` such that

T ($1:m ) ∏ ¥(m) ∏ ¥(`) ∏ ¥(e(N ,n)) ∏ 2N ,

which implies that
Ö

A∏`
n

Ü
µ

©
$ 2≠ : supm2N0

T ($1:m ) ∏ 2N ™
. P335 and Ville’s in-

equality [Proposition 6.1837] then guarantee that, for all ` ∏ e(N ,n), since
Ö

An
Ü

\Ö
A<`

n
Ü
µ

Ö
A∏`

n
Ü

,

P'°Ö
An

Ü
\
Ö

A<`
n

Ü¢
∑ P'°Ö

A∏`
n

Ü¢
∑ P'

√(
$ 2≠ : sup

m2N0

T ($1:m ) ∏ 2N

)!
∑ 2°N .

15.2 Schnorr randomness implies Schnorr test randomness

Non-degeneracy and computability of the forecasting system are enough
to guarantee that the converse implication also holds. That neither non-
degeneracy nor computability is a sufficient condition can be shown by
essentially the same counter-examples as in the case of ML-randomness;
we refrain from spelling them out explicitly, because that would essentially
imply giving the exact same counter-examples.

Proposition 15.6. Consider any path ! 2≠ and any non-degenerate com-
putable forecasting system ' 2©(X). If ! is S-random for ' then it’s S-test-
random for '.

Proof. For this converse result too, we give a proof by contraposition. Assume that
! isn’t S-test-random for ', which implies that there’s some S-test A for ' such that
! 2T

n2N0

Ö
An

Ü
. It follows from Proposition 13.6115 that we may assume without loss

of generality that the sets of situations An are partial cuts for all n 2N0. We’ll now use
this A to construct a computable test supermartingale that’s computably unbounded
on !.

We infer from Lemma 15.12139 that there’s some growth function & such that

1X

n=0
2k P'°Ö

A∏&(k)
n

Ü¢
∑ 2°k for all k 2N0. (15.7)

We use this growth function & to define the following maps, all of which are non-
negative supermartingales for ', by P135, P536 and C220:

Zn,k : S!R : s 7! 2k P'°Ö
A∏&(k)

n
Ü
|s

¢
, for all n,k 2N0.
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Since the computable forecasting system ' was assumed to be non-degenerate,
Lemma 9.1362 [with '0 ! ' and C' : S!N a recursive natural-valued process for
which C'(⇤) = 1] now implies that

0 ∑ Zn,k (s) ∑ Zn,k (⇤)C'(s) = 2k P'°Ö
A∏&(k)

n
Ü¢

C'(s) for all s 2S. (15.8)

If we also define the (possibly extended) real process Z := 1
2

P
n,k2N0 Zn,k , then we

infer from Equations (15.7)x and (15.8) that

0 ∑ Z (s) = 1
2

X

n,k2N0

Zn,k (s) ∑ 1
2

C'(s)
X

n,k2N0

2k P'°Ö
A∏&(k)

n
Ü¢

∑ 1
2

C'(s)
X

k2N0

2°k =C'(s)

for all s 2S. (15.9)

This guarantees that Z is real-valued, and that, moreover, Z (⇤) ∑ 1.
Now, fix any s 2S. Then we readily see that 1

2
PN

n=0
PL
`=0 Zn,`(s) % Z (s) and there-

fore also 1
2

PN
n=0

PL
`=0¢Zn,`(s) ! ¢Z (s) as N ,L ! 1. Since the gambles ¢Zn,`(s)

and ¢Z (s) are defined on the finite domain X, this point-wise convergence also
implies uniform convergence, so we can infer from C620 and

E'(s)

≥ 1
2

NX

n=0

LX

`=0
¢Zn,`(s)

¥
∑ 1

2

NX

n=0

LX

`=0
E'(s)(¢Zn,`(s)) ∑ 0,

which is implied by C220, C320 and the supermartingale character of the Zn,`, that
also

E'(s)(¢Z (s)) = lim
N ,L!1

E'(s)

≥ 1
2

NX

n=0

LX

`=0
¢Zn,`(s)

¥
∑ 0. (15.10)

This tells us that Z is a non-negative supermartingale for '. It follows from
Lemma 15.13140 that Z is also computable.

The relevant condition being E'(⇤)(Z (⇤ ·)) ∑ Z (⇤), we see that replacing
Z (⇤) ∑ 1 by 1 doesn’t change the supermartingale character of Z , and doing so
leads to a computable test supermartingale Z 0 for '.

To show that this Z 0 is computably unbounded on !, we take two steps.
In a first step, we fix any n 2N0. Since ! 2T

m2N0

Ö
Am

Ü
, and since the Am were

assumed to be partial cuts, there’s some (unique) `n 2N0 such that !1:`n 2 An . This
tells us that if `∑ `n , then also !1:`n 2 A∏`

n , and therefore, by Corollary 6.15(i)36, that
P'°Ö

A∏`
n

Ü
|!1:`n

¢
= 1 for all `∑ `n . Hence,

P'°Ö
A∏&(k)

n
Ü
|!1:`n

¢
= 1 for all k 2N0 such that &(k) ∑ `n .

Let’s now define the map &] : N0 ! N0 such that &](`) := sup{k 2N0 : &(k) ∑ `}
for all ` 2 N0, where we use the convention that sup? = 0. It’s clear that &] is a
growth function. Moreover, as soon as `n ∏ &(0), we find that, in particular, &(k) ∑ `n
for k = &](`n ). Hence,

P'°Ö
A∏&(k)

n
Ü
|!1:`n

¢
= 1 for k = &](`n ), if `n ∏ &(0).

This leads us to the conclusion that for all n 2N0, there’s some `n 2N0 such that

Z 0(!1:`n ) ∏ Z (!1:`n ) ∏ 1
2

Zn,&](`n )(!1:`n ) = 2&
](`n )°1 if `n ∏ &(0). (15.11)
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Since &] is a growth function, so is the map Ω : N0 !N0 defined by

Ω(m) := 2&
](m)°1 for all m 2N0.

We’ll therefore be done if we can now show that the sequence `n is unbounded as
n !1, because the inequality in Eq. (15.11)x will then guarantee that

limsup
m!1

[Z 0(!1:m )°Ω(m)] ∏ 0,

so the computable test supermartingale Z 0 is computably unbounded on !.
Proving that `n is unbounded as n ! 1 is therefore our second step. To ac-

complish this, we use the assumption that ' is non-degenerate. Assume, towards
contradiction, that there’s some natural number B such that `n ∑ B for all n 2N0. The
non-degenerate character of' implies that E'(s)(Ix ) > 0 for all s 2S and x 2X, which
implies in particular that there’s some real ± 2 (0,1) such that E'(!1:k )(I!k+1 ) ∏ ± for
all non-negative integers k ∑ B , as they are finite in number. But this implies that

2°n ∏ P'(
Ö

An
Ü

) ∏ P'(Ç!1:`n É) =
`n°1Y

k=0
E'(!1:k )(I!k+1 ) ∏ ±`n ∏ ±B for all n 2N0,

where the first inequality follows from the properties of an S-test, the second inequal-
ity from Ç!1:`n É µ

Ö
An

Ü
and P335, the equality from Proposition 6.1636, and the fourth

inequality from 1 > ± > 0 and `n ∑ B . However, since 1 > ± > 0 and B 2 N, there’s
always some n 2N0 such that 2°n < ±B , which is the desired contradiction.

Lemma 15.12. Consider any S-test A for a computable forecasting sys-
tem ' 2 ©(X), such that the corresponding An are partial cuts for all n 2N0.
Then there’s some growth function & : N0 !N0 such that

1X

n=0
2k P'°Ö

A∏&(k)
n

Ü¢
∑ 2°k for all k 2N0.

Proof. Proposition 13.6(ii)115 guarantees that there’s a growth function e : N0 !N0
such that

P'°Ö
A∏`

n
Ü¢

= P'°Ö
An

Ü
\
Ö

A<`
n

Ü¢
∑ 2°N for all N ,n 2N0 and all `∏ e(N ),

where the equality holds because the An are assumed to be partial cuts. Let & : N0 !
N0 be defined by &(k) := max2k+1

n=0 e(2k +2+n) for all k 2 N0. Clearly, & is recursive
because e is. It follows from the non-decreasingness and unboundedness of e that &
is non-decreasing, since

&(k +1) = 2k+3
max
n=0

e(2k +4+n) ∏ 2k+1
max
n=0

e(2k +2+n) = &(k) for all k 2N0,

and that & is unbounded, since &(k) ∏ e(2k +2) for all k 2N0. So we conclude that & is
a growth function.

Now, for any k 2N0, we find that, indeed,

1X

n=0
2k P'°Ö

A∏&(k)
n

Ü¢
= 2k

2k+1X

n=0
P'°Ö

A∏&(k)
n

Ü¢
+2k

1X

n=2k+2
P'°Ö

A∏&(k)
n

Ü¢

139



Test-theoretic notions of randomness

P335∑ 2k
2k+1X
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P'°Ö

A∏e(2k+2+n)
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+2k
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n=2k+2
P'°Ö
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2k+1X

n=0
2°(2k+2+n) +2k
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n=2k+2
2°n

= 2°(k+1)
2k+1X

n=0
2°(n+1) +2°(k+1)

∑ 2°(k+1) +2°(k+1) = 2°k .

Lemma 15.13. The non-negative supermartingale Z in the proof of Proposi-
tion 15.6137 is computable.

Proof. We use the notations in the proof of Proposition 15.6137. We aim at obtaining
a computable real map that converges effectively to Z . First of all, for any p 2N0,

Z (s) = 1
2

1X

k=0

1X

n=0
Zn,k (s) = 1

2

pX

k=0

1X

n=0
Zn,k (s)+ 1

2

1X

k=p+1

1X

n=0
Zn,k (s)

| {z }
R1(p,s)

,

where

|R1(p, s)| = R1(p, s) = 1
2

1X

k=p+1

1X

n=0
Zn,k (s)

∑ 1
2

1X

k=p+1

1X

n=0
2k P'°Ö
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C'(s)
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≥ 1X

n=0
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Ü¢¥

∑C'(s)
1
2

1X

k=p+1
2°k =C'(s)2°(p+1) ∑ 2°(p+1°LC' (s)).

In this chain of (in)equalities, the first inequality follows from Eq. (15.8)138 and the
non-degeneracy of ', and the second inequality follows from Eq. (15.7)137. The last
inequality is based on Lemma 14.13124 [with C' : S!N a recursive natural-valued
process] and the notations introduced there. If we therefore define the recursive
map e1 : N0£S!N0 by e1(N , s) := N+LC' (s) for all (N , s) 2N0£S [with LC' recursive
by Lemma 14.13124], then we find that

|R1(p, s)|∑ 2°(N+1) for all (N , s) 2N0 £S and all p ∏ e1(N , s).

Next, we consider any p, q 2N0 and look at

1
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pX
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n=0
Zn,k (s) = 1

2
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1X

n=q+1
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,

where

|R2(p, q, s)| = R2(p, q, s) = 1
2

pX

k=0

1X

n=q+1
Zn,k (s)
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∑ 1
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pX

k=0
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n=q+1
2k P'°Ö
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C'(s) ∑ 1

2
C'(s)2p
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n=q+1
P'°Ö
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∑C'(s)2p°1(p +1)
1X

n=q+1
2°n =C'(s)2p°q°1(p +1) ∑ 22p°q°1+LC' (s).

In this chain of (in)equalities, the first inequality follows from Eq. (15.8)138 and the
non-degeneracy of ', the second inequality follows from P335 since

Ö
A∏&(k)

n
Ü
µ

Ö
An

Ü

for all k,n 2N0, and the third inequality follows from the assumption that A is an S-
test. The fourth inequality is based on Lemma 14.13124 and the notations introduced
there, and the fact that p +1 ∑ 2p for all p 2N0. If we therefore define the recursive
map e3 : N0

2£S!N0 by e3(p, N , s) := N +2p+LC' (s) for all (p, N , s) 2N0
2£S [recall

that LC' is recursive by Lemma 14.13124], then we find that

|R2(p, q, s)|∑ 2°(N+1) for all (p, N , s) 2N0
2 £S and q ∏ e3(p, N , s).

Now, consider the recursive map e2 : N0 £ S ! N0 defined by e2(N , s) :=
e3(e1(N , s), N , s) for all (N , s) 2N0 £S, and let

VN (s) := 1
2

e1(N ,s)X

k=0

e2(N ,s)X

n=0
Zn,k (s) for all N 2N0 and s 2S.

Since the real map (n,k, s) 7! Zn,k (s) is computable by Lemma 15.14, it follows that
the real map (N , s) 7!VN (s) is computable as well, since by definition each VN (s) is a
finite sum of real numbers that are computable uniformly in n, k and s, and the finite
number of terms to be included are fully determined by the recursive maps e1 and e2
as a function of N and s. From the argumentation above, we infer that

|Z (s)°VN (s)| = |R1(e1(N , s), s)+R2(e1(N , s),e2(N , s), s)|
∑ |R1(e1(N , s), s)|+ |R2(e1(N , s),e2(N , s), s)|

∑ 2°(N+1) +2°(N+1) = 2°N for all s 2S and N 2N0,

proving that Z is indeed computable.

Lemma 15.14. For the non-negative supermartingales Zn,k defined in the
proof of Proposition 15.6137, the real map (n,k, s) 7! Zn,k (s) is computable.

Proof. We use the notations and assumptions in the proof of Proposition 15.6137.
Clearly, it suffices to prove that the real map (n,k, s) 7! Zn,k (s)2°k = P'°Ö

A∏&(k)
n

Ü
|s

¢

is computable. If we let
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(15.15)
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where the last equality holds because then
Ö
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Ü
=?. By Lemma 15.17, there’s some

recursive map ẽ : N0 £S!N0 such that P'°Ö
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+2°N for all N ,k,n 2N0 and s 2S and `∏ ẽ(N , s),

(15.16)

where the first two inequalities follow from Eq. (15.15)x and P335, and the third in-
equality follows from P235, because

Ö
Ak,`

n
Ü

and
Ö

A∏`
n

Ü
are disjoint. Now, the sets Ak,`

n
are recursive uniformly in n, k and `, and it also holds that |s| < ` for all s 2 Ak,`

n and
n,k,` 2N0. Hence, the real map (n,k,`, s) 7! P'(

Ö
Ak,`

n
Ü
|s) is computable by an ap-

propriate instantiation of our Workhorse Lemma 13.9117 [withD!N0
2, d ! (n,k),

p ! ` and C 7!
©
(n,k,`, s) 2N0

3 £S : s 2 Ak,`
n

™
, and therefore C p

d ! Ak,`
n ], because

the forecasting system ' is computable as well. The inequalities in Eq. (15.16) tell
us that this computable real map converges effectively to the real map (n,k, s) 7!
P'(

Ö
A∏&(k)

n
Ü
|s), which is therefore computable as well.

Lemma 15.17. Consider any S-test A for a non-degenerate computable fore-
casting system ' 2©(X), such that the corresponding An are partial cuts for
all n 2N0. Then there’s some recursive map ẽ : N0£S!N0 such that its partial
maps ẽ(•, s) are growth functions for all s 2S, and such that

P'°Ö
A∏`

n
Ü
|s

¢
∑ 2°N for all (N ,n, s) 2N0

2 £S and all `∏ ẽ(N , s).

Proof. Proposition 13.6(ii)115 guarantees that there’s a growth function e : N0 !N0
such that
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n
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= P'°Ö
An
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Ö

A<`
n

Ü¢
∑ 2°M for all M ,n 2N0 and all `∏ e(M),

where the equality holds because the An are assumed to be partial cuts. Since the real
process P'°Ö

A∏`
n

Ü
|•
¢

is a non-negative supermartingale by Corollary 6.1536, we infer
from the non-degeneracy of ', Lemma 9.1362 [with '0 !' and C' ∏ 1 computable]
and Lemma 14.13124 [with LC' recursive] that

0 ∑ P'°Ö
A∏`

n
Ü
|s

¢
∑ P'°Ö

A∏`
n

Ü¢
C'(s) ∑ 2°M C'(s) ∑ 2°M+LC' (s)

for all (M ,n) 2N0
2 and all `∏ e(M).

It’s therefore clear that if we let

ẽ(N , s) := e
°
N +LC' (s)

¢
for all (N , s) 2N0 £S,

then
P'°Ö

A∏`
n

Ü
|s

¢
∑ 2°N for all (N ,n, s) 2N0

2 £S and all `∏ ẽ(N , s).

This map ẽ is recursive because the maps e and LC' are. Furthermore, for any fixed s
in S, ẽ(•, s) is clearly non-decreasing and unbounded, because e is.
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A prequential approach to
martingale- and
test-theoretic randomness

Let’s quickly recapitulate what we did in the previous three chapters. We con-
sidered an infinite sequence X1, X2, X3, . . . of variables Xk 2X, let a subject
put forward a so-called forecasting system ' 2©(X) that describes his (condi-
tional) uncertainty about the unknown outcome of the variable Xn+1 given
the observation (X1, . . . , Xn) = s 2S, and examined when an infinite outcome
sequence (x1, x2, x3, . . . ) ‘agrees with’ a subject’s specification of a forecasting
system. In other words, the central question throughout this dissertation
has been: ‘what sequences do we consider to be random for a forecasting
system?’. We’ve answered this question by adopting a martingale-theoretic,
frequentist and test-theoretic approach to randomness, and in doing so, we
let go of the classical assumption that a subject is always able to associate
(conditional) precise probabilities ms with every s 2 S. In our framework,
a subject is also allowed to forecast sets of probabilities C 2C(X), which
we’ve been calling credal sets; we’ll call this approach, which involves spec-
ifying a forecast Cs 2C(X) for all possible s 2S, the standard approach to
forecasting.

In a number of papers [7, 8], Philip Dawid and Volodya Vovk have ques-
tioned whether it’s always natural or even possible for a subject to specify
such a (precise) forecasting system. Consider for example a weather fore-
caster who provides a daily probability for rain in the next 24 hours. His
forecasts are based on the rain history he has actually observed (as well as
other information), and he isn’t required to provide forecasts for all rain
histories that might have been or might be. Dawid and Vovk provided a prac-
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tical way to solve this problem by putting forward their so-called prequential
forecasting framework.

In a number of groundbreaking papers [9, 89], this prequential forecast-
ing idea was applied to questions related to algorithmic randomness. Instead
of defining what it means for an infinite binary sequence of outcomes, such
as (0,1,1,0,0,1,0, . . . ), to be random for a forecasting system, their authors
came up with randomness notions that consider the randomness of an infi-
nite binary sequence of outcomes only with respect to the probability mass
functions that are actually forecast along the sequence, that is, they defined
what it means for an infinite sequence (m1, x1,m2, x2, . . . ,mk , xk , . . . ) of pre-
cise forecasts mk 2M(X) and subsequent outcomes xk 2 {0,1} to be random.
They did this using a martingale- as well as a test-theoretic approach.

In this chapter, not only do we question whether it’s always natural or
even possible for a subject to specify a precise forecasting system—as we
have been doing in the previous chapters—, we also call into doubt whether
a subject is always able to put forward precise forecasts mk in a prequential
context. Consider for example the weather forecasting set-up introduced
before, and let’s assume that it’s the weather forecaster’s task to predict rain-
fall in some remote mountain valley. Since the weather is known to be very
unreliable in this kind of setting, the weather forecaster had better be very
careful when making such predictions, especially in the beginning of his
endeavour, when only limited data might be at hand. In such a scenario,
it might be better for him to resort to a less committal description of his
rainfall-related uncertainty that better reflects his limited knowledge, which
for instance he could do by specifying only bounds on probabilities—a credal
set—instead of precise probabilities. To deal with this concern, we intend
to build upon the previously introduced prequential approach to random-
ness, and extend the precise forecasts mk 2M(X) to so-called imprecise
forecasts Ck 2C(X). In doing so, we extend the range of applicability of both
Dawid and Vovk’s and our own work [see Chapters 49 and 111]: we’ll de-
fine what it means for an infinite sequence (C1, x1,C2, x2, . . . ) of forecasts Ck
and subsequent outcomes xk to be random—both in a martingale- and a
test-theoretic way—, prove that these two randomness notions coincide,
and compare the resulting prequential imprecise-probabilistic randomness
definition(s) to our previously introduced standard imprecise-probabilistic
generalisation of Martin-Löf randomness [see Definition 8.552].29

Let’s recapitulate, as well as clarify, the terminology we’ll adopt further
on, which is based on three distinctions that can be made in approaching
the study of randomness. The first possible distinction is between standard
and prequential approaches: do we consider the randomness of an infinite

29In our prequential imprecise-probabilistic approach to randomness, we thus focus on
modifications of our notion of ML-(test-)randomness. It’s however rather straightforward to
apply (many of) the lines of reasoning in this chapter to the other martingale- and test-theoretic
randomness notions we’ve introduced in Sections 850 and 13113.
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sequence of outcomes with respect to a given forecasting system, or do we
consider the randomness of an infinite sequence of forecasts followed by
outcomes? The second distinction is between (precise-)probabilistic and
imprecise-probabilistic approaches: do we consider point forecasts or their
extension to more general imprecise forecasts? And the third possible dis-
tinction is between martingale-theoretic and test-theoretic approaches: do
we approach the randomness of a sequence of outcomes by using the impos-
sibility of a gambling system that allows one to become unboundedly rich by
betting on them, or rather by using a collection of so-called randomness tests
that the sequence must pass in other to qualify for being called random?

So far, prequential randomness has been studied in a precise-
probabilistic setting [9, 89]. Here, we propose to extend the precise-
probabilistic discussion of prequential randomness to an imprecise-
probabilistic one, and to do this for both the martingale-theoretic and the
test-theoretic approaches.

We have structured this chapter as follows. In Section 16, we recon-
sider the infinite betting game as introduced in Section 6.327, and explain
how to move from the standard approach to a prequential one. This al-
lows us in Section 17150 to formally introduce our prequential imprecise-
probabilistic martingale-theoretic notion of randomness—which we’ll call
game-randomness; our terminology follows Dawid & Vovk [8] and Vovk &
Shen [9]. We compare the definitions and properties of our standard and
prequential martingale-theoretic randomness notions in Section 17.3153.
In particular, we show that both notions coincide when imposing some
mild (computability) conditions on the uncertainty models involved; see
also Figure 15.1y. In Section 18168, we introduce a prequential imprecise-
probabilistic test-theoretic notion of randomness, which we’ll call prequential
test-randomness. We prove that it coincides with game-randomness, and
thereby extend earlier results on the equivalence of martingale-theoretic and
test-theoretic approaches in prequential precise-probabilistic randomness
[9, Corollary 1]; again, see also Figure 15.1y. This will obviously also allow us
to carry over to prequential test-randomness all the properties derived for
game-randomness in Section 17.4161.

16 Sequential and prequential games

Consider Frank Deboosere—a famous Belgian weather forecaster—whose
daily job consists in making good forecasts about whether the sun will or
won’t shine on the next day. This corresponds to a binary option space:
X = {.,/}. We formalise his forecasting task in the following forecasting
protocol:

FOR n = 1,2,3, . . . :
Forecaster Frank announces Cn 2C(X) .
R e a l i t y announces xn 2X .

145



A prequential approach to martingale- and test-theoretic randomness

martingale-theoretic test-theoretic

standard approach ML-randomness ML-test-randomness

prequential approach game-randomness test-randomness
Theorem 18.6171

Prop. 14.4121

Prop. 14.2120

Prop. 17.7154Prop. 17.21159

Figure 15.1. We consider three randomness notions: Martin-Löf randomness,
game-randomness and test-randomness. In Section 17.3153, we show that game-
randomness implies Martin-Löf randomness, and that these notions coincide under
some mild computability conditions on the uncertainty models. In Section 18.2170,
we show that game-randomness and test-randomness coincide, without extra condi-
tions on the uncertainty models.

Here, Reality is imagined to be another player, who gets to determine whether
or not the sun shines on day n. At each step n 2 N in the protocol, Cn ex-
presses Frank’s beliefs about Xn after observing the outcomes (x1, . . . , xn°1).

Clearly, Frank can do a good or a bad forecasting job. For example, if
he forecasts I. 2M(X) at every time step, but it rains every day, then we
might be inclined to say he’s doing a bad job. But if he forecasts 1/2 at every
time step and it rains half of the time, then we might (perhaps) agree he’s
doing a good job. This brings us again to the central question of this chapter:
when do we say that Frank makes good predictions, or more specifically, that
his forecasts (C1, . . . ,Cn , . . . ) ‘agree with’ the outcomes (x1, . . . , xn , . . . )? The
field of (prequential) algorithmic randomness tries to answer this question
by defining what it means for an infinite sequence (C1, x1, . . . ,Cn , xn , . . . ) of
forecasts Cn and subsequent outcomes xn to be ‘random’.

16.1 The standard approach

At the start of Chapter 49, the above question took the following differ-
ent shape: ‘What sequences do we consider to be random for a forecast-
ing system ' 2 ©(X)?’. On the standard approach, it’s thus assumed that
Forecaster Frank’s forecasts in the protocol mentioned above can be de-
rived from a so-called forecasting system: Frank not only has to specify fore-
casts Cn := C(x1,...,xn°1) to express his beliefs about Xn after observing the
actual outcomes (x1, . . . , xn°1), but he also has to specify forecasts Cs 2C(X)
for all possible situations s 2S that could in principle occur or have occurred:
he has to specify what we’ve called a forecasting system.

We see that, in this context, it’s more natural to talk about the randomness
of a path ! 2≠ for a forecasting system ', rather than for a sequence of
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forecasts (C1, . . . ,Cn , . . . ).
In Chapter 49, to answer this randomness question, a third player called

Sceptic tested the correspondence between Forecaster Frank’s forecasting
system ' and Reality’s outcomes; in this chapter, we’ll identify Sceptic with
Frank’s colleague Sabine Hagedoren—who is another famous Belgian weather
forecaster. In the context of Chapter 49, her job consisted in engaging in
a betting game: if Frank does a good forecasting job, Sabine shouldn’t be
able to tremendously increase her capital in the long run, by gambling on
the next outcome using bets that Frank makes available in each successive
situation s by his specification of the forecast '(s). We then called a path ! 2
≠ random for a forecasting system ' 2 ©(X) if Sabine can’t come up with
an implementable betting strategy T 2 TR(') that makes her rich without
bounds along ! [see Definitions 8.552 and 8.654]. In this chapter, we’ll focus
on lower semicomputable betting strategies, and hence, in the standard
setting, we’ll restrict our attention to ML-randomness.

But for now, let’s (temporarily) forget about forecasting systems again,
and have a first look at how to devise a notion of randomness for an infinite
sequence (C1, x1, . . . ,Cn , xn , . . . ) of forecasts Cn and subsequent outcomes xn
when adopting a prequential perspective.

16.2 The prequential approach

We start by introducing a bit of notation. An infinite sequence
(C1, x1, . . . ,Cn , xn , . . . ) 2 (Crat(X)£X)N of rational credal sets Cn and sub-
sequent outcomes xn is called a prequential path and generically denoted
by ¿.30 Such a prequential path is a possible instantiation of an infinite se-
quence of moves in the above-mentioned forecasting protocol, where at
each step n, Forecaster Frank emits a credal set Cn for the next outcome
variable Xn 2X, which Reality subsequently determines to be xn .

An infinite sequence of rational credal sets (C1, . . . ,Cn , . . . ) 2 Crat(X)N

is generically denoted by ≥. A finite sequence of credal sets and out-
comes (C1, x1, . . . ,Cn , xn) 2 (Crat(X)£X)§, where we let (Crat(X)£X)§ :=S

k2N0 (Crat(X)£X)k , is called a prequential situation, is generically de-
noted by v and has length |v| = n. A finite sequence of rational credal
sets (C1, . . . ,Cn) 2Crat(X)§, with Crat(X)§ :=S

k2N0 (Crat(X))k , is generically
denoted by c and has length |c| = n. For any k 2N0, ¿1:k = (C1, x1, . . . ,Ck , xk ),
and similarly for infinite sequences of rational credal sets ≥ 2C(X)N and
for prequential situations v 2 (Crat(X)£X)§ with k ∑ |v|. Furthermore, for
any k 2 N0, ¿k = (Ck , xk ), and similarly for infinite sequences of rational
credal sets ≥ 2C(X)N, for finite sequences of rational credal sets c 2Crat(X)§

30We’ll limit ourselves to rational forecasts in this prequential setting and draw attention to
this restriction by using a subscript ‘rat’; a rational forecasting system is for example denoted
by'rat, and—as already announced—the set of all rational forecasts byCrat(X). In Section 17150,
we’ll provide some explanation and motivation for this restriction.
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with k ∑ |c|, and for prequential situations v 2 (Crat(X)£X)§ with k ∑ |v|.
The empty prequential situation v1:0 = () is denoted also by ⇤.

For ease of notation, we won’t differentiate between ¿ 2 (Crat(X)£X)N

and (≥,!) 2 C(X)N £≠. In the same spirit, we won’t differentiate be-
tween v 2 (Crat(X)£X)§ and (c, s) 2S

n2N0 (Crat(X))n £Xn . If a prequential
path ¿= (≥,!) 2 (Crat(X)£X)N doesn’t allow zero probability jumps, i.e., if
E≥n (I!n ) > 0 for all n 2 N, meaning that there is no n 2 N such that Reality
chose the outcome !n that Forecaster Frank has given a precise probability
zero for [E≥n (I!n ) = 0], then we call ¿ a non-degenerate prequential path; we
call it a degenerate prequential path otherwise, and collect all degenerate
prequential paths in the set (Crat(X)£X)Ndeg. Analogously, we call a pre-
quential situation v = (c, s) 2 (Crat(X)£X)§ non-degenerate if E cm (Ism ) > 0
for all 1 ∑ m ∑ |s|, and degenerate otherwise; we collect all degenerate pre-
quential situations in the set (Crat(X)£X)§deg.

The concatenation of a finite sequence of rational credal sets c 2Crat(X)§

and a rational credal set Crat 2 Crat(X) is denoted by cCrat, and the con-
catenation of a prequential situation v 2 (Crat(X)£X)§, a rational credal
set Crat 2Crat(X) and an outcome x 2X by vCratx. In this way, for any v =
(c, s) = (C1, x1, . . . ,Cn , xn) 2 (Crat(X)£X)§, Crat 2Crat(X) and x 2X, we have
that vCratx = (C1, x1, . . . ,Cn , xn ,Crat, x) = (cCrat, sx) 2 (Crat(X)£X)§.

Consider any two prequential situations v,v0 2 (Crat(X)£X)§. We say
that v precedes v0, and write v v v0, if v is a precursor of v0; we may then also
write v0 w v and say that v0 follows v. We say that v strictly precedes v0, and
write v @ v0, if v v v0 and v 6= v0. If both v 6v v0 and v0 6v v, then we say that
v and v0 are incomparable, and we write v “ v0. For any set of prequential
situations V µ (Crat(X)£X)§, we write v v V if v precedes some member
of V , we write V v v if v has some precursor in V , we write v @V if v is the
precursor of some member of V but doesn’t follow any member of V , and we
write v “V if v is incomparable with all members of V . For any prequential
path ¿ 2 (Crat(X)£X)N, we say that ¿ goes through v, and write v v ¿, if there’s
some n 2 N0 such that v = ¿1:n ; if we let ÇvÉ :=

©
¿ 2 (Crat(X)£X)N : v v ¿

™
,

then ¿ goes through v if and only if ¿ 2 ÇvÉ. Similarly, for any ≥ 2C(X)N and
c 2Crat(X)§, we say that ≥ goes through c , and write c v ≥, if there’s some n 2
N0 such that c = ≥1:n . For any set of prequential situations V µ (Crat(X)£X)§,
we let ÇV É :=S

v2V ÇvÉ; we remark that Ç(Crat(X)£X)§degÉ= (Crat(X)£X)Ndeg.
In the prequential setting, it’s not assumed that Forecaster Frank’s fore-

casts are produced by some underlying forecasting system. Instead, as is
(re)presented in the protocol on p. 145, he’s allowed to produce forecasts
on the fly, so there’s no need for Frank to provide forecasts in all situations
that could occur. To test whether Frank is doing a good job, Sceptic Sabine
here too engages in a betting game, only now she has to be able to specify an
allowed change in capital for all possible successions of rational credal sets
(that could have been chosen by Frank) and outcomes (that could have been
revealed by Reality), that is, she has to specify a possible change in capital
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for all prequential situations v 2 (Crat(X)£X)§ and all possibly following
rational credal sets Crat 2Crat(X).

We’ll assume that Sceptic Sabine starts with unit capital. In order to
specify a strategy, for any prequential situation v 2 (Crat(X)£X)§ and any
rational credal set Crat 2Crat(X), she needs to select a gamble æ(v,Crat) 2
L(X) that’s made available to her by Forecaster Frank’s specification of the
credal set Crat, that is, to select an uncertain change of capital æ(v,Crat) 2
L(X) for which ECrat (æ(v,Crat)) ∑ 0, meaning that he expects her to have non-
positive gain. After n successive steps, where Forecaster has put forward the
successive rational credal sets c = (C1, . . . ,Cn) and where Reality has produced
the successive outcomes s = (x1, . . . , xn), which results into the prequential
situation v = (c, s), Sabine’s accumulated capital F (v) according to such a
strategy is

F (v) = 1+
n°1X

k=0
æ(v1:k ,ck+1)(sk+1),

with

æ(v,Crat) = F (vCrat ·)°F (v) =:¢F (vCrat ·).

Furthermore, we’ll again prohibit Sabine from borrowing money, meaning
that F ∏ 0. In summary then, her prequential betting strategies, which we’ll
refer to as test superfarthingales, are formalised as follows; as announced in
the introduction to this chapter, we borrow the underlying idea as well as the
terminology from Dawid & Vovk [8] and Vovk & Shen [9].

Definition 16.1. We call superfarthingale any real-valued map F : (Crat(X)£
X)§ !R such that ECrat (F (vCrat ·)) ∑ F (v) for all v 2 (Crat(X)£X)§ and Crat 2
Crat(X), and we collect all superfarthingales in the set F. We call a non-
negative superfarthingale F ∏ 0 such that F (⇤) = 1 a test superfarthingale.

There’s a specific feature of superfarthingales that we’ll use a couple of
times: for any superfarthingale F 2 F and any non-degenerate prequential
situation v = (c, s) 2 (Crat(X)£X)§, the capital F (v) is bounded above by the
initial capital F (⇤) and the rational forecasts c that are specified along v, and
this in the following sense.

Lemma 16.2. For any non-degenerate prequential situation v = (c, s) 2
(Crat(X)£X)§ and any non-negative superfarthingale F 2 F:

F (v) ∑
|s|Y

k=1

1

E ck (Isk )
F (⇤).

Proof. The proof is similar to that of Lemma 9.1362. Consider any non-degenerate
prequential situation vCratx 2 (Crat(X)£X)§. Then ECrat (Ix ) > 0 and

F (vCratx) =
ECrat (Ix )

ECrat (Ix )
F (vCratx)

C220=
ECrat (Ix F (vCratx))

ECrat (Ix )
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C520∑ 1

ECrat (Ix )
ECrat (F (vCrat ·)) ∑ 1

ECrat (Ix )
F (v),

where the first inequality also makes use of the non-negativity of F , and where the last
inequality follows from the superfarthingale property. A simple induction argument
now leads to the desired result.

Here too, for (interesting) random prequential paths to exist, we’ll restrict
Sabine’s betting strategies to a countable set. To obtain a sensible prequential
notion of randomness, we’ll do so by imposing lower semicomputability.

17 A prequential martingale-theoretic approach

In this section, we’ll introduce and discuss two prequential notions of ran-
domness. In Section 17.1, we use our notion of ML-randomness [see Defini-
tion 8.552] to define what it means for a prequential path to be (prequentially)
ML-random; forecasting systems are still in the picture and take centre stage
here. In Section 17.2153, we do away with forecasting systems and test the
randomness of a prequential path via lower semicomputable test superfar-
thingales; the corresponding genuinely prequential randomness notion will
be called game-randomness. We compare both notions in Section 17.3153—
where we show that they coincide when restricting our attention to (non-
degenerate) recursive rational forecasting systems—, and derive a number of
properties of game-randomness in Section 17.4161.

Before introducing these prequential imprecise-probabilistic and
martingale-theoretic notions of randomness, which are inspired by Vovk
and Shen’s precise-probabilistic work [9], let’s now first argue why we’ll re-
strict our attention to rational forecasts in this prequential context, as we
already mentioned in Footnote 30147. First of all, compared to their approach
in Ref. [9], it allows us to employ a technically less involved version of im-
plementability that results in simpler proofs. Secondly, and perhaps more
importantly, we intend to compare our standard and prequential notions of
randomness—culminating in an equivalence result [see Theorem 17.24161]
that holds under the restriction of recursive (and hence rational) forecasting
systems—, and, as has been shown in Proposition 10.167, rational credal sets
are enough to capture the essence of ML-randomness in the standard setting
when restricting our attention to non-degenerate computable forecasting
systems.

17.1 A standard prequential martingale-theoretic approach: pre-
quential Martin-Löf randomness

We can give a more prequential flavour to the previously introduced no-
tion of ML-randomness [see Definition 8.552], but before doing so, we
want and have to introduce some more notation and terminology. With
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any infinite sequence of outcomes ! 2 ≠ and with any forecasting sys-
tem' 2©(X), we associate the infinite sequence of forecasts'[!] := ('(!1:0),
'(!1:1),'(!1:2), . . . ). Similarly, we associate with any finite sequence of out-
comes s 2S and with any forecasting system ' 2©(X) the finite sequence
of forecasts '[s] := ('(s1:0),'(s1:1), . . . ,'(s1:|s|°1)). This allows us to check
the compatibility of a forecasting system ' 2©(X) with a given infinite se-
quence ¿= (≥,!) 2 (Crat(X)£X)N of forecasts and outcomes, in the sense
that ' should emit the same forecasts based on the observed outcomes !
in ¿ as the forecasts ≥ that are present in ¿: we say that ' is compatible with ¿
if '[!] = ≥, that is, if '(!1:n) = ≥n+1 for all n 2N0; an equivalent condition for
compatibility of ' with ¿= (≥,!) is clearly given by

(8s 2S)(s v!)'[s] v ≥). (17.1)

The compatibility between a forecasting system ' 2©(X) and a prequential
path ¿= (≥,!) 2 (Crat(X)£X)N is illustrated in Figure 17.2y.

If the forecasting system ' produces more conservative forecasts along !
compared to ≥, that is, if ≥n+1 µ'(!1:n) for all n 2N0, then we say that ' is
more conservative (or less informative) on ¿= (≥,!). Similarly, we say that
a forecasting system ' is compatible with a prequential situation v = (c, s) 2
(Crat(X)£X)§ if '(s1:n) = cn+1 for all 0 ∑ n ∑ |v|°1.
It will be useful in what follows to also observe that

(Crat(X)£X)§ =
[

'rat2©rat(X)

©
('rat[s], s) : s 2S

™
(17.3)

and

(Crat(X)£X)N =
[

'rat2©rat(X)

©
('rat[!],!) : ! 2≠

™
; (17.4)

this tells us that we can use the rational forecasting systems to ‘cover’ the set
of all prequential situations, as well as the set of all prequential paths: every
prequential path has at least one compatible rational forecasting system.

The notion of ML-randomness [see Definition 8.552] can now be adapted
to this new prequential context as follows. It leads to a martingale-theoretic
definition of prequential randomness that still involves the use of forecasting
systems.

Definition 17.5. We’ll call a sequence ¿= (≥,!) 2 (Crat(X)£X)N of rational
credal sets and outcomes (prequentially) ML-random if ! is ML-random for
all rational forecasting systems 'rat 2©rat(X) that are compatible with ¿.

To provide this (prequential) randomness notion with an interpreta-
tion, consider again the prequential forecasting protocol introduced in
Section 16145; recall that it’s Sceptic Sabine’s job to test whether Fore-
caster Frank’s (rational) forecasts ≥ = (C1, . . . ,Cn , . . . ) ‘agree with’ Reality’s
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Figure 17.2. The forecasting system ' is represented in the imprecise probabil-
ity tree, the path ! 2 ≠ that constitutes the prequential path ¿ = (≥,!) is depicted
in yellow, the prequential path ¿ = (≥,!) is depicted in green, and the prequential
path ('[!]1,!1,'[!]2,!2,'[!]3,!3, . . . ) that originates from the specification of the
forecasting system ' and the path ! is depicted by a merging of yellow and green.
The forecasting system ' is then compatible with the prequential path ¿ = (≥,!) if
and only if '(⇤) = ≥1, '(1) = ≥2, '(10) = ≥3, etc.

outcomes ! = (!1, . . . ,!n , . . . ). In line with the standard approach to algo-
rithmic randomness, we’ll assume that Frank has a (rational) forecasting
system 'rat 2©rat(X) fixed in the background, which then determines the
(rational) forecasts Cn 2Crat(X), with n 2N, he puts forward. In contradis-
tinction with the standard approach, we won’t assume that Sabine has any
knowledge about Frank’s forecasting system 'rat—even if the forecasting
system is computable. To make up for her lack of knowledge, she’s allowed to
test the possible randomness of a prequential path ¿= (≥,!) 2 (Crat(X)£X)N

by putting forward any (implementable) betting strategy T 2TML('rat) that
is allowed by a (rational) forecasting system 'rat 2©rat(X) that’s compatible
with ¿; the prequential path ¿ = (≥,!) is then considered random if every
such betting strategy remains bounded on !.
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17.2 A fully prequential approach: game-randomness

To obtain a truly prequential imprecise-probabilistic martingale-theoretic
notion of randomness, in the sense that it doesn’t involve the intervention
of forecasting systems, we mimic Vovk and Shen’s approach [9], and pro-
ceed by imposing lower semicomputability on Sabine’s prequential betting
strategies—which we called test superfarthingales. Contrary to their ap-
proach, we won’t allow the test superfarthingales to be infinite-valued as a
way to express that degenerate prequential paths—which allow zero probabil-
ity jumps—shouldn’t be random; instead, we explicitly require that random
prequential paths should be non-degenerate.

Definition 17.6. We call a sequence ¿= (≥,!) 2 (Crat(X)£X)N of rational
credal sets and outcomes game-random if it’s non-degenerate and if all lower
semicomputable test superfarthingales F 2 F satisfy limsupn!1 F (¿1:n) <1.

In the following section, we intend to explore how the two new prequen-
tial randomness notions compare: how does (prequential) Martin-Löf ran-
domness compare to game-randomness? In particular, we’ll be able to show
that both definitions result in (almost-)equivalent randomness notions when
we restrict our attention to non-degenerate recursive rational forecasting
systems on the standard approach. This endeavour can be seen as a contin-
uation (and generalisation) of the discussion in Section 4 of Ref. [9], where
Vovk and Shen prove that precise-probabilistic versions of these definitions
coincide for non-degenerate computable forecasting systems.31

Afterwards, we’ll compare a few basic properties for both imprecise-
probabilistic randomness notions, where we’ll be especially concerned with
whether (and which) computability restrictions (on sequences of rational
forecasts) are necessary for these properties to hold.

17.3 Equivalence of (prequential) Martin-Löf and game-
randomness

So, let’s start comparing these randomness notions: in a first subsection, we’ll
show that game-randomness implies (prequential) Martin-Löf randomness—
without any implementability requirements on the rational forecasts—, and
in a second subsection, we’ll show that (prequential) Martin-Löf random-
ness implies game-randomness when imposing some arguably mild imple-
mentability conditions on the rational forecasts at hand.

Game-randomness implies (prequential) Martin-Löf randomness

As the following result shows, any prequential path that’s game-random is
also prequentially Martin-Löf random. Game-randomness is therefore at

31Vovk and Shen allow for real-valued precise forecasts, rather than our rational-valued
interval forecasts.
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least as strong a randomness notion as prequential Martin-Löf randomness;
note that no recursiveness is imposed on the rational forecasting systems.

Proposition 17.7. Consider any infinite sequence of rational forecasts and
outcomes ¿ = (≥,!) 2 (Crat(X)£X)N that’s game-random. Then the infi-
nite sequence of outcomes ! is ML-random for any rational forecasting sys-
tem 'rat 2©rat(X) that’s compatible with ¿, meaning that ¿ is prequentially
ML-random.

Proof. Consider any rational forecasting system 'rat 2 ©rat(X) that’s compatible
with the game-random prequential path ¿ = (≥,!) (which is non-degenerate by
assumption), meaning that ¿ = ('rat[!],!), and assume towards contradiction
that there’s some lower semicomputable test supermartingale T 2 TML('rat) such
that limsupn!1 T (!1:n ) =1; note that by Definition 8.552 and Proposition 10.973
we may assume without loss of generality that T is positive everywhere. We’ll
now construct a lower semicomputable test superfarthingale F 0 2 F in such a
way that F 0('rat[s], s) = T (s) for all situations s 2 S for which the corresponding
prequential situation ('rat[s], s) is non-degenerate, and for which then of course
limsupn!1 F 0(¿1:n ) = limsupn!1 F 0('rat[!1:n ],!1:n ) = limsupn!1 T (!1:n ) =1.

Define the map F : (Crat(X)£X)§ ! R by letting F (c, s) := T (s) for all (c, s) 2
(Crat(X)£X)§, which is clearly lower semicomputable because T is. By construction,
F ('rat[•], •) : S!R is a positive test supermartingale for 'rat because T is. Invoking
Lemma 17.8, we then indeed find that there’s some lower semicomputable test su-
perfarthingale F 0 2 F such that F 0('rat[s], s) = T (s) for all s 2S for which ('rat[s], s) is
non-degenerate.

In the above proof, we use the following lemma, which is slightly more
general then what we need here, but which entails a corollary that will help
us prove in Section 17.4161 the existence of a so-called universal test super-
farthingale.

Lemma 17.8. There’s a single algorithm that, upon the input of a code for a
lower semicomputable map F : (Crat(X)£X)§ ! [0,+1], outputs a code for
a lower semicomputable test superfarthingale F 0 2 F such that

(i) F 0(v) = 0 for all degenerate prequential situations v 2 (Crat(X)£X)§;

(ii) for any rational forecasting system 'rat 2 ©rat(X) such that the
map F ('rat[•], •) : S! R is a positive test supermartingale for 'rat, it
holds that F 0('rat[s], s) = F ('rat[s], s) for all situations s 2S for which
the corresponding prequential situation ('rat[s], s) is non-degenerate.

Proof. Start from a code for the lower semicomputable map F : (Crat(X)£X)§ !
[0,+1]. By Lemma 7.545, we can invoke a single algorithm that outputs a
code q : (Crat(X)£X)§£N!Q for F such that q(v, •) % F (v) and q(v,n) < q(v,n+1)
for all v 2 (Crat(X)£X)§ and n 2N. We’ll now use the code q to construct a code q 0 for
a lower semicomputable test superfarthingale F 0 2 F that satisfies the requirements of
the lemma.
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Let q 0 : (Crat(X)£X)§ £N!Q be defined by q 0(⇤,n) := 1 and

q 0(vCratx,n) :=
(

max
°

A(v,Crat, x,n)[ {0}
¢

if vCratx is non-degenerate

0 otherwise

for all v 2 (Crat(X)£X)§, Crat 2Crat(X), x 2X and n 2N, (17.9)

where the map A : (Crat(X)£X)§ £Crat(X)£X£N!
©
Q µQ : |Q| <1

™
is defined

for all v 2 (Crat(X)£X)§, Crat 2Crat(X), x 2X and n 2N by

A(v,Crat, x,n) :=
n

q(vCratx,m) : 0 ∑ m ∑ n, 0 ∑ q(vCrat ·,m) and

ECrat (q(vCrat ·,m)) ∑ q 0(v,n)
o

. (17.10)

First of all, let’s have a look at why both maps are well-defined; we’ll do so via forward
propagation. Start by observing that q 0(⇤,n) is well-defined for all n 2 N, and fix
any Crat 2Crat(X) and x 2X. For every n 2N, the definition of A(⇤,Crat, x,n) only
makes use of q [which is given] and q 0(⇤,n) [which is already defined]. Hence,
A(⇤,Crat, x,n) and q 0(Cratx,n) are well-defined for all n 2N. Via continued forward
propagation, it’s then immediate that A(v,Crat, x,n) and q 0(vCratx,n) are well-defined
for any v 2 (Crat(X)£X)§, Crat 2Crat(X), x 2X and n 2N. By construction, since
the map A outputs finite sets of rationals, the map q 0 is non-negative and rational.
Since q is a recursive map, and since the inequalities in Eq. (17.10) are decidable [use
Lemma 7.143], it isn’t too difficult to see that the map A and the map q 0 are recursive.
Moreover, since q is in particular non-decreasing in its second argument, it follows
readily that

q 0(vCratx,n) ∑ max{q(vCratx,n),0}

for all v 2 (Crat(X)£X)§, Crat 2Crat(X), x 2X and n 2N. (17.11)

Secondly, the map q 0 is non-decreasing in its second argument, as we now
show by induction on its first argument. We start by observing that, trivially,
q 0(⇤,n) ∑ q 0(⇤,n +1) for all n 2N. For the induction step, fix any v 2 (Crat(X)£X)§,
Crat 2Crat(X), x 2X and n 2N, and assume that—this is the induction hypothesis—
q 0(v,n) ∑ q 0(v,n +1). We then have to show that also q 0(vCratx,n) ∑ q 0(vCratx,n +1).
This is trivial when vCratx is degenerate; when vCratx is non-degenerate, it follows
readily from the fact that A(v,Crat, x,n) µ A(v,Crat, x,n+1), which is itself immediately
verified from Eq. (17.10).

Thirdly, for any n 2N, the map q 0(•,n) : (Crat(X)£X)§ !Q is a test superfarthin-
gale. To prove this, we may clearly concentrate on the superfarthingale condition. Fix
any v 2 (Crat(X)£X)§, Crat 2Crat(X) and n 2N, and infer from Eq. (17.10) that

(9x 2X)A(v,Crat, x,n) =?, (8x 2X)A(v,Crat, x,n) =?,

so we only need to consider two mutually exclusive possibilities. The first possibility
is that (8x 2 X)A(v,Crat, x,n) = ?. Then q 0(vCrat ·,n) = 0, so ECrat (q 0(vCrat ·,n)) =
ECrat (0) = 0 ∑ q 0(v,n), where the second equality follows from C120. The second possi-
bility is that A(v,Crat, x,n) is non-empty for every x 2X, so there’s some m 2 {1, . . . ,n}
for which ECrat (q(vCrat ·,m)) ∑ q 0(v,n) and q(vCrat ·,m) = max(A(v,Crat, ·,n)[ {0}),
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where the equality also follows from the already established fact that the map q
is increasing in its second argument. Since it follows from Eq. (17.9)x that
max(A(v,Crat, ·,n)[ {0}) ∏ q 0(vCrat ·,n), where the inequality takes into account that
there may be some x 2X such that vCratx is degenerate, we find that, in this second
case also,

ECrat (q 0(vCrat ·,n)) ∑ ECrat (max(A(v,Crat, ·,n)[ {0})) = ECrat (q(vCrat ·,m)) ∑ q 0(v,n),

where the first inequality follows from C520. So, indeed, q 0(•,n) is a test superfarthin-
gale.

As a fourth and final preliminary step, we can now infer from Lemma 16.2149 that
for every non-degenerate prequential situation v 2 (Crat(X)£X)§ there’s some Bv 2R
such that q 0(v,n) ∑ Bv for all n 2 N. Consequently, q 0(v, •) is bounded above for
every v 2 (Crat(X)£X)§, because it also holds that q 0(v,n) = 0 for all degenerate
prequential situations v 2 (Crat(X)£X)§deg and n 2N.

With this set-up phase completed, let the map F 0 : (Crat(X)£X)§ ! [0,+1] be
defined through q 0(v, •) % F 0(v) for all v 2 (Crat(X)£X)§. Since F ∏ 0, we infer from
Eq. (17.11)x that then

F 0(v) ∑ F (v) for all v 2 (Crat(X)£X)§ \ {⇤}. (17.12)

In our preliminary set-up, we have already established that there’s an algorithm that,
upon input of the code q for the lower semicomputable map F , outputs a code q 0

for the map F 0. This map F 0 is well-defined, real-valued, non-negative and lower
semicomputable due to the non-decreasingness, boundedness, non-negativity and
recursiveness of q 0 respectively. Moreover, F 0(⇤) = 1. It results that we only need
to check the superfarthingale property explicitly in order to conclude that F 0 is a
lower semicomputable test superfarthingale. Fix, to this end, any v 2 (Crat(X)£
X)§ and Crat 2 Crat(X). If we recall that the map q 0(•,n) : (Crat(X)£X)§ ! R is
a test superfarthingale for every n 2 N, we immediately infer from C620 and the
real-valuedness of F 0 that, indeed, ECrat (F 0(vCrat ·)) = limn!1 ECrat (q 0(vCrat ·,n)) ∑
limn!1 q 0(v,n) = F 0(v).

To complete the proof, we show that F 0 satisfies the conditions (i)154 and (ii)154.
For (i)154, fix any degenerate prequential situation v 2 (Crat(X)£X)§ and note that
then, by construction, q 0(v,n) = 0 for all n 2N. Hence, indeed, F 0(v) = 0.

For (ii)154, fix any rational forecasting system 'rat 2 ©rat(X), consider the
map T : S! R defined by T (s) := F ('rat[s], s) for all s 2 S, and assume that T is a
positive test supermartingale for 'rat. Then we must show that F 0('rat[s], s) = T (s)
for all s 2 S for which the prequential situation ('rat[s], s) is non-degenerate. We
know that F 0('rat[⇤],⇤) = F 0(⇤) = 1 = T (⇤), and it already follows from Eq. (17.12)
that F 0('rat[s], s) ∑ F ('rat[s], s) = T (s) for all s 2S \ {⇤}, so we’ll concentrate on the
converse inequality. Assume towards contradiction that there’s some t 2S\ {⇤} for
which ('rat[t ], t) is non-degenerate and F 0('rat[t ], t) < T (t), implying that there’s
some ≤> 0 such that

q 0(('rat[t ], t ),n)+≤< T (t ) for all n 2N. (17.13)

We’ll use an induction argument to show that this is impossible.
Intuitively, the induction argument works as follows. We begin by observ-

ing that q 0(⇤,n) = 1 = T (⇤) for all n 2 N. As induction step, we assume that
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T (t1:k )° ≤k < q 0(('rat[t1:k ], t1:k ), N ) for some N 2 N, 0 ∑ k < |t | and 0 < ≤k < ≤, and
prove that there’s then also some N 0 2N and ≤k < ≤k+1 < ≤ for which T (t1:k+1)°≤k+1 <
q 0(('rat[t1:k+1], t1:k+1), N 0). Via forward propagation, this will allow us to conclude
that T (t )°≤< T (t )°≤|t | < q 0(('rat[t ], t ), N 00) for some N 00 2N. But, to pull this argu-
ment off, we first need to do some preparatory work.

Taking into account that it follows from the assumptions that, for all n 2N,

q(('rat[t ], t ), •) % T (t ) > 0 and q(('rat[t ], t ),n) < q(('rat[t ], t ),n +1), (17.14)

we now claim that there are ≤0,≤1, . . . ,≤|t | 2R and n0,n1, . . . ,n|t | 2N such that

0 < ≤0 < ≤1 < ·· · < ≤|t | < ≤ (17.15)

T (t1:k ) < q(('rat[t1:k ], t1:k ),nk )+≤k for all k 2
©
0,1, . . . , |t |

™

(17.16)

0 ∑ q(('rat[t1:k ]'rat(t1:k ), t1:k ·),nk+1) for all k 2
©
0,1, . . . , |t |°1

™

(17.17)

q(('rat[t1:k ]'rat(t1:k ), t1:k ·),nk+1)+≤k < T (t1:k ·) for all k 2
©
0,1, . . . , |t |°1

™
.

(17.18)

The argument establishing the claim starts with k := |t |, finding ≤k such that (17.15)
is satisfied [which is trivially possible], and then finding nk such that (17.16) and
(17.17) are satisfied [which is possible given the assumptions (17.14)]. We then move
to k := |t |° 1, finding an ≤k such that (17.15) [again trivially possible] and (17.18)
[made possible by the assumptions (17.14)] are satisfied, and then finding an nk
such that (17.16) and (17.17) are satisfied [which is again possible given the assump-
tions (17.14)]. We continue this procedure until ≤1 and n1 have been defined, and
finish by finding ≤0 such that (17.15) [again trivially possible] and (17.18) [made possi-
ble by the assumptions (17.14)] are satisfied, and then finding an n0 such that (17.16)
is satisfied [which is again possible given the assumptions (17.14)]; these conditions
are depicted below for some situation t 2S for which |t | = 5.

`1 2 3 4 5

1

2

3

0

≤0

≤1
≤2

≤3

≤4

≤5

T (t1:`)
q(('rat[t1:`], t1:`),n`)

Now, let N := max{n0,n1, . . . ,n|t |}. To start the induction argument, observe that,
trivially, q 0(⇤, N ) = 1 > T (⇤)°≤0. For the induction step, we fix any k 2 {0,1, . . . , |t |°1}
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and assume that q 0(('rat[t1:k ], t1:k ), N ) > T (t1:k )°≤k [this is the induction hypothesis].
It then follows that

E'rat(t1:k )
°
q(('rat[t1:k ]'rat(t1:k ), t1:k ·),nk+1)

¢

∑ E'rat(t1:k )(T (t1:k ·)°≤k ) [use Eq. (17.18)x and C520]

= E'rat(t1:k )(T (t1:k ·))°≤k [use C420]

∑ T (t1:k )°≤k [T supermartingale]

∑ q 0(('rat[t1:k ], t1:k ), N ),

where the last inequality follows from the induction hypothesis. Hence, by
Eqs. (17.10)155 and (17.17)x,

q(('rat[t1:k+1], t1:k+1),nk+1) 2 A(('rat[t1:k ], t1:k ),'rat(t1:k ), tk+1, N ),

which implies that

q 0(('rat[t1:k+1], t1:k+1), N ) ∏ max A(('rat[t1:k ], t1:k ),'rat(t1:k ), tk+1, N )

∏ q(('rat[t1:k+1], t1:k+1),nk+1)

> T (t1:k+1)°≤k+1, [use Eq. (17.16)x]

where the first inequality follows from (17.10)155 since ('rat[t ], t ) is non-degenerate.
Repeating this argument until we reach k = |t | ° 1, we eventually find that
q 0(('rat[t ], t), N ) > T (t) ° ≤|t | > T (t) ° ≤, which is the desired contradiction
with Eq. (17.13)156.

The following result is now immediate if we also take into account
Eq. (17.3)151, which guarantees that for any prequential situation v = (c, s) 2
(Crat(X)£X)§, there’s some rational forecasting system 'rat 2©rat(X) such
that c ='rat[s].

Corollary 17.19. There’s a single algorithm that, upon the input of a code
for a lower semicomputable map F : (Crat(X)£X)§ ! [0,+1], outputs a
code for a lower semicomputable test superfarthingale F 0 2 F such that, for all
prequential situations v 2 (Crat(X)£X)§,

(i) F 0(v) = 0 if v is degenerate;

(ii) F 0(v) = F (v) if v is non-degenerate and F is a positive test superfarthin-
gale.

Proof. Consider any lower semicomputable map F : (Crat(X)£X)§ ! [0,+1]. We
claim that the lower semicomputable test superfarthingale F 0 from Lemma 17.8154
does the job. To show so, it clearly suffices to focus on (ii). To this end, let’s assume
that F is a positive test superfarthingale and fix any non-degenerate prequential situ-
ation v = (c, s) 2 (Crat(X)£X)§, and any rational forecasting system 'rat 2©rat(X)
such that c ='rat[s] [which we know to exist]. Then it follows from Lemma 17.20y
that the map F ('rat[•], •) : S! R is a positive test supermartingale, and hence, by
Lemma 17.8(ii)154, F 0(v) = F 0('rat[s], s) = F ('rat[s], s) = F (v).
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Lemma 17.20. Consider any test superfarthingale F 2 F and any rational
forecasting system 'rat 2©rat(X). Then the map T : S!R defined by T (s) :=
F ('rat[s], s) for all s 2S is a test supermartingale for 'rat.

Proof. Obviously, it holds that T (⇤) = 1 and T ∏ 0 because F (⇤) = 1 and
F ∏ 0. Furthermore, for any s 2 S, it follows from the superfarthingale con-
dition that E'rat(s)(T (s ·)) = E'rat(s)(F ('rat[s ·], s ·)) = E'rat(s)(F ('rat[s]'rat(s), s ·) ∑
F ('rat[s], s) = T (s), so we conclude that T 2T('rat).

(Prequential) Martin-Löf randomness implies game-randomness

Conversely, as our next result shows, any path ! 2 ≠ that is ML-random
with respect to some rational forecasting system 'rat 2 ©rat(X) also leads
to a game-random prequential path ('rat[!],!) 2 (Crat(X)£X)N, provided
we impose recursiveness on the forecasting system 'rat 2©rat(X) and non-
degeneracy on the prequential path ('rat[!],!).

Proposition 17.21. Consider any recursive rational forecasting system 'rat 2
©rat(X) and any path ! 2≠. If ! is ML-random for 'rat and ('rat[!],!) is
non-degenerate, then the prequential path ('rat[!],!) is game-random.

Proof. Since we assumed the prequential path ('rat[!],!) to be non-degenerate,
assume towards contradiction that there’s some lower semicomputable test super-
farthingale F 2 F such that limsupn!1 F ('rat[!1:n ],!1:n ) = 1. Let T : S! R be
defined by T (s) := F ('rat[s], s) for all s 2S, then limsupn!1 T (!1:n ) =1. So we’re
done if we can show that T 2 T('rat) and that T is lower semicomputable. It’s im-
mediate from Lemma 17.20 that T 2 T('rat). Since F is assumed to be lower semi-
computable, there’s some recursive rational map q : (Crat(X)£X)§ £N! Q such
that q(v, •) % F (v) for all v 2 (Crat(X)£X)§. Let the rational map q 0 : S£N!Q be
defined as q 0(s,n) := q(('rat[s], s),n) for all s 2S and n 2N. This is a recursive map
since 'rat is assumed to be a recursive rational forecasting system. By construction,
q 0(s, •) = q(('rat[s], s), •) % F ('rat[s], s) = T (s) for all s 2 S, and therefore T is lower
semicomputable.

As an immediate corollary, we then also have that prequential ML-
randomness implies game-randomness, provided we impose similar restric-
tions.

Corollary 17.22. Consider any recursive rational forecasting system 'rat 2
©rat(X) and any path ! 2≠. If ('rat[!],!) is prequentially ML-random and
non-degenerate, then it’s game-random as well.

Proof. If the prequential path ('rat[!],!) is prequentially ML-random, then ! is ML-
random for the recursive rational forecasting system 'rat by definition, and hence,
this result is immediate from Proposition 17.21.
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The following example shows that the recursiveness requirement for the
rational forecasting system 'rat 2©rat(X) in the previous corollary can’t be
dropped, so game-randomness is a strictly stronger randomness notion than
prequential ML-randomness, since there’s at least one prequential path ¿ 2
(Crat(X)£X)N that’s prequentially ML-random but not game-random.

Example 17.23. Consider the binary state space X = {0,1} and any path ! 2
≠ such that (1/2,!) is game-random [this is always possible by Proposi-
tion 17.28163]. By Proposition 17.7154, (1/2,!) is then also prequentially
ML-random, and hence, ! is ML-random for the (stationary) fair-coin fore-
casting system '1/2. The path ! contains an infinite number of zeros and
an infinite number of ones, because otherwise limn!1

1
n

Pn°1
k=0 !k+1 = 1 or

limn!1
1
n

Pn°1
k=0 !k+1 = 0, which implies that ! isn’t wCH-random for '1/2,

and therefore also not ML-random for '1/2 by Proposition 12.2103. From
Proposition 34 in [36] (which tells us that any recursive path that has in-
finitely many zeroes and infinitely many ones is only ML-random for the
vacuous interval forecast [0,1], and not for any other interval forecast), it fol-
lows that the path! is then necessarily non-recursive. Consider the temporal
rational forecasting system 'rat 2©rat(X) defined by

'rat(n) :=
(

[0, 1/2] if !n+1 = 1

[1/2,1] if !n+1 = 0
for all n 2N0,

which is non-recursive since ! is.
We claim that the prequential path ('rat[!],!) is prequentially ML-

random. To see this, assume towards contradiction that there’s some ra-
tional forecasting system '0

rat 2©rat(X) that is compatible with ('rat[!],!)—
implying that 1/2 2 '0

rat(!1:n) for all n 2 N0—such that ! isn’t ML-random
for '0

rat. Let the rational forecasting system '00
rat 2©rat(X) be defined by

'00
rat(s) :=

(
1/2 if s v!

'0
rat(s) otherwise.

for all s 2S.

By construction, '00
rat[!] = 1/2 and '00

rat µ '0
rat [because 1/2 2 '0

rat(!1:n) for
all n 2N0]. Then, by Proposition 9.556, ! isn’t ML-random for '00

rat either, and
hence, ('00

rat[!],!) = (1/2,!) isn’t prequentially ML-random.
Nevertheless, the prequential path ('rat[!],!) isn’t game-random. To see

this, define the test superfarthingale F 2 F inductively by letting F (⇤) := 1
and, for all v 2 (Irat £X)§, Irat 2Irat and x 2X,

F (vIratx) :=

8
><
>:

2F (v) if Irat = [0, 1/2] and x = 1

2F (v) if Irat = [1/2,1] and x = 0

0 otherwise.

To show that F is indeed a test superfarthingale, it clearly suffices to check
the superfarthingale property. To this end, fix any v 2 (Irat £X)§ and Irat 2
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Irat. If Irat = [0, 1/2], then F (vIrat ·) = 2F (v)I1, and hence, E Irat (F (vIrat ·)) =
maxp2[0,1/2] 2F (v)p = F (v). If Irat = [1/2,1], then F (vIrat ·) = 2F (v)I0, and hence,
E Irat (F (vIrat ·)) = maxp2[1/2,1] 2F (v)(1°p) = F (v). Otherwise, F (vIrat ·) = 0, and
hence, by C120, E Irat (F (vIrat ·)) = 0 ∑ F (v).

Moreover, F is clearly recursive and therefore lower semicomputable,
and F ('rat[!1:n],!1:n) = 2n for all n 2 N0. As a result, we find that
limsupn!1 F ('rat[!1:n],!1:n) =1, so ('rat[!],!) can’t be game-random. ¶

By combining the last two propositions, we obtain conditions under
which ML- and game-randomness coincide; they mimic the ones in Corol-
lary 1 of Ref. [9], which are required to obtain a similar equivalence in Vovk
and Shen’s precise-probabilistic setting. Under such conditions, but now
also in our more general imprecise-probabilistic setting, the standard and
prequential approaches to algorithmic randomness again turn out to be not
that different.

Theorem 17.24. Consider any non-degenerate recursive rational forecasting
system 'rat 2©rat(X). Then any path ! 2≠ is ML-random for 'rat if and only
if the prequential path ('rat[!],!) 2 (Crat(X)£X)N is game-random.

This also shows that if a path! 2≠ is ML-random for a non-degenerate recur-
sive rational forecasting system'rat 2©rat(X), then only the forecasts'rat[!]
that are produced along!matter, since the path! is also ML-random for any
other non-degenerate recursive rational forecasting system '0

rat 2 ©rat(X)
such that '0

rat[!] ='rat[!]; this corollary complements Proposition 9.657 and
the discussion below Proposition 9.1865. Hence, this result is again in line
with Dawid’s Weak Prequential Principle [8], which states that any criterion
for assessing the ‘agreement’ between Forecaster Frank and Reality should
depend only on the actual observed sequences ≥= (C1, . . . ,Cn , . . . ) 2C(X)N

and ! = (x1, . . . , xn , . . . ) 2≠, and not on the strategies (if any) which might
have produced these, such as a non-degenerate recursive rational forecasting
system 'rat 2©rat(X) for which 'rat[!] = ≥.

By recalling our work in Section 14119, and more specifically the con-
ditions under which ML-randomness and ML-test-randomness coincide
[see Theorem 14.1120,], it’s immediate from the above theorem that we can
provide game-randomness with a test-theoretic characterisation under the
standard approach to randomness.

Corollary 17.25. Consider any non-degenerate recursive rational forecasting
system 'rat 2©rat(X). Then any path ! 2≠ is ML-test-random for 'rat if and
only if the prequential path ('rat[!],!) 2 (Crat(X)£X)N is game-random.

17.4 Properties

Let’s now prove a number of interesting properties of game-randomness. As
a first property, similarly as for (non-prequential, or in other words, stan-
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dard) precise-probabilistic ML-randomness [30, 32], we mention (and prove)
the existence of a so-called optimal lower semicomputable test superfar-
thingale O 2 F that conclusively tests the game-randomness of any non-
degenerate prequential path ¿ 2 (Crat(X)£X)N; a lower semicomputable test
superfarthingale O is called optimal if for every lower semicomputable test
superfarthingale F 2 F there’s some real number c > 0 such that cO(v) ∏ F (v)
for all non-degenerate prequential situations v 2 (Crat(X)£X)§.

Theorem 17.26. There’s an optimal lower semicomputable test superfarthin-
gale O 2 F.

Proof. By Lemma 7.646, there’s some uniformly lower semicomputable sequence
of maps fn : (Crat(X)£X)§ ! [0,+1] that contains every lower semicomputable
map f : (Crat(X)£X)§ ! [0,+1]. The sequence ( fn )n2N contains all lower semi-
computable positive test superfarthingales F 2 F, so it follows from Corollary 17.19158
that there’s some uniformly lower semicomputable sequence of test superfarthingales
Fn 2 F such that for every positive test superfarthingale F 0 2 F there’s some N 2N such
that

FN (v) =
(

F 0(v) if v is non-degenerate

0 if v is degenerate
for all v 2 (Crat(X)£X)§.

Let O : (Crat(X) £X)§ ! R be defined by O(v) := P1
n=1 2°n Fn (v) for all v 2

(Crat(X)£X)§. Since Fn ∏ 0 and Fn (⇤) = 1 for all n 2 N, it follows that O is well-
defined (although possibly infinite), O ∏ 0 and O(⇤) = 1. To check that O is real-
valued, fix any prequential situation v = (c, s) 2 (Crat(X)£X)§. If v is degenerate,
then O(v) = 0 because Fn (v) = 0 for all n 2 N by Corollary 17.19158. If v is non-
degenerate, then we infer from Lemma 16.2149 that there’s some real number Bv 2R
such that Fn (v) ∑ Bv for all n 2 N, and therefore O(v) ∑ P1

n=1 2°n Bv = Bv. Since O
equals an infinite sum of uniformly lower semicomputable non-negative maps 2°n Fn ,
it follows from Lemma 10.1175 that O is lower semicomputable. To show that O is a
superfarthingale, fix any v 2 (Crat(X)£X)§ and any Crat 2Crat(X), and observe that

ECrat (O(vCrat ·)) = lim
k!1

ECrat

≥ kX

n=1
2°n Fn (vCrat ·)

¥
[use C620]

∑ lim
k!1

kX

n=1
2°n ECrat (Fn (vCrat ·)) [use C220 and C320]

∑
1X

n=1
2°n Fn (v)

=O(v),

where the first equality also uses the real-valuedness of O and the non-negativity of
the Fn , and where the second inequality uses the superfarthingale character of Fn .
We conclude that O is a lower semicomputable test superfarthingale.

We claim that O is an optimal lower semicomputable test superfarthingale. Con-
sider any lower semicomputable test superfarthingale F 2 F, then F+1

2 is clearly a
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17 A prequential martingale-theoretic approach

lower semicomputable positive test superfarthingale. We then know, with the nota-
tions explained in the beginning of the proof, that there’s some N 2N such that

FN (v) =
( F (v)+1

2 if v is non-degenerate

0 if v is degenerate
for all v 2 (Crat(X)£X)§.

Let c := 2N+1. Then, for every non-degenerate prequential situation v 2 (Crat(X)£
X)§,

cO(v) = 2N+1
1X

n=1
2°n Fn (v) ∏ 2N+12°N FN (v) = 2

F (v)+1
2

∏ F (v),

where the first inequality holds by the non-negativity of the test superfarthingales
Fn 2 F.

Proposition 17.27. Consider any optimal lower semicomputable test superfar-
thingale O 2 F and any non-degenerate prequential path ¿ 2 (Crat(X)£X)N.
Then ¿ is game-random if and only if limsupn!1O(¿1:n) <1.

Proof. The ‘only if’-part is obvious: if ¿ is game-random, then limsupn!1 F (¿1:n ) <
1 for all lower semicomputable test superfarthingales F 2 F, and therefore also for O.
For the ‘if’-part, assume towards contradiction that there’s some lower semicom-
putable test superfarthingale F 2 F such that limsupn!1 F (¿1:n ) =1. We then know
that there’s a constant c > 0 such that cO(v) ∏ F (v) for all non-degenerate prequential
situations v 2 (Crat(X)£X)§, and hence, since ¿ is non-degenerate by assumption,
limsupn!1O(¿1:n ) ∏ 1

c limsupn!1 F (¿1:n ) =1.

For standard ML-randomness, where the emphasis lies on the compati-
bility between a path and a forecasting system, we have that, for every fore-
casting system ' 2©(X), there’s at least one path ! 2≠ that’s ML-random
for ' [see Corollary 9.356]. In the prequential setting, we have an analo-
gous result for sequences of rational forecasts ≥ 2Crat(X)N and sequences of
outcomes ! 2≠.

Proposition 17.28. For every infinite sequence of rational credal sets ≥ 2
Crat(X)N there’s at least one path ! 2≠ such that (≥,!) 2 (Crat(X)£X)N is
game-random.

Proof. Consider the universal superfarthingale O from Theorem 17.26x. Assume
that the path ! has been defined up to n ∏ 0 entries such that 1 = O(⇤) ∏
O(≥1:1,!1:1) ∏ · · ·∏O(≥1:n ,!1:n ) and E≥m (I!m ) > 0 for all 1 ∑ m ∑ n; so the prequen-
tial situation (≥1:n ,!1:n ) is non-degenerate. Let X≥n+1 µX be the set containing all

outcomes x 2X for which maxm2≥n+1 m(x) = E≥n+1 (Ix ) > 0. The set X≥n+1 is non-
empty, because otherwise

1
C120= E≥n+1 (1) = E≥n+1

√
X

x2X
Ix

!
C320∑

X

x2X
E≥n+1 (Ix ) = 0.
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By the superfarthingale property, we know that there’s always some y 2X≥n+1 such
that

O(≥1:n ,!1:n ) ∏ E≥n+1 (O(≥1:n+1,!1:n ·))

= max
m2≥n+1

X

x2X
m(x)O(≥1:n+1,!1:n x)

= max
m2≥n+1

X

x2X≥n+1

m(x)O(≥1:n+1,!1:n x)

∏ min
x2X≥n+1

O(≥1:n+1,!1:n x) =O(≥1:n+1,!1:n y),

where the second inequality makes use of the non-negativity of probability
mass functions, and then let !n+1 := y . Observe that the prequential situa-
tion (≥1:n+1,!1:n+1) is non-degenerate. Invoking the Axiom of dependent choice,
we obtain a non-degenerate prequential path ¿= (≥,!) 2 (Crat(X)£X)N such that
limsupn!1O(¿1:n ) ∑ 1.

In the next proposition and theorems, the required computability con-
ditions on sequences of rational forecasts (in this prequential setting) differ
from the ones on forecasting systems that are needed to obtain similar re-
sults in the standard setting [see Chapter 49] and in the standard precise-
probabilistic setting [32, 74]. Recall for example that any path ! 2≠ that’s
ML-random for a forecasting system ' 2©(X) is also ML-random for any
other more conservative forecasting system [see Proposition 9.556]. Mean-
while, for a similar result to hold in the prequential setting, we need to restrict
our attention to sequences of rational forecasts that are not only more conser-
vative, but that also have a compatible recursive rational forecasting system.

Proposition 17.29. Consider any recursive rational forecasting system 'rat 2
©rat(X) and any game-random prequential path ¿= (≥,!) 2 (Crat(X)£X)N.
If 'rat is more conservative on ¿, then ('rat[!],!) is game-random as well.

Proof. Consider any recursive rational forecasting system 'rat 2©rat(X) that’s more
conservative on ¿. We can always consider a rational forecasting system'0

rat 2©rat(X)
that’s compatible with ¿ such that '0

rat µ'rat; note that we don’t require computabil-
ity/recursiveness here and that ¿ = ('0

rat[!],!) is non-degenerate since ¿ is game-
random. By Proposition 17.7154, we then know that ! is ML-random for '0

rat. Conse-
quently, by Proposition 9.556, since '0

rat µ'rat, ! is also ML-random for 'rat. Since
¿= ('0

rat[!],!) is non-degenerate and '0
rat µ'rat, the prequential path ('rat[!],!)

is non-degenerate, and hence, by Proposition 17.21159, ('rat[!],!) is game-random
too.

The computability/recursiveness requirement on the rational forecasting
system 'rat in Proposition 17.29 is not only sufficient, but also (rather) neces-
sary. This follows immediately from Example 17.23160: the prequential path
(1/2,!) is game-random, while for the more conservative but non-recursive
forecasting system 'rat, the prequential path ('rat[!],!) isn’t.
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17 A prequential martingale-theoretic approach

There are also prequential properties for which the required computabil-
ity/recursiveness conditions on the forecasts are less, rather than more,
stringent; the remainder of the results in this section will all deal with such
conditions. If we restrict our attention for example to the standard precise-
probabilistic setting, then the ML-randomness of a path! 2≠with respect to
a computable measure is preserved under so-called almost-everywhere com-
putable, measure-preserving maps; this property is known as randomness
conservation, see for example [74, Theorem 123] and [90, Theorem 1]. In our
prequential setting, we have a result that’s similar in spirit, but for a different
kind of maps and without any computability requirement on the infinite
sequence of rational credal sets: if a prequential path ¿ is game-random, then
every so-called computably selected infinite subsequence is game-random
as well.

To formalise what we mean by ‘computably selected’, we introduce the
notion of a selection function S : (Crat(X)£X)§ £Crat(X) ! {0,1}, which
for any prequential path ¿ = (≥,!) 2 (Crat(X) £X)N and any n 2 N se-
lects ¿n = (≥n ,!n) 2 Crat(X) £X if and only if S(¿1:n°1,≥n) = 1. Under
this interpretation, it’s natural to associate with every selection function S
the map Sµ : (Crat(X)£X)§ ! (Crat(X)£X)§ from prequential situations
to prequential situations that upon input of a prequential situation v =
(c, s) 2 (Crat(X)£X)§ outputs a subsequence v0 = vn1 vn2 . . .vn` of length `=P|v|°1

k=0 S(v1:k ,ck+1) that’s defined by n j := min
©
n 2N :

Pn°1
k=0 S(v1:k ,ck+1) = j

™

for all 1 ∑ j ∑ `. Observe that Sµ(⇤) = ⇤ by construction. Clearly, if S is
recursive, then so is Sµ.

For any prequential path ¿ 2 (Crat(X)£X)N and any selection function S,
if

P1
k=0 S(¿1:k ,≥k+1) =1, then S can be seen as mapping ¿ to an infinite sub-

sequence of ¿, which we’ll denote by S(¿), and whose prequential situations
are described by the Sµ(¿1:n) for n 2N0; if S is recursive, then we say that it
computably selects the infinite subsequence S(¿) from ¿. It turns out that
game-randomness is preserved under recursive selection functions.

Theorem 17.30. Consider any infinite sequence of rational credal sets and
outcomes ¿ = (≥,!) 2 (Crat(X) £X)N and any recursive selection func-
tion S : (Crat(X)£X)§ £Crat(X) ! {0,1} such that

P1
k=0 S(¿1:k ,≥k+1) = 1.

If ¿ is game-random, then so is S(¿).

Proof. Assume towards contradiction that S(¿) isn’t game-random. Since ¿ is as-
sumed to be game-random, it’s non-degenerate, and therefore so is S(¿), by virtue
of it being an infinite subsequence of ¿. Consequently, there’s some lower semicom-
putable test superfarthingale F 0 2 F such that limsupn!1 F 0(S(¿)1:n ) =1. Define
the map F : (Crat(X)£X)§ !R by letting

F (v) := F 0(Sµ(v)) for all v 2 (Crat(X)£X)§.

Clearly, limsupn!1 F (¿1:n ) = limsupn!1 F 0(Sµ(¿1:n )) = limsupm!1 F 0(S(¿)1:m ) =
1, so we’re done if we can prove that F is a lower semicomputable test super-
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farthingale. We start by observing that F (⇤) = F 0(Sµ(⇤)) = F 0(⇤) = 1 and that
F (v) = F 0(Sµ(v)) ∏ 0 for all v 2 (Crat(X)£X)§. Since S is recursive and since F 0

is lower semicomputable, it’s immediate that F is lower semicomputable as well.
It therefore only remains to prove the superfarthingale property. To this end, fix
any v 2 (Crat(X)£X)§ and Crat 2Crat(X). If S(v,Crat) = 0, then Sµ(vCratx) = Sµ(v)
for all x 2X, and hence,

ECrat (F (vCrat ·)) = ECrat (F 0(Sµ(vCrat ·))) = ECrat (F 0(Sµ(v))) = ECrat (F (v)) = F (v),

where the last equality follows from C120. Otherwise, that is, if S(v,Crat) = 1, then
Sµ(vCratx) = Sµ(v)Cratx for all x 2X, and therefore

ECrat (F (vCrat ·)) = ECrat (F 0(Sµ(vCrat ·))) = ECrat (F 0(Sµ(v)Crat ·)) ∑ F 0(Sµ(v)) = F (v),

where the inequality follows from the superfarthingale character of F 0.

In the standard setting, when restricting our attention to almost com-
putable forecasting systems ' 2 ©(X), the frequency of the outcomes
along a ML-random path is bounded by the forecasting system [see Def-
inition 12.1102 and Propositions 11.389 and 12.2103]. In the prequential
setting, we have a similar result, but (again) without any computability
requirement on the infinite sequence of rational forecasts. Observe that,
when dealing with precise rational probability mass functions, the state-
ment below results in and simplifies to the perhaps more familiar expression
limn!1

1
n

Pn
k=1

°
f (!k )°Emk ( f )

¢
= 0, with f 2L(X).

Theorem 17.31. Consider any infinite sequence of rational credal sets and
outcomes ¿= (≥,!) 2 (Crat(X)£X)N. If ¿ is game-random, then

liminf
n!1

1
n

nX

k=1

°
f (!k )°E≥k ( f )

¢
∏ 0 for any f 2L(X).

The proof below uses a similar line of reasoning as in the proof of
Lemma 11.1298, which is in its turn based on a result by De Cooman &
De Bock [36, Lemma 22].

Proof. Assume towards contradiction that there’s some gamble f 2L(X) and rational
number ≤ 2Q, with 0 < ≤< 1, such that

liminf
n!1

1
n

nX

k=1

≥
f (!k )°E≥k

( f )
¥
<°2≤.

Let f 0 2Lrat(X) be any rational gamble such that f ∑ f 0 ∑ f +≤. It then follows that

liminf
n!1

1
n

nX

k=1

≥
f 0(!k )°E≥k

( f 0)
¥ C520∑ liminf

n!1
1
n

nX

k=1

≥
f (!k )+≤°E≥k

( f )
¥
<°≤. (17.32)
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Fix any B 2N such that 2maxx2X | f (x)| < B . Define the map F : (Crat(X)£X)§ !
R by letting

F (v) :=
|v|Y

k=1

µ
1° ≤

2B2

£
f 0(sk )°E ck ( f 0)

§∂
for all v = (c, s) 2 (Crat(X)£X)§.

We’ll now show in a number of steps that F is a lower semicomputable test superfar-
thingale for which limsupn!1 F (¿1:n ) =1, implying that ¿ can’t be game-random.

Trivially, F (⇤) = 1. Since ≤ < 1 and | f 0(x) ° ECrat ( f 0)| < B ∑ B2 for all x 2 X

and Crat 2 Crat(X), using C120 for the first inequality, it’s immediate that 1 °
≤

2B 2

£
f 0(x)°ECrat ( f 0)

§
> 1/2 for all Crat 2 Crat(X) and x 2 X, and hence, F is also

positive. Moreover, for any v 2 (Crat(X)£X)§ and Crat 2Crat(X), we have that

ECrat (F (vCrat ·)) = F (v)ECrat

µ
1+ ≤

2B2

£
ECrat ( f 0)° f 0

§∂
[use C220]

= F (v)
∑

1+ ≤

2B2 ECrat (ECrat ( f 0)° f 0)
∏

[use C220 and C420]

= F (v)
∑

1+ ≤

2B2

≥
ECrat ( f 0)+ECrat (° f 0)

¥∏
[use C420]

= F (v),

where the last equality follows from the conjugacy relationship, so we find that F is a
test superfarthingale. From the rational-valuedness of the forecasts Crat 2Crat(X),
the rational-valuedness of the gamble f 0 2Lrat(X), Lemma 7.143 and the conjugacy
relationship it follows that F is recursive, and therefore lower semicomputable as well.
We conclude that F is a lower semicomputable test superfarthingale.

By the assumptions, amongst which Eq. (17.32)x, there’s for any n 2N0 some N >
n such that

1
N

NX

k=1

≥
f 0(!k )°E≥k

( f 0)
¥
<°≤. (17.33)

This will allow us to obtain a lower bound for F (¿1:N ). By recalling that 1 °
≤

2B 2

£
f 0(x)°ECrat ( f 0)

§
> 1/2 for all Crat 2Crat(X) and x 2X, it holds that F (¿1:N ) =

exp(K ), with

K :=
NX

k=1
ln

≥
1° ≤

2B2

h
f 0(!k )°E≥k

( f 0)
i¥

.

Since ln(1+x) ∏ x °x2 for all x > °1/2, we infer that

K ∏° ≤

2B2

NX

k=1

≥
f 0(!k )°E≥k

( f 0)
¥
° ≤2

4B4

NX

k=1

≥
f 0(!k )°E≥k

( f 0)
¥2

and, also taking into account Eq. (17.33) and
≥

f 0(!k )°E≥k
( f 0)

¥2
∑ B2,

∏ ≤2

2B2 N ° ≤2

4B2 N = ≤2

4B2 N .

Hence,

F (¿1:N ) ∏ exp
≥ ≤2

4B2 N
¥
.
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After recalling that the inequality above holds for arbitrarily large well-chosen
N 2N, we conclude that limsupn!1 F (¿1:n ) =1, contradicting the assumed game-
randomness of ¿.

When combining the two theorems above, it’s immediately clear that if a
prequential path ¿ 2 (Crat(X)£X)N is game-random, then all its computably
selectable infinite subsequences—including the prequential path itself—
satisfy the above frequentist conditions; in spirit, this result also generalises
Dawid’s ideas on calibration in Ref. [91].

Corollary 17.34. Consider any infinite sequence of rational credal sets
and outcomes ¿ = (≥,!) 2 (Crat(X)£X)N and any recursive selection func-
tion S : (Crat(X)£X)§ £Crat(X) ! {0,1} such that

P1
k=0 S(¿1:k ,≥k+1) = 1.

If ¿ is game-random, then S(¿) = (≥0,!0) 2 (Crat(X)£X)N is game-random as
well, and therefore

liminf
n!1

1
n

nX

k=1

≥
f (!0

k )°E≥0k
( f )

¥
∏ 0 for any f 2L(X).

18 A prequential test-theoretic approach

As mentioned in the introduction of this chapter, we also want to equip our
prequential martingale-theoretic randomness notion with a test-theoretic
characterisation. Recall from Chapter 111 that classically, in a standard
precise-probabilistic test-theoretic setting, the randomness of a path ! 2≠
with respect to a precise forecasting system 'pr 2 ©pr(X) is tested by con-
structing so-called null covers: a path ! is ML-random for 'pr if it’s impossi-
ble to specify—in some effectively implementable way—for every positive
threshold ±> 0 a set of paths that contains ! and that’s small, in the sense
that its probability is smaller than ±.

In Chapter 111, we’ve used global (conditional) upper probabilities
to define a generalised test-theoretic notion of (standard and imprecise-
probabilistic) ML-randomness that allows for testing a path’s randomness for
forecasting systems instead of merely for measures; recall that a ML-test for a
forecasting system ' 2©(X) is a recursively enumerable subset A µN0 £S
such that P'(ÇAnÉ) ∑ 2°n for all n 2N0, and a path ! 2≠ is then considered
to be ML-test-random for ' if there’s no ML-test A such that ! 2T

n2N0ÇAnÉ.
Theorem 14.1120 shows that ML-randomness and ML-test-randomness lead
to equivalent notions of randomness when restricting our attention to non-
degenerate computable forecasting systems, in the sense that both defini-
tions then have the same set of random paths—which extends the classi-
cal equivalence result for standard precise-probabilistic ML-randomness as
proved independently by Schnorr and Levin [1, 2, 4].
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To import these ideas into our imprecise-probabilistic and prequential
setting, we need some way to express what it means for a set of prequential
paths to be small.

18.1 Definition: test-randomness

In the present section, where we adopt a prequential test-theoretic setting,
we’ll test the randomness of an infinite sequence of rational credal sets and
outcomes ¿ 2 (Crat(X)£X)N via adopting some kind of prequential null
covers: a prequential path ¿ 2 (Crat(X)£X)N will be called (prequentially)
test-random if it’s impossible to specify—in some effectively implementable
way—for every positive threshold ±> 0 a set of prequential paths that con-
tains ¿ and whose ‘upper probability’ according to every rational forecasting
system is smaller than ± in the following sense.

Definition 18.1. We call prequential test any sequence of sets of prequential
situations Vn µ (Crat(X)£X)§, with n 2N0, such that Vn is recursively enu-
merable uniformly in n 2N0 and such that for all n 2N0 and all'rat 2©rat(X):

P'rat
≥Ö©

s 2S : ('rat[s], s) 2Vn
™Ü¥

∑ 2°n . (18.2)

This definition is again inspired by Vovk and Shen’s approach [9, Definition
2].32

A path ¿ 2 (Crat(X)£X)N will then be considered random if it passes all
prequential tests in the following sense.

Definition 18.3. We call a sequence ¿ 2 (Crat(X)£X)N of rational credal sets
and outcomes (prequentially) test-random if ¿ ›T

n2N0ÇVnÉ for all prequential
tests (Vn)n2N0 .

Let’s show how such prequential tests can be interpreted. Consider again
the prequential forecasting protocol introduced in Section 16145, and recall
that Sceptic Sabine wants to test whether Forecaster Frank is doing a good
forecasting job, that is, whether his forecasts (C1, . . . ,Cn , . . . ) ‘agree with’ Re-
ality’s outcomes (!1, . . . ,!n , . . . ). As is typically done in the standard setting,
we’ll assume that Frank draws (rational) forecasts Cn 2Crat(X), with n 2N,
from some underlying forecasting system 'rat 2©rat(X), but we’ll do away
with the assumption that Sabine is aware of, or has access to, Frank’s fore-
casting system 'rat—even if the forecasting system is computable. To test

32At first sight, our present notion of a prequential test could seem to differ (greatly) from the
one put forward in Ref. [9]; it’s, however, completely similar in spirit. It merely appears to be
different because we adopt Martin-Löf-style tests instead of integral-style tests [92, Sections 4.5.6
and 4.5.7] and a less complicated notion of effective implementability. The similarity between
our and their test-theoretic tests becomes (more) apparent when taking a look at the equivalent
so-called set representation of their tests, which can be found in the proof of Lemma 3 in Ref. [9].
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the possible randomness of a prequential path (C1,!1, . . . ,Cn ,!n , . . . ), we’ll
require her to specify a test strategy beforehand, but thus without knowing
what interval forecasts (C1, . . . ,Cn , . . . ) will be output by Frank, nor what fore-
casting system 'rat they stem from. To deal with her lack of knowledge, as
Eq. (18.2)x suggests, she outputs a set of prequential paths that for every
fixed forecasting system corresponds with a ML-test—where the forecasting
system is ‘accessible’ in the way of Eq. (18.2)x.

In this way, a prequential test can thus be seen as a collection of ML-tests,
one for each rational forecasting system 'rat 2©rat(X). And, as the following
proposition shows, a prequential path ¿ = (≥,!) 2 (Crat(X)£X)N is then
prequentially test-random if and only if the path ! passes all such (standard
and imprecise-probabilistic) ML-tests that are associated with prequential
tests and with rational forecasting systems that are compatible with ¿, and
which are exactly the forecasting systems Frank could have drawn from.

Proposition 18.4. A sequence ¿= (≥,!) 2 (Crat(X)£X)N of rational credal
sets and outcomes is (prequentially) test-random if and only if

! ›
\

n2N0

Ö©
s 2S : ('rat[s], s) 2Vn

™Ü

for all forecasting systems 'rat that are compatible with ¿ and all prequential
tests (Vn)n2N0 .

Proof. Consider any prequential path ¿= (≥,!) 2 (Crat(X)£X)N. Since we’ve already
established in the context of Eqs. (17.1)151, (17.3)151 and (17.4)151 that any such
prequential path has compatible forecasting systems, and since 'rat[!] = ≥ for any
such compatible forecasting system 'rat, it’s obvious that ¿ is (prequentially) test-
random if and only if

¿= ('rat[!],!) ›
\

n2N0

ÇVnÉ (18.5)

for all prequential tests (Vn )n2N0 and all rational forecasting systems 'rat that are
compatible with ¿= (≥,!), in the sense that 'rat[!] = ≥. Now simply observe that

('rat[!],!) 2 ÇVnÉ, (9(c, s) 2Vn )
°
(c, s) v ('rat[!],!)

¢

, (9(c, s) 2 (Crat(X)£X)§)
°
(c, s) v ('rat[!],!) and (c, s) 2Vn

¢

, (9s 2S)
°
('rat[s], s) v ('rat[!],!) and ('rat[s], s) 2Vn

¢

, (9s 2S)
°
s v! and ('rat[s], s) 2Vn

¢

,! 2
Ö©

s 2S : ('rat[s], s) 2Vn
™Ü

.

18.2 Equivalence of game- and test-randomness

Besides the arguably natural interpretation we’ve given to it, this prequen-
tial and test-theoretic randomness notion also has a number of interesting
properties. Indeed, as the following theorem shows, game-randomness and
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prequential test-randomness turn out to be equivalent, so prequential test-
randomness has all the properties that game-randomness does. We stress
that this equivalence holds without any computability requirements on the
forecasts; this is different from the analogous equivalence result for standard
imprecise-probabilistic Martin-Löf martingale- and test-theoretic random-
ness we’ve established in Theorem 14.1120, which requires non-degenerate
computable forecasting systems.

Theorem 18.6. A sequence ¿ 2 (Crat(X)£X)N of rational credal sets and
outcomes is game-random if and only if it’s (prequentially) test-random.

Proof. For sufficiency, assume that ¿ isn’t game-random. Then there are two possibil-
ities.

The first possibility is that ¿ is degenerate, so we can fix some N 2 N0 such
that ¿1:N = (c, s) 2 (Crat(X)£X)§ is degenerate. Now let Vn := {¿1:N } for all n 2N0,
which clearly defines a sequence of sets of prequential situations that is recursively
enumerable uniformly in n 2 N0. Furthermore, for any rational forecasting sys-
tem 'rat 2©rat(X), we find that

P'rat
≥Ö©

s 2S : ('rat[s], s) 2Vn
™Ü¥

=
(

P'rat (ÇsÉ) if 'rat[s] = c

P'rat (?) otherwise

=
(QN

k=1 E ck (Isk ) if 'rat[s] = c

0 otherwise

= 0 ∑ 2°n ,

where the second equality follows from Proposition 6.1636 and P135, and where the
last equality holds since, by the degeneracy of ¿1:N = (c, s), there’s some 1 ∑ m ∑ N
such that E cm (Ism ) = 0. So, we conclude that the sequence Vn is a prequential test.
Moreover, by construction, ¿ 2 Ç¿1:N É=T

n2N0ÇVnÉ, so we can conclude that ¿ isn’t
test-random.

The second possibility is that there’s some lower semicomputable test superfar-
thingale F 2 F such that limsupn!1 F (¿1:n ) =1. Then, by Lemma 18.7, there’s a
prequential test (Vn )n2N0 such that ¿ 2T

n2N0ÇVnÉ, so we can again conclude that ¿
isn’t test-random.

For necessity, assume that ¿ isn’t test-random. This means that there’s a prequen-
tial test (Vn )n2N0 such that ¿ 2T

n2N0ÇVnÉ. Then, by Lemma 18.8y, there’s a lower
semicomputable test superfarthingale F 2 F such that limsupn!1 F (¿1:n ) =1 if ¿ is
non-degenerate, so we can conclude that ¿ isn’t game-random.

Lemma 18.7. Consider any lower semicomputable test superfarthin-
gale F 2 F. Then there’s a prequential test (Vn)n2N0 such that, for any se-
quence ¿ 2 (Crat(X)£X)N of rational credal sets and outcomes, ¿ 2T

n2N0ÇVnÉ
if limsupn!1 F (¿1:n) =1.

Proof. Let Vn :=
©
v 2 (Crat(X)£X)§ : F (v) > 2n™

for all n 2 N0. The lower semi-
computability of F implies that the set

©
(v, q) 2 (Crat(X)£X)§ £Q : F (v) > q

™
is

recursively enumerable, and hence, Vn is recursively enumerable uniformly in
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n 2 N0. Moreover, for any rational forecasting system 'rat 2 ©rat(X), the
map F ('rat[•], •) : S ! R is a (non-negative) test supermartingale for 'rat by
Lemma 17.20159. Consequently, by Ville’s inequality [Proposition 6.1837], it holds for
any 'rat 2©rat(X) and n 2N0 that

P'rat
≥Ö©

s 2S : ('rat[s], s) 2Vn
™Ü¥

= P'rat
≥Ö©

s 2S : F ('rat[s], s) > 2n™Ü¥

= P'rat
≥n
! 2≠ : sup

m2N0

F ('rat[!1:m ],!1:m ) > 2n
o¥

P335∑ P'rat
≥n
! 2≠ : sup

m2N0

F ('rat[!1:m ],!1:m ) ∏ 2n
o¥

∑ 2°n F ('rat[⇤],⇤) = 2°n F (⇤) = 2°n ,

so we can conclude that the sequence Vn is a prequential test. Now, fix any prequential
path ¿ 2 (Crat(X)£X)N and assume that limsupn!1 F (¿1:n ) =1. Then we see that
¿ 2 ÇVnÉ for all n 2N0, so ¿ 2T

n2N0ÇVnÉ.

Lemma 18.8. Consider any prequential test (Vn)n2N0 . Then there’s a
lower semicomputable test superfarthingale F 2 F such that, for any non-
degenerate sequence ¿ 2 (Crat(X) £X)N of rational credal sets and out-
comes, limn!1 F (¿1:n) =1 if ¿ 2T

n2N0ÇVnÉ.

Proof. Let’s assume that
T

n2N0ÇVnÉ 6=?; this lemma is trivially true otherwise. This
implies that Vn 6=? for all n 2 N0. Consequently, since a prequential test is recur-
sively enumerable uniformly in n 2 N0, there’s some recursive map q : N0 £N0 !
(Crat(X) £X)§ such that Vn =

©
q(n,k) : k 2N0

™
for all n 2 N0. Define the finite

sets V `
n :=

©
q(n,k) : 0 ∑ k ∑ `

™
for all n,` 2 N0, so Vn = lim`!1V `

n for all n 2 N0.
They are increasing(ly nested) in `, and they are recursive uniformly in n and `. In
the remainder of this proof, we’ll use these sets to construct an appropriate lower
semicomputable test superfarthingale F . This will take several steps, so bear with us.

In a first step, we fix any n,` 2N0, and define W `
n : (Crat(X)£X)§ !Q as follows.

Let W `
n (v) := 1 in all prequential situations v 2 (Crat(X)£X)§ for which V `

n v v, and
let W `

n (v) := 0 for all prequential situations v 2 (Crat(X)£X)§ for which v “ V `
n . By

the finiteness of the set of prequential situations V `
n , it then only remains to define

the values of W `
n (v) in the finite number of prequential situations v 2 (Crat(X)£X)§

for which v@V `
n . To guarantee that W `

n satisfies the superfarthingale property, we’ll
complete the construction via backward propagation: for every v @ V `

n , if W `
n has

already been defined for all prequential situations v0 for which v @ v0 vV `
n —which

are finite in number as well—, we let

W `
n (v) := max

Crat2Crat(X),x2X : vCratxvV `
n

ECrat

°
W `

n (vCrat ·)
¢
. (18.9)

The map W `
n satisfies a number of properties. By construction, W `

n satisfies the
superfarthingale property and is therefore a superfarthingale. Furthermore, it’s easy
to verify that W `

n is non-decreasing in ` [because the V `
n are] and rational-valued

[use Eq. (5.7)19], and that 0 ∑W `
n ∑ 1 [use C120]. By the uniform recursiveness and

finiteness of the V `
n and the rationality of the credal sets, it follows from Lemma 7.143

that W `
n is recursive uniformly in n and `. By construction, we also have that W `

n (v) =
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1 for all v 2 (Crat(X)£X)§ for which V `
n v v. A less obvious final property is that

W `
n (⇤) ∑ 2°n , and we’ll spend some time proving this, before proceeding to the

second step.
We start by observing that for every prequential situation v 2 (Crat(X)£X)§

there’s some rational credal set Cv 2Crat(X) such that W `
n (v) = ECv (W `

n (vCv ·)). In-
deed, if V `

n v v, then also V `
n v vCratx for all Crat 2Crat(X) and all x 2X, so

W `
n (v) = 1

C120= ECrat (1) = ECrat (W `
n (vCrat ·)) for all Crat 2Crat(X).

If v “V `
n , then also vCratx “V `

n for all Crat 2Crat(X) and all x 2X, so

W `
n (v) = 0

C120= ECrat (0) = ECrat (W `
n (vCrat ·)) for all Crat 2Crat(X).

Finally, if v @V `
n , then by Eq. (18.9)x there’s some Cv 2Crat(X) such that W `

n (v) =
ECv (W `

n (vCv ·)).
Based on this observation, we now construct a special rational forecasting

system 'rat 2 ©rat(X) by forward propagation. For a start, we know that there’s
some C⇤ 2Crat(X) such that W `

n (⇤) = EC⇤ (W `
n (C⇤, ·)); so fix any and let 'rat(⇤) :=

C⇤. For every x 2X, we know in a next step that there’s some Cx 2Crat(X) such
that W `

n (C⇤, x) = ECx

°
W `

n (C⇤Cx , x ·)
¢
; so fix any and let 'rat(x) :=Cx and therefore

also 'rat[x] =C⇤, which guarantees that W `
n ('rat[x], x) = E'rat(x)

°
W `

n ('rat[x ·], x ·)
¢
.

Next, for every y 2 X, we know in a next step that there’s some Cy 2
Crat(X) such that W `

n (C⇤Cx , x y) = ECy

°
W `

n (C⇤CxCy , x y ·)
¢
; so fix any and let

'rat(x y) := Cy and therefore also 'rat[x y] = C⇤Cx , which guarantees that
W `

n ('rat[x y], x y) = E'rat(x y)
°
W `

n ('rat[x y ·], x y ·)
¢
. And so on. In this way, by forward

propagation, we can construct a rational forecasting system 'rat 2©rat(X) such that

W `
n ('rat[s], s) = E'rat(s)

°
W `

n ('rat[s ·], s ·)
¢

for all s 2S. (18.10)

We now let U`
n :=

n
s 2S : ('rat[s], s) 2V `

n

o
and N`

n := max
n
|s| : s 2U`

n

o
. By con-

struction, it holds for all s 2XN`
n that

W `
n ('rat[s], s) =

(
1 if V `

n v ('rat[s], s)

0 otherwise, so if ('rat[s], s) “V `
n

=
(

1 if U`
n v s

0 otherwise, so if s “U`
n

= P'rat
≥
ÇU`

nÉ|s
¥
, (18.11)

where the last equality holds by Corollary 6.15(i)36. For any situation s 2XN`
n°1, it

now follows that

W `
n ('rat[s], s) = E'rat(s)

°
W `

n ('rat[s ·], s ·)
¢

[use Eq. (18.10)]

= E'rat(s)

≥
P'rat

≥
ÇU`

nÉ|s ·
¥¥

[use Eq. (18.11)]

= P'rat
≥
ÇU`

nÉ|s
¥
. [use P536]
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Via continued backward propagation, we then find that, indeed,

W `
n (⇤) = P'rat (ÇU`

nÉ) = P'rat
≥Ön

s 2S : ('rat[s], s) 2V `
n

oÜ¥

∑ P'rat
≥Ö©

s 2S : ('rat[s], s) 2Vn
™Ü¥

∑ 2°n ,

where the first inequality follows from P335 and the last inequality holds because
(Vn )n 2N0 is a prequential test.

In a second step, let Wn : (Crat(X) £ X)§ ! R be defined as Wn (v) :=
lim`!1W `

n (v) for all v 2 (Crat(X)£X)§ and n 2 N0. Since W `
n is non-negative,

rational-valued, non-decreasing in ` and bounded above by 1, we can conclude
that Wn is non-negative, well-defined, real-valued, and bounded above by 1. Since
W `

n is rational-valued, recursive uniformly in n and `, W `
n (v) ∑ W `+1

n (v) for all v 2
(Crat(X)£X)§ and n,` 2N0, and Wn (v) = lim`!1W `

n (v) for all v 2 (Crat(X)£X)§

and n 2 N0, it holds by definition that Wn is lower semicomputable uniformly
in n 2 N0. By recalling that W `

n (v) = 1 for all v 2 (Crat(X)£X)§ for which V `
n v v

and that Vn = lim`!1V `
n , it also follows from the non-decreasingness of W `

n in `

that Wn (v) = 1 for all v 2 (Crat(X) £X)§ such that Vn v v. Furthermore, for
any n 2 N0, Wn (⇤) ∑ 2°n because W `

n (⇤) ∑ 2°n for all ` 2 N0. For any n 2 N0,
since ECrat (W `

n (vCrat ·)) ∑ W `
n (v) [since W `

n is a superfarthingale] for all ` 2 N0,
v 2 (Crat(X)£X)§ and Crat 2Crat(X), it follows from the boundedness of W `

n and
the continuity of the upper expectation operator EC with respect to pointwise (and
therefore uniform) convergence [use C620] that

ECrat (Wn (vCrat ·)) ∑Wn (v) for all v 2 (Crat(X)£X)§ and Crat 2Crat(X), (18.12)

and so we can conclude that Wn is a non-negative superfarthingale.
In a third step, we let F : (Crat(X)£X)§ !R be defined as

F (v) :=
(

1
2

P1
n=0 Wn (v) if v is non-degenerate,

0 if v is degenerate,
for all v 2 (Crat(X)£X)§.

It follows from the non-negativity of Wn that F is well-defined (although possibly
infinite) and non-negative. Since Wn (⇤) ∑ 2°n for all n 2N0, we have that F (⇤) ∑
1
2

P1
n=0 2°n ∑ 1. To check that F is real-valued as claimed, fix any situation v = (c, s) 2

(Crat(X)£X)§. If v is degenerate, then F (v) = 0. Otherwise, that is, if v is non-
degenerate, then we infer from Lemma 16.2149 that there’s some real number Bv 2R
such that Wn (v) ∑ BvWn (⇤) for all n 2 N0, and therefore F (v) ∑ Bv

2
P1

n=0 Wn (⇤) ∑
Bv
2

P1
n=0 2°n = Bv, so here too, F (v) 2 R. By Lemma 10.1175, the map (Crat(X)£

X)§ ! [0,1] : v 7! 1
2

P1
n=0 Wn (v) is lower semicomputable as it equals an infinite

sum of non-negative maps Wn/2 that are lower semicomputable uniformly in n 2N0,
and hence, since it’s decidable whether a prequential situation v 2 (Crat(X)£X)§

is non-degenerate or not [use Lemma 7.143], F is lower semicomputable as well.
Furthermore, F is a superfarthingale. To show this, we fix any v 2 (Crat(X)£X)§

and Crat 2 Crat(X). There are two distinct possibilities. If v is degenerate, then
vCratx is degenerate as well for every x 2X, so ECrat (F (vCrat ·)) = ECrat (0)

C120= 0 = F (v).
If v is non-degenerate, let XCrat µX be the set containing all outcomes x 2X for
which maxm2Crat m(x) = ECrat (Ix ) > 0. Then vCratx is non-degenerate if x 2 XCrat ,
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and degenerate otherwise. Hence, it follows from Eq. (18.12)x that

ECrat (F (vCrat ·)) = max
m2Crat

X

x2X
m(x)F (vCratx)

= max
m2Crat

X

x2XCrat

m(x)F (vCratx)

= max
m2Crat

X

x2XCrat

m(x) lim
k!1

1
2

kX

n=0
Wn (vCratx)

= max
m2Crat

lim
k!1

X

x2XCrat

m(x)
1
2

kX

n=0
Wn (vCratx)

∑ max
m2Crat

sup
k2N0

X

x2XCrat

m(x)
1
2

kX

n=0
Wn (vCratx)

= sup
k2N0

max
m2Crat

X

x2XCrat

m(x)
1
2

kX

n=0
Wn (vCratx)

= sup
k2N0

max
m2Crat

X

x2X
m(x)

1
2

kX

n=0
Wn (vCratx)

= sup
k2N0

ECrat

≥ 1
2

kX

n=1
Wn (vCrat ·)

¥

∑ sup
k2N0

1
2

kX

n=0
ECrat (Wn (vCrat ·)) [use C220 and C320]

∑ sup
k2N0

1
2

kX

n=1
Wn (v) [use Eq. (18.12)x]

= 1
2

1X

n=0
Wn (v) = F (v). [Wn ∏ 0]

Finally, replace F (⇤) ∑ 1 by 1; this doesn’t affect the superfarthingale character of F ,
nor its lower semicomputability or non-negativity. We conclude that the map F thus
constructed is a lower semicomputable test superfarthingale.

In a fourth and final step, we complete the proof by fixing any non-degenerate
prequential path ¿ 2 (Crat(X)£X)N such that ¿ 2 T

n2N0ÇVnÉ and by showing that
F is unbounded on ¿. Since ¿ 2 T

n2N0ÇVnÉ, there’s for every n 2N0 some mn 2N0
such that Vn v ¿1:m and therefore Wn (¿1:m ) = 1 for all m ∏ mn . Fix any N 2N0 and
let MN := max{m0, . . . ,mN } 2N0. Then it follows that Wn (¿1:m ) = 1 for all m ∏ MN
and all 0 ∑ n ∑ N . Hence, since ¿ is non-degenerate,

F (¿1:m ) = 1
2

1X

n=0
Wn (¿1:m ) ∏ 1

2

NX

n=0
Wn (¿1:m ) = 1

2

NX

n=0
1 = N +1

2
for all m ∏ MN ,

where the first equality holds by the non-degeneracy of ¿, and where the first inequal-
ity follows from the non-negativity of the Wn . Hence, limn!1 F (¿1:n ) =1.

175



A prequential approach to martingale- and test-theoretic randomness

18.3 Properties

The equivalence between game- and (prequential) test-randomness allows
to easily carry over a number of properties derived in Section 17150. We
especially mention the existence of a so-called universal prequential test that
conclusively tests the test-randomness of any prequential path ¿ 2 (Crat(X)£
X)N.

Corollary 18.13. There’s a universal prequential test (Un)n2N0 with the prop-
erty that any prequential path ¿ 2 (Crat(X) £X)N is (prequentially) test-
random if and only if ¿ ›T

n2N0ÇUnÉ.

Proof. By Theorem 17.26162 and Proposition 17.27163, there’s a lower semicom-
putable test superfarthingale F 2 F such that any non-degenerate prequential
path ¿ 2 (Crat(X) £X)N is game-random if and only if limsupn!1 F (¿1:n ) < 1.
Consequently, by Lemma 18.7171, there’s a prequential test (Vn )n2N0 such that,
for any non-degenerate prequential path ¿ 2 (Crat(X) £X)N, ¿ 2 T

n2N0ÇVnÉ if
¿ isn’t game-random. On the other hand, for any non-degenerate prequential
path ¿ 2 (Crat(X) £X)N, it holds by Theorem 18.6171 that ¿ › T

n2N0ÇVnÉ if ¿ is
game-random, and hence, any non-degenerate prequential path ¿ 2 (Crat(X)£X)N is
game-random if and only if ¿ ›T

n2N0ÇVnÉ. Remember that (Crat(X)£X)§deg denotes
the set of all degenerate prequential situations, and let Un :=Vn [ (Crat(X)£X)§deg
for all n 2 N0. Note that (Crat(X)£X)§deg is a recursive set, and therefore the se-
quence Un is recursively enumerable uniformly in n 2N0, because the sequence Vn
is. Furthermore, for any 'rat 2©rat(X) and n 2N0, it holds that

P'rat
≥Ö©

s 2S : ('rat[s], s) 2Un
™Ü¥

= P'rat
≥Ö©

s 2S : ('rat[s], s) 2Vn
™Ü

[
Ö©

s 2S : ('rat[s], s) is degenerate
™Ü¥

P235∑ P'rat
≥Ö©

s 2S : ('rat[s], s) 2Vn
™Ü¥

+P'rat
≥Ö©

s 2S : ('rat[s], s) is degenerate
™Ü¥

P436= P'rat
≥Ö©

s 2S : ('rat[s], s) 2Vn
™Ü¥

+ lim
n!1P'rat

≥Ö©
s 2S : ('rat[s], s) is degenerate and |s|∑ n

™Ü¥

P235∑ 2°n + lim
n!1

X

s2S : ('rat[s],s) is degenerate and |s|∑n
P'rat

°
ÇsÉ

¢

= 2°n +
X

s2S : ('rat[s],s) is degenerate
P'rat

°
ÇsÉ

¢ Prop. 6.1636= 2°n +0 = 2°n ,

where the second equality makes use of the fact that the sequence of (global) gambles
µ
IÖ{s2S : ('rat[s],s) is degenerate and |s|∑n}

Ü
∂

n2N0

is non-decreasing and converges pointwise to the (global) gamble

IÖ{s2S : ('rat[s],s) is degenerate }
Ü 2L(≠).
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We conclude that the sequence Un constitutes a prequential test.
Moreover, for any prequential path ¿ 2 (Crat(X)£X)N, we have that

¿ ›
\

n2N0

ÇUnÉ, ¿ ›
≥ \

n2N0

ÇVnÉ
¥
[

á
(Crat(X)£X)§deg

à

, ¿ ›
≥ \

n2N0

ÇVnÉ
¥
[ (Crat(X)£X)Ndeg

,
≥
¿ ›

\

n2N0

ÇVnÉ and ¿ › (Crat(X)£X)Ndeg

¥

, ¿ is game-random

, ¿ is test-random, [use Theorem 18.6171]

where the penultimate equivalence makes use of Definition 17.6153 and the fact that
any non-degenerate prequential path ¿ 2 (Crat(X)£X)N is game-random if and only
if ¿ ›T

n2N0ÇVnÉ.

177





How (im)precise are
randomness notions?

In the previous chapters, we generalised several martingale-theoretic, fre-
quentist and test-theoretic randomness notions by allowing for imprecise
forecasting systems. In this imprecise-probabilistic approach to random-
ness, many properties that were initially proven in a precise-probabilistic
setting continued to hold for (non-)computable imprecise forecasting sys-
tems: every forecasting system makes at least one path random [Propo-
sitions 9.356 and 11.10(ii)96], the randomness of a path with respect to a
(computable) (non-degenerate) forecasting system only depends on the
forecasts that are specified along the path [Propositions 9.657, 9.1865 and
11.23101], the betting strategies used to define computable randomness can
be assumed to be rational-valued and recursive [Proposition 10.1678], com-
putable randomness entails Church randomness for computable forecasting
systems [Proposition 12.2103], and the notions of Martin-Löf and Martin-
Löf test randomness coincide for non-degenerate computable forecasting
systems, to give only a few examples. Interestingly, some other properties
don’t have a precise-probabilistic counterpart, and seem to stem from the
use of imprecise-probabilistic uncertainty models: all paths are random for
the vacuous credal set [Propositions 9.456 and 11.10(iii)96], and if a path is
random for a forecasting system, then it’s always random for any other fore-
casting system that’s less informative [Propositions 9.556 and 11.10(iv)96].
These inherently imprecise-probabilistic properties that we’ve seen so far
seem to be only few in number though. In this chapter, we’ll explore and
show what other such properties hold for our randomness notions, and we’ll
study whether allowing for imprecise uncertainty models (and letting go of
computable uncertainty models) changes our view on and understanding of
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random sequences.
To do so, it’s instructive to draw inspiration from the measure-theoretic

notion of uniform randomness in which—as we mentioned in Chapter 111—
imprecise-probabilistic (as well as non-computable) uncertainty models
have long been adopted by Levin in 1973 [4, 5, 6]; this notion of randomness
has been well-studied, and has properties that provide an answer to the
above question (in a test-theoretic setting). Indeed, we recall that the no-
tion of uniform randomness allows for imprecision by considering so-called
‘effectively compact classes of probability measures’; moreover, for every
such effectively compact class of measures, a path is uniformly random with
respect to the class if and only if it’s uniformly random with respect to some
(not necessarily computable nor fixed) probability measure in the considered
class [6, Definition 5.9, Theorem 5.23 and Remark 5.24],33 which is obvi-
ously an inherently imprecise-probabilistic property that has no (interesting)
precise-probabilistic counterpart.

Basically, in what follows, we’ll investigate whether our imprecise-
probabilistic notions of randomness satisfy a similar property: is a path! 2≠
random for a forecasting system ' 2©(X) if and only if it is random for some
(not necessarily fixed) compatible precise forecasting system 'pr 2 '? In
Section 19y, where we restrict our attention to computable precise fore-
casting systems 'pr 2©(X), we give a negative answer to this question by
showing that for every stationary forecasting system ' 2C(X) with ‘non-
zero diameter’ there is a path ! 2≠ that’s random for ', but that isn’t ran-
dom for any computable forecasting system whose ‘highest imprecision is
smaller than’ that of ', which includes all computable precise forecasting
systems 'pr 2©pr(X). This leads us to say that randomness is inherently im-
precise, because there are paths that are random for an imprecise forecasting
system, but not for any computable precise forecasting system.

In Section 20192, where we restrict our attention to martingale-theoretic
randomness notions, we reveal that the computability assumption on 'pr 2
©pr(X) is crucial for the previous claim, because we obtain a positive answer
when letting go of computability. In fact, we actually succeed in proving a
stronger property: we show that for every forecasting system' 2©(X) there’s
some fixed compatible (not necessarily computable) precise forecasting sys-
tem 'pr 2' such that a path ! 2≠ is random for ' if and only if it’s random
for 'pr; when the forecasting system ' is stationary and has ‘non-zero diame-
ter’, then this precise forecasting system'pr is necessarily non-stationary and
non-computable, due to the result in the previous paragraph. This result also
indicates the value of allowing for non-computable forecasting systems in
our martingale-theoretic notions of randomness—where these uncertainty

33For the sake of clarity, it remains to note that the singleton consisting of a measure is a
compact class of measures, and that the (not necessarily computable) measure in the above
statement is accessible by an oracle in the sense of Definition 5.9 in Ref. [6].

180



19 Randomness is inherently imprecise

models aren’t accessible by an oracle—, since doing so allows us to prove
this natural property. This property furthermore readily implies the weaker
property that we mentioned before: a path ! 2≠ is random for a forecasting
system ' 2©(X) if and only if it’s random for at least one compatible (not
necessarily computable) precise forecasting system 'pr 2'. Hence, in addi-
tion to the fact that our martingale-theoretic and Levin’s measure-theoretic
notion of randomness coincide for computable non-degenerate forecasting
systems [Theorems 14.1120 and 14.34134], they also carry similar properties.
We also complement this result with a reflection on what it tells us about
allowing for imprecision and non-computability in a martingale-theoretic
approach to algorithmic randomness.

So, for the results in this chapter, (not) allowing for non-computable
uncertainty models is of crucial importance. If we do, we seem to be able
to replace imprecise uncertainty models by precise ones; if we don’t, then
randomness is inherently imprecise. We leave aside whether using non-
computable uncertainty models—that aren’t accessible by an oracle—in
algorithmic randomness is a defensible choice in general; we merely let
go of the (classical) computability restriction on uncertainty models, and
investigate what happens if we do so. Nevertheless, in Section 21199, we
do argue why computable uncertainty models are to be favoured from a
practical point of view, thus leading to an argument in favour of allowing for
imprecision. We do so by complementing the main results in Sections 19
and 20192 with a discussion of their possible implications for a prospective
statistics based on imprecise probabilities.

19 Randomness is inherently imprecise

Let’s start examining how allowing for imprecision changes our understand-
ing of random sequences. We kick off this endeavour by questioning whether
imprecise-probabilistic uncertainty models are really needed to capture a
path’s randomness. Is it for example ‘easier’ to capture the randomness of
some paths by imprecise forecasting systems? Are there paths whose ran-
domness can only be described by imprecise uncertainty models?

To start the discussion, we consider the binary state space X = {0,1}
and fix any R 2 {ML,wML,C,S,CH,wCH}. Recall from Propositions 9.556
and 11.10(iv)96 that if a path ! 2≠ is R-random for some precise forecasting
system'pr 2©pr(X), then it’s also R-random for any other forecasting system
that’s less informative. Hence, in particular, for any real numbers p, q 2
[0,1] such that p < q , if ! is R-random for the temporal precise forecasting
system 'p,q , defined by

'p,q (s) :=
(

p if |s| is odd

q if |s| is even
for all s 2S,
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then it’s also R-random for the interval forecast [p, q]. So we see that its
least conservative stationary outer approximation [p, q] can be used as a
simpler—because stationary—yet imprecise alternative for 'p,q . In many
cases, this procedure of replacing a precise non-stationary forecasting system
by a simpler stationary imprecise one will result in a larger set of R-random
paths, and therefore leads to a less informative description of our uncertainty
about !. As argued by De Cooman and De Bock in Ref. [36, Section 10]: this
observation might lead to the suspicion that all instances of randomness
with respect to a stationary imprecise uncertainty model can be ‘explained
away’ as a mere consequence of randomness with respect to non-stationary
but precise uncertainty models. This would imply that the imprecision in
a forecasting system isn’t essential, and can always be dismissed as a mere
artefact, a simple effect of using a stationary representation that isn’t powerful
enough to allow for the ideal representation, which must be, one would
suspect, always precise but non-stationary.

However, as also argued by De Cooman and De Bock in Ref. [36, Sec-
tion 10], this suspicion is misguided when focusing on computable forecast-
ing systems: interval forecasts don’t merely serve as an alternative for non-
stationary computable precise forecasting systems. Indeed, their Theorem 37
in Ref. [36] shows that, for binary state spaces, there’s at least one path ! 2≠
that’s R-random for

£
p, q

§
, with R 2 {ML,wML,C,S}, but not R-random for

any (more) precise (possibly non-stationary) computable forecasting sys-
tem ' 2©(X). This result led De Cooman and De Bock [36, Section 10] to
claim that R-randomness is inherently imprecise, with R 2 {ML,wML,C,S},
because the randomness of the paths ! in their Theorem 37 can only be
captured by an imprecise forecasting system, and can’t be explained away
as an effect of oversimplification. Moreover, as they explain as well, the
imprecision involved is non-negligible, and can be made arbitrarily large,
because besides excluding the possibility of randomness of such paths for
precise computable forecasting systems, they also can’t be random for any
computable forecasting system whose highest imprecision is smaller than
that of the original, stationary one.

In this dissertation, we strengthen their result by proving that it continues
to hold for arbitrary finite state spaces as well as for frequentist and test-
theoretic notions of randomness: for every R 2 {ML,wML,C,S,CH,wCH} and
every credal set C 2C(X) with non-zero diameter there’s at least one path! 2
≠ that’s R-random for C but not for any forecasting system ' 2©(X) whose
highest imprecision is smaller than that of C . It remains to formalise what we
mean by ‘non-zero diameter’ and ‘highest imprecision smaller than’.

The diameter dia: C(X) ! R∏0 of a credal set C 2 C(X) is defined as
dia(C ) := maxm,m02Ckm °m0ktv. So, dia(C ) > 0 if and only if C consists of
more than one probability mass function. A forecasting system ' 2©(X) is
said to have highest imprecision smaller than some credal set C 2C(X) if
sups2Sdia

°
'(s)

¢
< dia(C ).
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Theorem 19.1. Consider any R 2 {ML,wML,C,S,CH,wCH} and any credal
set C 2C(X). Then there’s a path ! 2≠ that’s R-random for the credal set C ,
but that’s never R-random for any computable forecasting system ' 2©(X)
whose highest imprecision is smaller than that of C , in the specific sense
that sups2Sdia

°
'(s)

¢
< dia(C ).

Proof. This statement is trivially true when dia(C ) = 0, because there are no fore-
casting systems ' 2©(X) for which sups2Sdia

°
'(s)

¢
< 0 and because we know from

Corollary 9.356 and 11.10(ii)96 that there’s at least one path that is R-random for C . So,
let’s assume that dia(C ) > 0; this implies that |X| > 1, because dia(C ) = dia({1}) = 0 for
all C 2C(X) if |X| = 1.

To start the argument, fix any recursive map ∏ : N! N such that for each ` 2
N there are infinitely many n 2 N that are mapped to `, meaning that ∏(n) =
`; consider for example the recursive map that corresponds to the sequence
(1,1,2,1,2,3,1,2,3,4, . . .).

We also let '1, '2, . . . , '`, . . . be any enumeration of the (countably many) com-
putable forecasting systems whose highest imprecision is smaller than that of the
credal set C , in the specific sense that sups2Sdia

°
'`(s)

¢
< dia(C ) for all ` 2N. To un-

derstand why there are indeed countable many such forecasting systems, we note that
by Lemma 7.244 there are only countably many computable forecasting systems since
there are only countably many (partial) recursive maps q : S£N! Pfin(Mrat(X))
[this is the required upper bound] and observe that every rational probability mass
function mrat 2Mrat(X)—of which there are countably many because |X| > 1 by
assumption—has diameter zero and corresponds to a unique stationary recursive
(and therefore computable) forecasting system [this is the required lower bound].

Consider now any ` 2 N, or in other words, any such computable forecasting
system '`. Let 0 < ≤` < 1 be any rational number [which there always is] such that

sup
s2S

dia
°
'`(s)

¢
+20≤` < dia(C ). (19.2)

For any given ` 2N, we now fix some finite number of rational probability mass func-
tions

©`m1, . . . ,`mi`
™
µMrat(X) such that dH

°
C ,CH

°©`m1, . . . ,`mi`
™¢¢

< ≤` [which is

always possible by Lemma 5.618]. Let
©`m0

1, . . . ,`m0
i`

™
µM(X) be any finite set of

probability mass functions such that `m0
i 2C and d

°`mi ,`m0
i

¢
< ≤` for all 1 ∑ i ∑ i`

[it’s immediate from the definition of the Hausdorff distance that this is possible].
Consider any N` 2 N such that 2°N` < ≤`. Since the forecasting system '` is com-
putable, we know that there’s some recursive map q : S£N!Pfin(Mrat(X)) such that
dH

°
'`(s),CH

°
q(s, N )

¢¢
∑ 2°N for all s 2 S and N 2N. Hence, if we let '0

`
be the re-

cursive rational forecasting system defined by '0
`

(s) = CH
°
q(s, N`)

¢
for all s 2S, then

clearly dH
°
'`(s),'0

`
(s)

¢
∑ 2°N` < ≤` for all s 2S. By recalling that max f ° f 2L1(X)

if f 2L1(X), it follows from Corollary 7.948 and conjugacy that
ØØØE'`(s)( f )°E'0

`
(s)( f )

ØØØ=
ØØØE'0

`
(s)(° f )°E'`(s)(° f )

ØØØ
C420=

ØØØE'0
`

(s)
°
max f ° f

¢
°E'`(s)

°
max f ° f

¢ØØØ

< ≤` for all s 2S and f 2L1(X). (19.3)
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Since
©`m1, . . . ,`mi`

™
µMrat(X) is a finite set of rational probability mass functions

and since'0
`

is a recursive rational forecasting system, it follows from Lemma 19.22191
that there is a recursive rational map q` : {1, . . . , i`}£S!Q such that

ØØØd
°`mi ,'0

`(s)
¢
°q`(i , s)

ØØØ< ≤` for all 1 ∑ i ∑ i` and s 2S. (19.4)

Let the natural map q 0
`

: S! {1, . . . , i`} be defined by

q 0
`(s) := min

©
1 ∑ i ∑ i` : q`(i , s) > 7≤`

™
for all s 2S. (19.5)

Observe that q 0
`

is (well-)defined because it holds for every s 2S that

max
1∑i∑i`

q`(i , s)

∏ max
1∑i∑i`

d
≥
`mi ,'0

`(s)
¥
°≤`

∏ dH

≥
CH

≥n
`m1, . . . ,`mi`

o¥
,'0

`(s)
¥
°≤`

∏ dH
°
C ,'`(s)

¢
°dH

≥
C ,CH

≥n
`m1, . . . ,`mi`

o¥¥
°dH

°
'0
`(s),'`(s)

¢
°≤`

> dH
°
C ,'`(s)

¢
°3≤`

∏
dia(C )°dia

°
'`(s)

¢

2
°3≤`

Eq. (19.2)x> 20≤`
2

°3≤` = 7≤`,

where the first inequality holds by Eq. (19.4), where the second inequality holds by
Lemma 19.19190, where the third inequality holds by the triangle inequality for the
Hausdorff distance, and where the fifth inequality holds by Lemma 19.20190; this
implies that the set

©
1 ∑ i ∑ i`s : q`s (i , s) > 7≤`s

™
is non-empty. Moreover, since the

rational map q` is recursive, the natural map q 0
`

is recursive as well.
With this set-up phase completed, we’re now ready to use the map ∏, the rational

≤`, the rational probability mass functions
©`m1, . . . ,`mi`

™
, the probability mass func-

tions
©`m0

1, . . . ,`m0
i`

™
µC , the recursive rational forecasting system '0

`
, the recursive

rational map q` and the recursive natural map q 0
`

we have just determined in the
construction above for any ` 2N, to define a precise forecasting system 'C as follows:
let `s :=∏(|s|) for all s 2S and

'C (s) := `sm0
q 0
`s

(s) for all s 2S. (19.6)

Observe that 'C is (well-)defined because q 0
`s

(s) 2 {1, . . . , i`s } for every s 2S.
Let’s consider any path ! 2 ≠ that’s R-random for this precise forecasting sys-

tem 'C ; we know from Corollary 9.356 and Proposition 11.10(ii)96 that there’s at least
one such path. For any l 2 N, we know that `m0

i 2C for all 1 ∑ i ∑ i`, so it follows
from our construction that 'C (s) 2C for all s 2S. Since ! is assumed to be R-random
for 'C , it follows from Propositions 9.556 and 11.10(iv)96 that ! is also R-random
for C .

Let’s now fix any `o 2N. Since `o is chosen arbitrarily, we’ll be done if we can show
that the path ! isn’t wCH-random for '`o , because then, since '`o is computable, it’s
immediate from Corollary 12.4105 that ! isn’t R-random for '`o . This is what we now
set out to do.
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Let the selection process S`o 2S be defined by

S`o (s) :=
(

1 if `s = `o

0 otherwise
for all s 2S. (19.7)

This selection process is recursive and temporal, because ∏ is recursive and `s =
∏(|s|) for all s 2 S; it is moreover total, because ∏ maps infinitely many naturals to
`o . Since every probability mass function m 2M(X) is almost computable, since©`om0

1, . . . ,`om0
i`o

™
is a finite set of probability mass functions, since q 0

`o
is a recursive

natural map and since 'C (s) = `om0
q 0
`o

(s)
for all s 2Swith S`o (s) = 1, this implies that

the forecasting system 'C is almost computable for S`o .

For every 1 ∑ i ∑ i`o , let the selection process S`o
i 2S be defined by

S`o
i (s) :=

(
1 if S`o (s) = 1 and q 0

`o
(s) = i

0 otherwise
for all s 2S; (19.8)

this selection process is recursive because S`o and q 0
`o

are recursive. Since q 0
`o

(s) 2
{1, . . . , i`o } for all s 2S, it’s immediate that

S`o (s) =
X

1∑i∑i`o

S`o
i (s) for all s 2S. (19.9)

By invoking Lemma 19.21190, we infer that there’s a finite set of rational gambles©
f1, . . . , f j`o

™
µL1(X)\Lrat(X) such that

d(m,C ) ∑ max
1∑ j∑ j`o

°
EC ( f j )°Em ( f j )

¢
+≤`o for all m 2M(X) and C 2C(X),

and hence, it follows for every 1 ∑ i ∑ i`o and for all s 2S that

S`o
i (s) = 1 ) q 0

`o
(s) = i

) q`o (i , s) > 7≤`o

) d
°`omi ,'0

`o
(s)

¢
> 6≤`o

) max
1∑ j∑ j`o

≥
E'0

`o
(s)( f j )°E`o mi

( f j )
¥
∏ d

≥
`omi ,'0

`o
(s)

¥
°≤`o > 5≤`o ,

(19.10)

where the second implication holds by Eq. (19.5)x, and where the third implication
holds by Eq. (19.4)x. With any 1 ∑ i ∑ i`o and 1 ∑ j ∑ j`o , we associate the selection
process S`o

i , j 2S defined for all s 2S by

S`o
i , j (s) :=

8
<
:

1 if S`o
i (s) = 1 and E'0

`o
(s)( f j )°E`o mi

( f j ) > 5≤`o

0 otherwise,

which is recursive because S`o
i is a recursive selection process, and because the strict

inequality is decidable for all s 2 S by Lemma 7.143 and conjugacy since `omi is a
rational probability mass function, f j is a rational gamble, ≤`o is a rational constant
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and '0
`o

is a recursive rational forecasting system. By Eq. (19.8)x, it holds for all s 2S
that

S`o
i , j (s) =

(
1 if S`o (s) = 1, q 0

`o
(s) = i and E'0

`o
(s)( f j )°E`o mi

( f j ) > 5≤`o

0 otherwise.
(19.11)

Moreover, by construction, for all s 2S with S`o
i , j (s) = 1,

E`o m0
i
( f j ) ∑ E`o mi

( f j )+≤`o

< E'0
`o

(s)( f j )°4≤`o

Eq. (19.3)183< E'`o (s)( f j )°3≤`o , (19.12)

where the first inequality is immediate from Lemma 11.995 because d
°`om0

i ,`omi
¢
<

≤`o . Obviously, for every 1 ∑ i ∑ i`o and 1 ∑ j ∑ j`o , S`o
i , j (s) ∑ S`o (s) for all s 2S. It’s

immediate from Eq. (19.10)x that

S`o
i (s) ∑

X

1∑ j∑ j`o

S`o
i , j (s) for all 1 ∑ i ∑ i`o and s 2S,

and it’s therefore immediate from Eq. (19.9)x that

S`o (s) ∑
X

1∑i∑i`o ,1∑ j∑ j`o

S`o
i , j (s) for all s 2S.

Hence, we can fix some 1 ∑ i ∑ i`o and 1 ∑ j ∑ j`o such that

limsup
n!1

Pn°1
k=0 S`o

i , j (!1:k )
Pn°1

k=0 S`o (!1:k )
> 0,

because otherwise

1 = limsup
n!1

Pn°1
k=0 S`o (!1:k )

Pn°1
k=0 S`o (!1:k )

∑ limsup
n!1

Pn°1
k=0

P
1∑i∑i`o ,1∑ j∑ j`o

S`o
i , j (!1:k )

Pn°1
k=0 S`o (!1:k )

∑
X

1∑i∑i`o ,1∑ j∑ j`o

limsup
n!1

Pn°1
k=0 S`o

i , j (!1:k )
Pn°1

k=0 S`o (!1:k )
= 0.

Let ±`o > 0 be such that

limsup
n!1

Pn°1
k=0 S`o

i , j (!1:k )
Pn°1

k=0 S`o (!1:k )
> ±`o ;

this implies that S`o
i , j accepts !, because otherwise, since the total selection pro-

cess S`o obviously accepts !,

limsup
n!1

Pn°1
k=0 S`o

i , j (!1:k )
Pn°1

k=0 S`o (!1:k )
= 0.
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Consequently, there’s an infinite subsetN`o µN0 such that

n°1X

k=0
S`o

i , j (!1:k ) > 0 and

Pn°1
k=0 S`o

i , j (!1:k )
Pn°1

k=0 S`o (!1:k )
> ±`o for all n 2N`o . (19.13)

While the recursive selection process S`o
i , j accepts !, it isn’t guaranteed that it’s

total. We’ll ‘slightly’ change this selection process in order for it to be total. To this
end, consider the recursive total selection process S`o ,^ 2S defined by

S`o ,^(s) :=
(

1 if S`o (s) = 1 and
qP|s|°1

k=0 S`o (s1:k ) 2N
0 otherwise

for all s 2S.

By construction, S`o ,^(s) ∑ S`o (s) for all s 2S and

P|s|°1
k=0 S`o ,^(s1:k )

P|s|°1
k=0 S`o (s1:k )

=

jqP|s|°1
k=0 S`o ,^(s1:k )

k

P|s|°1
k=0 S`o (s1:k )

∑ 1
qP|s|°1

k=0 S`o (s1:k )
for all s 2S with

|s|°1X

k=0
S`o (s1:k ) > 0. (19.14)

Let the recursive total selection process S`o ,^
i , j 2S be defined by

S`o ,^
i , j (s) := max

n
S`o

i , j (s),S`o ,^(s)
o

for all s 2S. (19.15)

By construction,

S`o ,^
i , j (s) ∑ S`o

i , j (s)+S`o ,^(s) for all s 2S. (19.16)

Also by construction, S`o ,^
i , j (s) ∑ S`o (s) for all s 2S, and hence, by recalling that 'C is

almost computable for the selection process S`o , 'C is almost computable as well for
the recursive total selection process S`o ,^

i , j . Since
Pn°1

k=0 S`o
i , j (!1:k ) > 0 for all n 2N`o ,

it’s obvious that
Pn°1

k=0 S`o ,^
i , j (!1:k ) > 0 and

Pn°1
k=0 S`o (!1:k ) > 0 as well for all n 2N`o .

Consequently, for all n 2N`o :

Pn°1
k=0 S`o ,^(!1:k )

Pn°1
k=0 S`o ,^

i , j (!1:k )
∑

Pn°1
k=0 S`o ,^(!1:k )

Pn°1
k=0 S`o

i , j (!1:k )

=
Pn°1

k=0 S`o ,^(!1:k )
Pn°1

k=0 S`o (!1:k )

Pn°1
k=0 S`o (!1:k )

Pn°1
k=0 S`o

i , j (!1:k )

∑ 1

±`o

qPn°1
k=0 S`o (!1:k )

, (19.17)

where the last inequality holds by Eqs. (19.13) and (19.14). Since ! is R-random

for 'C , since 'C is almost computable for the recursive total selection process S`o ,^
i , j ,

and since the recursive total selection process S`o ,^
i , j obviously accepts !, it follows
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from Corollary 11.21101 [for R 2 {ML,wML,C,S}] and from Definition 12.1102 and
Proposition 11.389 [for R 2 {CH,wCH}] that

liminf
n!1

Pn°1
k=0 S`o ,^

i , j (!1:k )
h

f j (!k+1)°E'C (!1:k )( f j )
i

Pn°1
k=0 S`o ,^

i , j (!1:k )
∏ 0 [by letting f equal f j ]

and

limsup
n!1

Pn°1
k=0 S`o ,^

i , j (!1:k )
h

f j (!k+1)°E'C (!1:k )( f j )
i

Pn°1
k=0 S`o ,^

i , j (!1:k )
∑ 0, [by letting f equal ° f j ]

which implies that

lim
n!1

Pn°1
k=0 S`o ,^

i , j (!1:k )
h

f j (!k+1)°E'C (!1:k )( f j )
i

Pn°1
k=0 S`o ,^

i , j (!1:k )
= 0. (19.18)

Meanwhile, for all n 2N`o ,

Pn°1
k=0 S`o ,^

i , j (!1:k )E'C (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

Eq. (19.16)x∑

Pn°1
k=0 S`o

i , j (!1:k )E'C (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

+
Pn°1

k=0 S`o ,^(!1:k )E'C (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

C120,C520∑

Pn°1
k=0 S`o

i , j (!1:k )E'C (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

+
Pn°1

k=0 S`o ,^(!1:k )max| f j |
Pn°1

k=0 S`o ,^
i , j (!1:k )

Eq. (19.17)x∑

Pn°1
k=0 S`o

i , j (!1:k )E'C (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

+
max| f j |

±`o

qPn°1
k=0 S`o (!1:k )

Eq. (19.11)186=

Pn°1
k=0 S`o

i , j (!1:k )E`o m0
i
( f j )

Pn°1
k=0 S`o ,^

i , j (!1:k )
+

max| f j |

±`o

qPn°1
k=0 S`o (!1:k )

Eq. (19.12)186∑

Pn°1
k=0 S`o

i , j (!1:k )
h

E'`o (!1:k )( f j )°3≤`o

i

Pn°1
k=0 S`o ,^

i , j (!1:k )
+

max| f j |

±`o

qPn°1
k=0 S`o (!1:k )

=

Pn°1
k=0 S`o

i , j (!1:k )E'`o (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

°

Pn°1
k=0 S`o

i , j (!1:k )3≤`o

Pn°1
k=0 S`o ,^

i , j (!1:k )
+

max| f j |

±`o

qPn°1
k=0 S`o (!1:k )

Eq. (19.16)x∑

Pn°1
k=0 S`o

i , j (!1:k )E'`o (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )
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°

Pn°1
k=0

h
S`o ,^

i , j (!1:k )°S`o ,^(!1:k )
i

3≤`o

Pn°1
k=0 S`o ,^

i , j (!1:k )
+

max| f j |

±`o

qPn°1
k=0 S`o (!1:k )

Eq. (19.17)187∑

Pn°1
k=0 S`o

i , j (!1:k )E'`o (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

°3≤`o +
max| f j |+3≤`o

±`o

qPn°1
k=0 S`o (!1:k )

Eq. (19.15)187∑

Pn°1
k=0 S`o ,^

i , j (!1:k )E'`o (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

°3≤`o +
max| f j |+3≤`o

±`o

qPn°1
k=0 S`o (!1:k )

,

where the first and the seventh inequalities make use of the fact that EC 0 ( f )
C120∏ 0

for all gambles f ∏ 0 and C 0 2 C(X), and where the first equality also makes use
of Eqs. (19.6)184 and (19.7)185. Since limn!1

Pn°1
k=0 S`o (!1:k ) =1, there’s a natural

M`o 2N such that

max| f j |+3≤`o

±`o

qPn°1
k=0 S`o (!1:k )

< ≤`o for all n ∏ M`o .

This implies for all n 2 N`o with n ∏ M`o —which is still an infinite number of
naturals—that

Pn°1
k=0 S`o ,^

i , j (!1:k )E'C (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

+2≤`o <

Pn°1
k=0 S`o ,^

i , j (!1:k )E'`o (!1:k )( f j )
Pn°1

k=0 S`o ,^
i , j (!1:k )

.

By Eq. (19.18)x, it holds that there’s a natural O`o 2N such that

≤`o >

Pn°1
k=0 S`o ,^

i , j (!1:k )
h

f j (!k+1)°E'C (!1:k )( f j )
i

Pn°1
k=0 S`o ,^

i , j (!1:k )
for all n ∏O`o ,

and hence, it holds for all n 2N`o with n ∏ max
©

M`o ,O`o

™
—which is still an infinite

number of naturals—that

≤`o >

Pn°1
k=0 S`o ,^

i , j (!1:k )
h

f j (!k+1)°E'C (!1:k )( f j )
i

Pn°1
k=0 S`o ,^

i , j (!1:k )

>

Pn°1
k=0 S`o ,^

i , j (!1:k )
h

f j (!k+1)°E'`o (!1:k )( f j )
i

Pn°1
k=0 S`o ,^

i , j (!1:k )
+2≤`o .

Consequently,

°≤`o ∏ liminf
n!1

Pn°1
k=0 S`o ,^

i , j (!1:k )
h

f j (!k+1)°E'`o (!1:k )( f j )
i

Pn°1
k=0 S`o ,^

i , j (!1:k )
,

which implies by Definition 12.1102 and Proposition 11.389 that ! cannot be wCH-
random for '`o .
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Lemma 19.19. Consider any non-empty finite set of probability
mass functions {m1, . . . ,mn} µ M(X) and any credal set C 2 C(X).
Then, dH(CH({m1, . . . ,mn}),C ) ∑ maxm2{m1,...,mn } d(m,C ).

Proof. Since E CH({m1,...,mn })( f ) = maxm2{m1,...,mn } Em ( f ) for all f 2L(X), it follows
from Lemma 7.848 that

dH(CH({m1, . . . ,mn }),C ) = max
f 2L1(X)

ØØØE CH({m1,...,mn })( f )°EC ( f )
ØØØ

= max
f 2L1(X)

ØØØØ max
m2{m1,...,mn }

Em ( f )°EC ( f )
ØØØØ

∑ max
m2{m1,...,mn }

max
f 2L1(X)

ØØØEm ( f )°EC ( f )
ØØØ

= max
m2{m1,...,mn }

d(m,C ).

Lemma 19.20. Consider any two credal sets C ,C 0 2C(X). Then, |dia(C )°
dia

°
C 0¢|∑ 2dH

°
C ,C 0¢.

Proof. Fix any two probability mass functions m1,m2 2C such that km1 °m2ktv =
dia(C ); it’s immediate from the definition of the diameter on p. 182 that this is al-
ways possible. Since m1,m2 2C , it’s immediate from the definition of the Hausdorff
distance on p. 18 that there are probability mass function m0

1,m0
2 2 C 0 such that

km1 °m0
1ktv ∑ dH

°
C ,C 0¢ and km2 °m0

2ktv ∑ dH
°
C ,C 0¢. Since m0

1,m0
2 2 C 0, we also

have that km0
1 °m0

2ktv ∑ dia
°
C 0¢. By applying the triangle inequality for the total

variation norm, we get that

dia(C ) = km1 °m2ktv

∑ km1 °m0
1ktv +km0

1 °m0
2ktv +km0

2 °m2ktv

∑ dH
°
C ,C 0¢+dia

°
C 0¢+dH

°
C ,C 0¢

= dia
°
C 0¢+2dH

°
C ,C 0¢

By reversing the roles of C and C 0 in the above argument, we also have
that dia

°
C 0¢∑ dia(C )+2dH

°
C ,C 0¢, and hence, |dia(C )°dia

°
C 0¢|∑ 2dH

°
C ,C 0¢.

Lemma 19.21. Consider any real ≤ > 0. Then there is a finite
set of rational gambles

©
f1, . . . , fN

™
µ L1(X) \ Lrat(X) such thatØØd(m,C )°max1∑i∑N

°
EC ( fi )°Em( fi )

¢ØØ < ≤ for any probability mass func-
tion m 2M(X) and any credal set C 2C(X).

Proof. Since L1(X) is closed and bounded, and since the rational gambles are a
dense subset of the real gambles, there is a finite set of rational gambles

©
f1, . . . , fN

™
µ

L1(X)\Lrat(X) such that for every f 2 L1(X) there’s some f 0 2
©

f1, . . . , fN
™

for
which | f ° f 0|∑ ≤/2. Consequently, for any probability mass function m 2M(X) and
any credal set C 2C(X), it follows from Lemma 11.995 that

d(m,C ) = max
f 2L1(X)

°
EC ( f )°Em ( f )

¢
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C520∑ max
1∑i∑N

°
EC ( fi + ≤/2)°Em ( fi ° ≤/2)

¢

C420∑ max
1∑i∑N

°
EC ( fi )°Em ( fi )

¢
+≤

and

d(m,C ) = max
f 2L1(X)

°
EC ( f )°Em ( f )

¢

C520∏ max
1∑i∑N

°
EC ( fi ° ≤/2)°Em ( fi + ≤/2)

¢

C420∏ max
1∑i∑N

°
EC ( fi )°Em ( fi )

¢
°≤,

which implies that ØØØØd(m,C )° max
1∑i∑N

°
EC ( fi )°Em ( fi )

¢ØØØØ∑ ≤.

Lemma 19.22. Consider any real ≤> 0. Then there is a single algorithm that,
when provided with a rational probability mass function mrat 2Mrat(X) and
a code for a recursive rational credal set Crat 2Crat(X), outputs a rational q 2
Q such that |d(mrat,Crat)°q | < ≤.

Proof. By Lemma 19.21x, we can fix a finite set of rational gambles
©

f1, . . . , fN
™
µ

L1(X) \Lrat(X) such that
ØØd(m,C )°max1∑i∑N

°
EC ( fi )°Em ( fi )

¢ØØ < ≤ for any
probability mass function m 2 M(X) and any credal set C 2 C(X). Let q :=
max1∑i∑N

°
ECrat ( fi )°Emrat ( fi )

¢
. By Lemma 7.143 and conjugacy, it’s immediate that

there’s a single algorithm that outputs q upon the input of mrat and a code for Crat.
By construction, |d(mrat,Crat)°q| < ≤.

When we restrict our attention to non-degenerate computable credal
sets, then the above theorem also applies to our test-theoretic notions of
randomness.

Corollary 19.23. Consider any R 2 {ML,S} and any non-degenerate com-
putable credal set C 2C(X). Then there’s a path ! 2≠ that’s R-test-random
for the credal set C , but that’s never R-test-random for any computable fore-
casting system ' 2©(X) whose highest imprecision is smaller than that of C ,
in the specific sense that sups2Sdia

°
'(s)

¢
< dia(C ).

Proof. By Theorem 19.1183, consider a path ! 2≠ that’s R-random for C but not R-
random for any computable forecasting system ' 2©(X) whose highest imprecision
is smaller than that of C . Since C is non-degenerate and computable by assump-
tion, it follows from Propositions 14.4121 and 15.6137 that ! is R-test-random for C .
Consider any computable forecasting system ' 2©(X) whose highest imprecision is
smaller than that of C . Since ! isn’t R-random for ' by assumption, it follows from
Propositions 14.2120 and 15.2136 that ! isn’t R-test-random for '.

We repeat that (a less general version of) Theorem 19.1183 led De Cooman
& De Bock [36] to claim that R-randomness is inherently imprecise, because,
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for all credal sets C 2C(X) with dia(C ) > 0, the randomness of the paths !
in this theorem can only be captured by an imprecise forecasting system.
In the next section, we’ll show and explain that the assumption that ' is
computable is crucial for this claim: indeed, Theorem 20.1y further on
implies that for every credal set C 2C(X) there’s a non-computable precise
forecasting system 'pr 2 C —so with sups2Sdia

°
'pr(s)

¢
= 0—such that ! is

R-random for C if and only if it’s R-random for 'pr. Hence, for this particular
'pr, there’s no path ! 2≠ that is R-random for C but not for 'pr.

20 Forecasting systems are sets of precise forecasting systems

At the start of Chapter 13, in Section 5.317, we mentioned that a credal set
can be seen as a (closed convex) set of probability mass functions. Similarly,
as explained in Section 6.224, a forecasting system ' 2 ©(X) can be seen
as a set

©
'pr : 'pr 2©pr(X) and 'pr 2'

™
of compatible precise forecasting

systems. This point of view continued to make sense in Section 6.432, where
we explained that the corresponding upper expectation E'(•) coincides with
the upper envelope sup'pr2'E'pr (•) of all global expectations E'pr that are
determined by compatible precise forecasting systems 'pr 2', and this on
all global gambles that are measurable with respect to B(≠) [70, Theorem
13]. In this section, we’ll explain and show that this kind of interpretation
continues to make sense in an algorithmic randomness context as well: a
path is random for a forecasting system if and only if it’s random for at least
one compatible precise forecasting system.

We start by having a look at the measure-theoretic approach to random-
ness. In Martin-Löf’s seminal paper [30], he didn’t only introduce measure-
theoretic tests to test the agreement between a path and a computable prob-
ability measure, he also devised a measure-theoretic test that tests whether
a path is Bernoulli random, that is, whether it’s (uniformly) random with
respect to the set Ber of all Bernoulli probability measures. It turns out that a
path! 2≠ is Bernoulli random if and only if it’s (uniformly) random for some
Bernoulli probability measure µ 2 Ber [6, Theorem 4.12]. As is immediate
from the introduction to this chapter, this feature continues to hold for Levin’s
more general notion of uniform randomness which—as we recall—tests the
correspondence between a path ! 2≠ and a so-called effectively compact
class of measures CµM(≠) [4, 6]: a path ! 2≠ is uniformly random for C if
and only if it’s uniformly random with respect to at least one member of the
considered class C.

An analogous property will turn out to hold for the imprecise-
probabilistic martingale-theoretic randomness notions that we introduced
in Chapter 49: a path ! 2 ≠ is martingale-theoretically random for a(n
imprecise-probabilistic) forecasting system if and only if it’s martingale-
theoretically random for at least one compatible precise forecasting system.
Interestingly, this property readily follows from the even more general result
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20 Forecasting systems are sets of precise forecasting systems

below: for every forecasting system ' 2©(X) there’s a compatible precise
forecasting system 'pr 2' such that a path ! 2≠ is martingale-theoretically
random for ' if and only if it’s martingale-theoretically random for 'pr. We
originally proved this property in the restricted setting of binary state spaces
[43, 44] using an argument that is not straightforwardly generalisable to ar-
bitrary but finite state spaces. Here, we provide a more direct and shorter
argument (for proving Theorem 20.1), which applies to arbitrary but finite
state spaces and is based on a diagonal argument put forward by Alexander
Shen. Our original argument for binary state spaces can be found in Sec-
tion 20.1196; we include both because we deem it insightful to provide a
different road that leads to Rome and because we find it interesting that the
argument for binary state spaces provides us with a(n even) more explicit
construction for 'pr.

Theorem 20.1. Consider any R 2 {ML,wML,C,S} and any forecasting sys-
tem ' 2 ©(X). Then there’s a precise forecasting system 'pr 2 ' such
that ≠R('pr) =≠R(').

In the proof below, as you’ll notice, we make use of a similar argument as
in Example 14.15125.

Proof. We’ll construct the precise forecasting system 'pr 2' iteratively. Let (Fi )i2N
be an enumeration (not necessarily recursive) of all implementable processes in FR;
this is always possible by Lemma 7.646 and Proposition 8.150. We start by considering
F1. If E'(s)(F1(s ·)) > F1(s) for an infinite number of s 2 S, then we fix some s1 2 S
such that E'(s1)(F1(s1 ·)) > F1(s1). Let 'pr(s1) be equal to some probability mass
function m1 2'(s1) for which Em1 (F1(s1 ·)) > F1(s1) [it’s easy to infer from Eq. (5.7)19
that this is always possible]. Otherwise, we let s1 :=⇤. We continue by considering
F2. If E'(s)(F2(s ·)) > F2(s) for an infinite number of s 2 S, then we (can) fix some
s2 2S such that |s2| > |s1|+1 and E'(s)(F2(s2 ·)) > F2(s2), and we let 'pr(s2) be equal
to some probability mass function m2 2'(s2) for which Em2 (F2(s2 ·)) > F2(s2). Oth-
erwise, we let s2 := s1. We continue by considering F3. If E'(s)(F3(s ·)) > F3(s) for an
infinite number of s 2 S, then we (can) fix some s3 2 S such that |s3| > |s2|+1 and
E'(s)(F3(s3 ·)) > F3(s3), and we let'pr(s3) be equal to some probability mass function
m3 2 '(s3) for which Em3 (F3(s3 ·)) > F3(s3). Otherwise, we let s3 := s2. Repeat this
procedure ad infinitum and let 'pr(s) be equal to some probability mass function
m 2'(s) in all situations s 2S that weren’t assigned a probability mass function yet.
In this way, we obtain a precise forecasting system that’s compatible with '.

We continue by proving that ≠R('pr) = ≠R('). ≠R('pr) µ ≠R(') is obvious
by Proposition 9.556. To prove that ≠R(') µ≠R('pr), consider any path ! 2≠R(')
and any test supermartingale T 2TR('pr). If there’s an infinite number of situa-
tions s 2 S for which E'(s)(T (s ·)) > T (s), then by construction there’s some t 2 S
such that E'pr(t )(T (t ·)) > T (t ), contradicting the fact that T is a test supermartingale
for 'pr. This implies that there’s only a finite number of situations s 2S for which
E'(s)(T (s ·)) > T (s). Consequently, by Lemma 10.468 [with '! 'pr and '0 ! '], T
remains (computably) bounded on !.
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By Theorem 19.1183, in the case of stationary imprecise-probabilistic
forecasting systems, the precise forecasting systems 'pr in Theorem 20.1x
are necessarily non-computable, as well as non-stationary.

Corollary 20.2. Consider any R 2 {ML,wML,C,S}, any credal set C 2C(X)
with dia(C ) > 0, and any precise forecasting system 'pr 2 C . If ≠R('pr) =
≠R(C ), then 'pr must be non-computable and non-stationary.

Proof. Since dia(C ) > 0 by assumption, and since sups2Sdia
°
'pr(s)

¢
= 0 < dia(C )

due to the precision of 'pr, it follows from Theorem 19.1183 that ' must be non-
computable, because, otherwise, this theorem would guarantee that there’s some
path ! 2≠ that’s R-random for C but not R-random for 'pr.

It remains to prove that the precise forecasting system 'pr can’t be stationary
either. Indeed, assume ex absurdo that'pr(s) = m 2M(X) for all s 2S. Since dia(C ) >
0, there’s some m0 2C such that m 6= m0. Consider any path ! 2≠ that’s R-random for
m0 [this is always possible by Corollary 9.356]. By Proposition 9.556, ! 2≠R(C ). Since
! 2≠R(m0), it follows from Corollary 12.4105 and Proposition 11.793 [with S = 1] that

0 = lim
n!1d

√Pn°1
k=0 I!k+1

n
,m0

!
= lim

n!1

∞∞∞∞∞
1
n

n°1X

k=0
I!k+1 °m0

∞∞∞∞∞
tv

,

and hence,

lim
n!1

1
n

n°1X

k=0
I!k+1 (x) = m0(x) for all x 2X.

This implies that limn!1 1
n

Pn°1
k=0 I!k+1 (x) 6= m(x) for some x 2X, which in its turn

implies that ! cannot be wCH-random for m, and therefore, by Corollary 12.4105,
cannot be R-random for m. We conclude that ≠R('pr) 6=≠R(C ).

We repeat that, in this martingale-theoretic setting, Theorem 20.1x com-
plements Theorem 19.1183 by laying bare the importance of the computability
assumption on the precise forecasting systems. As we’ve already highlighted
in the discussion before Theorem 20.1x, Theorem 20.1x is also interesting
from a measure-theoretic randomness perspective, since it readily leads to
corollaries that are reminiscent of existing measure-theoretic randomness
results. The next result shows that our martingale-theoretic notions of ran-
domness satisfy a property that is similar to the one for uniform randomness
that we mentioned at the start of this section: a path ! 2≠ is random for a(n
imprecise-probabilistic) forecasting system if and only if it’s random for at
least one compatible precise forecasting system.

Corollary 20.3. Consider any R 2 {ML,wML,C,S} and any forecasting sys-
tem ' 2 ©(X). Then a path ! 2 ≠ is R-random for ' if and only if it’s R-
random for at least one compatible precise forecasting system 'pr 2'.

Proof. By Proposition 9.556, the ‘if’ part is straightforward, so we proceed to the ‘only
if’ part. Assume that ! is R-random for the forecasting system ' 2 ©(X). Then it
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follows from Theorem 20.1193 that there’s some precise compatible forecasting system
'pr 2' for which ! is R-random.

Another measure-theoretic result that we can now show has a martingale-
theoretic counterpart, is the existence of a so-called neutral measure for
which all paths ! 2≠ are random. In a measure-theoretic context, this is true
for uniform randomness [6, Theorem 6.2]. We here obtain a similar result for
any of the four martingale-theoretic notions of randomness that we consider.

Corollary 20.4. Consider any R 2 {ML,wML,C,S}. Then there’s a precise—but
necessarily non-stationary and non-computable—forecasting system 'pr 2
©pr(X) for which all paths ! 2≠ are R-random.

Proof. From Theorem 20.1193, it immediately follows that there’s some precise fore-
casting system 'pr 2 ©(X) such that ≠R('pr) = ≠R(Cv), and hence, by Proposi-
tion 9.456, ≠R('pr) =≠. Corollary 20.2x then implies that 'pr is necessarily non-
stationary and non-computable.

We find this result to be particularly intriguing. Proposition 9.456 guar-
antees that every path ! 2≠ is random for the vacuous forecasting system.
Since all precise forecasting systems are compatible with the vacuous fore-
casting system, Corollary 20.3x then tells us that this amounts to every
path ! 2 ≠ being random for at least one precise forecasting system; this
statement can also be proven by realising that every path ! 2≠ is random
for the temporal (precise) forecasting system that assigns at every time in-
stant n 2N0 all mass to the next state !n+1 in ! [see also Proposition 21.1199
further on]. The result above strengthens this, by showing that there’s in fact
one single precise forecasting system all paths are random for.

Where does this discussion leave us? Theorem 20.1193 and Corol-
lary 20.2x show that the randomness of a path ! 2 ≠ with respect to a
credal set C 2C(X) with dia(C ) > 0, be it computable or not, can be equiva-
lently described by a precise forecasting system that’s then necessarily non-
computable and non-stationary. This furthermore implied, as we have seen
in Corollary 20.3x, that randomness with respect to a stationary forecasting
system can be equivalently described in terms of the compatible precise fore-
casting systems. It may therefore seem that, on purely theoretical grounds,
stationary imprecise forecasting systems aren’t needed in the study of algo-
rithmic randomness. However, if we want to maintain the claim that ran-
domness is inherently imprecise, Corollaries 20.2x and 20.4 tell us we need
only explain why we believe that non-computable forecasting systems are
non-satisfactory, and even fairly useless. We’ll come to that in Section 21199,
where we argue why the computability assumption on the forecasting system
is justified on practical grounds. But before getting to that, we now devote
ourselves to providing an alternative proof for Theorem 20.1193 in the specific
setting of binary state spaces.
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20.1 An alternative proof of the main result for binary state spaces

In this section, we’ll provide an alternative proof for Theorem 20.1193 when
restricting our attention to the binary state space X = {a,b}; in the remainder
of this section, as we mentioned on p. 26, a forecasting system ' : S!I
will then be seen as map that specifies for every situation s 2S an interval
forecast '(s) 2I that’s associated with the outcome X |s|+1 = a. We’ll do so
by proving a slightly different statement: for every forecasting system ' 2
©(X) and R 2 {ML,wML,C,S}, we’ll (more) explicitly provide and construct a
compatible precise forecasting system 'pr 2' such that ≠R('pr) =≠R('). In
this construction, we’ll make use of paths that areS1-random for an interval
forecast I µ (0,1), with S1 some well-chosen countable set of selection
processes S1. By Definition 11.289 and Proposition 11.389, a path ! 2≠ is
S1-random for an interval forecast I 2I if and only if for any gamble f 2
L(X) and any selection process S 2S1(!) that accepts !:

E I ( f ) ∑ liminf
n!1

Pn°1
k=0 S(!1:k ) f (!k+1)

Pn°1
k=0 S(!1:k )

∑ limsup
n!1

Pn°1
k=0 S(!1:k ) f (!k+1)

Pn°1
k=0 S(!1:k )

∑ E I ( f ). (20.5)

In order to use such S1-random paths in the construction of an appropriate
precise forecasting system, we of course need to be sure that for every interval
forecast I and every countable set of selection processes S1, there’s at least
one S1-random path for I . This is guaranteed by Proposition 11.10(ii)96.

We’ll now use such S1-random paths ! 2≠ to craft the special precise
forecasting systems we have been talking about. To this end, fix any forecast-
ing system ' and any path $ 2≠, and consider the associated compatible
precise forecasting system '$ 2©pr(X), defined by

'$(s) :=
(
'(s) if $|s|+1 = a

'(s) if $|s|+1 = b
for all s 2S. (20.6)

In the main result of this section, Theorem 20.10y below, we’ll in particu-
lar use paths $ that are S1-random for an interval forecast I µ (0,1), where
the countable set of selection processes S1 is of a special type.

To define these sets S1, we start by associating with every real process F
and every precise forecasting system 'pr 2 ©pr(X) the temporal selection
process S

'pr
F , defined for all n 2N0 by

S
'pr
F (n) :=

(
1 if E'pr(s)(¢F (s)) > 0 for some s 2S with |s| = n

0 if E'pr(s)(¢F (s)) ∑ 0 for all s 2S with |s| = n.
(20.7)
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We use these temporal selection processes to associate with every countable
set F of real processes and every forecasting system ' 2 ©(X) the clearly
countable set S'

F
of temporal selection processes, defined by

S'
F

:=
n

S
'pr
F : F 2F and 'pr 2

©
','

™o
. (20.8)

Since S'
F

is countable, Proposition 11.10(ii)96 guarantees that there’s at least
one path that’s S'

F
-random for a given interval forecast I µ (0,1).

In this construction of the sets S'
F

, the specific countable sets F of real
processes that we’ll consider, are the sets FS, FC, FwML and FML introduced
in Section 850. If we recall that FS =FC µFwML µFML, Eq. (20.8) tells us that

S'
FS

=S'
FC

µS'
FwML

µS'
FML

for all ' 2©(X). (20.9)

We’re now ready to move on to the main result of this section, where
we use the special countable sets of selection processes S'

F
and the special

forecasting systems '$ to provide an alternative proof for Theorem 20.1193.

Theorem 20.10. Consider any R 2 {ML,wML,C,S}, any forecasting system ' 2
©(X), any interval forecast I µ (0,1), any countable set of selection pro-
cesses S1 ∂ S'

FR
, and any path $ 2 ≠ that’s S1-random for I . Then a

path ! 2 ≠ is R-random for ' if and only if it’s R-random for '$, that
is, ≠R(') =≠R('$).

Proof. We begin with the direct implication. Assume that ! 2≠ is R-random for '$.
Since '$ 2', it follows from Proposition 9.556 that ! is also R-random for '.

To prove the converse implication, assume that ! 2≠ is R-random for '. Taking
into account Definitions 8.552 and 8.654, in order to prove that ! is R-random for '$,
we consider any test supermartingale T 2TR('$) and prove that it isn’t unbounded
on ! when R 2 {ML,wML,C}, and that it isn’t computably unbounded on ! when
R = S.

To this end, consider the two temporal selection processes S
'

T and S'T as de-
fined by Eq. (20.7)x. We’ll take a closer look at the temporal selection process S

'

T
and prove that there’s only a finite number of non-negative integers n 2 N0 for
which S

'

T (n) = 1. To this end, assume ex absurdo that there’s an infinite number
of them, and therefore that limn!1

Pn°1
k=0 S

'

T (k) =1. Consider any k 2N0 such that
S
'

T (k) = 1, then it follows from Eq. (20.7)x that there’s some s 2S with |s| = k such
that E'(s)(¢T (s)) > 0. Since E'$(s)(¢T (s)) ∑ 0 (because ¢T is a supermartingale for

'$), this implies that necessarily '$(s) ='(s) 6='(s) and therefore, since |s| = k,
we infer from Eq. (20.6)x that $k+1 = a. Since this is true for each of the infinitely

many k 2N0 such that S
'

T (k) = 1, it follows that

limsup
n!1

Pn°1
k=0 S

'

T (k)Ia ($k+1)
Pn°1

k=0 S
'

T (k)
= limsup

n!1

Pn°1
k=0 S

'

T (k)
Pn°1

k=0 S
'

T (k)
= 1. (20.11)
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Since T 2 TR('$), and therefore also T 2FR, we can infer from Eq. (20.8)x that

S
'

T 2S'
FR

µS1. Consequently, since $ isS1-random for I by assumption and since

S
'

T accepts ! [because limn!1
Pn°1

k=0 S
'

T (k) =1], it follows from Eq. (20.5)196 [with
f ! Ia ] that

max I ∏ limsup
n!1

Pn°1
k=0 S

'

T (k)Ia ($k+1)
Pn°1

k=0 S
'

T (k)

Eq. (20.11)x= 1,

contradicting the assumption that I µ (0,1). We conclude that, indeed, there’s only a
finite number of non-negative integers n 2N0 for which S

'

T (n) = 1.
In a completely similar manner, it can be shown that there’s only a finite number

of non-negative integers n 2 N0 for which S'T (n) = 1. Indeed, assume ex absurdo
that there’s an infinite number of them. Then, by adopting a similar argument, it
follows that limn!1

Pn°1
k=0 S'T (k) =1, that S'T 2S'

FR
µS1, and that for all k 2N0, if

S'T (k) = 1, then $k+1 = b. That being so, it follows from Eq. (20.5)196 [with f ! Ia ],
since $ is S1-random for I by assumption and since S'T accepts !, that

min I ∑ liminf
n!1

Pn°1
k=0 S'T (k)Ia ($k+1)

Pn°1
k=0 S'T (k)

= 0,

contradicting the assumption that I µ (0,1).
Since there’s only a finite number of non-negative integers n 2 N0 for which

S
'

T (n) = 1 or S'T (n) = 1, and since for each such n, there’s only a finite number of
situations s 2 S such that |s| = n, it follows from Eq. (20.7)196 that there’s only a
finite number of situations s 2 S for which E'(s)(¢T (s)) > 0 or E'(s)(¢T (s)) > 0.

Hence, there’s only a finite number of situations s 2 S for which E'(s)(¢T (s)) =
max{E'(s)(¢T (s)),E'(s)(¢T (s))} > 0. By invoking Lemma 10.468 [with '!'$ and
'0 !'], we conclude that T remains (computably) bounded on !.

According to Theorem 20.10x, for every choice of R in {ML,wML,C,S},
there’s some path $ 2≠ such that the R-random paths for the forecasting
system ' and for the precise forecasting system '$ coincide. Interestingly,
there’s also a single path $ 2 ≠ that does this job for all four notions of
randomness that we consider here. Basically, this is true because the weaker
the notion of randomness, the weaker the conditions on $ that are required
in Theorem 20.10x, in the sense that the minimally required countable set
of selection processes S1 becomes smaller.

Corollary 20.12. Consider any forecasting system ', any interval forecast I µ
(0,1), any countable set of selection processes S1 ∂S'

FML
, and any path $ 2≠

that’s S1-random for I . Then, for any R 2 {ML,wML,C,S}, a path ! 2≠ is
R-random for ' if and only if it’s R-random for '$.

Proof. Since S'
FS

=S'
FC

µS'
FwML

µS'
FML

by Eq. (20.9)x, this follows readily from
Theorem 20.10x.
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21 Theoretical and practical necessity of credal sets in statis-
tics

Let’s now zoom out and move away from the technicalities in the previous
sections, in order to better understand the implications of Theorem 20.1193
and its Corollary 20.3194. In trying to come to a better understanding, we
have found it useful to look at these results from the point of view of statistics,
whose aim it is to learn an uncertainty model from data. Regarding the data,
we’ll consider a finite sequence !1:n and assume that it’s an initial segment
of an idealised (and unobserved) path ! that is (ML-, wML-, C- or S-)random
for some forecasting system; there are clearly a multitude of forecasting
systems for which this is the case. Under this assumption, we’ll examine
what forecasting systems—that make the path ! random—can be learned
from the finite initial segment !1:n . Notice that, whilst doing so, we have
changed our point of view: instead of focusing on the paths that are random
for a forecasting system ' 2©(X), as we have done before, we have a look
at the forecasting systems that make a path ! 2 ≠ random. Even though
it’s commonly assumed that the uncertainty model ' to be estimated or
identified from the data !1:n is precise, we thus question the assumption
that a path’s randomness should always be described by a precise forecasting
system ' 2 ©pr(X). So, in the discussion below, we want to remain open
about that possibility, and see what can be said if we don’t assume a priori
that the sequence ! is necessarily random for a precise forecasting system.

From Proposition 9.456, we know that there’s at least one candidate (sta-
tionary) credal set that makes! random: all paths are random for the vacuous
credal set Cv. Meanwhile, it isn’t guaranteed that there’s a stationary precise
probability mass function m that makes ! random; by Theorem 19.1183, for
every credal set C 2C(X) with dia(C ) > 0, there’s a path ! 2≠ such that !
is random for C , but not for any probability mass function m 2M(X) (for
which dia(m) = 0). Hence, generally speaking, imprecision is needed if we
insist on a stationary uncertainty model to describe a path’s randomness.
If we also allow for non-stationary uncertainty models however, then The-
orem 20.1193 shows that we could replace every forecasting system ' that
makes ! random by a non-stationary precise forecasting system 'pr 2'. In
fact, there’s an even more (theoretically) straightforward way to associate a
non-stationary precise forecasting system with a path!: the temporal precise
forecasting system '! defined by

'!(n)(x) :=
(

1 if !n+1 = x

0 otherwise
for all n 2N0 and x 2X,

which assigns probability 1 to the actual next value, and hence, makes a
perfect prediction.
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Proposition 21.1. Consider any R 2 {ML,wML,C,S}, then any path ! 2≠ is
R-random for the precise forecasting system '!.

Proof. Consider any test supermartingale T 2TR('!). Since T is a supermartingale
for '!, it holds for any n 2N0 that

0 ∏ E'!(!1:n )(¢T (!1:n )) =¢T (!1:n )(!n+1),

and therefore,

T (!1:n ) = T (⇤)+
n°1X

k=0
¢T (!1:k )(!k+1) ∑ T (⇤) = 1.

Consequently, all test supermartingales T 2TR('!) are bounded above by 1 along !.
It therefore holds [see Definitions 8.552 and 8.654] that ! is R-random for '!.

Hence, if ! is random for a forecasting system ', then it’s definitely ran-
dom for at least one (and at least two if 'pr 6='!) precise models. We won’t
risk getting bogged down into a discussion on what uncertainty models are
best associated with a path !; that would require a chapter on its own. But
we do want to point out that the uncertainty models that correspond with !
typically don’t contain the same information; that is, they don’t share the
same set of random paths. Interestingly, however, as we know from Theo-
rem 20.1193, ' and 'pr do have the same set of random paths and are, in that
sense, equally expressive. On that ground, theoretically, one might argue that
the imprecision in ' isn’t needed.

We believe that this story changes when moving to more practical grounds
though. If we’re given an initial finite segment !1:n of a path ! 2≠ and want
to learn a forecasting system ' for which ! is random, we’ll have to do so
by adopting a finite algorithm that, given the data !1:n , outputs (a code
for) a forecasting system '0 whose set of random paths is then believed to
contain !. A candidate for '0 could be the precise forecasting system '!

that’s generated by ! itself. However, it’s unfeasible to output a code for this
forecasting system, or to even approximate it, as it basically requires us to
know the entire path ! itself.

Another candidate for '0 could be the precise forecasting system 'pr
[for which ≠R('pr) =≠R(')]. However, if ' is stationary and has non-zero
diameter, it seems impossible to output a code for'pr or to even approximate
it because it’s then non-computable and non-stationary by Corollary 20.2194.
At the same time, learning a stationary forecasting system '—which is as
expressive as'pr—seems a much less daunting, and practically more feasible,
task, especially if ' is computable.

In summary, it’s one thing to associate precise uncertainty models with a
path ! that isn’t random for any precise stationary probability mass function,
but it’s another thing to actually learn them. When it comes to the latter,
computable stationary imprecise forecasting systems seem more promising
than non-computable non-stationary precise ones.
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Conclusions

In the introduction to this dissertation, we asked a few questions:

When do you consider a binary sequence to be generated by flipping a fair
coin?

Or put differently, (when) would you say that a sequence agrees with
probability 1/2, where 1/2 is the probability for the coin landing heads?

What sequences do (and don’t) you deem random?

What happens when we allow for imprecise probability models in the field
of algorithmic randomness?

In particular, how do we allow for imprecise uncertainty models in several
classical randomness definitions, and how do the corresponding generali-
sations shine new light on our understanding of random sequences?

We also indicated how we would answer these questions:

We’ll allow for imprecise uncertainty models in various frequentist,
test- and martingale-theoretic notions of randomness. We’ll argue
that these definitions are natural since (i) they coincide with the clas-
sical definitions when considering precise (computable) forecasting
systems, and since (ii) they have similar properties as the classical
precise-probabilistic definitions. In particular, we’ll study how all defi-
nitions relate to each other, and these relationships will be reminiscent
of the classical precise-probabilistic relations. Moreover, we’re able to
ask and address some questions for which imprecise probabilities are
pivotal. For instance, should or could the randomness of a sequence
always be defined with respect to a precise uncertainty model? And
how do imprecise probability models change our understanding of
random sequences?

After reading this dissertation, we can give more detail to these answers
(and provide answers to the additional questions).

In summary, we’ve generalised several randomness notions by allowing
for forecasting systems, which associate a possibly different credal set with
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every situation. In particular, under the standard approach to randomness,
we’ve generalised the martingale-theoretic notions of (weak) Martin-Löf,
computable and Schnorr randomness in Chapter 49, and the frequentist no-
tions of (weak) Church stochasticity in Chapter 85. As we’ve explained, (i) all
these randomness notions obviously coincide with their precise-probabilistic
counterparts when restricting our attention to precise (computable) fore-
casting systems, and (ii) they have properties that generalise and extend the
precise-probabilistic ones; to give but a few examples, the set of R-random
paths ≠R(') is almost sure for ' [Propositions 9.255 and 11.10(i)96], the R-
randomness of a path with respect to a computable (non-degenerate) fore-
casting system ' only depends on the forecasts that are specified along the
path [Propositions 9.657, Proposition 9.1865 and 11.23101], the betting strate-
gies used to define computable and Schnorr randomness can be assumed to
be rational-valued and recursive [Propositions 10.1678 and 10.2282], these ran-
domness notions relate to each other in the exact same way as their precise-
probabilistic counterparts do when restricting attention to (almost) com-
putable forecasting systems [Corollary 12.4105], and (weak) Church stochas-
ticity has a martingale-theoretic characterisation [Proposition 12.7107].

This leads us to say that we’ve not just succeeded in allowing for imprecise
probability models in several algorithmic randomness notions, but that we’ve
succeeded in doing so in a very natural way. That our approach is natural is
reconfirmed when adopting a (standard) test-theoretic approach to random-
ness. In Chapter 111, we introduced two test-theoretic notions of random-
ness: Martin-Löf and Schnorr test randomness [Definitions 13.1114, 13.4115
and 13.14119]; we explained that these test-theoretic randomness notions
coincide with their precise-probabilistic counterparts when restricting our
attention to precise (computable) forecasting systems [Propositions 13.7116
and 13.10118], and showed that they coincide with the respective martingale-
theoretic definitions when restricting our attention to non-degenerate com-
putable forecasting systems [Theorems 14.1120 and 15.1136], thereby gener-
alising earlier results by Schnorr [1] and Levin [4]. Moreover, as is also true
for the precise-probabilistic case, for every computable forecasting system '
there is a universal test such that a path is Martin-Löf test random for '
if and only if it passes this single test [Proposition 14.18127]. Last, as yet
another argument in favour of our approach, we showed that our imprecise-
probabilistic notion of Martin-Löf test randomness coincides with Levin’s
imprecise-probabilistic notion of uniform randomness when considering
computable forecasting systems [Theorem 14.34134].

In Chapter 143, we answered the question ‘What sequences do we deem
random?’ yet again. Only, this time we did away with the standard approach
to algorithmic randomness and adopted a so-called prequential approach.
Instead of defining what it means for a path to be random for a (rational)
forecasting system, we defined the randomness of a path only with respect to
the (rational) forecasts that are specified along the path. We did this adopting
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both a martingale- and a test-theoretic approach, and called the respec-
tive randomness notions game-randomness and test-randomness [Defini-
tions 17.6153 and 18.3169]. We succeeded in showing that both prequential
randomness notions coincide, without having to impose any computability
conditions on the forecasts [Theorem 18.6171]. Moreover, when restrict-
ing our attention to non-degenerate recursive rational forecasting systems,
we showed that the prequential randomness notions coincide with Martin-
Löf (test) randomness [Theorem 17.24161 and Corollary 17.25161]. Last, we
showed that our prequential randomness notions satisfy similar properties
as our standard notion of Martin-Löf randomness: there is a universal test
[Corollary 18.13176], the frequency of the outcomes along a random (prequen-
tial) path is bounded by the forecasts along this path [Theorem 17.31166],
etc.

In Chapter 179, we gave an answer to the questions ‘Should or could
the randomness of a sequence always be defined with respect to a precise
uncertainty model? And how do imprecise probability models change our
understanding of random sequences?’, and we drew special attention to the
importance of computability assumptions on the forecasting systems in an-
swering these questions. On the one hand, when restricting our attention
to computable forecasting systems, we showed the existence of paths that
are random for a credal set, but not for any computable precise forecasting
system [Theorem 19.1183 and Corollary 19.23191]. On the other hand, when
letting go of the computability assumption on the precise forecasting systems,
we showed that for every forecasting system there is a compatible precise fore-
casting system that has the exact same set of random paths [Theorem 20.1193].
Both results seem to contradict each other, but the contradiction is easily
resolved by looking at the role that computability plays; the answer to the
above question thus ultimately depends on your view of the computability
matter. In Section 21199, we argued why computable forecasting systems are
to be favoured from the (practical) vantage point of statistics whose aim it is
to learn an uncertainty model from data, and thereby provided an argument
in favour of using imprecise uncertainty models.

Future work

In accordance with tradition, we conclude this dissertation with a discussion
of some possible avenues for future research. We’ll do so by walking one
more time through this dissertation, and gathering a number of research
questions that spring from our exposition.

We introduced imprecise-probabilistic forecasting systems in Chap-
ter 13, and used them in Chapters 49 and 85 to define a number of
martingale-theoretic and frequentist randomness notions. We wonder
whether we can allow in these randomness notions for uncertainty mod-
els that are even more general, such as choice functions [93].
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In Section 954 of Chapter 49 and in Sections 11.395 and 12.2103 of Chap-
ter 85 we looked into a number of properties that these randomness no-
tions have. There is however a precise-probabilistic property that we find
particularly interesting, and for which we haven’t provided an imprecise-
probabilistic analogue. Building upon the work by Vladimir Vovk [94, 95],
we’d like to find out if there’s some path-dependent ‘distance’ between any
two computable (imprecise) forecasting systems ','0 2©(X) such that, if a
path ! 2≠ is random for ', then it will be random for '0 if (and only if) the
distance between both forecasting systems remains bounded on!; for this to
be possible, we may need to impose additional properties on the forecasting
systems alongside computability, such as non-degeneracy.

In Chapter 111, we allowed for imprecise-probabilistic forecasting sys-
tems in a test-theoretic approach to Martin-Löf and Schnorr randomness.
In an overall program articulated by Downey et al. [32, 96], which aims to
‘calibrate’ several results in algorithmic randomness, the authors succeeded
in equipping computable randomness with a test-theoretic characterisa-
tion by devising so-called computably graded tests. We wonder whether we
can generalise these tests to our imprecise-probabilistic setting such that
a path ! 2 ≠ is computably random for a computable (non-degenerate)
forecasting system ' 2©(X) if and only if ! is computably test random for '.

In our work in Chapters 49 and 111, we focused on extending several
martingale- and test-theoretic randomness definitions of randomness to
deal with credal sets. In the precise-probabilistic setting, there are also other
approaches to defining the classical notions of Martin-Löf, computable and
Schnorr randomness, besides the martingale- and test-theoretic ones: via
Kolmogorov complexity [1, 30, 32, 83, 84], order-preserving transformations
of the event tree associated with a sequence of outcomes [1], or specific
limit laws (such as Lévy’s zero-one law) [85, 86], and so on. It remains to be
investigated whether our credal set extensions can also be arrived at via such
alternative routes.

In Chapter 143, we allowed for rational credal sets in a prequential ap-
proach to Martin-Löf (test) randomness; a first obvious thing to do then is
to come up with prequential versions of our other imprecise-probabilistic
randomness notions. In future work, we also intend to come closer to
Vovk and Shen’s work [9], by allowing for arbitrary real credal sets and
adopting a more involved notion of lower semicomputability that allows
for real maps r : D0 !R whose domainD0 can be uncountable, such as the
set (C(X)£X)N. We suspect that, in this continuous setting, the conditions
required for obtaining results analogous to the ones in Section 17.4 will turn
out to be different; for one thing, we expect the computability (recursive-
ness) requirement on the forecasting systems in Proposition 17.29164 to drop,
which would then yield an arguably more natural monotonicity property.

We are also led to wonder whether a precise-probabilistic interpreta-
tion can be given to our prequential imprecise-probabilistic randomness
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notions. In the standard setting, we’ve shown [Theorem 20.1193] that a
path ! 2 ≠ is Martin-Löf random for a forecasting system ' 2 ©(X) if
and only if it’s random for some compatible precise (but typically non-
computable) forecasting system 'p 2 ', in the sense that 'p(s) 2 '(s) for
all s 2S. In a prequential context, then, could an infinite sequence of credal
sets ≥ = (C1, . . . ,Cn , . . . ) 2 Crat(X)N be interpreted as bounds on—then so-
called compatible—precise forecasts, and could it be concluded that a pre-
quential path (≥,!) 2 (Crat(X)£X)N is game-random if and only if at least
one corresponding prequential path with compatible precise forecasts is?

As explained, Theorem 19.1183 in Chapter 179 shows that both our
martingale-theoretic and frequentist notions of randomness are inherently
imprecise, with Theorem 20.1193—which only considers martingale-theoretic
randomness notions—laying bare the importance of the computability as-
sumption on the forecasting systems for this claim. Consequently, we ask
ourselves whether Theorem 20.1193 can also allow for our frequentist notions
of randomness. If the answer turned out to be negative, this would possibly
provide a different and imprecise-probabilistic way to differentiate between
randomness notions, which would complement the precise-probabilistic
comparison [28, 29, 78, 79, 97]; while we believe that the work in this dis-
sertation doesn’t (yet) add anything to this discussion, we believe that our
work in Refs. [47, 48, 49] for the binary setting can, because it seems that ML-
randomness cannot associate with every binary path a smallest probability
interval it’s (almost) ML-random for, whereas the other randomness notions
do.

Finally, as a continuation of our discussion in Section 21199 of Chap-
ter 179, we believe that our research can function as a point of departure
for developing completely new types of imprecise learning methods. That
is, we would like to create and implement novel algorithms that, given a
finite sequence of data out of some infinite sequence, can estimate a (most
informative/smallest) credal set for which this infinite sequence is random.
In this way, we would obtain statistical methods that are reliable in the sense
that they do not insist anymore on associating a single precise probability
mass function with a(n in)finite sequence. This assumption of precision is
for example, as was already mentioned in the Introduction, not defensible in
situations where relative frequencies do not converge.
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Index

betting strategy, 27

C-test, 134
Cantor topology, 24
closed

effectively, 45, 131
compact

effectively, 131
computable, 46

almost, 97
almost for, 97
code, 46
converges effectively, 47
uniformly in, 47

credal set, 17
computable, 47

code, 47
diameter, 182
less informative, 21
more conservative, 21
non-degenerate, 17
rational, 17

recursive, 43
vacuous, 21

distance
Hausdorff, 18

encodable set, 42

forecasting system(s), 25
almost computable, 97
compatible, 26, 151

computable, 47
code, 47

degenerate, 25
fair-coin, 26
less informative, 26, 151
more conservative, 26, 151
non-degenerate, 25
precise, 25

positive, 25
rational, 25

recursive, 43
stationary, 25
temporal, 26
vacuous, 56

gamble(s), 15
allowable, 16, 21
indicator, 15
non-negative, 15
positive, 15
rational, 15

global event, 24
almost sure, 38
clopen, 24
closed, 24
complement, 33
indicator, 33
open, 24

global expectation, 39
global gamble(s), 32

indicator, 33
growth function, 54

207



Index

interval forecast, 17

linear expectation, 15
lower expectation, 19
(conditional) lower expectation,

33
(conditional) lower probabil-

ity, 35
lower semicomputable, 45

uniformly in, 46

martingale, 28
Minkowski sum, 92
ML-test, 114

universal, 127
ML-test-random, 119
multiplier process

(strict) supermartingale mul-
tiplier, 30

simple, 106

norm
total variation, 18

null covers, 32
number sets

integers, 18
naturals, 18
rationals, 14
reals, 14

non-negative, 14
positive, 14

open
effectively, 45, 131

uniformly in, 45
oracle, 42
outcome, 13

indicator, 15

partial cut, 24
partial recursive, 41

uniformly in, 43
path(s), 23

computably selectable, 87
goes through, 23

prequential path(s), 147
degenerate, 148
goes through, 148
non-degenerate, 148

prequential randomness notion
game-, 153
prequentially Martin-Löf,

151
test-, 169

prequential situation(s), 147
degenerate, 148
follow, 148
incomparable, 148
non-degenerate, 148
precede, 148
strictly precede, 148

prequential test, 169
universal, 176

probability, 14
probability mass function, 14

positive, 14
rational, 14

probability measure, 26
process, 27

gamble process, 27
multiplier process, 29
process difference, 28
real process, 27

bounded below, 27
temporal, 27
test process, 27

randomness
blind, 113
stronger, 55
weaker, 55

randomness notion
Church, 102
computable, 52
Martin-Löf, 52
S1-random, 89, 90
Schnorr, 54
uniform, 134
weak Church, 102
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weak Martin-Löf, 52
recursive, 42

for, 97
uniformly in, 43

recursive(ly enumerable), 44
uniformly in, 44

S-test, 115
S-test-random, 119
sample space, 23
second countable

effectively, 45
selection function, 165

computably selects, 165
selection process, 27

accept, 87
partial, 87
select, 87
total, 87

situation(s), 23
cylinder set, 23
follow, 24
incomparable, 24
initial situation, 23
precede, 24
strictly follow, 24
strictly precede, 24

state space, 13
(strict) submartingale(s), 28
superfarthingale(s), 149

test superfarthingale, 149
optimal, 162

(strict) supermartingale(s), 28
test supermartingale(s), 29

computably unbounded,
54

generated by, 30
unbounded, 52
universal, 129

tail bound, 115
tree

event tree, 23
imprecise probability tree, 25

precise probability tree, 25

upper expectation, 19
(conditional) upper expectation,

33
(conditional) upper probabil-

ity, 35

variable, 13
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Index of symbols

This index groups the symbols in three categories—Latin, Greek and other
symbols—, orders them alphabetically, and provides each one of them with
both a short explanation and a pointer to the page where it’s introduced.

Latin alphabet

A event in ≠, 24
subset ofN0 £S, 113

Ac complement of the event A in ≠, 33
An sequence of subsets of S, 113
A>`

n set of situations in An of minimal length `+1, 114
A∑`

n set of situations in An of maximal length `, 114

b finite subset ofQ£ (Lrat(X)\L1(X))£S£Q, 130
b(≠) basic open set in the set of probability measuresM(≠)

associated with b, 130
B(≠) Borel algebra on ≠, 24

c finite sequence of rational credal sets, 147
C computable, 49
C credal set, 17
Crat rational credal set, 17
Cv vacuous credal set, 21
CH Church, 102
CH(•) (closed) convex hull of a finite set of probability mass

functions, 18
C class/set of probability measures, 131
C['] class/set of probability measures associated with ', 134
C(X) set of all credal sets, 17
Crat(X) set of all rational credal sets, 18
(Crat(X)£X)N set of all prequential paths, 147
(Crat(X)£X)Ndeg set of all degenerate prequential paths, 148
(Crat(X)£X)§ set of all prequential situations, 147
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(Crat(X)£X)§deg set of all degenerate prequential situations, 148

d(m,C ) distance between a probability mass function m and a
credal set C , 18

dH(•, •) Hausdorff distance between two credal sets, 18
dia(•) diameter of a credal set, 182
D multiplier process; non-negative gamble process, 29
D} test process associated with D , 29
D (countably in)finite set whose elements can be encoded

by the natural numbers, 42

Em linear expectation associated with m, 15
EC lower expectation associated with C , 19
EC upper expectation associated with C , 19
E'pr (•) (global) expectation associated with 'pr, 39
E'(•) (global) lower expectation associated with ', 33
E'(•|•) (global) conditional lower expectation associated

with ', 33
E'(•) (global) upper expectation associated with ', 33
E'(•|•) (global) conditional upper expectation associated

with ', 33

f gamble on X, 15
k f ktv total variation norm of a gamble f , 18
fs global gamble associated with f and s, 33
F real process, 27
¢F process difference of F , 28
F superfarthingale, 149
F set of all superfarthingales, 149
F set of all real processes, 27
FC set of all computable positive test processes, 50
FML set of all lower semicomputable test processes, 50
FS set of all computable positive test processes, 50
FwML set of all positive test processes generated by lower

semicomputable multiplier processes, 50

Gn computable sequence of effectively open sets in ≠;
Martin-Löf test, 114

I closed probability interval; interval forecast, 17
IA indicator of an event A in ≠, 32
Ix indicator of an outcome x in X, 15
I set of all closed probability intervals, 17
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L(X) set of all gambles on X, 15
L1(X) set of all gambles on X that are bounded below by 0 and

bounded above by 1, 15
Lrat(X) set of all rational gambles on X, 15
L(≠) set of all gambles on ≠, 32

m probability mass function, 14
mrat rational probability mass function, 14
M submartingale, 28

supermartingale, 28
ML Martin-Löf, 49
M(') set of all submartingales for ', 28
M(') set of all supermartingales for ', 28
M(X) set of all probability mass functions, 14
Mrat(X) set of all rational probability mass functions, 14
M(≠) set of all probability measures, 130

N set of natural numbers without zero, 18
N0 set of natural numbers with zero, 18

p probability, 14
P'(•) (global) lower probability associated with ', 35
P'(•|•) (global) conditional lower probability associated

with ', 35
P'(•) (global) upper probability associated with ', 35
P'(•|•) (global) conditional upper probability associated

with ', 35
Pfin(•) set of all finite subsets of, 18

Q set of rational numbers, 14
Q∏0 set of non-negative rational numbers, 14
Q>0 set of positive rational numbers, 14

R set of real numbers, 14
R∏0 set of non-negative real numbers, 14
R>0 set of positive real numbers, 14

s situation in S, 23
ÇsÉ cylinder set of a situation s, 23
S Schnorr, 49
S selection process, 27

map from paths to paths and situations, 87
selection function, 165
map from prequential paths to prequential paths and
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prequential situations, 165
Sµ map associated with S that maps prequential situations

to prequential situations, 165
S set of all situations, 23
S set of all selection processes, 27
SCH set of all recursive selection processes, 87
SCH(!) set of all recursive selection processes that accept !, 87
SwCH set of all recursive total selection processes, 87
SwCH(!) set of all recursive total selection processes that

accept !, 87
S1 countable set of selection processes, 85

T test supermartingale, 29
T(') set of all test supermartingales for ', 29
TC(') set of all computable positive test supermartingales

for ', 51
TCH(C ) set of all test supermartingales for C generated by simple

supermartingale multipliers, 107
TML(') set of all lower semicomputable test supermartingales

for ', 51
TS(') set of all computable positive test supermartingales

for ', 51
TwCH(C ) set of all test supermartingales for C generated by total

simple supermartingale multipliers, 107
TwML(') set of all positive test supermartingales for ' generated

by lower semicomputable positive supermartingale
multipliers for ', 51

u (global) gamble on ≠, 32
U universal Martin-Löf test, 127

optimal lower semicomputable test superfarthingale,
162

(Un)n2N0 universal prequential test, 176

v prequential situation, 147
(Vn)n2N0 prequential test, 169

wCH weak Church, 102
wML weak Martin-Löf, 49

x outcome in X, 13
X variable, 13
X non-empty finite state space, 13
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Z set of integer numbers, 18

Greek alphabet

≥ infinite sequence of rational credal sets, 147

¥ natural growth function, 82

µ probability measure, 26
µ'pr probability measure associated with 'pr, 26

ø real growth function, 54

¿ prequential path, 147

¡ partial recursive natural map, 41
' forecasting system, 25
'1/2 fair-coin forecasting system, 114
'pr precise forecasting system, 25
'rat rational forecasting system, 25
'v vacuous forecasting system, 56
'[s] finite sequence of credal sets forecasted by ' along s,

151
'[!] infinite sequence of credal sets forecasted by ' along !,

151
©(X) set of all forecasting systems, 25
©pr(X) set of all precise forecasting systems, 25
©rat(X) set of all rational forecasting systems, 25

√ C-test for an effectively compact class of probability
measures CµM(≠), 134

! path in ≠, 23
≠ set of all paths, 23
≠C(') set of all C-random paths, 55
≠CH(') set of all CH-random paths, 103
≠ML(') set of all ML-random paths, 55
≠S(') set of all S-random paths, 55
≠S1 (') set of all S1-random paths, 95
≠wCH(') set of all wCH-random paths, 103
≠wML(') set of all wML-random path, 55
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Other symbols

# halts, 42
" doesn’t halt, 42
⇤ initial situation; empty string, 23
“ incomparable with a (set of) situation(s), 24

incomparable with a (set of) prequential situation(s),
148

@ strictly precedes a (set of) situation(s), 24
strictly precedes a (set of) prequential situation(s), 148

v goes through a situation, 23
goes through a prequential situation, 148
goes through a finite sequence of rational credal sets,
148
precedes a (set of) situation(s), 24
precedes a (set of) prequential situation(s), 148

A strictly follows a (set of) situation(s), 24
w follows a (set of) situation(s), 24

follows a prequential situation, 148
µ is a subset of, 26
b is a finite subset of, 130
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