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Abstract. There are many randomness notions. On the classical ac-
count, many of them are about whether a given infinite binary sequence
is random for some given probability. If so, this probability turns out
to be the same for all these notions, so comparing them amounts to
finding out for which of them a given sequence is random. This changes
completely when we consider randomness with respect to probability
intervals, because here, a sequence is always random for at least one in-
terval, so the question is not if, but rather for which intervals, a sequence
is random. We show that for many randomness notions, every sequence
has a smallest interval it is (almost) random for. We study such smallest
intervals and use them to compare a number of randomness notions. We
establish conditions under which such smallest intervals coincide, and
provide examples where they do not.

Keywords: probability intervals ·Martin-Löf randomness · computable
randomness · Schnorr randomness · Church randomness.

1 Introduction

The field of algorithmic randomness studies what it means for an infinite binary
sequence, such as ω = 0100110100 . . . , to be random for an uncertainty model.
Classically, this uncertainty model is often a single (precise) probability p ∈ [0, 1].
Some of the best studied precise randomness notions are Martin-Löf randomness,
computable randomness, Schnorr randomness and Church randomness. They are
increasingly weaker; for example, if a sequence ω is Martin-Löf random for a
probability p, then it is also computably random, Schnorr random and Church
random for p. Meanwhile, these notions do not coincide; it is for example possible
that a path ω is Church random but not computably random for 1/2. From a
traditional perspective, this is how we can typically differentiate between various
randomness notions.

As shown by De Cooman and De Bock [2,3,4], these traditional randomness
notions can be generalised by allowing for imprecise-probabilistic uncertainty
models, such as closed probability intervals I ⊆ [0, 1]. These more general ran-
domness notions, and their corresponding properties, allow for more detail to
arise in their comparison. Indeed, every infinite binary sequence ω is for exam-
ple random for at least one closed probability interval. And for the imprecise
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generalisations of many of the aforementioned precise randomness notions, we
will see that for every (or sometimes many) ω, there is some smallest probabil-
ity interval, be it precise or imprecise, that ω is (almost) random for—we will
explain the modifier ‘almost’ further on. It is these smallest probability intervals
we will use to compare a number of different randomness notions.

We will focus on the following three questions: (i) when is there a well-defined
smallest probability interval for which an infinite binary sequence ω is (almost)
random; (ii) are there alternative expressions for these smallest intervals; and
(iii) for a given sequence ω, how do these smallest intervals compare for different
randomness notions? Thus, by looking from an imprecise perspective, we are
able to do more than merely confirm the known differences between several
randomness notions. Defining randomness for closed probability intervals also
lets us explore to what extent existing randomness notions are different, in the
sense that we can compare the smallest probability intervals for which an infinite
binary sequence is random. Surprisingly, we will see that there is a large and
interesting set of infinite sequences ω for which the smallest interval that ω is
(almost) random for is the same for several randomness notions.

Our contribution is structured as follows. In Section 2, we introduce (im)pre-
cise uncertainty models for infinite binary sequences, and introduce a definition
that allows us to formally define what it means for a sequence to have a smallest
interval it is (almost) random for. In Section 3, we provide the mathematical
background on supermartingales that we need in order to introduce a number—
six in all—of different randomness notions in Section 4: (weak) Martin-Löf ran-
domness, computable randomness, Schnorr randomness, and (weak) Church ran-
domness. In the subsequent sections, we tackle our three main questions. We
study the existence of the smallest intervals an infinite binary sequence ω is
(almost) random for in Section 5. In Sections 6 and 7, we provide alternative
expressions for such smallest intervals and compare them; we show that these
smallest intervals coincide under certain conditions, and provide examples where
they do not.

2 Forecasting systems and randomness

Consider an infinite sequence of binary variables X1, . . . , Xn, . . . , where every
variable Xn takes values in the binary sample space X := {0, 1}, generically
denoted by xn. We are interested in the corresponding infinite outcome sequences
(x1, . . . , xn, . . . ), and, in particular, in their possible randomness. We denote such
a sequence generically by ω and call it a path. All such paths are collected in the
setΩ := XN.1 For any path ω = (x1, . . . , xn, . . . ) ∈ Ω, we let ω1:n := (x1, . . . , xn)
and ωn := xn for all n ∈ N. For n = 0, the empty sequence ω1:0 := ω0 := () is
called the initial situation and is denoted by �. For any n ∈ N0, a finite outcome
sequence (x1, . . . , xn) ∈ Xn is called a situation, also generically denoted by s,

1 N denotes the natural numbers and N0 := N∪{0} denotes the non-negative integers.2
2 A real x ∈ R is called negative, positive, non-negative and non-positive, respectively,

if x < 0, x > 0, x ≥ 0 and x ≤ 0.
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and its length is then denoted by |s| := n. All situations are collected in the
set S :=

⋃
n∈N0

Xn. For any s = (x1, . . . , xn) ∈ S and x ∈ X , we use sx to denote
the concatenation (x1, . . . , xn, x).

The randomness of a path ω ∈ Ω is always defined with respect to an un-
certainty model. Classically, this uncertainty model is a real number p ∈ [0, 1],
interpreted as the probability that Xn equals 1, for any n ∈ N. As explained in
the Introduction, we can generalise this by considering a closed probability inter-
val I ⊆ [0, 1] instead. These uncertainty models will be called interval forecasts,
and we collect all such closed intervals in the set I. Another generalisation of the
classical case consists in allowing for non-stationary probabilities that depend
on s or |s|. Each of these generalisations can themselves be seen as a special
case of an even more general approach, which consists in providing every situ-
ation s ∈ S with a (possibly different) interval forecast in I, denoted by ϕ(s).
This interval forecast ϕ(s) ∈ I then describes the uncertainty about the a priori
unknown outcome of X|s|+1, given that the situation s has been observed. We
call such general uncertainty models forecasting systems.

Definition 1. A forecasting system is a map ϕ : S → I that associates with
every situation s ∈ S an interval forecast ϕ(s) ∈ I. We denote the set of all
forecasting systems by Φ.

With any forecasting system ϕ ∈ Φ, we associate two real processes ϕ and ϕ,
defined by ϕ(s) := minϕ(s) and ϕ(s) := maxϕ(s) for all s ∈ S. A forecasting
system ϕ ∈ Φ is called precise if ϕ = ϕ. A forecasting system ϕ ∈ Φ is called
stationary if there is an interval forecast I ∈ I such that ϕ(s) = I for all s ∈ S;
for ease of notation, we will then denote this forecasting system simply by I.
The case of a single probability p corresponds to a stationary forecasting system
with I = {p}. A forecasting system ϕ ∈ Φ is called temporal if its interval
forecasts ϕ(s) only depend on the situations s ∈ S through their length |s|,
meaning that ϕ(s) = ϕ(t) for any two situations s, t ∈ S that have the same
length |s| = |t|.

In some of our results, we will consider forecasting systems that are com-
putable. To follow the argumentation and understand our results, the following
intuitive description will suffice: a forecasting system ϕ ∈ Φ is computable if
there is some finite algorithm that, for every s ∈ S and any n ∈ N0, can compute
the real numbers ϕ(s) and ϕ(s) with a precision of 2−n. For a formal definition
of computability, which we use in our proofs, we refer the reader to Appendix A.

So what does it mean for a path ω ∈ Ω to be random for a forecasting
system ϕ ∈ Φ? Since there are many different definitions of randomness, and
since we intend to compare them, we now introduce a descriptive and a number
of potential properties of such randomness notions that will, as it turns out,
allow us to do so.

Definition 2. A notion of randomness R associates with every forecasting sys-
tem ϕ ∈ Φ a set of paths ΩR(ϕ). A path ω ∈ Ω is called R-random for ϕ if
ω ∈ ΩR(ϕ).
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All of the randomness notions that we will be considering further on, satisfy
additional properties. The first one is a monotonicity property, which we can
describe generically as follows. If a path ω ∈ Ω is R-random for a forecasting
system ϕ ∈ Φ, it is also R-random for any forecasting system ϕ′ ∈ Φ that
is less precise, meaning that ϕ(s) ⊆ ϕ′(s) for all s ∈ S. Consequently, this
monotonicity property requires that the more precise a forecasting system is,
the fewer R-random paths it ought to have.

Property 1. For any two forecasting systems ϕ,ϕ′ ∈ Φ such that ϕ ⊆ ϕ′, it holds
that ΩR(ϕ) ⊆ ΩR(ϕ′).

Furthermore, it will also prove useful to consider the property that every path ω ∈
Ω is R-random for the (maximally imprecise) vacuous forecasting system ϕv ∈ Φ,
defined by ϕv(s) := [0, 1] for all s ∈ S.

Property 2. ΩR([0, 1]) = Ω.

Thus, if Properties 1 and 2 hold, every path ω ∈ Ω will in particular be R-random
for at least one interval forecast—the forecast I = [0, 1]—and if a path ω ∈ Ω is
R-random for an interval forecast I ∈ I, then it will also be R-random for any
interval forecast I ′ ∈ I for which I ⊆ I ′. It is therefore natural to wonder whether
every path ω ∈ Ω has some smallest interval forecast I such that ω ∈ ΩR(I).
In order to allow us to formulate an answer to this question, we consider the
sets IR(ω) that for a given path ω ∈ Ω contain all interval forecasts I ∈ I that ω
is R-random for. If there is such a smallest interval forecast, then it is necessarily
given by

IR(ω) :=
⋂
IR(ω) =

⋂
I∈IR(ω)

I.

As we will see, for some randomness notions R, IR(ω) will indeed be the small-
est interval forecast that ω is random for. Consequently, for these notions, and
for every ω ∈ Ω, the set IR(ω) is completely characterised by the interval fore-
cast IR(ω), in the sense that ω will be R-random for an interval forecast I ∈ I
if and only if IR(ω) ⊆ I.

In general, however, this need not be the case. For example, consider the
situation depicted in Figure 1. It could very well be that for some randomness
notion R that satisfies Properties 1 and 2, there is a path ω∗ ∈ Ω that is
R-random for all interval forecasts of the form [p, 1] and [0, q], with p < 1/3
and 2/3 ≤ q, but for no others. Then clearly, IR(ω∗) = [1/3, 2/3], but ω∗ is not
R-random for IR(ω∗).

In addition, it need not even be guaranteed that the intersection IR(ω) is non-
empty. As a sufficient condition to guarantee that it will be, and as an imprecise
counterpart of the law of large numbers, we may require as an additional property
that if a path ω ∈ Ω is R-random for an interval forecast I ∈ I, then this I should
imply the following bounds on the relative frequency of ones along ω.

Property 3. For all interval forecasts I ∈ I and all paths ω ∈ ΩR(I), it holds
that min I ≤ lim infn→∞

1
n

∑n
k=1 ωk ≤ lim supn→∞

1
n

∑n
k=1 ωk ≤ max I.
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Fig. 1. The green intervals correspond to interval forecasts for which ω∗ is R-random,
whereas the red intervals correspond to interval forecasts that ω∗ is not R-random for.

Properties 1–3 hold for all randomness notions R that we will consider, whence
also, IR(ω) 6= ∅. We repeat that for some of these notions, IR(ω) will be the
smallest interval forecast that ω ∈ Ω is R-random for. If not, we will sometimes
still be able to show that IR(ω) is the smallest interval forecast that ω is almost
R-random for.

Definition 3. A path ω ∈ Ω is called almost R-random for an interval fore-
cast I ∈ I if it is R-random for any interval forecast I ′ ∈ I of the form

I ′ = [min I − ε1,max I + ε2] ∩ [0, 1], with ε1, ε2 > 0.

If a path ω ∈ Ω is almost R-random for the interval forecast IR(ω), then IR(ω)
almost completely characterises the set IR(ω): the only case where we cannot
immediately decide whether a path ω is R-random for an interval forecast I ∈ I
or not, occurs when min I = min IR(ω) or max I = max IR(ω). Moreover, if
Property 1 holds, then as our terminology suggests, ω ∈ Ω is almost R-random
for every interval forecast I ∈ I it is random for.

In the remainder of this contribution, we intend to study the smallest interval
forecasts a path is (almost) random for, for several notions of randomness. In
the next section, we start by introducing the mathematical machinery needed
to introduce some of these notions, and in particular, the martingale-theoretic
approach to randomness, which makes extensive use of the concept of betting.
Generally speaking, a path ω ∈ Ω is then considered to be random for a fore-
casting system ϕ ∈ Φ if a subject can adopt no implementable betting strategy
that is allowed by ϕ and makes him arbitrarily rich along ω. This approach will
enable us to introduce the notions of Martin-Löf randomness, weak Martin-Löf
randomness, computable randomness and Schnorr randomness, which differ only
in what is meant by ‘implementable’ and in the way a subject should not be able
to get arbitrarily rich [5].

3 A martingale-theoretic approach—betting strategies

Consider the following betting game involving an infinite sequence of binary
variablesX1, . . . , Xn, . . . There are three players: Forecaster, Sceptic and Reality.

Forecaster starts by specifying a forecasting system ϕ ∈ Φ. For every situ-
ation s ∈ S, the corresponding interval forecast ϕ(s) expresses for every gam-
ble f : X → R whether or not Forecaster allows Sceptic to select f ; the set of
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all gambles is denoted by L(X ). A gamble g ∈ L(X ) is offered by Forecaster to
Sceptic if its expectation Ep(g) := pg(1) + (1 − p)g(0) is non-positive for every
probability p ∈ I, or equivalently, if maxp∈I Ep(g) ≤ 0.

After Forecaster has specified a forecasting system ϕ ∈ Φ, Sceptic selects
a betting strategy that specifies for every situation s ∈ S an allowable gam-
ble fs ∈ L(X ) for the corresponding interval forecast ϕ(s) ∈ I, meaning that
maxp∈ϕ(s)Ep(g) ≤ 0.

The betting game now unfolds as Reality reveals the successive elements
ωn ∈ X of a path ω ∈ Ω. In particular, at every time instant n ∈ N0, the
following actions have been and are completed: Reality has already revealed the
situation ω1:n, Sceptic engages in a gamble fω1:n

∈ L(X ) that is specified by
his betting strategy, Reality reveals the next outcome ωn+1 ∈ X , and Sceptic
receives a (possibly negative) reward fω1:n

(ωn+1). We furthermore assume that
Sceptic starts with initial unit capital, so his running capital at every time instant
n ∈ N0 equals 1+

∑n−1
k=0 fω1:k

(ωk+1). We also don’t allow Sceptic to borrow. This
means that he is only allowed to adopt betting strategies that, regardless of the
path that Reality reveals, will guarantee that his running capital never becomes
negative.

In order to formalise Sceptic’s betting strategies, we will introduce the notion
of test supermartingales. We start by considering a real process F : S→ R; it is
called positive if F (s) > 0 for all s ∈ S and non-negative if F (s) ≥ 0 for all s ∈ S.
A real process S is called temporal if F (s) only depends on the situation s ∈ S
through its length |s|, meaning that F (s) = F (t) for any two s, t ∈ S such that
|s| = |t|. A real process S is called a selection process if S(s) ∈ {0, 1} for all s ∈ S.

With any real process F , we can associate a gamble process ∆F : S→ L(X ),
defined by ∆F (s)(x) := F (s x) − F (s) for all s ∈ S and x ∈ X , and we call it
the process difference for F . If F is positive, then we can also consider another
gamble process DF : S → L(X ), defined by DF (s)(x) := F (s x)/F (s) for all s ∈ S
and x ∈ X , which we call the multiplier process for F . And vice versa, with
every non-negative real gamble process D : S → L(X ), we can associate a non-

negative real process D} : S → R defined by D}(s) :=
∏n−1
k=0 D(x1:k)(xk+1) for

all s = (x1, . . . , xn) ∈ S, and we then say that D} is generated by D.

When given a forecasting system ϕ ∈ Φ, we call a non-negative real process M
a supermartingale for ϕ if for every s ∈ S, ∆M(s) is an allowable gamble for the
corresponding interval forecast ϕ(s), meaning that maxp∈ϕ(s)Ep(∆M(s)) ≤ 0.
Moreover, a supermartingale T is called a test supermartingale if T (�) := 1.
We collect all test supermartingales for ϕ in the set T(ϕ). It is easy to see
that every test supermartingale T corresponds to an allowed betting strategy
for Sceptic that starts with unit capital and avoids borrowing. Indeed, for every
situation s = (x1, . . . , xn) ∈ S, T specifies an allowable gamble ∆T (s) for the in-

terval forecast ϕ(s) ∈ I, and Sceptic’s running capital 1+
∑n−1
k=0 ∆T (x1:k)(xk+1)

equals T (s) and is therefore non-negative, and equals 1 in �.

We recall from Section 2 that martingale-theoretic randomness notions dif-
fer in the nature of the implementable betting strategies that are available to
Sceptic. More formally, we will consider three different types of implementable
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test supermartingales: computable ones, lower semicomputable ones, and test su-
permartingales generated by lower semicomputable multiplier processes. A test
supermartingale T ∈ T(ϕ) is called computable if there is some finite algorithm
that, for every s ∈ S and any n ∈ N0, can compute the real number T (s) with
a precision of 2−n. A test supermartingale T ∈ T(ϕ) is called lower semicom-
putable if there is some finite algorithm that, for every s ∈ S, can compute
an increasing sequence (qn)n∈N0

of rational numbers that approaches the real
number T (s) from below—but without knowing, for any given n, how good the
lower bound qn is. Similarly, a real multiplier process D is called lower semicom-
putable if there is some finite algorithm that, for every s ∈ S and x ∈ X , can
compute an increasing sequence (qn)n∈N0

of rational numbers that approaches
the real number D(s)(x) from below. For more details, we refer the reader to
Appendix A.

4 Several notions of (imprecise) randomness

At this point, we have introduced the necessary mathematical machinery to de-
fine our different randomness notions. We start by introducing four martingale-
theoretic ones: Martin-Löf (ML) randomness, weak Martin-Löf (wML) random-
ness, computable (C) randomness and Schnorr (S) randomness. Generally speak-
ing, for these notions, a path ω ∈ Ω is random for a forecasting system ϕ ∈ Φ
if Sceptic has no implementable allowed betting strategy that makes him ar-
bitrarily rich along ω. We stress again that these randomness notions differ in
how Sceptic’s betting strategies are implementable, and in how he should not
be able to become arbitrarily rich along a path ω ∈ Ω. With these types of
restrictions in mind, we introduce the following sets of implementable allowed
betting strategies.

TML(ϕ) all lower semicomputable test supermartingales for ϕ
TwML(ϕ) all test supermartingales for ϕ generated by lower

semicomputable multiplier processes
TC(ϕ),TS(ϕ) all computable test supermartingales for ϕ

For a path ω to be Martin-Löf, weak Martin-Löf or computably random, we
require that Sceptic’s running capital should never be unbounded on ω for any
implementable allowed betting strategy; that is, no test supermartingale T ∈
TR(ϕ) should be unbounded on ω, meaning that lim supn→∞ T (ω1:n) =∞.

Definition 4 ([4]). For any R ∈ {ML,wML,C}, a path ω ∈ Ω is R-random for
a forecasting system ϕ ∈ Φ if no test supermartingale T ∈ TR(ϕ) is unbounded
on ω.

For Schnorr randomness, we require instead that Sceptic’s running capital
should not be computably unbounded on ω for any implementable allowed betting
strategy. More formally, we require that no test supermartingale T ∈ TS(ϕ)
should be computably unbounded on ω. That T is computably unbounded on ω
means that lim supn→∞[T (ω1:n) − τ(n)] ≥ 0 for some real map τ : N0 → R≥0
that is
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(i) computable;
(ii) non-decreasing, so τ(n+ 1) ≥ τ(n) for all n ∈ N0;
(iii) unbounded, so limn→∞ τ(n) =∞.3

Since such a real growth function τ is unbounded, it expresses a (computable)
lower bound for the ‘rate’ at which T increases to infinity along ω. Clearly, if
T ∈ TS(ϕ) is computably unbounded on ω ∈ Ω, then it is also unbounded on ω.

Definition 5. A path ω ∈ Ω is S-random for a forecasting system ϕ ∈ Φ if no
test supermartingale T ∈ TS(ϕ) is computably unbounded on ω.

De Cooman and De Bock have proved that these four martingale-theoretic
randomness notions satisfy Properties 1 and 2 [4, Propositions 9,10,17,18]. To
describe the relations between these martingale-theoretic imprecise-probabilistic
randomness notions, we consider the sets ΩR(ϕ), with R ∈ {ML,wML,C,S};
they satisfy the following inclusions [4, Section 6].

ΩML(ϕ) ⊆ ΩwML(ϕ) ⊆ ΩC(ϕ) ⊆ ΩS(ϕ).

Thus, if a path ω ∈ Ω is Martin-Löf random for a forecasting system ϕ ∈
Φ, then it is also weakly Martin-Löf, computably and Schnorr random for ϕ.
Consequently, for every forecasting system ϕ ∈ Φ, there are at most as many
paths that are Martin-Löf random as there are weakly Martin-Löf, computably
or Schnorr random paths. We therefore call Martin-Löf randomness stronger
than weak Martin-Löf, computable, or Schnorr randomness. And so, mutatis
mutandis, for the other randomness notions.

We also consider two other imprecise-probabilistic randomness notions, which
have a more frequentist flavour: Church randomness (CH) and weak Church
randomness (wCH). Their definition makes use of yet another (but simpler) type
of implementable real processes; a selection process S is called recursive if there
is a finite algorithm that, for every s ∈ S, outputs the binary digit S(s) ∈ {0, 1}.

Definition 6. A path ω ∈ Ω is CH-random (wCH-random) for a forecasting
system ϕ ∈ Φ if for every recursive (temporal) selection process S for which

limn→∞
∑n−1
k=0 S(ω1:k) =∞, it holds that

lim inf
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=0 S(ω1:k)
≥ 0

and

lim sup
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=0 S(ω1:k)
≤ 0.

For a stationary forecasting system I ∈ I, the conditions in these definitions
simplify to the perhaps more intuitive requirement that

min I ≤ lim inf
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
≤ lim sup

n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
≤ max I.

3 Since τ is non-decreasing, it being unbounded is equivalent to limn→∞ τ(n) =∞.
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It is easy to see that these two randomness notions also satisfy Properties 1
and 2. Since the notion of weak Church randomness considers fewer selection
processes than Church randomness does, it is clear that if a path ω ∈ Ω is
Church random for a forecasting system ϕ ∈ Φ, then it is also weakly Church
random for ϕ. Hence, ΩCH(ϕ) ⊆ ΩwCH(ϕ). For computable forecasting systems,
we can also relate these two ‘frequentist flavoured’ notions with the martingale-
theoretic notions considered before [4, Sections 6 and 7]: for every computable
forecasting system ϕ ∈ Φ,

ΩML(ϕ) ⊆ ΩwML(ϕ) ⊆ ΩC(ϕ)
⊆ ΩCH(ϕ) ⊆
⊆ ΩS(ϕ) ⊆

ΩwCH(ϕ). (1)

5 Smallest interval forecasts and randomness

From now on, we will focus on stationary forecasting systems and investigate
the differences and similarities between the six randomness notions we consider.
We start by studying if there is a smallest interval forecast for which a path
is (almost) random. To this end, we first compare the sets IR(ω), with R ∈
{ML,wML,C,S,CH,wCH}. They satisfy similar relations as the sets ΩR(ϕ)—
but without a need for computability assumptions.

Proposition 1 ([4, Section 8]). For every path ω ∈ Ω, it holds that

IML(ω) ⊆ IwML(ω) ⊆ IC(ω)
⊆ ICH(ω) ⊆
⊆ IS(ω) ⊆

IwCH(ω).

Similarly to before, if a path ω ∈ Ω is Martin-Löf random for an interval fore-
cast I ∈ I, then it is also weakly Martin-Löf, computably, Schnorr and (weakly)
Church random for I. Observe that for our weakest notion of randomness, Defi-
nition 6—with S = 1—guarantees that all interval forecasts I ∈ IwCH(ω) satisfy
Property 3, and therefore, by Proposition 1, all six randomness notions that we
are considering here satisfy Property 3. Since the sets IR(ω) are also non-empty
by Property 2, the interval forecasts IR(ω) are well-defined and non-empty for
all R ∈ {ML,wML,C,S,CH,wCH}. Moreover, since the sets IR(ω) satisfy the
relations in Proposition 1, their intersections IR(ω) satisfy the following inverse
relations.

Corollary 1. For every path ω ∈ Ω, it holds that

IwCH(ω)
⊆ ICH(ω) ⊆
⊆ IS(ω) ⊆

IC(ω) ⊆ IwML(ω) ⊆ IML(ω).

For Church and weak Church randomness, it holds that every path ω ∈ Ω is
in fact Church and weakly Church random, respectively, for the interval fore-
casts ICH(ω) and IwCH(ω).
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Proposition 2. Consider any R ∈ {CH,wCH} and any path ω ∈ Ω. Then
IR(ω) is the smallest interval forecast that ω is R-random for.

A similar result need not hold for the other four types of randomness we
are considering here. As an illustrative example, consider the non-stationary but
temporal precise forecasting system ϕ∼1/2 defined, for all s ∈ S, by

ϕ∼1/2(s) :=
1

2
+ (−1)|s|δ(|s|), with δ(n) := e−

1
n+1

√
e

1
n+1 − 1 for all n ∈ N0.

It has been proved that if a path ω ∈ Ω is computably random for ϕ∼1/2, then
ω is Church random and almost computably random for the stationary precise
model 1/2, whilst not being computably random for 1/2 [2].

While in general IR(ω) may not be the smallest interval forecast that a
path ω ∈ Ω is R-random for, De Cooman and De Bock have effectively proved
that for R ∈ {wML,C,S}, every path ω ∈ Ω is almost R-random for IR(ω),
essentially because the corresponding sets IR(ω) are then closed under finite
intersections.

Proposition 3 ([4, Section 8]). Consider any R ∈ {wML,C,S} and any
path ω ∈ Ω. Then IR(ω) is the smallest interval forecast for which ω is almost
R-random.

It should be noted that there is no mention of Martin-Löf randomness in
Propositions 2 and 3. Indeed, it is an open problem whether every path ω ∈ Ω is
(almost) ML-random for the interval forecast IML(ω). We can however provide a
partial answer by focusing on paths ω ∈ Ω that are ML-random for a computable
precise forecasting system ϕ ∈ Φ.

Proposition 4. If a path ω ∈ Ω is ML-random for a computable precise fore-
casting system ϕ ∈ Φ, then IML(ω) is the smallest interval forecast for which ω
is almost ML-random.

6 What do smallest interval forecasts look like?

Having established conditions under which IR(ω) is the smallest interval forecast
ω is (almost) random for, we now set out to find an alternative expression for
this interval forecast. Forecasting systems will play a vital role in this part of
the story; for every path ω ∈ Ω and every forecasting system ϕ ∈ Φ, we consider
the interval forecast Iϕ(ω) defined by

Iϕ(ω) :=
[

lim inf
n→∞

ϕ(ω1:n), lim sup
n→∞

ϕ(ω1:n)
]
.

When we restrict our attention to computable forecasting systems ϕ ∈ Φ, and
if we assume that a path ω ∈ Ω is R-random for such a forecasting system ϕ,
with R ∈ {ML,wML,C,S,CH,wCH}, then the forecasting system ϕ imposes
outer bounds on the interval forecast IR(ω) in the following sense.
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Proposition 5. For any R ∈ {ML,wML,C,S,CH,wCH} and any path ω ∈ Ω
that is R-random for a computable forecasting system ϕ ∈ Φ: IR(ω) ⊆ Iϕ(ω).

If we only consider computable precise forecasting systems ϕ ∈ Φ and assume
that a path ω ∈ Ω is R-random for ϕ, with R ∈ {ML,wML,C,CH}, then the
forecasting system ϕ completely characterises the interval forecast IR(ω).

Theorem 1. For any R ∈ {ML,wML,C,CH} and any path ω ∈ Ω that is R-
random for a computable precise forecasting system ϕ ∈ Φ: IR(ω) = Iϕ(ω).

When the computable precise forecasting systems ϕ ∈ Φ are also temporal,
this result applies to Schnorr and weak Church randomness as well.

Theorem 2. For any R ∈ {ML,wML,C,S,CH,wCH} and any path ω ∈ Ω
that is R-random for a computable precise temporal forecasting system ϕ ∈ Φ:
IR(ω) = Iϕ(ω).

7 When do these smallest interval forecasts coincide?

Finally, we put an old question into a new perspective: to what extent are ran-
domness notions different? We take an ‘imprecise’ perspective here, by comparing
the smallest interval forecasts for which a path ω ∈ Ω is (almost) R-random,
with R ∈ {ML,wML,C,S,CH,wCH}. As we will see, it follows from our previ-
ous exposition that there are quite some paths for which these smallest interval
forecasts coincide.

Let us start by considering a path ω ∈ Ω that is ML-random for some
computable precise forecasting system ϕ ∈ Φ; similar results hold when fo-
cusing on weaker notions of randomness. We know from Equation (1) that
ω is then also wML-, C- and CH-random for ϕ. By invoking Propositions 2,
3 and 4, we infer that IR(ω) is the smallest interval forecast that ω is (al-
most) R-random for, for any R ∈ {ML,wML,C,CH}. Moreover, by Theorem 1,
these smallest interval forecasts all equal Iϕ(ω) and therefore coincide, i.e.,
IML(ω) = IwML(ω) = IC(ω) = ICH(ω) = Iϕ(ω).

By only looking at temporal computable precise forecasting systems ϕ ∈ Φ,
we can even strengthen these conclusions. For example, using a similar argument
as before—but using Theorem 2 instead of 1—we see that if ω is ML-random
for such a forecasting system ϕ, then the smallest interval forecasts IR(ω) for
which ω is (almost) R-random coincide for all six randomness notions that we
consider.

Looking at these results, the question arises whether there are paths ω ∈ Ω
for which the various interval forecasts IR(ω) do not coincide. It turns out
that such paths do exist. We start by showing that the smallest interval fore-
casts IC(ω) and IS(ω) for which a path ω ∈ Ω is respectively almost C- and
almost S-random do not always coincide; this result is mainly a reinterpretation
of a result in [4,11].

Proposition 6. There is a path ω ∈ Ω such that IS(ω) = 1/2 ∈ [1/2, 1] ⊆ IC(ω).
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We are also able to show that there is a path ω ∈ Ω such that IC(ω) = 1/2 is
the smallest interval forecast it is almost C-random for, whereas ω is not almost
ML-random for 1/2; for this result, we have drawn inspiration from [8].

Proposition 7. For every δ ∈ (0, 1/2), there is a path ω ∈ Ω such that IC(ω) =
1/2 and I /∈ IML(ω) for any I ∈ I such that I ⊆ [1/2− δ, 1/2 + δ].

Clearly, the path ω ∈ Ω in Proposition 7 cannot be Martin-Löf random for a
precise computable forecasting system ϕ ∈ Φ, because otherwise, the interval
forecasts IC(ω) and IML(ω) would coincide by Equation (1) and Theorem 1,
and ω would therefore be almost Martin-Löf random for 1/2 by Proposition 4,
contradicting the result. So the path ω in this result is an example of a path
for which we do not know whether there is a smallest interval forecast that ω is
almost Martin-Löf random for. However, if there is such a smallest interval fore-
cast, then Proposition 7 shows it is definitely not equal to 1/2; due to Corollary 1,
it must then strictly include 1/2.

8 Conclusions and future work

We’ve come to the conclusion that various (non-stationary) precise-probabilistic
randomness notions in the literature are, in some respects, not that different; if
a path is random for a computable precise (temporal) forecasting system, then
the smallest interval forecast for which it is (almost) random coincides for sev-
eral randomness notions. The computability condition on the precise forecasting
system is important for this result, but we don’t think it is that big a restriction.
After all, computable forecasting systems are those that can be computed by a
finite algorithm up to any desired precision, and therefore, they are arguably the
only ones that are of practical relevance.

An important concept that made several of our results possible was that
of almost randomness, a notion that is closely related to randomness but is—
slightly—easier to satisfy. In our future work, we would like to take a closer look
at the difference between these two notions. In particular, the present discussion,
together with our work in [7], makes us wonder to what extent the distinction
between them is relevant in a more practical context.

We also plan to continue investigating the open question whether there is for
every path some smallest interval forecast for which it is (almost) Martin-Löf
random. Finally, there is still quite some work to do in finding out whether the
randomness notions we consider here are all different from a stationary imprecise-
probabilistic perspective, in the sense that there are paths for which the smallest
interval forecasts for which they are (almost) random do not coincide.
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Appendix A

The field of computability theory studies what it means for a mathematical
object to be implementable. As its basic building blocks, it has natural maps
φ : D → N0, which are maps from D, which denotes a (countably infinite) set
that can be encoded by a finite alphabet, to the non-negative integers. Examples
of such sets D are given by N0, S, S × X , S × N0 and S × X × N0. A natural
map φ is called recursive if it can be computed by a Turing machine. By the
Church–Turing thesis, this is equivalent to the existence of a finite algorithm
that given the input d ∈ D, outputs the non-negative integer φ(d) ∈ N0.

The notion of recursive natural maps φ can be extended to maps that have
a range of rational numbers Q. We call a rational map q : D → Q recursive if
there are three recursive natural maps a, b, c : D → N0 such that

b(d) 6= 0 and q(d) = (−1)c(d)
a(d)

b(d)
for all d ∈ D.

Since a finite number of algorithms can always be combined into one finite algo-
rithm, a rational map q is recursive if and only if there is a finite algorithm that
given the input d ∈ D, outputs the rational number q(d) ∈ Q.

https://users.ugent.be/~jdbock/documents/GdC-2021-ISIPTA-paper.pdf
https://users.ugent.be/~jdbock/documents/GdC-2021-ISIPTA-paper.pdf
https://users.ugent.be/~jdbock/documents/GdC-2021-IJAR-paper.pdf
https://users.ugent.be/~jdbock/documents/GdC-2021-IJAR-paper.pdf
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We can use recursive rational maps to provide several notions of what it
means for a real map r : D → R to be implementable. We call a real map r : D →
R lower semicomputable if there is some recursive rational map q : D ×N0 → Q
such that

q(d, n+ 1) ≥ q(d, n) and r(d) = lim
m→∞

q(d,m) for all d ∈ D and n ∈ N0.

This means that there is some finite algorithm that, for every d ∈ D, allows us to
approach the real number r(d) from below—but without knowing, for any given
n ∈ N0, how good the lower bound q(d, n) is. Correspondingly, we call a real
map r upper semicomputable if the real map −r is lower semicomputable. A real
multiplier process D : S→ L(X ) is then called lower (upper) semicomputable if
the real processes r1 and r0, defined by r1(s) := D(s)(1) and r0(s) := D(s)(0) for
all s ∈ S, are both lower (upper) semicomputable. Since finitely many algorithms
can be combined into one, this is equivalent to the existence of a recursive rational
map q : S × X × N0 → Q such that q(s, x, n + 1) ≥ q(s, x, n) and D(s)(x) =
limm→∞ q(s, x,m) for all s ∈ S, x ∈ X and n ∈ N0.

Moreover, a real map r is called computable if it is both lower and upper
semicomputable. Equivalently [2], a real map r : D → R is computable if and
only if there is some recursive rational map q : D × N0 → Q such that

|r(d)− q(d, n)| < 2−n for all d ∈ D and n ∈ N0.

This means that there is some finite algorithm that, for every d ∈ D and n ∈ N0,
allows us to approximate the real number r(d) with a precision of 2−n. A real
number x ∈ R is then called computable if there is some recursive rational
map q : N0 → Q such that |x−q(n)| < 2−n for all n ∈ N0. An interval forecast I ∈
I is called computable if the reals min I and max I are computable. Similarly, a
forecasting system ϕ ∈ Φ is called computable if the real processes ϕ and ϕ are
both computable.

We will also consider infinite sequences (ri : D → R)i∈N0 of lower semicom-
putable real maps. Such a sequence is called a recursive enumeration of lower
semicomputable real maps if there is a recursive rational map q : N0×D×N0 → Q
such that for every i ∈ N0:

q(i, d, n+ 1) ≥ q(i, d, n) and ri(d) = lim
m→∞

q(i, d,m) for all d ∈ D and n ∈ N0.

We will then say that an infinite sequence (Di : S → L(X ))i∈N0
of lower

semicomputable real multiplier processes is a recursive enumeration of lower
semicomputable real multiplier processes if there is a recursive rational map
q : N0 × S×X × N0 → Q such that for every i ∈ N0:

q(i, s, x, n+ 1) ≥ q(i, s, x, n) and Di(s)(x) = lim
m→∞

q(i, s, x,m)

for all s ∈ S, x ∈ X and n ∈ N0.
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Appendix B

In this part of the Appendix, we have gathered all proofs, and all additional
material necessary for understanding the argumentation in these proofs.

Additional material for Section 3

In our proofs, we will use an operator to characterise whether a gamble f ∈ L(X )
is allowed by an interval forecast I ∈ I or not. We associate with every interval
forecast I ∈ I the so-called upper expectation EI : L(X )→ R, defined by

EI(f) := max
p∈I
{pf(1) + (1− p)f(0)} for all f ∈ L(X ). (2)

Clearly, a gamble f ∈ L(X ) is allowable for an interval forecast I ∈ I if and only
if its upper expectation EI(f) is non-positive, i.e., ⇐⇒ EI(f) ≤ 0.

It will be convenient to have the following properties at our disposal. For
all f ∈ L(X ), it readily follows from Equation (2) that

EI(f) = max{min If(1) + (1−min I)f(0),max If(1) + (1−max I)f(0)} (3)

=

{
min If(1) + (1−min I)f(0) if f(1) ≤ f(0)

max If(1) + (1−max I)f(0) if f(1) > f(0).
(4)

The upper expectation operator EI also satisfies the following properties [1,10].4

Proposition 8. Consider any interval forecast I ∈ I. Then for all gambles
f, g ∈ L(X ), all sequences of gambles (fn)n∈N0 ∈ L(X )N0 , and all µ ∈ R and
λ ≥ 0:

C1. min f ≤ EI(f) ≤ max f [boundedness]
C2. EI(λf) = λEI(f) [non-negative homogeneity]
C3. EI(f + g) ≤ EI(f) + EI(g) [subadditivity]
C4. EI(f + µ) = EI(f) + µ [constant additivity]
C5. if f ≤ g then EI(f) ≤ EI(g) [increasingness]
C6. if limn→∞ fn = f then limn→∞EI(fn) = EI(f). [pointwise convergence]

For every forecasting system ϕ ∈ Φ, there is a close connection between
test supermartingales T ∈ T(ϕ) and real multiplier processes D. To reveal
this connection, we introduce the following terminology; a real multiplier pro-
cess D is called a real supermartingale multiplier for the forecasting system ϕ if
Eϕ(s)(D(s)) ≤ 1 for all s ∈ S.

Corollary 2 ([7]). Consider a forecasting system ϕ and a (recursive) positive
rational test supermartingale T ∈ T(ϕ). Then, DT is a (recursive) positive ra-
tional supermartingale multiplier for ϕ.
4 We note that C6 is usually presented as a property that requires uniform convergence.

However, since X is a finite sample, it is easy to see that uniform convergence is
equivalent to pointwise convergence.
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Proof. This follows immediately from Proposition 5 and 6 in [7]. ut

Corollary 3 ([7]). Consider a forecasting system ϕ and a (recursive) non-
negative real supermartingale multiplier D for ϕ. Then, D} is a (recursive)
test supermartingale for ϕ.

Proof. This follows immediately from Proposition 4 and 7 in [7]. ut

Additional material for Section 4

In what follows, we will use the following properties of Martin-Löf randomness
and computable randomness.

Proposition 9. A path ω ∈ Ω is ML-random for a forecasting system ϕ ∈ Φ if
and only if every lower semicomputable positive test supermartingale T ∈ TML(ϕ)
is bounded on ω.

Proof. Consider any lower semicomputable test supermartingale T ∈ TML(ϕ),
and the process T ′ defined by T ′(s) := (T (s)+1)/2 for all s ∈ S. Clearly, T ′ is a
lower semicomputable positive test supermartingale for ϕ, and

lim sup
n→∞

T ′(ω1:n) =∞ ⇐⇒ lim sup
n→∞

T (ω1:n) =∞

for all ω ∈ Ω. ut

Proposition 10 ([6, Proposition 6]). A path ω ∈ Ω is C-random for a
forecasting system ϕ ∈ Φ if and only if every recursive positive rational test
supermartingale T ∈ TC(ϕ) is bounded on ω.

Proposition 11 ([4, Proposition 10]). Consider any path ω ∈ Ω and any
forecasting system ϕ ∈ Φ. If ω is ML-random for ϕ, then it is also ML-random
for any forecasting system ϕ′ ∈ Φ for which ϕ(s) ⊆ ϕ′(s) for all s ∈ S.

Additional material for Section 5

In what follows, it will be convenient to have the following terminology and
notation at our disposal. We call a recursive selection process S dense along a
path ω ∈ Ω if limn→∞

∑n−1
k=0 S(ω1:k) =∞. For every path ω ∈ Ω, we collect the

corresponding recursive dense selection processes in the set SR(ω). Similarly,
for every path ω ∈ Ω, we collect the corresponding recursive dense temporal
selection processes in the set ΣR(ω).
Proof of Proposition 2 We start by proving that every path ω ∈ Ω is
wCH-random for the interval forecast IwCH(ω). To this end, consider the real
numbers

p := inf
S∈ΣR(ω)

lim inf
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
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and

q := sup
S∈ΣR(ω)

lim sup
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
.

By Definition 6, it holds that ω is wCH-random for [p, q], and hence, IwCH(ω) ⊆
[p, q]. We now show that IwCH(ω) = [p, q]. To this end, assume ex absurdo that
there is some I ∈ IwCH(ω) such that p < min I or max I < q. Consequently,
there is some recursive dense temporal selection process S ∈ ΣR(ω) such that

lim inf
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
< min I

or

max I < lim sup
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
,

which is in contradiction with Definition 6. We conclude that ω is wCH-random
for the interval forecast IwCH(ω) = [p, q].

To prove that every path ω ∈ Ω is CH-random for the interval forecast ICH(ω),
we consider the real numbers

p := inf
S∈SR(ω)

lim inf
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)

and

q := sup
S∈SR(ω)

lim sup
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
.

An analogue argument shows that ICH(ω) = [p, q] and that ω is CH-random for
an interval forecast I ∈ I if and only if [p, q] ⊆ I. ut

Proof of Proposition 4 For ease of notation, let p := lim infn→∞ ϕ(ω1:n)
and q := lim supn→∞ ϕ(ω1:n). By Theorem 1, we know that IML(ω) = [p, q]. By
Proposition 12, we know that ω is ML-random for any interval forecast I ∈ I of
the form

[p− ε1, q + ε2] ∩ [0, 1], with ε1, ε2 > 0.

Hence, ω is almost ML-random for the interval forecast IML(ω) = [p, q]. ut

Proofs and additional material for Section 6

Lemma 1. Consider any non-negative gamble f ∈ L(X ) and any interval fore-
cast I ⊆ [0, 1] such that 0 < max I and min I < 1. If EI(f) ≤ 1, then f(1) ≤
1/max I and f(0) ≤ 1/(1−min I).
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Proof. Since 0 < max I and min I < 1, it holds that both 1/max I and 1/1−min I

are real numbers. By Equation (3), f(1) > 1/max I implies that

EI(f)
(3)

≥ max If(1) + (1−max I)f(0) ≥ max If(1) > 1.

Similarly, f(0) > 1/(1−min I) implies that

EI(f)
(3)

≥ min If(1) + (1−min I)f(0) ≥ (1−min I)f(0) > 1.

ut

Consider any real process F . In the proof of the following lemma, we will
use the following notation to relate F to its process difference ∆F : ∆F (s) =
F (s •)− F (s) for all s ∈ S.

Lemma 2. Consider a forecasting system ϕ ∈ Φ and a positive real process M .
Then DM is positive, and M is a supermartingale for ϕ if and only if DM is a
real supermartingale multiplier for ϕ.

Proof. Since M is positive by assumption, DM (s)(x) = M(sx)
M(s) is clearly positive

as well for all s ∈ S and x ∈ X . Fix any s ∈ S. Note that

Eϕ(s)(∆M(s)) = Eϕ(s)(M(s •)−M(s))

= Eϕ(s)(M(s)DM (s)−M(s))
C2
= M(s)Eϕ(s)(DM (s)− 1),

and therefore,

Eϕ(s)(∆M(s)) ≤ 0 ⇐⇒ M(s)Eϕ(s)(DM (s)− 1) ≤ 0

M(s)>0⇐⇒ Eϕ(s)(DM (s)− 1) ≤ 0

C4⇐⇒ Eϕ(s)(DM (s)) ≤ 1.

ut

In the proof of the following proposition, we will use the following terminology
and notation. For any situations s, t ∈ S, we write s v t when every path that
goes through t also goes through s, and we say that the situation s precedes the
situation t; so s is a precursor of t. We say that s strictly precedes t, and write
s @ t, when s v t and s 6= t.

Proposition 12. For any R ∈ {ML,wML,C,S,CH,wCH}, any path ω ∈ Ω
that is R-random for a computable forecasting system ϕ ∈ Φ and any ε1, ε2 > 0:[

lim inf
n→∞

ϕ(ω1:n)− ε1, lim sup
n→∞

ϕ(ω1:n) + ε2

]
∩ [0, 1] ∈ IR(ω)
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Proof. We start with the case R = ML. Let p := lim infn→∞ ϕ(ω1:n) and q :=
lim supn→∞ ϕ(ω1:n). Consider a path ω ∈ Ω that is ML-random for the com-
putable forecasting system ϕ; the proof is very similar for R ∈ {wML,C,S}. We
will show that for any ε1, ε2 > 0, the path ω is ML-random for the interval fore-
cast I := [p−ε1, q+ε2]∩ [0, 1]. To this end, fix any rational numbers r and r such
that p− 3

4ε1 < r < p− 1
2ε1 and q + 1

2ε2 < r < q + 3
4ε2, and a natural number N

such that 2−N < 1
4 min{ε1, ε2}. Since ϕ is a computable forecasting system, there

are two recursive rational maps q, q : S×N0 → Q such that |ϕ(s)−q(s, n)| < 2−n

and |ϕ(s)− q(s, n)| < 2−n for all s ∈ S and n ∈ N0. Consequently, for all s ∈ S,

|ϕ(s)− q(s,N)| < 2−N <
1

4
ε1 (5)

and

|ϕ(s)− q(s,N)| < 2−N <
1

4
ε2. (6)

To show that ω is ML-random for I, and in line with Proposition 9, we fix
any lower semicomputable positive test supermartingale T ∈ TML(I) and show
that it remains bounded on ω. Since T is lower semicomputable, there is some
recursive rational map q : S× N0 → Q such that

(i) q(s, n+ 1) ≥ q(s, n) for all s ∈ S and n ∈ N0;
(ii) T (s) = limn→∞ q(s, n) for all s ∈ S.

We will suitably adapt this recursive rational map to end up with a lower semi-
computable positive test supermartingale for ϕ. To this end, consider the selec-
tion process S′ defined by

S′(s) :=

{
1 if q(s,N) < r or r < q(s,N)

0 otherwise
for all s ∈ S.

This selection process expresses for every situation s ∈ S whether r ≤ q(s,N)
and q(s,N) ≤ r, or not. Since r and r are rational numbers, N is a natural
number, and q and q are recursive rational maps, it follows that the inequalities
in the above expression are decidable for every s ∈ S, and hence, the selection
process S′ is recursive. We use the selection process S′ to introduce the process S∗

defined by

S∗(s) :=

n−1∑
k=0

S′(x1:k) for all s = (x1, . . . , xn) ∈ S,

which expresses for every situation s ∈ S how many times q(t,N) < r or r <
q(t,N) for all strictly preceding situations t @ s. Since S′ is recursive and natural,
and since for every s ∈ S the finite number of situations t ∈ S for which t @ s
can be recursively enumerated, the process S∗ is recursive and natural.

Since 0 ≤ min I < max I ≤ 1, it follows that 0 < max I and min I < 1,
and hence, by Lemma 1, we can fix a rational K > 1 such that for any positive
gamble f ∈ L(X ) for which EI(f) ≤ 1, it holds that f ≤ K. Consequently,
f/K ≤ 1, and hence, by C1, Eϕ(s)(f/K) ≤ 1 for all s ∈ S.
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We introduce a new process F ∗ defined by

F ∗(s) :=

(
1

K

)S∗(s)
for all s ∈ S.

Since K is rational and since the process S∗ is recursive and natural, it follows
that the process F ∗ is recursive and rational. Furthermore, since K is positive
and since the process S∗ is natural, the process F ∗ is positive as well. Moreover,
note that F ∗(�) = (1/K)S

∗(�) = (1/K)0 = 1.
Consider the map q∗ : S× N0 → Q defined by

q∗(s, n) = q(s, n)F ∗(s) for all s ∈ S and n ∈ N0. (7)

Since q(s, n) is a recursive rational map and since the process F ∗ is recursive and
rational, the map q∗(s, n) is recursive and rational as well. Due to the positivity
of F ∗, q∗(s, n+1) ≥ q∗(s, n) for all s ∈ S and n ∈ N0, because q(s, n+1) ≥ q(s, n).
Consequently, the real process T ∗ defined by

T ∗(s) := lim
n→∞

q∗(s, n) for all s ∈ S,

is lower semicomputable. Note that, for all s ∈ S,

T ∗(s) = lim
n→∞

q∗(s, n) = lim
n→∞

q(s, n)F ∗(s) = T (s)F ∗(s). (8)

Since T and F ∗ are both real processes, T ∗ is indeed a real process. Let us now
show that T ∗ is a lower semicomputable positive test supermartingale for ϕ.
First, since T and F ∗ are positive, it follows from Equation (8) that T ∗ is positive
as well. Second, since T (�) = 1 and F ∗(�) = 1, it follows from Equation (8)
that T ∗(�) = 1. Last, to show that it is a supermartingale for ϕ, we fix any s ∈ S
and, in accordance with Lemma 2, prove that Eϕ(s)(DT∗(s)) ≤ 1. To this end,
note that

DT∗(s)(x) =
T ∗(sx)

T ∗(s)

(8)
=
T (sx)F ∗(sx)

T (s)F ∗(s)
=
T (sx)

T (s)

(
1

K

)S∗(sx)−S∗(s)
=
T (sx)

T (s)

(
1

K

)S′(s)
for all x ∈ X . (9)

If q(s,N) < r or r < q(s,N), then S′(s) = 1, and hence,

DT∗(s)(x)
(9)
=
T (sx)

T (s)

(
1

K

)S′(s)
=
T (sx)

T (s)

1

K
=
DT (s)(x)

K
for all x ∈ X .

Since T is a positive supermartingale for I, it follows from Lemma 2 that DT is
a positive supermartingale multiplier for I, i.e., DT (t) > 0 and EI(DT (t)) ≤ 1
for all t ∈ S. By recalling that Eϕ(s)(f/K) ≤ 1 if f > 0 and EI(f) ≤ 1, it
immediately follows that

Eϕ(s)(DT∗(s)) = Eϕ(s)(DT (s)/K) ≤ 1.
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Otherwise, if r ≤ q(s,N) and q(s,N) ≤ r, then S′(s) = 0, and hence,

DT∗(s)(x)
(9)
=
T (sx)

T (s)

(
1

K

)S′(s)
=
T (sx)

T (s)
= DT (s)(x) for all x ∈ X . (10)

Moreover, since r ≤ q(s,N) and q(s,N) ≤ r, it then holds that

p− 3

4
ε1 < r ≤ q(s,N)

(5)
< ϕ(s) +

1

4
ε1

and

q +
3

4
ε2 > r ≥ q(s,N)

(6)
> ϕ(s)− 1

4
ε2,

and therefore, p − ε1 < ϕ(s) and ϕ(s) < q + ε2. Consequently, ϕ(s) ⊆ I, and
therefore it follows from Equation (2) that

Eϕ(s)(DT∗(s))
(10)
= Eϕ(s)(DT (s))

(2)

≤ EI(DT (s)) ≤ 1,

where the last inequality holds because DT is a supermartingale multiplier for I.
We conclude that T ∗ is a lower semicomputable positive test supermartingale

for ϕ. Since ω is Martin-Löf random for ϕ by assumption, this implies that
lim supn→∞ T ∗(ω1:n) <∞.

Now, for any n ∈ N0, if q(ω1:n, N) < r, then

ϕ(ω1:n)
(5)
< q(ω1:n, N) +

1

4
ε1 < r +

1

4
ε1 < p− 1

2
ε1 +

1

4
ε1 = p− 1

4
ε1.

Similarly, if r < q(ω1:n, N), then

ϕ(ω1:n)
(6)
> q(ω1:n, N)− 1

4
ε2 > r − 1

4
ε2 > q +

1

2
ε2 −

1

4
ε2 = q +

1

4
ε2.

By recalling that p := lim infn→∞ ϕ(ω1:n) and q := lim supn→∞ ϕ(ω1:n), it is
clear that there are only a finite number of natural numbers n ∈ N0 for which
ϕ(ω1:n) < p− 1

4ε1 or q+ 1
4ε2 < ϕ(ω1:n), and hence, there is only a finite number

of natural numbers n ∈ N0 for which q(ω1:n, N) < r or r < q(ω1:n, N), or,
equivalently, for which S′(ω1:n) = 1. Consequently, there is some B ∈ N0 such
that limn→∞ S∗(ω1:n) = limn→∞

∑n−1
k=0 S

′(ω1:k) = B <∞, and hence,

lim sup
n→∞

T ∗(ω1:n) = lim sup
n→∞

T (ω1:n)F ∗(ω1:n) =
1

KB
lim sup
n→∞

T (ω1:n).

Since lim supn→∞ T ∗(ω1:n) <∞, this implies that lim supn→∞ T (ω1:n) <∞.
We will proceed by proving that if a path ω ∈ Ω is R-random for the com-

putable forecasting system ϕ, for any R ∈ {wML,C,S,CH,wCH}, then it is also
R-random for the interval forecast I. We thus consider, without loss of gener-
ality, the same forecasting system ϕ and the same interval forecast I as before.
Moreover, we also consider the same numbers ε1, ε2, N and K. This allows us
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to reuse the recursive selection process S′, the recursive natural process S∗ and
the recursive rational process F ∗, since they only depend on the mathematical
objects that we mentioned in this paragraph.

We continue by sketching the proof for R = wML. Consider a path ω ∈ Ω
that is wML-random for the computable forecasting system ϕ. To show that ω is
wML-random for I, and in line with Definition 4, we fix any test supermartingale
D} ∈ TwML(I) that is generated by a lower semicomputable multiplier process D
and show that it remains bounded on ω. Since D is lower semicomputable, there
is some recursive rational map q : S×X × N0 → Q such that

(i) q(s, x, n+ 1) ≥ q(s, x, n) for all s ∈ S, x ∈ X and n ∈ N0;
(ii) D(s)(x) = limn→∞ q(s, x, n) for all s ∈ S and x ∈ X .

We will suitably adapt this recursive rational map to end up with a test super-
martingale for ϕ that is generated by a lower semicomputable multiplier process.
To this end, we consider the recursive rational map q∗ : S×X ×N0 → Q, defined
by

q∗(s, x, n) := q(s, x, n)

(
1

K

)S′(s)
for all s ∈ S, x ∈ X and n ∈ N0,

and the related multiplier process D∗ defined by D∗(s)(x) := limn→∞ q∗(s, x, n)
for all s ∈ S and x ∈ X . By using a similar line of reasoning as above, it is easy
to verify that D∗ is a lower semicomputable multiplier process and that D∗} is a
test supermartingale for ϕ. Since ω is wML-random for ϕ by assumption, it holds
that lim supn→∞D∗}(ω1:n) <∞. By using a similar argument as before, there
is some B ∈ N0 such that lim supn→∞D}(ω1:n) = KB lim supn→∞D∗}(ω1:n),
and hence, lim supn→∞D}(ω1:n) <∞.

If R = C, then we consider a path ω ∈ Ω that is C-random for the com-
putable forecasting system ϕ. To show that ω is C-random for I, and in line
with Definition 4, we fix any computable test supermartingale T ∈ TC(I) and
show that it remains bounded on ω. Since T is computable, there is some recur-
sive rational map q : S × N0 → Q such that |T (s) − q(s, n)| < 2−n for all s ∈ S
and n ∈ N0. We will suitably adapt this recursive rational map to end up with
a computable test supermartingale for ϕ. To this end, we consider the recur-
sive rational map q∗ : S × N0 → Q, defined by q∗(s, n) := q(s, n)F ∗(s) for
all s ∈ S and n ∈ N0, and the real process T ∗ : S → R, defined by T ∗(s) :=
limn→∞ q∗(s, n) = limn→∞ q(s, n)F ∗(s) = T (s)F ∗(s) for all s ∈ S. By recalling
that K > 1 and that S∗ is a recursive natural process, it follows that

|T ∗(s)− q∗(s, n)| =
(

1

K

)S∗(s)
|T (s)− q(s, n)| ≤ |T (s)− q(s, n)| < 2−n

for all s ∈ S and n ∈ N0, and hence, T ∗ is a computable real process. By
using a similar line of reasoning as above, it is easy to verify that T ∗ is in fact a
computable test supermartingale for ϕ. Since ω is C-random for ϕ by assumption,
it holds that lim supn→∞ T ∗(ω1:n) <∞. By using a similar argument as before,
there is some B ∈ N0 such that lim supn→∞ T (ω1:n) = KB lim supn→∞ T ∗(ω1:n),
and hence, lim supn→∞ T (ω1:n) <∞.
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If R = S, then we consider a path ω ∈ Ω that is S-random for the com-
putable forecasting system ϕ. To show that ω is S-random for I, and in line
with Definition 5, we intend to prove that every computable test supermartin-
gale for I remains computably bounded on ω. Without loss of generality, we
consider the computable test supermartingales T ∈ TS(I) and T ∗ ∈ TS(ϕ) that
were introduced in the previous paragraph. Assume ex absurdo that T is com-
putably unbounded on ω, meaning that there is some real growth function τ such
that lim supn→∞(T (ω1:n) − τ(n)) ≥ 0. By using a similar argument as before,
there is some B ∈ N0 such that lim supn→∞ T (ω1:n) = KB lim supn→∞ T ∗(ω1:n).
Moreover, we consider the real growth function τ∗ defined by τ∗(n) := τ(n)/KB

for all n ∈ N0. Since ω is Schnorr random for ϕ by assumption, it holds that
lim supn→∞(T ∗(ω1:n) − τ∗(n)) < 0, and hence, lim supn→∞(T (ω1:n) − τ(n)) =
KB lim supn→∞(T ∗(ω1:n)− τ∗(n)) < 0, a contradiction.

If R ∈ {CH,wCH}, then we consider a path ω ∈ Ω that is CH-random (wCH-
random) for the computable forecasting system ϕ. In this case, to show that ω is
CH-random (wCH-random) for I, the line of reasoning differs. We consider any
recursive dense (temporal) selection process S, and, according to Definition 6,
intend to show that

min I ≤ lim inf
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
≤ lim sup

n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
≤ max I.

By using a similar argument as before, we know there is some B ∈ N0 such
that limn→∞ S∗(ω1:n) = limn→∞

∑n−1
k=0 S

′(ω1:k) = B <∞. Consequently, there
is some M ∈ N0 such that S′(ω1:n) = 0 for all n ≥ M , and hence, ϕ(ω1:n) ⊆ I
for all n ≥ M . Since ω is CH-random (wCH-random) for ϕ by assumption, it
holds by Definition 6 that

lim inf
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=0 S(ω1:k)
≥ 0

and

lim sup
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=0 S(ω1:k)
≤ 0.

Since limn→∞
∑n−1
k=0 S(ω1:k) =∞, it follows that

lim inf
n→∞

∑n−1
k=M S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=M S(ω1:k)
≥ 0

and

lim sup
n→∞

∑n−1
k=M S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=M S(ω1:k)
≤ 0,
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and hence,

lim inf
n→∞

∑n−1
k=M S(ω1:k)[ωk+1 −min I]∑n−1

k=M S(ω1:k)

≥ lim inf
n→∞

∑n−1
k=M S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=M S(ω1:k)
≥ 0

and

lim sup
n→∞

∑n−1
k=M S(ω1:k)[ωk+1 −max I)]∑n−1

k=M S(ω1:k)

≤ lim sup
n→∞

∑n−1
k=M S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=M S(ω1:k)
≤ 0.

Consequently,

min I ≤ lim inf
n→∞

∑n−1
k=M S(ω1:k)ωk+1∑n−1

k=M S(ω1:k)
≤ lim sup

n→∞

∑n−1
k=M S(ω1:k)ωk+1∑n−1

k=M S(ω1:k)
≤ max I,

and therefore also, since limn→∞
∑n−1
k=0 S(ω1:k) =∞,

min I ≤ lim inf
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
≤ lim sup

n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
≤ max I.

ut

Proof of Proposition 5 For ease of notation, let p := lim infn→∞ ϕ(ω1:n)
and q := lim supn→∞ ϕ(ω1:n). By Proposition 12, it holds for every ε1, ε2 > 0
that [p− ε1, q + ε2] ∩ [0, 1] ∈ IR(ω), and therefore

max{p− ε1, 0} ≤ min IR(ω) and max IR(ω) ≤ min{q + ε2, 1}.

Since this is true for all ε1, ε2 > 0, and since 0 ≤ p and q ≤ 1, we conclude that

p ≤ min IR(ω) ≤ max IR(ω) ≤ q.

ut

Proposition 13. If a path ω ∈ Ω is CH-random for a computable forecasting
system ϕ ∈ Φ, then

min ICH(ω) ≤ lim inf
n→∞

ϕ(ω1:n) and lim sup
n→∞

ϕ(ω1:n) ≤ max ICH(ω).

Proof. For ease of notation, consider the reals p := lim infn→∞ ϕ(ω1:n) and q :=
lim supn→∞ ϕ(ω1:n). Fix any path ω ∈ ΩCH(ϕ) and any ε > 0. Then we will show
that min ICH(ω) ≤ p+ ε and q − ε ≤ max ICH(ω). We prove the first inequality;
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the proof of the second one is very similar. Fix any rational number r such that
p+ 1

2ε < r < p+ 3
4ε, and any natural number N such that 2−N < 1

4ε.
Since ϕ is a computable forecasting system, there is some recursive rational

map q : S × N0 → Q such that |ϕ(s) − q(s, n)| ≤ 2−n for all s ∈ S and n ∈ N0.
Consequently, for all s ∈ S,

|ϕ(s)− q(s,N)| < 2−N <
1

4
ε. (11)

Consider the selection process S defined by

S(s) :=

{
1 if q(s,N) < r

0 otherwise
for all s ∈ S.

Since r is a rational number, N is a natural number and q is a recursive rational
map, the inequality in the above expression is decidable for every s ∈ S, so the
selection process S is recursive. Recall that p = lim infn→∞ ϕ(ω1:n), so there
is some infinite subset A ⊆ N0 such that ϕ(ω1:n) < p + 1

4ε for all n ∈ A, and
therefore also

q(ω1:n, N)
(11)
< ϕ(ω1:n) +

1

4
ε < p+

1

4
ε+

1

4
ε = p+

1

2
ε < r,

and hence, S(ω1:n) = 1 for all n ∈ A. Since A is an infinite subset of N0, it
follows that limn→∞

∑n−1
k=0 S(ω1:k) =∞. Consequently, since S is dense along ω

and recursive, it holds by Definition 6 that

lim sup
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=0 S(ω1:k)
≤ 0.

Moreover, for any s ∈ S, if S(s) = 1 or, equivalently, if q(s,N) < r, then

ϕ(s)
(11)
< q(s,N) +

1

4
ε < r +

1

4
ε < p+

3

4
ε+

1

4
ε = p+ ε.

Hence,

lim sup
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − (p+ ε))]∑n−1

k=0 S(ω1:k)

≤ lim sup
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=0 S(ω1:k)
≤ 0,

so

lim sup
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
≤ p+ ε.

Since ω is CH-random for ICH(ω) by Proposition 2, it now follows from Defini-
tion 6 that, indeed, min ICH(ω) ≤ p+ ε. ut
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Proposition 14. If a path ω ∈ Ω is wCH-random for a computable temporal
forecasting system ϕ ∈ Φ, then

min IwCH(ω) ≤ lim inf
n→∞

ϕ(ω1:n) and lim sup
n→∞

ϕ(ω1:n) ≤ max IwCH(ω).

Proof. For ease of notation, consider the reals p := lim infn→∞ ϕ(ω1:n) and q :=
lim supn→∞ ϕ(ω1:n). Fix any path ω ∈ ΩwCH(ϕ) and any ε > 0. Then we will
show that min IwCH(ω) ≤ p + ε and q − ε ≤ max IwCH(ω). We prove the first
inequality; the proof of the second one is very similar. Fix any rational number r
such that p+ 1

2ε < r < p+ 3
4ε, and any natural number N such that 2−N < 1

4ε.
Since ϕ is a computable temporal forecasting system, there is some recursive
rational map q : N0 × N0 → Q such that |ϕ(s) − q(|s|, n)| ≤ 2−n for all s ∈ S
and n ∈ N0. Consequently, for all s ∈ S,

|ϕ(s)− q(|s|, N)| < 2−N <
1

4
ε. (12)

Consider the selection process S defined by

S(s) :=

{
1 if q(|s|, N) < r

0 otherwise
for all s ∈ S.

Since r is a rational number, N is a natural number and q is a recursive rational
map, the inequality in the above expression is decidable for every s ∈ S, so
the selection process S is recursive. Moreover, S is clearly temporal since it
only depends on the situations s ∈ S through their length |s|. Recall that p =
lim infn→∞ ϕ(ω1:n), so there is some infinite subset A ⊆ N0 such that ϕ(ω1:n) <
p+ 1

4ε for all n ∈ A, and therefore also

q(ω1:n, N)
(12)
< ϕ(ω1:n) +

1

4
ε < p+

1

4
ε+

1

4
ε = p+

1

2
ε < r,

and hence, S(ω1:n) = 1 for all n ∈ A. Since A is an infinite subset of N0, it
follows that limn→∞

∑n−1
k=0 S(ω1:k) =∞. Consequently, since S is dense along ω,

recursive and temporal, it holds by Definition 6 that

lim sup
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=0 S(ω1:k)
≤ 0.

Moreover, for any s ∈ S, if S(s) = 1 or, equivalently, if q(|s|, N) < r, then

ϕ(s)
(12)
< q(|s|, N) +

1

4
ε < r +

1

4
ε < p+

3

4
ε+

1

4
ε = p+ ε.

Hence,

lim sup
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − (p+ ε))]∑n−1

k=0 S(ω1:k)

≤ lim sup
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]∑n−1

k=0 S(ω1:k)
≤ 0,
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so

lim sup
n→∞

∑n−1
k=0 S(ω1:k)ωk+1∑n−1

k=0 S(ω1:k)
≤ p+ ε.

Since ω is wCH-random for IwCH(ω) by Proposition 2, it now follows from Def-
inition 6 that, indeed, min IwCH(ω) ≤ p+ ε. ut

Proposition 15. For any path ω ∈ Ω that is CH-random for a computable
precise forecasting system ϕ ∈ Φ:[

lim inf
n→∞

ϕ(ω1:n), lim sup
n→∞

ϕ(ω1:n)
]
⊆ ICH(ω).

Proof. Since the forecasting system ϕ ∈ Φ is precise by assumption, it holds that
ϕ = ϕ, and therefore, by Proposition 13,

min ICH(ω) ≤ lim inf
n→∞

ϕ(ω1:n) ≤ lim sup
n→∞

ϕ(ω1:n) ≤ max ICH(ω).

ut

Proposition 16. For any path ω ∈ Ω that is wCH-random for a computable
precise temporal forecasting system ϕ ∈ Φ:[

lim inf
n→∞

ϕ(ω1:n), lim sup
n→∞

ϕ(ω1:n)
]
⊆ IwCH(ω).

Proof. Since the forecasting system ϕ ∈ Φ is precise by assumption, it holds that
ϕ = ϕ, and therefore, by Proposition 14,

min IwCH(ω) ≤ lim inf
n→∞

ϕ(ω1:n) ≤ lim sup
n→∞

ϕ(ω1:n) ≤ max IwCH(ω).

ut

Proof of Theorem 1 For ease of notation, let p := lim infn→∞ ϕ(ω1:n)
and q := lim supn→∞ ϕ(ω1:n). Since ω is R-random for the computable pre-
cise forecasting system ϕ, with R ∈ {ML,wML,C,CH}, ω is also CH-random
for ϕ by Equation (1). Consequently, it follows from Propositions 5 and 15 that

IR(ω) ⊆ [p, q] and [p, q] ⊆ ICH(ω).

By invoking Corollary 1, we infer that ICH(ω) = IR(ω) = [p, q]. ut

Proof of Theorem 2 For ease of notation, let p := lim infn→∞ ϕ(ω1:n)
and q := lim supn→∞ ϕ(ω1:n). Since ω is R-random for the computable precise
temporal forecasting system ϕ, with R ∈ {ML,wML,C,S,CH,wCH}, ω is also
wCH-random for ϕ by Equation (1). Consequently, it follows from Propositions 5
and 16 that

IR(ω) ⊆ [p, q] and [p, q] ⊆ IwCH(ω).

By invoking Corollary 1, we infer that IwCH(ω) = IR(ω) = [p, q]. ut
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Proofs and additional material for Section 7

Proof of Proposition 6 Yongge Wang proved the existence of a path ω ∈ Ω
and a recursive rational test supermartingale T ∈ TC(1/2) such that [11]

(i) 1/2 ∈ IS(ω);
(ii) T is unbounded—but not computably so—on ω, also implying that ω is

not computably random for 1/2;
(iii) for all s ∈ S, either (∀x ∈ {0, 1})T (sx) = 2xT (s) or (∀x ∈ {0, 1})T (sx) =

T (s);

and as a consequence also

(iv) if T (ω1:n+1) = 2ωn+1T (ω1:n) then ωn+1 = 1, for all n ∈ N0.

We will prove that ω is exactly the path we are after. One immediate conclusion
we can draw from the above conditions, is that T remains positive on ω, so
T (ω1:n) > 0 for all n ∈ N0, simply because (iii) implies that if T ever becomes
zero, it remains zero. It can therefore then never become unbounded on ω,
contradicting (ii). From (iii) and (iv), it then follows that, for every n ∈ N0,
T (ω1:n+1) = T (ω1:n) > 0 or T (ω1:n+1) = T (ω1:n1) = 2T (ω1:n) > 0.

To show that IS(ω) = 1/2, we just observe that since 1/2 ∈ IS(ω) and since
IS(ω) is non-empty by Property 3, it immediately follows that IS(ω) =

⋂
IS(ω) =

1/2.
We continue by showing that [1/2, 1] ⊆ IC(ω). By Corollary 1, it suffices to

show that [1/2, 1] ⊆ ICH(ω). Since IS(ω) = 1/2, it follows from Corollary 1 that
IwCH(ω) = 1/2 6= ∅, and therefore, again by Corollary 1, min ICH(ω) ≤ 1/2.

We end by showing that max ICH(ω) = 1. To this end, consider the selection
process S defined by

S(s) :=

{
1 if T (s1) = 2T (s)

0 otherwise
for all s ∈ S.

Since T is recursive, the above equality can be checked in a recursive way, and
therefore, S is recursive. From the above discussion, it follows that if S(ω1:n) = 1,
then ωn+1 = 1 for all n ∈ N0. Since lim supn→∞ T (ω1:n) =∞, it follows from (ii)
that the first multiplication rule in (iii) must apply an infinite number of times
on ω. Consequently, S selects an infinite subsequence of ones from ω, so the cor-
responding sequence of relative frequencies on this recursively selected infinite
subsequence converges to 1. By Definition 6 and Proposition 2, it now holds that
max ICH(ω) = 1. ut

In the proof of the following lemma, we will come across non-negative ex-
tended real maps r : S × X → [0,+∞], which are maps that define for ev-
ery (s, x) ∈ S × X a non-negative real number or +∞. Such a non-negative
extended real map is called lower semicomputable if there is a recursive ratio-
nal map q : S × X × N0 → Q such that q(s, x, n + 1) ≥ q(s, x, n) and r(s, x) =
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limm→∞ q(s, x,m) for all s ∈ S, x ∈ X and n ∈ N0. An infinite sequence (ri : S×
X → [0,+∞])i∈N0

of lower semicomputable non-negative extended real maps is
called a recursive enumeration of lower semicomputable non-negative extended
real maps if there is a recursive rational map q : N0×S×X ×N0 → Q such that,
for every i ∈ N0, q(i, s, x, n+1) ≥ q(i, s, x, n) and ri(s, x) = limm→∞ q(i, s, x,m)
for all s ∈ S, x ∈ X and n ∈ N0.

Lemma 3. For every rational interval forecast I ⊆ (0, 1), there is a recursive
enumeration of all lower semicomputable non-negative real supermartingale mul-
tipliers for I.

Proof. The existence of a universal Turing machine implies that there is a recur-
sive enumeration of all lower semicomputable non-negative extended real maps
r : S × X → [0,∞] [9, Lemma 13]. This means that there is some recursive
rational map q : N0 × S×X × N0 → Q such that

(i) q(i, s, x, n+ 1) ≥ q(i, s, x, n) for all s ∈ S, x ∈ X and i, n ∈ N0;
(ii) for every i ∈ N0, the extended real map r : S × X → [0,+∞], defined by

r(s, x) := limn→∞ q(i, s, x, n) for all s ∈ S and x ∈ X , is lower semicom-
putable and non-negative;

(iii) for every lower semicomputable non-negative extended real map r : S ×
X → [0,+∞], there is an index i ∈ N0 such that limn→∞ q(i, s, x, n) =
r(s, x) for all s ∈ S and x ∈ X .

From the recursive rational map q, we will construct a recursive rational
map q′ : N0 × S×X × N0 → Q such that

(i’) q′(i, s, x, n+ 1) ≥ q′(i, s, x, n) for all s ∈ S, x ∈ X and i, n ∈ N0;
(ii’) for every i ∈ N0, the gamble processDi : S→ L(X ), defined byDi(s)(x) :=

limn→∞ q′(i, s, x, n) for all s ∈ S and x ∈ X , is a lower semicomputable
non-negative real supermartingale multiplier for I;

(iii’) for every lower semicomputable non-negative real supermartingale multi-
plier D for I, there is an index i ∈ N0 such that limn→∞ q′(i, s, x, n) =
D(s)(x) for all s ∈ S and x ∈ X .

To this end, consider the rational map q′ defined by q′(i, s, x, 0) := 0 for all i ∈ N0,
s ∈ S and x ∈ X , and by the recursion equation

q′(i, s, x, n+1) :=

{
max{0, q(i, s, x, n+ 1)} if EI(max{0, q(i, s, •, n+ 1)}) ≤ 1

q′(i, s, x, n) otherwise,

for all s ∈ S, x ∈ X and i, n ∈ N0, with max{0, q(i, s, •, n + 1)} the pointwise
maximum of the gambles 0 and q(i, s, •, n + 1). Since q is a recursive rational
map and since I is a rational interval forecast, it follows from Equation (3) that
the inequality in the above expression is decidable for every s ∈ S and i, n ∈
N0. Combined with the fact that taking the maximum with respect to zero
preserves recursiveness, it immediately follows from the above definition that q′

is a recursive map as well. Since we take the maximum with respect to zero and
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since q(i, s, x, 0) = 0 for all i ∈ N0, s ∈ S and x ∈ X , it also follows that q′ is
non-negative.

To prove (i’), we fix any s ∈ S, x ∈ X and i, n ∈ N0. Note that since
q(i, s, x, n) ≤ q(i, s, x, n + 1), it immediately follows that max{0, q(i, s, x, n)} ≤
max{0, q(i, s, x, n + 1)}. Consequently, if EI(max{0, q(i, s, •, n + 1)}) ≤ 1, then
by C5 also EI(max{0, q(i, s, •, n)}) ≤ 1. We infer that if EI(max{0, q(i, s, •, n+
1)}) ≤ 1, then

q′(i, s, x, n) = max{0, q(i, s, x, n)} ≤ max{0, q(i, s, x, n+ 1)} = q′(i, s, x, n+ 1),

and if EI(max{0, q(i, s, •, n + 1)}) > 1, then q′(i, s, x, n) = q′(i, s, x, n + 1).
Therefore, (i’) indeed holds.

To prove (ii’), we fix any i ∈ N0, and consider the multiplier process Di

defined by Di(s)(x) := limn→∞ q′(i, s, x, n) for all s ∈ S and x ∈ X . Let’s show
that Di is a lower-semicomputable non-negative real supermartingale multiplier
for I. First, since q′ is a recursive map and since q′(i, s, x, n) ≤ q′(i, s, x, n + 1)
for all s ∈ S, x ∈ X and n ∈ N0, it immediately follows that Di is well-defined
(possibly infinite) and lower semicomputable. Second, since q′(i, s, x, n) ≥ 0 for
all s ∈ S, x ∈ X and n ∈ N0, it follows that Di is non-negative. Last, it holds by
construction that EI(q

′(i, s, •, 0)) = EI(0) = 0 and that

EI(q
′(i, s, •, n+ 1)) =


EI(max{0, q(i, s, •, n+ 1)})

if EI(max{0, q(i, s, •, n+ 1)}) ≤ 1,

EI(q
′(i, s, •, n))

otherwise,

≤ max{1, EI(q′(i, s, •, n))}
≤ max{1,max{1, EI(q′(i, s, •, n− 1))}}
= max{1, EI(q′(i, s, •, n− 1))}
≤ ... ≤ max{1, EI(q′(i, s, •, 0))} = max{1, 0} = 1,

for all s ∈ S and n ∈ N0. Hence, for all s ∈ S and n ∈ N0, EI(q
′(i, s, •, n)) ≤ 1.

Therefore, it follows from Lemma 1 that for the rational number K ∈ Q>0,
defined by K := max{1/max I, 1/(1−min I)}, it holds that q′(i, s, x, n) ≤ K for
all s ∈ S, x ∈ X and n ∈ N0, and therefore, Di(s)(x) = limn→∞ q′(i, s, x, n) ≤ K
for all s ∈ S and x ∈ X . By recalling that Di is non-negative, we conclude
that Di is real. Consequently, since X is a finite set, it follows from C6 that
EI(Di(s)) = limn→∞EI(q

′(i, s, •, n)) ≤ 1 for all s ∈ S, and hence, Di is a
supermartingale multiplier for I. We conclude that Di is a lower semicomputable
non-negative real supermartingale multiplier for I.

To prove (iii’), consider any lower semicomputable non-negative real su-
permartingale multiplier D for I. Since D is lower semicomputable, there is
some index i ∈ N0 such that D(s)(x) = limn→∞ q(i, s, x, n) for all s ∈ S
and x ∈ X . We intend to show that for the same index i ∈ N0, it holds
that D(s)(x) = limn→∞ q′(i, s, x, n) for all s ∈ S and x ∈ X . To this end,
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fix any s ∈ S. Since D is a non-negative real supermartingale multiplier for I
and since q(i, s, x, n) ≤ D(s)(x) for all x ∈ X and n ∈ N0, it follows from C5
that

EI(max{0, q(i, s, •, n)}) ≤ EI(max{0, D(s)}) = EI(D(s)) ≤ 1 for all n ∈ N0.

Consequently, q′(i, s, x, n) = max{0, q(i, s, x, n)} for all x ∈ X and n ∈ N. Since
D(s)(x) ≥ 0 for all x ∈ X , it immediately follows that

D(s)(x) = lim
n→∞

q(i, s, x, n)

= lim
n→∞

max{0, q(i, s, x, n)} = lim
n→∞

q′(i, s, x, n) for all x ∈ X .

From (i’)–(iii’) we conclude that q′ provides us with a recursive enumeration
of all lower semicomputable non-negative real supermartingale multipliers for I.

ut

Corollary 4. For every rational interval forecast I ⊆ (0, 1), there is a recursive
enumeration of all lower semicomputable test supermartingales D} ∈ TwML(I)
generated by lower semicomputable supermartingale multipliers for I.

Proof. By Lemma 3, we know there is a recursive enumeration Di, with i ∈ N0,
of all lower semicomputable non-negative real supermartingale multipliers for I.
This means that there is a recursive map q : N0 × S×X × N0 → Q such that

(i) q(i, s, x, n+ 1) ≥ q(i, s, x, n) for all s ∈ S, x ∈ X and i, n ∈ N0;
(ii) for every i ∈ N0, the gamble process Di : S→ L(X ), defined by Di(s)(x) :=

limn→∞ q(i, s, x, n) for all s ∈ S and x ∈ X , is a lower semicomputable
non-negative real supermartingale multiplier for I;

(iii) for every lower semicomputable non-negative real supermartingale multi-
plier D for I, there is an index i ∈ N0 such that limn→∞ q(i, s, x, n) =
D(s)(x) for all s ∈ S and x ∈ X .

Consider the rational map q′ : N0 × S× N0 → Q, defined by

q′(i, s, n) :=
l−1∏
k=0

q(i, x1:k, xk+1, n) for all s = (x1, . . . , xl) ∈ S and i, n ∈ N0.

Since q is a recursive map, q′ is clearly a recursive map as well. Moreover, since
q(i, s, x, n + 1) ≥ q(i, s, x, n) for all s ∈ S, x ∈ X and i, n ∈ N0, clearly also
q′(i, s, n + 1) ≥ q′(i, s, n + 1) for all s ∈ S and i, n ∈ N0. For every i ∈ N0, we
consider the real process D}i defined by

D}i (s) =

l−1∏
k=0

Di(x1:k)(xk+1) for all s = (x1, . . . , xl) ∈ S. (13)

By Corollary 3, D}i is a test supermartingale for I. It is clear that D}i (s) =
limn→∞ q′(i, s, n) for all i ∈ N0 and s ∈ S, so D}i is also lower semicomputable.
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We conclude that (D}i )i∈N0
is a recursive enumeration of all lower semicom-

putable test supermartingales for I with lower semicomputable supermartingale
multipliers for I. ut

Lemma 4 ([7, Lemma 14]). Consider any path ω ∈ Ω and any interval fore-
cast I ⊂ (0, 1). If ω is recursive, then ω is not C-random for I.

Lemma 5. Consider any interval forecast I ⊆ (0, 1) and any recursive enu-
meration D}i , with i ∈ N0, of lower semicomputable test supermartingales for I
generated by supermartingale multipliers D. Then the process T , defined by

T (s) :=

∞∑
i=0

2−i−1D}i (s) for all s ∈ S, (14)

is a lower semicomputable test supermartingale for I.

Proof. Since (D}i )i∈N0
is a recursive enumeration of lower semicomputable test

supermartingales for I, there is some recursive rational map q : N0×S×N0 → Q
such that q(i, s, n + 1) ≥ q(i, s, n) and limm→∞ q(i, s,m) = D}i (s) for all s ∈ S
and i, n ∈ N0. We can assume without loss of generality that q is non-negative.
Otherwise, we just consider max{0, q} instead.

First, since D}i (�) = 1 for all i ∈ N0, it follows that T (�) =
∑∞
i=0 2−i−1 = 1.

Second, since Di(s) ≥ 0 and EI(Di(s)) ≤ 1 for all s ∈ S, and since I ⊆ (0, 1),
it follows from Lemma 1 that Di(s) ≤ max{1/max I, 1/(1−min I)} for all s ∈ S. Let
K := max{1/max I, 1/(1−min I)}. Consequently,

D}i (s) =

l−1∏
k=0

Di(x1:k)(xk+1) ≤ Kl for all s = (x1, . . . , xl) ∈ S and i ∈ N0,

and hence,

T (s) =

∞∑
i=0

2−i−1D}i (s) ≤
∞∑
i=0

2−i−1K |s| = K |s| for all s ∈ S.

Since, for every s ∈ S, T (s) is an infinite sum of non-negative terms that is
bounded above by K |s|, it follows that T is well-defined, real and non-negative.
Third, since

∆T (s) = lim
n→∞

n∑
i=0

2−i−1∆D}i (s) for all s ∈ S,

and since X is a finite set, it follows from C6 that

EI(∆T (s)) = lim
n→∞

EI(

n∑
i=0

2−i−1∆D}i (s))

C2−C3
≤ lim sup

n→∞

n∑
i=0

2−i−1EI(∆D
}
i (s))

≤ lim sup
n→∞

n∑
i=0

2−i−10 = 0 for all s ∈ S,



The Smallest Probability Interval a Sequence Is Random for 33

and therefore T is a supermartingale for I. Last, in order to prove that T is
lower semicomputable, consider the rational map q∗ : S× N0 → Q defined by

q∗(s, n) :=

n∑
i=0

2−i−1q(i, s, n) for all s ∈ S and n ∈ N0.

First, since q is a recursive map and since taking the above finite weighted sum is
a recursive operation, the map q∗ is recursive as well. Second, since q(i, s, n) ≥ 0
and q(i, s, n+ 1) ≥ q(i, s, n) for all s ∈ S and i, n ∈ N0, it follows that

q∗(s, n+ 1) =

n+1∑
i=0

2−i−1q(i, s, n+ 1)

≥
n∑
i=0

2−i−1q(i, s, n+ 1) ≥
n∑
i=0

2−i−1q(i, s, n) = q∗(s, n)

for all s ∈ S and n ∈ N0. Last, we will show that limn→∞ q∗(s, n) = T (s)
for all s ∈ S. To this end, note that since q(i, s, n) ≤ D}i (s) for all s ∈ S
and i, n ∈ N0, it holds that

q∗(s, n) =

n∑
i=0

2−i−1q(i, s, n) ≤
n∑
i=0

2−i−1D}i (s) ≤
∞∑
i=0

2−i−1D}i (s) = T (s),

for all s ∈ S and n ∈ N0. Thus, since q∗(s, n) is an increasing sequence in n and
since q∗(s, n) is bounded above by T (s) for all s ∈ S and n ∈ N0, limn→∞ q∗(s, n)
is well-defined and bounded above by T (s) for all s ∈ S. Fix any s ∈ S, any ε > 0
and any N ∈ N0 such that K |s|2−N < ε/4. By recalling that D}i (s) ≤ K |s| for
all i ∈ N0, we infer that

D}i (s)

2N
≤ K |s|

2N
<
ε

4
for all i ∈ N0.

Consequently,

∞∑
i=N+1

2−i−1D}i (s) =

∞∑
i=N+1

2−i−1+N
D}i (s)

2N

≤
∞∑

i=N+1

2−i−1+N
ε

4
=

∞∑
i=0

2−i
ε

4
=
ε

2
. (15)

Since q(i, s, n + 1) ≥ q(i, s, n) ≥ 0 and D}i (s) = limm→∞ q(i, s,m) for all i, n ∈
N0, there is for every i ≤ N some Ni ∈ N0 such that

0 ≤ D}i (s)− q(i, s,Ni) <
ε

4
for every i ≤ N.

Consequently,

N∑
i=0

2−i−1(D}i (s)− q(i, s,Ni)) ≤
N∑
i=0

2−i−1
ε

4
≤
∞∑
i=0

2−i−1
ε

4
=
ε

2
. (16)
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Let Nmax := max{N,N1, N2, . . . , NN}. Then by Equation (15) and (16) for
all n ≥ Nmax

T (s)− q∗s,n =

∞∑
i=0

2−i−1D}i (s)−
n∑
i=0

2−i−1q(i, s, n)

=

N∑
i=0

2−i−1D}i (s) +

∞∑
i=N+1

2−i−1D}i (s)−
n∑
i=0

2−i−1q(i, s, n)

≤
N∑
i=0

2−i−1D}i (s) +

∞∑
i=N+1

2−i−1D}i (s)−
Nmax∑
i=0

2−i−1q(i, s,Nmax)

≤
N∑
i=0

2−i−1D}i (s) +

∞∑
i=N+1

2−i−1D}i (s)−
Nmax∑
i=0

2−i−1q(i, s,Ni)

≤
N∑
i=0

2−i−1D}i (s) +

∞∑
i=N+1

2−i−1D}i (s)−
N∑
i=0

2−i−1q(i, s,Ni)

=

N∑
i=0

2−i−1(D}i (s)− q(i, s,Ni)) +

∞∑
i=N+1

2−i−1D}i (s)

(15)−(16)
≤ ε

2
+
ε

2
= ε.

Since this is true for every ε > 0, it indeed holds that limn→∞ q∗(s, n) = T (s).
We conclude that T is a lower semicomputable test supermartingale for I. ut

Lemma 6. For every rational interval forecast I ⊆ (0, 1), there is a lower semi-
computable test supermartingale T ∈ TML(I) such that lim supn→∞ T (ω1:n) =∞
for every path ω ∈ Ω that is not wML-random for I.

Proof. By invoking Corollary 4, let D}i , with i ∈ N0, be a recursive enumera-
tion of all lower semicomputable test supermartingales for I generated by lower
semicomputable supermartingale multipliers for I. By Lemma 5, the process T
defined by

T (s) :=

∞∑
i=0

2−i−1D}i (s) for all s ∈ S, (17)

is a lower semicomputable test supermartingale for I.
Consider a path ω ∈ Ω that is not wML-random for I. By Definition 4,

there is some i′ ∈ N0 such that lim supn→∞D}i′ (ω1:n) = ∞. Consequently, it

also holds that lim supn→∞ 2−i
′−1D}i′ (ω1:n) = ∞, and hence, since all D}i are

non-negative,

lim sup
n→∞

T (ω1:n) = lim sup
n→∞

∞∑
i=0

2−i−1D}i (ω1:n) ≥ lim sup
n→∞

2−i
′−1D}i′ (ω1:n) =∞.

ut
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For the following lemma and theorem, we drew inspiration from [8], in which
Schnorr shows there is a difference between Martin-Löf randomness and its con-
jugate notion in terms of upper semicomputable test supermartingales.

Lemma 7. For every recursive positive rational supermartingale M for 1/2, ev-
ery positive real y ∈ R>0 and every situation s ∈ S for which M(t) ≤ y for
all t v s, there is a recursive path ω ∈ Ω such that ω1:|s| = s and M(ω1:n) ≤ y
for all n ∈ N0.

Proof. The path ω ∈ Ω will be constructed recursively by an induction argu-
ment. First, we put ω1:|s| := s. Now, assume that ω1:n has been constructed
recursively such that M(ω1:i) ≤ y for all i ≤ n; note that this assumption
holds trivially for n ≤ |s|. By Corollary 2, we know that DM is a recur-
sive positive rational supermartingale multiplier for 1/2. Since DM is a super-
martingale multiplier for 1/2, there is an x ∈ X for which DM (ω1:n)(x) ≤ 1.
Otherwise, DM (ω1:n)(x) > 1 for all x ∈ X , and therefore E1/2(DM (ω1:n)) =
1
2DM (ω1:n)(1) + 1

2DM (ω1:n)(0) > 1, a contradiction. Since DM is a recursive
rational multiplier process, we can recursively determine an x ∈ X for which
DM (ω1:n)(x) ≤ 1. We fix such an x ∈ X and put ω1:n+1 := ω1:nx. Clearly,
M(ω1:n+1) = M(ω1:n)DM (ω1:n)(ωn+1) ≤M(ω1:n) ≤ y, and hence, M(ω1:i) ≤ y
for all i ≤ n+ 1. ut

Proposition 17. For any rational interval forecast I ⊆ (0, 1), there is a path ω ∈
Ω that is C-random for 1/2, but not ML-random for I.

Proof. Fix any rational interval forecast I ⊆ (0, 1). Due to Lemma 6, there
is a lower semicomputable test supermartingale T ∗ ∈ TML(I) such that T ∗ is
unbounded on every path ω ∈ Ω that is not wML-random for I. Let (Ti)i∈N0

be
an enumeration (not necessarly recursive) of all recursive positive rational test
supermartingales for 1/2. By Definition 4 and Proposition 10, it suffices to define a
path ω ∈ Ω for which lim supn→∞ T ∗(ω1:n) =∞ and lim supn→∞ Ti(ω1:n) <∞
for all i ∈ N0.

We prove by induction that such a path exists. for i = 0, we let ni := 0
and ω1:ni

:= �. Consider any i ∈ N0 and assume that ω1:ni
, with 0 = n0 < n1 <

· · · < ni ∈ N0, is defined such that T ∗(ω1:ni
) ≥ i and

i∑
k=0

2−nk−kTk(ω1:n) ≤
i∑

k=0

2−k for all n ≤ ni. (18)

Note that the induction hypothesis is trivially true for i = 0, since T ∗(�) = 1 ≥ 0
and T0(�) = 1 ≤ 1. We start by showing that the process T ′i defined by

T ′i (s) :=

i∑
k=0

2−nk−kTk(s) for all s ∈ S

is a recursive positive rational supermartingale for 1/2. Since this is a finite
weighted sum of recursive positive rational test supermartingales for 1/2 with
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positive rational coefficients, it immediately follows that it is a recursive positive
rational process. Hence, we are left with proving the supermartingale property.
From C2 and C3, it follows, for all s ∈ S, that

E1/2(∆T
′
i (s)) = E1/2

(
i∑

k=0

2−nk−k∆Tk(s)

)
≤

i∑
k=0

2−nk−kE1/2(∆Tk(s)) ≤ 0,

where the last inequality holds because all Ti, with i ∈ N0, are supermartingales
for 1/2. We conclude that T ′i is a recursive positive rational supermartingale

for 1/2. From Equation (18), we know that T ′i (ω1:n) ≤
∑i
k=0 2−k for all n ≤ ni.

If we now invoke Lemma 7, we find that there is a recursive path ω′ such that
ω′1:ni

= ω1:ni
and T ′i (ω

′
1:n) ≤

∑i
k=0 2−k for all n ∈ N0. Since ω′ is recursive, it

follows from Lemma 4 that it is not C-random for I, and hence, by Proposition 1,
it is also not wML-random for I. Consequently, lim supn→∞ T ∗(ω′1:n) =∞, and
therefore, there is a natural number ni+1 > ni such that T ∗(ω′1:ni+1

) ≥ i + 1.
We put ω1:ni+1

:= ω′1:ni+1
. Note that ω1:ni is unchanged. By construction, it now

holds that

i∑
k=0

2−nk−kTk(ω1:n) =

i∑
k=0

2−nk−kTk(ω′1:n)

= T ′i (ω
′
1:n) ≤

i∑
k=0

2−k for all n ≤ ni+1. (19)

Consider the recursive positive rational test supermartingale Ti+1 ∈ TC(1/2).
From Lemma 2, it follows that DTi+1

(s) > 0 and E1/2(DTi+1
(s)) ≤ 1 for all s ∈

S, and hence, by Lemma 1, 0 < DTi+1
(s) ≤ 2. Consequently, Ti+1(ω1:n) =∏n−1

k=0 DTi+1(ω1:k)(ωk+1) ≤ 2n for all n ∈ N0, and hence,

2−i−1
Ti+1(ω1:n)

2ni+1
≤ 2−i−1 for all n ≤ ni+1.

Therefore, and by Equation (19), it holds that

i+1∑
k=0

2−nk−kTk(ω1:n) ≤
i+1∑
k=0

2−k for all n ≤ ni+1.

Since also T ∗(ω1:ni+1
) ≥ i+ 1, this ends the induction step.

By observing that 0 = n0 < n1 < · · · < ni < ni+1 < . . . , the definition of ω
implies that

lim sup
n→∞

T ∗(ω1:n) = lim sup
i→∞

T ∗(ω1:ni) ≥ lim sup
i→∞

i =∞.

Since T ∗ is a lower semicomputable test supermartingale for I, it follows from
Definition 4 that ω is not ML-random for I.
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On the other hand, by Equation (18) and since 0 = n0 < n1 < · · · < ni <
ni+1 < . . . , there is for every n ∈ N0 some i ∈ N0 such that n ≤ ni and

j∑
k=0

2−nk−kTk(ω1:n) ≤
j∑

k=0

2−k for all j ≥ i.

Consequently,

∞∑
k=0

2−nk−kTk(ω1:n) ≤
∞∑
k=0

2−k ≤ 2.

Since this is true for every n ∈ N0, it follows that

lim sup
n→∞

∞∑
k=0

2−nk−kTk(ω1:n) ≤ 2.

This shows that every recursive positive rational test supermartingale Ti for 1/2
remains bounded on ω. Indeed, fix any i ∈ N0 and assume ex absurdo that
lim supn→∞ Ti(ω1:n) =∞. Consequently,

lim sup
n→∞

2−ni−iTi(ω1:n) =∞,

and hence, since all Tk are positive,

lim sup
n→∞

∞∑
k=0

2−nk−kTk(ω1:n) ≥ lim sup
n→∞

2−ni−iTi(ω1:n) =∞,

a contradiction. Hence, lim supn→∞ Ti(ω1:n) <∞ for all i ∈ N0. ut

Proof of Proposition 7 Fix any δ ∈ (0, 1/2). Consider any rational number δ′

such that δ < δ′ < 1/2, and the interval forecasts Iδ = [1/2− δ, 1/2 + δ] and Iδ′ =
[1/2 − δ′, 1/2 + δ′]. By Proposition 17, there is a path ω ∈ Ω that is C-random
for 1/2 but not ML-random for Iδ′ .

To show that IC(ω) = 1/2, we just observe that since 1/2 ∈ IC(ω) and
since IC(ω) is non-empty by Property 3, it immediately follows that IC(ω) =⋂
IC(ω) = 1/2.
We continue by showing that I /∈ IML(ω) for any I ∈ I such that I ⊆ Iδ.

Assume ex absurdo that ω is ML-random for such an interval forecast I. Since
I ⊆ Iδ ⊆ Iδ′ , it then holds by Proposition 11 that Iδ′ ∈ IML(ω), a contradiction.

ut
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