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Abstract. We introduce a notion of computable randomness for infi-
nite sequences that generalises the classical version in two important
ways. First, our definition of computable randomness is associated
with imprecise probability models, in the sense that we consider lower
expectations—or sets of probabilities—instead of classical ‘precise’ prob-
abilities. Secondly, instead of binary sequences, we consider sequences
whose elements take values in some finite sample space. Interestingly,
we find that every sequence is computably random with respect to at
least one lower expectation, and that lower expectations that are more
informative have fewer computably random sequences. This leads to the
intriguing question whether every sequence is computably random with
respect to a unique most informative lower expectation. We study this
question in some detail and provide a partial answer.
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1 Introduction

When do we consider an infinite sequence ω = (x1, . . . , xn, . . . ), whose individual
elements xn take values in some finite sample space X, to be random? This is
actually not a fair question, because randomness is never defined absolutely,
but always relative to an uncertainty model. Consider for example an infinite
sequence generated by repeatedly throwing a single fair die and writing down
the number of eyes on each throw. In this case, we would be justified in calling
this sequence random with respect to a precise probability model that assigns
probability 1

/6 to every possible outcome.
It is exactly such precise probability models that have received the most

attention in the study of randomness [2,3,11]. Early work focused on binary
sequences and the law of large numbers that such sequences, and computably
selected subsequences, were required to satisfy: an infinite binary sequence of
zeros and ones is called Church random if the relative frequencies in any com-
putably selected subsequence converge to 1

/2 [2]. Schnorr, inspired by the work
of Ville, strengthened this definition by introducing a notion of computable ran-
domness [11]. On his account, randomness is about betting. The starting point
is that a precise probability model that assigns a (computable) probability p to
1 and 1 − p to 0 can be interpreted as stating that p is a fair price for bet I1(Xi)
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that yields 1 when Xi = 1 and 0 when Xi = 0, for every—a priori unknown—
value Xi of a binary sequence ω = (x1, . . . , xn, . . . ) of zeros and ones. Such a
sequence is then considered to be computably random with respect to p if there
is no computable betting strategy for getting rich without bounds along ω with-
out borrowing, simply by betting according to this fair price. Notably, binary
sequences that are computably random for p = 1

/2 are also Church random. So
here too, the relative frequency of any element x ∈ X will converge to a limit
frequency along ω—1

/2 in the binary case for p = 1
/2. In fact, this is typically

true for any notion of randomness with respect to a precise probability model.
However, as has been argued extensively [7], there are various random phe-

nomena where this stabilisation is not clearly present, or even clearly absent.
Hence, only adopting precise probability models to define notions of random
sequences is too much of an idealisation. Recently, this issue was addressed
by De Cooman and De Bock for binary sequences by introducing a notion of
computable randomness with respect to probability intervals instead of pre-
cise probability models, whose lower bounds represent supremum acceptable
buying prices, and whose upper bounds represent infimum acceptable selling
prices, again for the bet I1(Xi) that, for every value xi of a binary sequence
ω = (x1, . . . , xn, . . . ), yields 1 if Xi = 1 and 0 otherwise [5].

On this account, relative frequencies must not necessarily converge to a limit
frequency along ω, but may fluctuate within the probability interval.

Here, we generalise the work done by De Cooman and De Bock [5] for binary
sequences, and develop a similar concept for infinite sequences that take values in
more general finite sample spaces. To this end, we consider an even more general
framework for describing uncertainty: we use coherent lower expectations—or
sets of probability mass functions—instead of probability intervals or probabil-
ities. Loosely speaking, we say that an infinite sequence ω = (x1, . . . , xn, . . . )
is computably random with respect to a (forecasting system of) lower expecta-
tion(s), when there is no computable betting strategy for getting rich without
bounds along ω without borrowing and by only engaging in bets whose (upper)
expected profit is non-positive or negative.1

This contribution is structured as follows. We start in Sect. 2 with a brief intro-
duction to coherent lower expectations, and explain in particular their connection
with probabilities and their interpretation in terms of gambles and betting. Next,
in Sect. 3, we define a subject’s uncertainty for an infinite sequence of variables
X1, . . . , Xn, . . . by introducing forecasting systems that associate with every finite
sequence (x1, . . . , xn) a coherent lower expectation for the variable Xn+1. This allows
us to introduce corresponding betting strategies to bet on the infinite sequence of
variables along a sequence ω = (x1, . . . , xn, . . . ) in terms of non-negative (strict)
supermartingales. After explaining in Sect. 4 when such a non-negative (strict)
supermartingale is computable, we extend the existing notion of computable ran-
domness from precise and interval probability models to coherent lower expecta-
tions in Sect. 5, and study its properties. The remainder of the paper focuses on

1 A real number x ∈ R is called positive if x > 0, non-negative if x ≥ 0, negative if
x < 0 and non-positive if x ≤ 0.
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special cases. When we restrict our attention to stationary forecasting systems
that forecast a single coherent lower expectation in Sect. 6, it turns out that every
sequenceω is computably randomwith respect to at least one coherent lower expec-
tation and that if ω is computably random for some coherent lower expectation,
then it is also computably random for any coherent lower expectation that is less
informative, i.e., provides fewer gambles. This makes us question whether there is
a unique most informative coherent lower expectation for which ω is computably
random. After inspecting some examples, it turns out that such a most informa-
tive coherent lower expectation sometimes exists, but sometimes does not. When
it does not, our examples lead us to conjecture that it ‘almost’ exists. We conclude
the discussion in Sect. 7 by introducing a derived notion of computable random-
ness with respect to a gamble f and an interval I by focusing on the behaviour of
coherent lower expectations on a specific gamble f of their domain. It turns out
that for every gamble f , a sequence ω is ‘almost’ computably random with respect
to some smallest interval. To adhere to the page constraints, all proofs are omitted.
They are available in an extended on-line version [9].

2 Coherent Lower Expectations

To get the discussion started, we consider a single uncertain variable X that takes
values in some finite set X, called the sample space. A subject’s uncertainty about
the unknown value of X can then be modelled in several ways. We will do so
by means of a coherent lower expectation: a functional that associates a real
number with every gamble, where a gamble f : X → R is a map from the sample
space X to the real numbers. We denote the linear space of all gambles by L(X).

Definition 1. A coherent lower expectation E : L(X) → R is a real-valued func-
tional on L(X) that satisfies the following axioms. For all gambles f , g ∈ L(X)

and all non-negative α ∈ R:

C1. min f ≤ E( f ) [boundedness]
C2. E(α f ) = αE( f ) [non-negative homogeneity]
C3. E( f ) + E(g) ≤ E( f + g) [superadditivity]

We will use E to denote the set of all coherent lower expectations on L(X).

As a limit case, for any probability mass function p on X, it is easy to
check that the linear expectation Ep, defined by Ep( f ) �

∑
x∈X f (x)p(x) for all

f ∈ L(X), is a coherent lower expectation, which corresponds to a maximally
informative or least conservative model for a subject’s uncertainty. More gener-
ally, a coherent lower expectation E can be interpreted as a lower envelope of
such linear expectations. That is, there is always a (closed and convex) set M of
probability mass functions such that E( f ) = min{Ep( f ) : p ∈ M} for all f ∈ L(X)

[13]. In that sense, coherent lower expectations can be regarded as a generalisa-
tion of probabilities to (closed and convex) sets of probabilities. Alternatively,
the lower expectation E( f ) can be interpreted directly as a subject’s supremum
buying price for the uncertain reward f .
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The particular interpretation that is adopted is not important for what we
intend to do here. For our purposes, the only thing we will assume is that when
a subject specifies a coherent lower expectation, every gamble f ∈ L(X) such
that E( f ) > 0 is desirable to him and every gamble f ∈ L(X) such that E( f ) ≥ 0
is acceptable to him. We think this makes sense under both of the aforemen-
tioned interpretations. Furthermore, as we will see in Sect. 5, the distinction
between desirable and acceptable gambles does not matter for our definition of
computable randomness. For now, however, we proceed with both notions.

Whenever a subject specifies a coherent lower expectation, we can consider
an opponent that takes this subject up on a gamble f on the unknown outcome
X in a betting game. Borrowing terminology from the field of game-theoretic
probabilities [12], we will refer to our subject as Forecaster and to his opponent
as Sceptic. Forecaster will only bet according to those gambles f ∈ L(X) that
are acceptable to him (E( f ) ≥ 0), or alternatively, those that are desirable to
him (E( f ) > 0). This leads to an unknown reward f (X) for Forecaster and an
unknown reward − f (X) for Sceptic. After Sceptic selects such a gamble, the
outcome x ∈ X is revealed, Forecaster receives the (possibly negative) reward
f (x), and Sceptic receives the reward − f (x). Equivalently, when considering for
any coherent lower expectation E the conjugate upper expectation E, defined
as E( f ) � −E(− f ) for all f ∈ L(X), then Sceptic is allowed to bet according to
any gamble f ∈ L(X) for which E( f ) ≤ 0 (or E( f ) < 0), leading to an uncertain
reward f (X) for Sceptic and an uncertain reward − f (X) for Forecaster. In what
follows, we will typically take the perspective of Sceptic. The gambles that are
available to her will thus be the gambles f ∈ L(X) with non-positive (or negative)
upper expectation E( f ) ≤ 0 (E( f ) < 0).

An important special case is the so-called vacuous coherent lower expecta-
tion Ev, defined by Ev( f ) � min f for all f ∈ L(X). If Forecaster specifies Ev, this
corresponds to a very conservative attitude where he is only interested in gam-
bles f that give him a guaranteed non-negative (or positive) gain, i.e., min f ≥ 0
(min f > 0), implying that Sceptic has a guaranteed non-negative (or positive)
loss, i.e., max f ≤ 0 (max f < 0).

Example 2. Consider an experiment with three possible outcomes A, B and
C, i.e., X � {A, B,C}, and three probability mass functions p0, p1 and p2
defined by (p0(A), p0(B), p0(C)) � (0, 1/2, 1/2), (p1(A), p1(B), p1(C)) � (

1
/2, 0, 1/2)

and (p2(A), p2(B), p2(C)) � (

1
/2, 1/2, 0). We can then define a coherent lower expec-

tation E by E( f ) � min{Ep0( f ), Ep1( f ), Ep2( f )} for every gamble f ∈ L(X). For
the particular gamble f defined by ( f (A), f (B), f (C)) � (1,−2, 3), the value of
this lower expectation then equals E( f ) = min{1/2, 2, −1/2} = −1

/2. ♦

3 Forecasting Systems and Betting Strategies

We now consider a sequential version of the betting game in Sect. 2 between
Forecaster and Sceptic, by considering a sequence of variables X1, . . . , Xn, . . . , all
of which take values in our finite sample space X.
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On each round of the game, indexed by n ∈ N0 � N ∪ {0}, the a priori
unknown finite sequence of outcomes x1:n = (x1, . . . , xn) has been revealed and
we assume that Forecaster’s uncertainty about the next—as yet unknown—
outcome Xn+1 ∈ X is described by a coherent lower expectation. Hence, on each
round of the game, Forecaster’s uncertainty can depend on and be indexed by
the past states.

All finite sequences s = x1:n = (x1, . . . , xn)—so-called situations—are collected
in the set S � X

∗ =
⋃

n∈N0
X

n. By convention, we call the empty sequence the
initial situation and denote it by �. The finite sequences s ∈ S form an event tree,
and it is on this whole event tree that we will describe Forecaster’s uncertainty,
using a so-called forecasting system.

Definition 3. A forecasting system E
•

: S → E is a map that associates with
every situation s ∈ S a coherent lower expectation Es ∈ E. The collection of all
forecasting systems is denoted by E

S.

Every forecasting system corresponds to a collection of bets that are available
to Sceptic. That is, in every situation s = x1:n, Sceptic is allowed to bet on the
unknown outcome Xn+1 according to any gamble f ∈ L(X) such that Es( f ) ≤ 0
(or E s( f ) < 0). This leads to an uncertain reward f (Xn+1) for Sceptic and an
uncertain reward − f (Xn+1) for Forecaster. Afterwards, when the outcome xn+1 is
revealed, Sceptic gets the amount f (xn+1), Forecaster gets the amount − f (xn+1)
and we move to the next round. To formalise this sequential betting game, we
introduce the notion of a supermartingale, which is a special case of a so-called
real process.

A real process F : S → R is a map that associates with every situation s =

x1:n ∈ S of the event tree, a real number F(s). With every real process F there
corresponds a process difference ΔF that associates with every situation s ∈ S a
gamble ΔF(s) on X, defined as ΔF(s)(x) � F(sx) −F(s) for every s ∈ S and x ∈ X,
where sx denotes the concatenation of s and x. We call a real process M a (strict)
supermartingale if Es(ΔM(s)) ≤ 0 (Es(ΔM(s)) < 0) for every situation s ∈ S. Note
that a supermartingale is always defined relative to a forecasting system E

•

.
Similarly, a real process M is called a (strict) submartingale if Es(ΔM(s)) ≥

0 (E s(ΔM(s)) > 0) for every s ∈ S. Due to the conjugacy relation between
upper and lower expectations, M is a (strict) supermartingale if and only if
−M is a (strict) submartingale. We collect the super- and submartingales in the
sets M(E

•

) and M(E
•

), respectively. A supermartingale M is called non-negative
(positive) if M(s) ≥ 0 (M(s) > 0) for all s ∈ S.

From the previous discussion, it is clear that Sceptic’s allowable betting
behaviour corresponds to supermartingales or strict supermartingales, depend-
ing on whether we consider acceptable or desirable gambles, respectively. Indeed,
in each situation s = x1:n ∈ S, she can only select a gamble ΔM(s) for
which Es(ΔM(s)) ≤ 0 (Es(ΔM(s)) < 0) and her accumulated capital M(x1:n) =
M(�) +

∑n−1
k=0 ΔM(x1:k)(xk+1), with M(�) being her initial capital, will therefore

evolve as a (strict) supermartingale. As mentioned before, it will turn out not
to matter whether we consider acceptable or desirable gambles, or equivalently,
supermartingales or strict supermartingales. To be able to explain why that is,
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we will proceed with both. In particular, we will restrict Sceptic’s allowed betting
strategies to non-negative (strict) supermartingales, where the non-negativity
is imposed to prevent her from borrowing money. Non-negative supermartin-
gales M that start with unit capital M(�) are called test supermartingales.

Example 4. Consider a repetition of the experiment in Example 2, and a station-
ary forecasting system E

•

defined by E s( f ) = E( f ) = min{Ep0( f ), Ep1( f ), Ep2( f )}
for every s ∈ S and f ∈ L(X), with p0, p1 and p2 as in Example 2. An example
of a non-negative (test) supermartingale M is then given by the recursion equa-
tion ΔM(s) = (ΔM(s)(A),ΔM(s)(B),ΔM(s)(C)) � (

−M(s)
/2, M(s)

/2, −M(s)
/2) for every

s ∈ S, with M(�) � 1. E.g., for s = A, it follows that M(A) = M(�)+ΔM(�)(A) =
M(�) −M(�)

/2 = M(�)
/2 = 1

/2. It is easy to see that M is non-negative by construc-
tion and, for every s ∈ S, it holds that Es(ΔM(s)) = max{0, −M(s)

/2, 0} = 0. ♦

In what follows, we will use Sceptic’s allowed betting strategies—so non-
negative (strict) supermartingales—to introduce a notion of computable ran-
domness with respect to a forecasting system. We denote the set of all infinite
sequences of states—or so-called paths—by Ω � X

N and, for every such path
ω = (x1, . . . , xn, . . . ) ∈ Ω, we let ωn � (x1, . . . , xn) for all n ∈ N0.

However, not all betting strategies within the uncountable infinite set of
all allowed betting strategies are implementable. We will therefore restrict our
attention to those betting strategies that are computable, as an idealisation of
the ones that can be practically implemented.

4 A Brief Introduction to Computability

Computability deals with the ability to compute mathematical objects in an
effective manner, which means that they can be approximated to arbitrary pre-
cision in a finite number of steps. In order to formalise this notion, computability
theory uses so-called recursive functions as its basic building blocks [8,10].

A function φ : N0 → N0 is recursive if it can be computed by a Turing
machine, which is a mathematical model of computation that defines an abstract
machine. By the Church–Turing thesis, this is equivalent to the existence of
an algorithm that, upon the input of a natural number n ∈ N0, outputs the
natural number φ(n). The domain N0 can also be replaced by any other countable
set whose elements can be expressed by adopting a finite alphabet, which for
example allows us to consider recursive functions from S to N0 or from S×N0 to
N0. Any set of recursive functions is countable, because the set of all algorithms,
which are finite sequences of computer-implementable instructions, is countable.

We can also consider recursive sequences of rationals, recursive rational pro-
cesses and recursive nets of rationals. A sequence {rn}n∈N0 of rational numbers
is called recursive if there are three recursive maps a, b, σ from N0 to N0 such
that b(n) � 0 for all n ∈ N0 and rn = (−1)σ(n) a(n)

b(n) for all n ∈ N0. By replacing
the domain N0 with S, we obtain a recursive rational process. That is, a rational
process F : S → Q is called recursive if there are three recursive maps a, b, σ from
S to N0 such that b(s) � 0 for all s ∈ S and F(s) = (−1)σ(s) a(s)

b(s) for all s ∈ S.
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In a similar fashion, a net of rationals {rs,n}s∈S,n∈N0 is called recursive if there
are three recursive maps a, b, σ from S ×N0 to N0 such that b(s, n) � 0 for every
s ∈ S and n ∈ N0, and rs,n = (−1)σ(s,n) a(s,n)

b(s,n) for all s ∈ S and n ∈ N0.
Using these recursive objects, we now move on to define the following mathe-

matical objects that can be computed in an effective manner: computable reals,
computable real gambles, computable probability mass functions and, finally,
computable real processes such as non-negative supermartingales.

We say that a sequence {rn}n∈N0 of rational numbers converges effectively
to a real number x ∈ R if |rn − x | ≤ 2−N for all n, N ∈ N0 such that n ≥ N. A
real number x is then called computable if there is a recursive sequence {rn}n∈N0

of rationals that converges effectively to x. Of course, every rational number
is a computable real. A gamble f : X → R and a probability mass function
p : X → [0, 1] are computable if f (x) or p(x) is computable for every x ∈ X,
respectively. After all, finitely many algorithms can be combined into one.

However, a real process F : S → R may not be computable even if each of its
individual elements F(s) is, with s ∈ S, because there may be no way to com-
bine the corresponding infinite number of algorithms into one finite algorithm.
For that reason, we will look at recursive nets of rationals instead of recursive
sequences of rationals. We say that a net {rs,n}s∈S,n∈N0 of rational numbers con-
verges effectively to a real process F : S → R if |rs,n − F(s)| ≤ 2−N for all s ∈ S

and n, N ∈ N0 such that n ≥ N. A real process F is then called computable if
there is a recursive net {rs,n}s∈S,n∈N0 of rationals that converges effectively to
F. Of course, every recursive rational process is also a computable real process.
Observe also that, clearly, for any computable real process F and any s ∈ S, F(s)
is a computable real number. Furthermore, a constant real process is computable
if and only if its constant value is.

To end this section, we would like to draw attention to the fact that the set
of all real processes is uncountable, while the set of all computable real (or recur-
sive rational) processes is countable, simply because the set of all algorithms is
countable. In the remainder, we will denote by MC(E

•

) the set of all computable
non-negative supermartingales for the forecasting system E

•

.

5 Computable Randomness for Forecasting Systems

At this point, it should be clear how Forecaster’s uncertainty about a sequence
of variables X1, . . . , Xn, . . . can be represented by a forecasting system E

•

, and
that such a forecasting system gives rise to a set of betting strategies whose cor-
responding capital processes are non-negative (strict) supermartingales. We will
however not allow Sceptic to select any such betting strategy, but will require
that her betting strategies should be effectively implementable by requiring that
the corresponding non-negative (strict) supermartingales are computable. In this
way, we restrict Sceptic’s betting strategies to a countably infinite set. We will
now use these strategies to define a notion of computable randomness with
respect to a forecasting system E

•

. The definition uses supermartingales rather
than strict supermartingales, but as we will see shortly, this makes no difference.
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Loosely speaking, we call a path ω computably random for E
•

if there is no cor-
responding computable betting strategy M that allows Sceptic to become rich
without bounds along ω, i.e., supn∈N0

M(ωn
) = +∞, without borrowing.

Definition 5. A path ω is computably random for a forecasting system E
•

if
there is no computable non-negative real supermartingale M ∈ MC(E

•

) that is
unbounded along ω. We denote the collection of all forecasting systems for which
ω is computably random by E

S

C(ω).

It turns out that our definition is reasonably robust with respect to the
particular types of supermartingales that are considered.

Proposition 6. A path ω is computably random for a forecasting system E
•

if and only if there is no recursive positive rational strict test supermartingale
M ∈ MC(E

•

) such that limn→∞

M(ωn
) = +∞.

As a consequence, whenever we restrict Sceptic’s allowed betting strategies to
a set that is smaller than the one in Definition 5, but larger than the one in
Proposition 6, we obtain a definition for computably random sequences that is
equivalent to Definition 5. Consequently, it indeed does not matter whether we
restrict Sceptic’s allowed betting strategies to supermartingales or strict super-
martingales.

If we consider binary sequences and restrict Sceptic’s betting behaviour to
non-negative computable test supermartingales, our definition of computable
randomness coincides with the one that was recently introduced by De Cooman
and De Bock for binary sequences [5]. The equivalence is not immediate though
because the forecasting systems in Ref. [5] specify probability intervals rather
than coherent lower expectations. Nevertheless, it does hold because in the
binary case, for every coherent lower expectation, the corresponding closed con-
vex set of probability mass functions on X = {0, 1}—see Sect. 2—is completely
characterised by the associated probability interval for the outcome 1. Further-
more, in the case of binary sequences and stationary, precise, computable fore-
casting systems, it can also be shown that our definition of computable ran-
domness coincides with the classical notion of computable randomness w.r.t.
computable probability mass functions [11].

Next, we inspect some properties of computably random sequences ω and the
set of forecasting systems E

S

C(ω) for which ω is computably random. We start
by establishing that for every forecasting system E

•

, there is at least one path
ω ∈ Ω that is computably random for E

•

.

Proposition 7. For every forecasting system E
•

, there is at least one path ω
such that E

•

∈ E

S

C(ω).

Consider now the vacuous forecasting system E
•,v defined by Es,v � Ev for every

s ∈ S. Our next result shows that the set of forecasting systems E

S

C(ω) for which
ω is computably random is always non-empty, as it is guaranteed to contain this
vacuous forecasting system.



180 F. Persiau et al.

Proposition 8. All paths are computably random for the vacuous forecasting
system: E

•,v ∈ E

S

C(ω) for all ω ∈ Ω.

Furthermore, if a path ω is computably random for a forecasting system E
•

,
then it is also computably random for every forecasting system that is more
conservative.

Proposition 9. If ω is computably random for a forecasting system E
•

, i.e., if
E
•

∈ E

S

C(ω), then ω is also computably random for any forecasting system E ′

•

for
which E ′

•

≤ E
•

, meaning that E ′

s( f ) ≤ E s( f ) for all situations s ∈ S and gambles
f ∈ L(X).

The following result establishes an abstract generalisation of frequency stabil-
isation, on which early notions of randomness—like Church randomness—were
focused [2]. It states that if we systematically buy a gamble f for its coher-
ent lower expectation E( f ), then in the long run we will not lose any money.
The connection with frequency stabilisation will become apparent further on in
Sect. 6, where we present an intuitive corollary that deals with running aver-
ages of a gamble f along the infinite sequence ω and its computable infinite
subsequences.

Theorem 10. Consider a computable gamble f , a forecasting system E
•

for
which E

•

( f ) is a computable real process, a path ω = (x1, . . . , xn, . . . ) ∈ Ω that is
computably random for E

•

, and a recursive selection process S : S → {0, 1} for
which limn→+∞

∑n
k=0 S(x1:k) = +∞. Then

lim inf
n→+∞

∑n−1
k=0 S(x1:k)

[
f (xk+1) − E x1:k

( f )
]

∑n−1
k=0 S(x1:k)

≥ 0.

6 Computable Randomness for Lower Expectations

We now introduce a simplified notion of imprecise computable randomness with
respect to a single coherent lower expectation; a direct generalisation of com-
putable randomness with respect to a probability mass function. We achieve this
by simply constraining our attention to stationary forecasting systems: forecast-
ing systems E

•

that assign the same lower expectation E to each situation s ∈ S.
In what follows, we will call ω computably random for a coherent lower expecta-
tion E if it is computably random with respect to the corresponding stationary
forecasting system. We denote the set of all coherent lower expectations for which
ω is computably random by EC(ω).

Since computable randomness for coherent lower expectations is a special case
of computable randomness for forecasting systems, the results we obtained before
carry over to this simplified setting. First, every coherent lower expectation has
at least one computably random path.

Corollary 11. For every coherent lower expectation E, there is at least one
path ω such that E ∈ EC(ω).
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Secondly, EC(ω) is non-empty as every path ω is computably random for the
vacuous coherent lower expectation Ev.

Corollary 12. All paths are computably random for the vacuous coherent lower
expectation: Ev ∈ EC(ω) for all ω ∈ Ω.

Thirdly, if a path ω is computably random for a coherent lower expectation
E ∈ EC(ω), then it is also computably random for any coherent lower expectation
E ′ that is more conservative.

Corollary 13. If ω is computably random for a coherent lower expectation E,
then it is also computably random for any coherent lower expectation E ′ for
which E ′

≤ E, meaning that E ′

( f ) ≤ E( f ) for every gamble f ∈ L(X).

And finally, for coherent lower expectations, Theorem10 turns into a property
about running averages. In particular, it provides bounds on the limit inferior
and superior of the running average of a gamble f along the infinite sequence ω
and its computable infinite subsequences. Please note that unlike in Theorem 10,
we need not impose computability on the gamble f nor on the real number E( f ).

Corollary 14. Consider a path ω = (x1, . . . , xn, . . . ) ∈ Ω, a coherent lower expec-
tation E ∈ EC(ω), a gamble f and a recursive selection process S for which
limn→+∞

∑n
k=0 S(x1:k) = +∞. Then

E( f ) ≤ lim inf
n→+∞

∑n−1
k=0 S(x1:k) f (xk+1)
∑n−1

k=0 S(x1:k)
≤ lim sup

n→+∞

∑n−1
k=0 S(x1:k) f (xk+1)
∑n−1

k=0 S(x1:k)
≤ E( f ).

When comparing our notion of imprecise computable randomness with the
classical precise one, there is a striking difference. In the precise case, for a given
path ω, there may be no probability mass function p for which ω is computably
random (for example, when the running frequencies do not converge). But, if
there is such a p, then it must be unique (because a running frequency cannot
converge to two different numbers). In the imprecise case, however, according
to Corollary 12 and 13, every path ω is computably random for the vacuous
coherent lower expectation, and if it is computably random for a coherent lower
expectation E , it is also computably random for any coherent lower expecta-
tion E ′ that is more conservative—or less informative—than E. This leads us
to wonder whether for every path ω, there is a least conservative—or most
informative—coherent lower expectation Eω such that ω is computably random
for every coherent lower expectation E that is more conservative than or equal to
Eω, but not for any other. Clearly, if such a least conservative lower expectation
exists, it must be given by

Eω( f ) � sup{E( f ) : E ∈ EC(ω)} for all f ∈ L(X),

which is the supremum value of E( f ) over all coherent lower expectations E
for which ω is computably random. The crucial question is whether this Eω is
coherent (C1 and C2 are immediate, but C3 is not) and whether ω is computably
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random with respect to Eω. If the answer to both questions is yes, then Eω is the
least conservative coherent lower expectation for which ω is computably random.

The following example illustrates that there are paths ω for which this is
indeed the case. It also serves as a nice illustration of some of the results we
have obtained so far.

Example 15. Consider any set {p0, . . . , pM−1} of M pairwise different, com-
putable probability mass functions, and any path ω that is computably random
for the non-stationary precise forecasting system E

•

, defined by E s � Epn mod M

for all n ∈ N0 and s = x1:n ∈ S; it follows from Proposition 7 that there is at least
one such path. Then as we are about to show, ω is computably random for a
coherent lower expectation E ′ if and only if E ′

≤ E, with E( f ) � minM−1
k=0 Epk ( f )

for all f ∈ L(X).
The ‘if’-part follows by recalling Proposition 9 and noticing that for all s =

x1:n ∈ S and all f ∈ L(X):

E ′

( f ) ≤ E( f ) = min{Ep0( f ), . . . , EpM−1( f )} ≤ Epn mod M ( f ) = E s( f ).

For the ‘only if’-part, consider for every i ∈ {0, . . . ,M − 1} the selection pro-
cess Si : S → {0, 1} that assumes the value Si(x1:n) = 1 whenever n mod m = i
and 0 elsewhere. Clearly, these selection processes are recursive and limn→∞∑n

k=0 Si(x1, . . . , xn) = +∞ along the path ω = (x1, . . . , xn, . . . )—and any other
path, in fact. Furthermore, due to the computability of the probability mass
functions pi, it follows that E

•

( f ) is a computable real process for any com-
putable gamble f ∈ L(X). For any computable gamble f ∈ L(X), it therefore
follows that

E ′

( f ) ≤ lim inf
n→∞

n−1∑

k=0

f (xi+kM )

n
≤ lim sup

n→∞

n−1∑

k=0

f (xi+kM )

n
≤ Epi ( f ),

where the first and third inequality follow from Corollary 14 and Theorem 10,
respectively, and the second inequality is a standard property of limits inferior
and superior. Since (coherent lower) expectations are continuous with respect
to uniform convergence [13], and since every gamble on a finite set X can be
uniformly approximated by computable gambles on X, the same result holds
for non-computable gambles as well. Hence, for any gamble f ∈ L(X) we find
that E ′

( f ) ≤ Epi ( f ). As this is true for every i ∈ {0, . . . ,M − 1}, it follows that
E ′

( f ) ≤ E( f ) for all f ∈ L(X).
Hence, ω is indeed computably random for E ′ if and only if E ′

≤ E. Since
E is clearly coherent itself, this also implies that ω is computably random with
respect to E and—therefore—that Eω = E. So for this particular path ω, Eω = E
is the least conservative coherent lower expectation for which ω is computably
random. ♦

However, unfortunately, there are also paths for which this is not the case.
Indeed, as illustrated in Ref. [5], there is a binary path ω—so with X = {0, 1}—
that is not computably random for Eω with Eω( f ) �

1
2

∑
x∈{0,1} f (x) for every

gamble f ∈ L(X).
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Interestingly, however, in the binary case, it has also been shown that while
ω may not be computably random with respect to Eω, there are always coher-
ent lower expectations E that are infinitely close to Eω and that do make ω
computably random [5].2 So one could say that ω is ‘almost’ computably ran-
dom with respect to Eω. Whether a similar result continuous to hold in our more
general—not necessarily binary—context is an open problem. We conjecture that
the answer is yes.

Proving this conjecture is beyond the scope of the present contribution
though. Instead, we will establish a similar result for expectation intervals.

7 Computable Randomness for Expectation Intervals

As a final specialisation of our notion of computable randomness, we now focus
on a single gamble f on X and on expectation intervals I = [E( f ), E( f )] that
correspond to lower expectations for which ω is computably random. We will
denote the set of all closed intervals I ⊆ [min f ,max f ] by If .

Definition 16. A path ω is computably random for a gamble f ∈ L(X) and a
closed interval I if there is a coherent lower expectation E ∈ EC(ω) for which E( f ) =
min I and E( f ) = max I. For every gamble f ∈ L(X), we denote the set of all closed
intervals for which ω is computably random by If (ω).

Note that if ω is computably random for a gamble f and a closed interval I, it
must be that I ∈ If ; so If (ω) ⊆ If . This follows directly from C1 and conjugacy.
We can also prove various properties similar to the ones in Sect. 5 and 6. The
following result is basically a specialisation of Corollaries 11–13.

Proposition 17. Consider any gamble f ∈ L(X). Then

(i) for every I ∈ If , there is at least one ω ∈ Ω for which I ∈ If (ω);
(ii) for every ω ∈ Ω, If (ω) is non-empty because [min f ,max f ] ∈ If (ω);
(iii) for every ω ∈ Ω, if I ∈ If (ω) and I ⊆ I ′ ∈ If , then also I ′ ∈ If (ω).

Moreover, as an immediate consequence of Corollary 14, if ω is computably
random for a gamble f and a closed interval I ∈ If , then the limit inferior and
limit superior of the running averages of the gamble f along the path ω and its
computable infinite subsequences, lie within the interval I.

The properties in Proposition 17 lead to a similar question as the one we
raised in Sect. 6, but now for intervals instead of lower expectations. Is there,
for every path ω and every gamble f ∈ L(X), a smallest interval such that ω is
computably random or ‘almost’ computably random for this gamble f and all
intervals that contain this smallest interval, but for no other. The following result
is the key technical step that will allow us to answer this question positively. It
establishes that when ω is computably random for a gamble f and two intervals
I1 and I2, then it is also computably random for their intersection.
2 This result was established in terms of probability intervals; we paraphrase it in
terms of coherent lower expectations, using our terminology and notation.
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Proposition 18. For any ω ∈ Ω and f ∈ L(X) and for any two closed intervals
I and I ′ in If : if I ∈ If (ω) and I ′ ∈ If (ω), then I ∩ I ′ � ∅ and I ∩ I ′ ∈ If (ω).

Together with Proposition 17 and the fact that If (ω) is always non-empty,
this result implies that If (ω) is a filter of closed intervals. Since the intersection
of a filter of closed intervals in a compact space—such as [min f ,max f ]—is
always closed and non-empty [1], it follows that the intersection

⋂
If (ω) of all

closed intervals I for which ω is computably random with respect to f and
I, is non-empty and closed, and is therefore a closed interval itself. Recalling
the discussion in Sect. 6, it furthermore follows that

⋂
If (ω) = [Eω( f ), Eω( f )].

Similar to what we saw in Sect. 6, it may or may not be the case that ω is
computably random for the gamble f and the interval [Eω( f ), Eω( f )]; that is,
the—possibly infinite—intersection

⋂
If (ω) may not be an element of If (ω).

However, in this interval case, there is a way to completely characterise the
models—in this case intervals—for which ω is computably random. To that end,
we introduce the following two subsets of [min f ,max f ]:

L f (ω) � {min I : I ∈ If (ω)} and Uf (ω) � {max I : I ∈ If (ω)}.

Due to Proposition 17(iii), these sets are intervals: on the one hand L f (ω) =

[min f , Eω( f )] or L f (ω) = [min f , Eω( f )) and on the other hand Uf (ω) =

[Eω( f ),max f ] or Uf (ω) = (Eω( f ),max f ]. As our final result shows, these two
intervals allow for a simple characterisation of whether a path ω is computably
random for a gamble f and a closed interval I.

Proposition 19. Consider a path ω, a gamble f ∈ L(X) and a closed interval
I. Then I ∈ If (ω) if and only if min I ∈ L f (ω) and max I ∈ Uf (ω).

So we see that while ω may not be computably random for f and the inter-
val [Eω( f ), Eω( f )], it will definitely be ‘almost’ computably random, in the sense
that it is surely random for f and any interval I ∈ If such that min I < Eω( f )
and max I > Eω( f ). In order to get some further intuition about this result, we
consider an example where L f (ω) and Uf (ω) are closed, and where ω is therefore
computably random for f and [Eω( f ), Eω( f )].

Example 20. Consider two probability mass functions p0 and p1, and let the
coherent lower expectation E be defined by E( f ) � min{Ep0( f ), Ep1( f )} for all
f ∈ L(X). Then, as we have seen in Example 15, there is a path ω for which E is
the least conservative coherent lower expectation that makes ω random. Clearly,
for any fixed f ∈ L(X), if we let I � [E( f ), E( f )], it follows that

⋂
If (ω) = I ∈

If (ω), and therefore also that L f (ω) = [min f ,min I] and Uf (ω) = [max I,max f ].
Note that in this example, by suitably choosing p0 and p1, I can be any interval
in If , including the extreme cases where I = [min f ,max f ] or I is a singleton. ♦

8 Conclusions and Future Work

We have introduced a notion of computable randomness for infinite sequences
that take values in a finite sample space X, both with respect to forecasting
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systems and with respect to two related simpler imprecise uncertainty models:
coherent lower expectations and expectation intervals. In doing so, we have gen-
eralised the imprecise notion of computable randomness of De Cooman and De
Bock [5], from binary sample spaces to finite ones.

An important observation is that many of their ideas, results and conclusions
carry over to our non-binary case. On our account as well as theirs, and in
contrast with the classical notion of (precise) computable randomness, every path
ω is for example computably random with respect to at least one uncertainty
model, and whenever a path ω is computably random for a certain uncertainty
model, it is also computably random for any uncertainty model that is more
conservative—or less informative.

For many of our results, the move from the binary to the non-binary case
was fairly straightforward, and our proofs then mimic those in Ref. [5]. For
some results, however, additional technical obstacles had to be overcome, all
related to the fact that coherent lower expectations are more involved than
probability intervals. Proposition 18, for example, while similar to an analogous
result for probability intervals in Ref. [5], eluded us for quite a while. The key
step that made the proof possible is our result that replacing computable (real)
betting strategies with recursive (rational) ones leads to an equivalent notion of
computable randomness; see Proposition 6.

In our future work, we would like to extend our results in Sect. 7—that
for every path ω and every gamble f , ω is ‘almost’ computably random for
a unique smallest expectation interval—from expectation intervals to coherent
lower expectations. That is, we would like to prove that every path ω is ‘almost’
computably random for a unique maximally informative coherent lower expec-
tation. We are convinced that, here too, Proposition 6 will prove essential.

Furthermore, we would like to develop imprecise generalisations of other clas-
sical notions of randomness, such as Martin-Löf and Schnorr randomness [2], and
explore whether these satisfy similar properties. Moreover, we want to explore
whether there exist different equivalent imprecise notions of computable ran-
domness in terms of generalised randomness tests, bounded machines etc. [6]
instead of supermartingales. We also wonder if it would be possible to define
notions of computable randomness with respect to uncertainty models that are
even more general than coherent lower expectations, such as choice functions [4].

Finally, we believe that our research can function as a point of departure
for developing completely new types of imprecise learning methods. That is, we
would like to create and implement novel algorithms that, given a finite sequence
of data out of some infinite sequence, estimate the most informative expecta-
tion intervals or coherent lower expectation for which the infinite sequence is
computably random. In this way, we obtain statistical methods that are reli-
able in the sense that they do not insist anymore on associating a single precise
probability mass function, which is for example, as was already mentioned in
the introduction, not defensible in situations where relative frequencies do not
converge.
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