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hidden Markov model

Precise hidden Markov model Consider
a stationary precise hidden Markov model
(HMM) with 2n variables: n hidden states
Xk, taking values xk in a set {1, . . . ,m} and n
observations Ok, taking values ok. Both the
marginal model pX1(x1), the transition models
pXk|Xk−1

(xk|xk−1) and the emission models
pOk|Xk

(ok|xk) are unknown.

Baum–Welch algorithm Given the observa-
tion sequence (O1 = o1, . . . ,On = on), we can
use the Baum–Welch algorithm to obtain a
maximum-likelihood estimate of these local
models. With this algorithm, the likelihood of
the observation sequence converges to a local
maximum, but it is not guaranteed that we find
the global maximum.

Expected number of transitions The
Baum–Welch algorithm implicitly constructs
the expected number of transitions

ni j :=
n

∑
k=2

pXk−1,Xk|O1:n(i, j|o1:n)

in the whole Markov chain of the HMM.

Learning precise HMMs
Imprecise hidden Markov model An imprecise hidden
Markov model (iHMM) has the same graphical model but the
local models are imprecise.

Using Baum–Welch With the classical Baum–Welch algo-
rithm we obtain precise local models. We present a method for
learning imprecise transition models in an iHMM. We use the
expected number of transitions, obtained by the Baum–Welch
algorithm after sufficient iterations, to construct imprecise transi-
tion models.

Multinomial processes The transitions from a state Xk−1 = i
to a state Xk = j are multinomial processes. An imprecise Dirich-

let model (IDM) is a convenient model for describing uncertainty
about such processes. In order to learn using an IDM, we need
the number of transitions and a choice for the pseudocounts s.

Proposed transition model Since the hidden states are un-
available, our method consists in taking the expected number
of transitions derived from the Baum–Welch algorithm, rather
than real counts. We estimate the lower and upper probability
for state j conditional on state i by

Q({ j}|i) =
ni j

s+ni
and Q({ j}|i) =

s+ni j

s+ni
,

where ni := ∑
m
j=1 ni j.

Learning imprecise HMMs

The lower and upper probabilities have the following property: the imprecision increases by increasing number of states m.

Q({ j}|i)−Q({ j}|i) =
s+ni j

s+ni
−

ni j

s+ni
=

s
s+ni

Here ni = ∑
m
j=1 ni j the expected number of times that state i occurs in the n−1 variables X1, . . . ,Xn−1.

If the number of states m increases, then in general ∑
m
j=1 ni j will decrease, so the imprecision increases.

•With large m, we can know less precisely which state occurs, but knowing this state tells us much,

•With small m, we can know more precisely which state occurs, but knowing this state doesn’t tell us much.
⇒ The amount of information we can infer about an iHMM is limited.

Imprecision

We apply our method to the following problem: based on counted number of annual earthquakes in
107 subsequent years (1900 – 2006), we are interested in predicting the earthquake rate in future
years.

Transition model The credal sets in the upper eight simplices on the right represent, for different
values of the pseudocounts s, the transition models. The gray credal set represents Q(·|λ1), the blue
credal set represents Q(·|λ2) and the red credal set represents Q(·|λ3)

Prediction With the transition models learned with our method, we predicted the earthquake rate
in the years 2007, 2016, 2026 and 2036. We did this in two cases: the pseudocounts s = 2 and s = 5.
The lower four simplices on the right show conservative approximations (the smallest hexagons with
vertices parallel with the vertices of the simplex) for the credal sets representing the global model
RXT

(·|o1:n), updated to the observation sequence. The gray credal set represents the updated global
model with s = 5 and the blue credal set represents the updated global model with s = 2. As expected,
the global model for s = 5 include the global model for s = 2.
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We assume that

• the earth can be in 3 different seismic states λ1, λ2 and λ3,

• in each state, the emission of earthquakes is a Poisson process: pOi(oi|λλλ ) = e−λ λ oi

oi!
.

Predicting the earthquake rate

Learning imprecise probability models in an iHMM,
like our method does, is necessary before being
able to make inferences from such a model, e.g.,
with the MePICTIr algorithm. Dilation appears
here as the increase of the imprecision of the in-
ferences when the target node XT goes to the first
state X1. The interpretation of this phenomenon
is not yet clear. We did some experiments to esti-
mate the dilation in an iHMM with n = 50.

t = 30 t = 29 t = 28 t = 27 t = 26 t = 25 t = 24 t = 23 t = 22 t = 21

t = 20 t = 19 t = 18 t = 17 t = 16 t = 15 t = 14 t = 13 t = 12 t = 11

t = 10 t = 9 t = 8 t = 7 t = 6 t = 5 t = 4 t = 3 t = 2 t = 1

pX1(·) pXi|Xi−1(·|a) pXi|Xi−1(·|b) pXi|Xi−1(·|c) pOi|Xi(·|a) pOi|Xi(·|b) pOi|Xi(·|c)
a 0,3 0,1 0,1 000,,,888 000,,,888 0,1 0,1
b 0,3 000,,,888 0,1 0,1 0,1 000,,,888 0,1
c 0,4 0,1 000,,,888 0,1 0,1 0,1 000,,,888

The 30 simplices represent conservative approximations
of the updated global model RXT

(·|o1:n). The red dots
indicate the observations. The local models are linear-
vacuous mixtures, of which the precise components are
given in the table above.

Dilation


