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The existing framework of Markovian imprecise jump processes, also known as imprecise 
continuous-time Markov chains, is limited to bounded real variables that depend on 
the state of the system at a finite number of (future) time points. This is an issue in 
many applications, because typically the variables of interest depend on the state of the 
system at all time points in some – possibly unbounded – (future) interval, and they 
can be unbounded or even extended real valued; examples of such variables are temporal 
averages, the number of (selected) jumps in some interval and hitting times. To eliminate 
this shortcoming, we assume that the sample paths are càdlàg and use measure theory 
to extend the domain of Markovian imprecise jump processes to extended real-valued 
variables that may depend on the state of the system at all (future) time points – that 
is, the extended real variables that are bounded below or above and are measurable 
with respect to the σ -algebra generated by the cylinder events. We investigate the 
continuity properties of the extended lower and upper expectations with respect to point-
wise convergent sequences, and this yields generalisations of the Monotone Convergence 
Theorem and Lebesgue’s Dominated Convergence Theorem. For two particular classes of 
variables, we strengthen these convergence theorems and present an iterative scheme to 
approximate their lower and upper expectations. The first class is the number of selected 
jumps in some interval, and the second class are real variables that take the form of a 
Riemann integral over some interval; this second class includes temporal averages and 
occupancy times.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Recently, several authors have independently proposed generalisations of Markovian jump processes – also called 
continuous-time Markov chains or Markov processes – that provide an elegant way of dealing with parameter uncertainty 
[1–3]. Whereas a (homogeneous) Markovian jump process is uniquely defined by its rate matrix and initial probability mass 
function, these ‘imprecise’ generalisations allow for partially specified parameters: they are defined through sets of rate 
matrices and/or sets of initial probability mass functions.

There are two frameworks that obtain similar, and to some extent even equivalent, results. The first framework is the 
one advanced by Škulj [1] and Krak et al. [2], who use the theory of imprecise probabilities [4]. Škulj [1] starts from a set Q
of rate matrices (one that is convex and compact and has separately specified rows, to be exact), defines an ‘imprecise 
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continuous-time Markov chain’ as a ‘random process’ whose (time-dependent) ‘rate matrix’ is an unspecified function of 
time such that it belongs to the set Q at all times – although he never formalises what he means with a ‘random process’ 
and its (time-dependent) ‘rate matrix’ – and explains how one can compute lower and upper bounds on the corresponding 
expectation of variables that depend on the state of the system at a single time point. Krak et al. [2] put this work on a 
more sound theoretical footing, and significantly extend it. First, they formally define ‘continuous-time stochastic processes’ 
as coherent conditional probabilities [5–7] on a specific domain, and for these ‘continuous-time stochastic processes’ they 
introduce the notions of consistency with a set M of initial probability mass functions and a (bounded) set Q of rate 
matrices. Second, they define ‘imprecise continuous-time Markov chains’ as sets of ‘continuous-time stochastic processes’ 
that are consistent with sets M and Q. In particular, they consider three such sets: the set of all consistent ‘homogeneous 
continuous-time Markov chains’, the set of all consistent (not necessarily homogeneous) ‘continuous-time Markov chains’ 
and the set of all consistent (not necessarily Markovian) ‘continuous-time stochastic processes’. Third, they provide algo-
rithms to determine (tight) lower and upper bounds on the corresponding expectations of variables that depend on the 
state of the system at a finite number of (future) time points. Nendel’s [3] approach, on the other hand, is situated in the 
theory of non-linear (or convex) expectations – see also [8]. Leaning on a type of ‘Kolmogorov Extension Theorem’ for con-
vex expectations [9, Theorems 4.6 and 5.6], he shows that any ‘convex Q-operator’ corresponds to a ‘convex Markov chain’, 
which is a convex expectation on the bounded measurable variables with respect to the product σ -algebra generated by the 
canonical process. However, both of these frameworks have crucial shortcomings: that of Škulj [1] and Krak et al. [2] only 
deals with lower and upper expectations of variables that depend on the state of the system at a single time point or at a 
finite number of time points, respectively, while that of Nendel [3] only deals with bounded variables that are measurable 
with respect to the product σ -algebra. For applications, this implies that for both of these frameworks, key inferences like 
(lower and upper) until probabilities, expected temporal averages, expected occupancy times, expected hitting times – also 
called expected first-passage times – and the expected number of (selected) jumps are not included in the domain.

To the best of our knowledge, this shortcoming of the theory of imprecise jump processes has only been circumvented by 
Troffaes et al. [10] – although Erreygers and De Bock [11] do something similar in the context of lumping. Troffaes et al. [10]
use an imprecise jump process to assess the reliability of a power network, and use the corresponding ‘limit lower/upper 
expectation’ to heuristically obtain conservative bounds on the – theoretically undefined – lower/upper expectation of two 
classes of variables that depend on the state of the system at more than a finite number of time points: (i) occupancy times, 
or variables that represent the amount of time spent in a (set of) state(s) during some time period; and (ii) variables that 
represent the number of jumps – sometimes also called visits or transitions – to a (set of) state(s) during some time period. 
In contrast, we take it upon us to get rid of this shortcoming in a theoretically sound manner. More precisely, we extend 
the domain of imprecise jump processes so that the lower/upper expectation of more general variables is well defined, and 
we investigate the theoretical properties of this extension. Furthermore, we provide computational methods for the two 
aforementioned classes of variables, and show that these methods outperform the heuristics of Troffaes et al. [10], at least 
when it comes to tightness of the bounds.

The remainder of this contribution is structured as follows. In Section 2, we introduce jump processes in general and 
Markovian jump processes in particular, and we briefly introduce imprecise jump processes in Section 3. With these prelim-
inaries out of the way, we set out to extend the domain of (imprecise) jump processes in Section 4. We start in Section 4.2
with extending the domain of a single countably additive jump process through Lebesgue integration, and show in Sec-
tion 4.3 that this extended domain includes two important classes of variables: the number of (selected) jumps over a 
finite time period in Lemma 28 and integrals of a function of the state over a finite time period in Lemma 32. A crucial 
difference between our approach to jump processes and the predominant (measure-theoretic) one is that ours takes the 
càdlàg paths as a starting point, whereas the latter usually starts from the set of all paths to end up with the set of all 
càdlàg paths through a so-called modification. Next, Section 4.4 extends the domain of (the lower and upper expectations 
corresponding to) the three types of Markovian imprecise jump processes that we consider. The reason why we can do this 
is that by Theorem 33, any jump process that is consistent with a (bounded) set of rate matrices is countably additive. 
Hence, we can extend the domain of each jump process in the Markovian imprecise jump process through the aforemen-
tioned extension method for countably additive jump processes, and subsequently take the lower and upper envelopes of 
these extensions. In Section 5, we investigate the convergence properties of the lower and upper expectations correspond-
ing to imprecise jump processes. Initially, we generalise two well-known convergence theorems to the context of imprecise 
jump processes: Theorem 36 generalises the Monotone Convergence Theorem – see Theorem 34 – while Theorem 37 is 
a generalisation of Lebesgue’s Dominated Convergence Theorem – see Theorem 35. While the limits in these convergence 
theorems provide conservative bounds in general, Corollaries 45 and 48 establish that these bounds are actually tight for 
the two aforementioned classes of variables. We then use these convergence properties in Section 6 to propose iterative 
computational methods – see Theorems 65 and 66 – to determine the lower and upper expectations of variables in the two 
aforementioned classes. Section 7 concludes this contribution.

This contribution is the significantly extended journal version of [12], and contains many results that are also available in 
the first author’s doctoral dissertation [13]. That said, the results in Sections 5.1 and Theorem 65 in Section 6.2 are entirely 
new. In order not to make this contribution unnecessarily long, we have chosen to omit our proof for some of the results 
that are not novel – most notably those of Theorems 33 and 39 – and to refer to the relevant result in [13].
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2. Jump processes

A stochastic process is a model of someone’s uncertainty about (the evolution of) the state of some system over time. In 
this contribution, we consider a generic system that evolves over continuous time whose state takes on values in a finite 
set; following Gikhman and Skorokhod [14] and Le Gall [15] – to name just a few – we call a stochastic process for such a 
system a jump process. We denote the state space of the system by X ; throughout this contribution, except in the examples, 
X is a fixed non-empty and finite set.

Example 1. Throughout this contribution, we turn to the (imprecise) jump process model used in [10] to illustrate our 
results. Troffaes et al. [10] construct this model to assess the reliability of a power network; they follow up on their earlier 
work [16] and consider a power network that consists of two power lines, called A and B. The reason why there are two 
is redundancy: the network works as long as at least one of the two power lines is working. Thus, an independent failure 
of one of the two power lines is not that much of an issue, because it does not cause a power outage as long as the other 
power line is in operation. If both power lines fail due to the same cause, this does result in a power outage; whenever 
this occurs, we speak of a common cause failure. Knowing this, the relevant state space is clearly X := {AB, A, B, F}, where 
the state F corresponds to a failure of both power lines and where the other state labels indicate the power lines that are 
working.

In the measure-theoretical tradition – see, for example, [14,15,17–19] – a jump process is made up of four ingredients: 
a sample space S, a σ -algebra of events S over this sample space, a probability measure P on this σ -algebra and a family 
of S/2X -measurable variables (Xt)t∈R≥0 , where 2X denotes the power set of X . Krak et al. [2] use a slightly different 
structure: they use a coherent conditional probability [5–7] on the specific domain of ‘cylinder events’ over some sufficiently 
rich subset of XR≥0 , where we denote the set of all maps from R≥0 to X by XR≥0 . We set out to marry both of these 
approaches so that we can keep the best of both worlds, and we will get down to this in Section 4 further on. In the present 
section, we will briefly recapitulate Krak et al. [2] their approach to jump processes.

We start in Section 2.1 by introducing the set of càdlàg paths, which will be our sample space. Next, Section 2.2 defines 
the necessary notation and terminology regarding cylinder events, which are those events that depend on the state of the 
system at a (finite) number of time points. After introducing general coherent conditional probabilities in Section 2.3, we can 
define jump processes as coherent conditional probabilities with a specific domain in Section 2.4, and explain in Section 2.5
how a jump process corresponds to a conditional expectation operator whose domain is the set of real-valued variables that 
depend on the state of the system at a finite number of (future) time points. Finally, Section 3.2 deals with the important 
special case of homogeneous Markovian jump processes.

2.1. Càdlàg paths

Because the system evolves in continuous time, an outcome in the sample space is a path ω : R≥0 → X , where ω(t)
is the state of the system at the time point t in R≥0.1 In general, a path ω can display some pretty erratic behaviour; 
take, for example, the path ωe that assumes the state ωe(t) := x whenever the time point t is a rational number and the 
state ωe(t) := y otherwise, with x, y in X such that x �= y. In many applications, including in the setting of Example 1, this 
erratic behaviour is clearly infeasible. Hence, we choose to exclude this erratic behaviour, and we do so as follows: we only 
include the path ω in our sample space if (i) it stays in the new state for some time directly after it changes states, and 
(ii) it only changes states a finite number of times over any finite time horizon. Mathematically, this translates to requiring 
that (i) the path ω is continuous from the right at all time points t in R≥0, and (ii) the path ω has a limit from the left 
at all time points t in R>0 – both with respect to the discrete topology on X . Whenever the path ω satisfies these two 
requirements, it is called a càdlàg path; see, for example, [20, Section 12] or [15, p. 54]. We collect all càdlàg paths in the 
set �, which is sometimes called the Skorokhod space, and this will be our sample space.

Krak et al. [2] do not assume càdlàg paths a priori, for the simple reason that this assumption is not relevant in their 
setting. Instead, they consider any set of paths �′ – that is, any (non-empty) subset of XR≥0 – such that

(∀n ∈N)(∀t1, . . . , tn ∈R≥0 : t1 < · · · < tn)(∀x1, . . . , xn ∈ X )(∃ω ∈ �′) ω(t1) = x1, . . . ,ω(tn) = xn. (1)

However, when extending the domain to extended real variables that depend on the state of the system at all (future) time 
points, which we will do in Section 4 further on, it is absolutely essential that all paths in the sample space are càdlàg. It 
is almost trivial to verify that the set of càdlàg paths � satisfies the requirement in Eqn. (1) [13, Lemma 3.5]; hence, our 
more restricted set up falls squarely in the scope of Ref. [2].

1 We denote the set of real numbers, non-negative real numbers and positive real numbers by R, R≥0 and R>0, respectively. Furthermore, N denotes 
the natural numbers (or positive integers) and R :=R ∪ {−∞, +∞} the extended real numbers.
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2.2. Cylinder events

Let us identify some events – that is, subsets of the sample space � – that play an essential role in our analysis. The 
most elementary events are those that depend on the state of the system at a single point in time. For any time point t
in R≥0 and any state x in X , we denote the event that ‘the state of the system at time t is x’ by

{Xt = x} := {ω ∈ � : ω(t) = x}.
In a similar fashion, we let

{Xt ∈ B} := {ω ∈ � : ω(t) ∈ B} =
⋃
x∈B

{Xt = x}

for any subset B of X ; in line with this notation, we let Xt : � →X be the projector defined by

Xt(ω) := ω(t) for all ω ∈ �.

To simplify the notation regarding events that depend on more than a single time point, we use notational conventions 
similar to those introduced by Krak et al. [2, Section 2.1]. A sequence of time points is a finite sequence of increasing 
time points, that is, a sequence (t1, . . . , tn) in R≥0 of arbitrary length – with n in N – such that t1 < · · · < tn . For the 
sake of brevity, we denote a generic sequence by u, v or w . We collect all sequences of time points in Une, and let 
U := Une ∪ {( )}, where ( ) denotes the empty sequence. We denote the first and last time points of a non-empty sequence 
of time points u = (t1, . . . , tn) by min u := t1 and max u := tn , respectively; in order to conveniently deal with the edge case 
that u is the empty sequence of time points ( ), we let min( ) := 0 =: max( ). For u and v in U , we write u � v whenever v
only contains time points in or succeeding u, in the sense that every time point t in v belongs to u or to [max u, +∞[; note 
that ( ) � v for all v in U . Similarly, for all u, v in Une, we write u ≺ v whenever v only contains time points succeeding 
those in u, in the sense that max u < min v; out of convenience, we let ( ) ≺ v for all v in U . With this convention, for any 
t in R≥0, we let U≺t := {u ∈ U : u ≺ (t)} be the set of all sequences of time points of which the last time point precedes t; 
if t = 0, then there is no such non-empty sequence, so U≺t = {( )}. Because a sequence of time points is an ordered set, we 
may use set-theoretic operations on sequences of time points, in the understanding that the result of such an operation is 
again a sequence of time points; for example, for all u, v in U , u ∪ v denotes the sequence of time points that is made up 
of the time points in u and v . Finally, for any sequence of time points u = (t1, . . . , tn) in Une, we let Xu :=×t∈u X be the 
set of all n-tuples xu = (xt1 , . . . , xtn ) of states in X , and we always index these tuples with the time points t1, . . . , tn . If u is 
the empty sequence ( ), then we let Xu =X( ) denote the singleton containing the empty tuple, denoted by x( ) .

Fix some v = (t1, . . . , tn) in Une. Then we let Xv : � →Xv be the projector defined by

Xv(ω) := (
ω(t1), . . . ,ω(tn)

)
for all ω ∈ �.

Furthermore, for any B ⊆Xv , we define the corresponding event

{Xv ∈ B} := {ω ∈ � : (ω(t1), . . . ,ω(tn)) ∈ B};
an event of this form is called a cylinder event [17, Section 36]. In order to reduce the number of edge cases, we also let 
{X( ) = x( )} := � =: {X( ) ∈X( )}.

For any u in U , Krak et al. [2, Section 4.2] let Au be the set of events that consists of the cylinder events for all 
sequences v with time points in or succeeding u:

Au := {{Xv ∈ B} : v ∈ U, u � v, B ⊆ Xv
}
.

Crucially, Au is an algebra of events2 [13, Lemma 3.10]. In order to shorten our notation, we will leave out the subscript u
whenever u is the empty sequence of time points: A := A( ) .

2.3. Coherent conditional probabilities

In order to deal with conditioning in an unambiguous manner, Krak et al. [2] resort to the framework of coherent 
conditional probabilities. What follows is a brief introduction to coherent conditional probabilities; we refer to Dubins [7]
and Regazzini [6] for a more detailed exposition. Throughout this section, we let S be a generic non-empty set.

First, let us revisit the issue of conditioning for probability charges. Given an algebra S on S, a probability charge P on S
is a non-negative real-valued function P on S that is normed and additive, in the sense that P (S) = 1 and P (A ∪ B) =

2 For any generic sample space S, an algebra (of events) on S – also called a field (of events) on S – is a collection S of subsets of S which includes 
the empty set ∅ and is closed under taking complements and unions; see [21, Definition 1.1.1], [17, p. 19] or [4, Definition 1.6].
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P (A) + P (B) for all disjoint events A, B in S . For such a probability charge P , conditioning is dealt with through Bayes’s 
rule: for any event C such that P (C) > 0, the corresponding map

P (• | C) : S → R≥0 : A �→ P (A | C) := P (A ∩ C)

P (C)

is again a probability charge on the domain S of P . For any non-empty event C in S with probability zero, the correspond-
ing conditional probabilities are left undefined. Measure theory has one way to mitigate this issue with conditioning on 
events with probability zero, through the Radon-Nikodym Theorem [18, Chapter 21], but the resulting conditional probabil-
ities essentially suffer from the same issue, as they are not uniquely defined on a set with probability zero.

We mitigate this issue of conditioning on events with probability zero in a different way, by turning to the notion of 
full conditional probabilities – see [7, Section 3] or [6, Definition 2]. Henceforth, we denote the set of all events – that is, 
subsets of S – by 2S and let 2Sne := 2S \ {∅} be the set of all events that are non-empty.

Definition 2. Consider two algebras of events G, H ⊆ 2S such that G includes H. A full conditional probability P on K :=
G × (H \ {∅}) is a real-valued map on K such that, for all A, B in G and C , D in H \ {∅},

CP1. P (A | C) ≥ 0;
CP2. P (A | C) = 1 whenever A includes C ;
CP3. P (A ∪ B | C) = P (A | C) + P (B | C) whenever A and B are disjoint;
CP4. P (A ∩ D | C) = P (A | D ∩ C)P (D | C) whenever C and D are not disjoint.

It should be clear that the notion of a full conditional probability generalises the notion of a probability charge in such 
a way that conditioning on events with probability zero is dealt with in a unique manner. Indeed, properties (CP1)–(CP3) 
ensure that P (• | C) is a probability charge on G for every conditioning event C in H \ {∅}, while property (CP4) is a 
multiplicative version of Bayes’s rule.

Next, we deal with conditional probabilities whose domain does not have the structure as in Definition 2, and we do so 
through the so-called coherence condition. Regazzini [6, Definition 1] gives several equivalent forms of this condition, but 
we repeat the simpler form of Krak et al. [2, Definition 4.2]. In it, we let IA : S → R denote the indicator of an event A
in 2S , which is the real map that takes on the value 1 on A and 0 elsewhere.

Definition 3. Consider a non-empty subset K of 2S × 2Sne. A coherent conditional probability P on K is a real-valued map 
on K such that for all n in N , (A1, C1), . . . , (An, Cn) in K and μ1, . . . , μn in R,

max

{
n∑

k=1

μkICk (s)
(
IAk (s) − P (Ak | Ck)

) : s ∈
n⋃

k=1

Ck

}
≥ 0.

This coherence condition might seem daunting at first, but it has an intuitive betting interpretation: we can think of P (A |
C) as the ‘called-off fair price’ for the uncertain reward IA contingent on C , and the coherence condition in Definition 3
then ensures that these called-off fair prices do not permit a ‘Dutch book’, that is, do not lead to a partial – or sure – loss. 
For a more thorough explanation of this betting interpretation, we refer the interested reader to [13, Section 2.4.1] – and 
also to Williams’s [22,23] more general work or the more recent treatment by Troffaes and De Cooman [4, Chapter 13]. De 
Finetti [24, Section 2.3.2] cautions that this betting interpretation arguably only makes sense whenever for all (A, C) in K, 
the events A and C are ‘well-determined’, in the sense that they ‘should be specified in such a way that a possible bet 
based upon [them] can be decided without question’. For this reason, it is only in this specific case that we will impose the 
coherence condition of Definition 3.

A second – and perhaps more important – argument for using the coherence condition is that it ensures that the 
conditional probability P on K has desirable properties: Regazzini [6, Section 2] states that P is a non-negative real-
valued function that satisfies (CP1)–(CP4) on its domain K. Note that the converse does not hold in general: demanding 
that (CP1)–(CP4) hold on the domain K is not sufficient to guarantee that a real-valued function P on K is a coherent 
conditional probability – Krak et al. [2, Example 4.1] give a concise counterexample. However, Regazzini [6, Theorem 3]
shows that (CP1)–(CP4) suffice for coherence whenever the domain K has the structure required in Definition 2.

Theorem 4. Consider two algebras of events G, H ⊆ 2S such that G includes H, and let K := G × (H \ {∅}). Then a real-valued 
map P on K is a full conditional probability on K if and only if it is a coherent conditional probability on K.

Another strong argument for using coherent conditional probabilities is that they can always be coherently extended to 
a larger domain [see 6, Theorem 4].
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Theorem 5. Consider a coherent conditional probability P on a non-empty domain K ⊆ 2S × 2Sne . Then for any larger domain K�

such that K ⊆ K� ⊆ 2S × 2Sne , there is a coherent conditional probability P � on K� that extends P , or equivalently, that coincides 
with P on K.

Together with Theorem 4, this result implies that coherent conditional probabilities are simply restrictions of full condi-
tional probabilities to domains that are not of the form in Definition 2.

2.4. Jump processes as coherent conditional probabilities

Krak et al. [2, Definition 4.3] define a jump process as a coherent conditional probability with domain

D := {
(A | Xu = xu) : u ∈ U, xu ∈ Xu, A ∈ Au

}
, (2)

where we write (A | Xu = xu) instead of (A, {Xu = xu}).

Definition 6. A jump process P is a coherent conditional probability on D. We let P be the set of all jump processes.

Note that the domain D is not of the form in Definition 2, but Theorems 4 and 5 ensure that there is a (coherent) 
conditional probability on A × (A \ {∅}) that extends P . For every (A | Xu = xu) in D, the conditioning event {Xu = xu} and 
the finitary event A in the algebra Au depend on the state of the system at a finite number of time points, so a bet on 
these events can be decided without question – at least if we agree to the idealisation that for any given time point, we 
can observe the state of the system at precisely that time point, or alternatively, that we can measure time with arbitrary 
precision. Because the pairs of events in the domain D are ‘well-determined’, it arguably makes sense to impose coherence.

2.5. Expectation corresponding to a jump process

Every jump process P in P induces a (conditional) expectation operator E P . To define E P , we fix some conditioning 
event {Xu = xu}, with u in U and xu in Xu . Recall from right before Theorem 4 that, because P is a coherent conditional 
probability on D, P (• | Xu = xu) satisfies (CP1)–(CP3) on Au , meaning that P (• | Xu = xu) is a probability charge. This prob-
ability charge P (• | Xu = xu) corresponds to an expectation operator E P (• | Xu = xu) that is defined on the set of Au-simple 
variables in the usual way: through the Dunford integral [4, Definition 8.13], or equivalently, through natural extension [4, 
Theorem 8.15]. Let us define this (conditional) expectation operator formally.

For the sake of generality – we also need the following concepts in Section 4.2 further on – we consider a generic sample 
space S and an algebra S over this sample space. A variable is a map on S, and we call a variable (extended) real if it 
takes values in the (extended) reals. For example, for any event A in 2S , its indicator IA : S → R is a (real) variable. A 
(real) variable f : S →R is called S-simple if it has a representation of the form f =∑n

k=1 akIAk for some n in N , a1, . . . , 
an in R and A1, . . . , An in S [4, Definition 1.16]. It is relatively easy to check that the set of S-simple variables, which we 
will denote by S(S), constitutes a real vector space that includes all constant maps from S to R.

A probability charge P on S corresponds to an expectation operator E P : S(S) →R through Dunford integration: for all 
f in S(S),

E P ( f ) :=
n∑

k=1

ak P (Ak), (3)

where 
∑n

k=1 akIAk is any representation of f of the aforementioned type; this representation of the S-simple variable f
need not be unique, but Troffaes and De Cooman [4, Definition 1.16] show that this expectation does not depend on the 
specific representation used. This expectation has some convenient properties [4, Lemma 8.14 and Corollary 4.14]:

E1. min f ≤ E P ( f ) ≤ max f for all f in S(S);
E2. E P (μ f ) = μE P ( f ) for all f in S(S) and μ in R;
E3. E P ( f + g) = E P ( f ) + E P (g) for all f , g in S(S);
E4. E P ( f ) ≤ E P (g) for all f , g in S(S) such that f ≤ g;
E5. E P ( f + μ) = E P ( f ) + μ for all f in S(S) and μ in R.

In the particular setting of jump processes, this specialises as follows. For any sequence of time points u in U , we denote 
the set of Au -simple variables by Su := S(Au). Fix any jump process P . Then for any u in U and xu in Xu , we denote the 
expectation on Su corresponding to the probability charge P (• | Xu = xu) on Au by E P (• | Xu = xu) := E P (•|Xu=xu) . This way, 
we have defined the expectation E P on

JS := {( f | Xu = xu) : u ∈ U, xu ∈ Xu, f ∈ Su},
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where – as in Eqn. (2) – we favour writing ( f | Xu = xu) instead of ( f , {Xu = xu}).
Because every event in Au depends on the state of the system at a finite number of time points in or succeeding u, 

it is rather obvious that the same holds for every Au-simple variable. For this reason, these variables have a convenient 
representation, for which we introduce some additional notation. For any v in U and any real-valued function g on Xv , we 
let

g(Xv) := g ◦ Xv =
∑

yv∈Xv

g(yv)I{Xv=yv }

denote the function composition of g after Xv . It is obvious that g(Xv ) is a real variable, which is Au -simple whenever 
v � u; in this case Eqn. (3) specialises to

E P (g(Xv) | Xu = xu) =
∑

yv∈Xv

g(yv)P (Xv = yv | Xu = xu). (4)

Conversely, it is not difficult to verify that every Au-simple variable f is of the form g(Xv) with v � u [13, Lemma 3.15].

Lemma 7. Consider some u in U and some real variable f : � → R. Then f is Au-simple if and only if there is some v in Une with 
u � v and a real-valued function g on Xv such that f = g(Xv).

2.6. Markovianity and homogeneity

In general, specifying a jump process is a non-trivial task: one has to specify all probabilities of the form P (A | Xu = xu)

with A in Au in such a way that the resulting real-valued map P on D is a coherent conditional probability – that is, 
satisfies the non-trivial coherence condition in Definition 3. For this reason, it is customary to assume the following two 
simplifying properties. As we will presently see, these two properties – as well as a mild continuity property – ensure that 
a jump process is completely and uniquely determined by two parameters: its initial probability mass function and its rate 
matrix. The first property is the all-important Markov property, which simplifies the so-called transition probabilities: given 
the present state, the probability of a future state does not depend on (a finite specification of) the past states.

Definition 8. A jump process P is Markovian – or, alternatively, has the Markov property – if for all t, � in R≥0, x, y in X , 
u in U≺t and xu in Xu ,

P (Xt+� = y | Xt = x, Xu = xu) = P (Xt+� = y | Xt = x).

We denote the set of all Markovian jump processes by PM.

The second property simplifies the transition probabilities of Markovian jump processes even more: it demands that the 
probability of going from the present state to some future state only depends on the duration of the time period and not 
on the present time point.

Definition 9. A Markovian jump process P is homogeneous if for all t, � in R≥0 and x, y in X ,

P (Xt+� = y | Xt = x) = P (X� = y | X0 = x).

We denote the set of all homogeneous Markovian jump processes by PHM.

To appreciate just how much these two properties simplify the jump process P , we need to introduce some additional 
mathematical machinery. The set of real-valued functions on X , which we will denote by RX , is a real vector space. One 
important subset of RX are the probability mass functions: those real-valued functions p on X which are non-negative and 
normalised, meaning that p(x) ≥ 0 for all x in X and 

∑
y∈X p(y) = 1.

We will repeatedly use transformations on RX – or maps from RX to RX – which we will simply call operators. 
One example of an operator is the identity operator I , which maps any f in RX to itself: I f := f . An operator M is non-
negatively homogeneous if M(λ f ) = λM f for all λ in R≥0 and f in RX . Furthermore, we call an operator M superadditive
if M( f + g) ≥ M f + Mg for all f , g in RX , and additive if this relation holds with equality instead of inequality. An 
operator M that is non-negatively homogeneous and additive is called linear, and in that case M is homogeneous, in the 
sense that M(μ f ) = μM f for all μ in R and f in RX . Although it is technically incorrect, we will usually refer to a linear 
operator M as a matrix, because a linear operator M is completely determined by its ‘components’: for all x, y in X , the 
(x, y)-component of M is M(x, y) := [MIy](x), where Iy is the real-valued function on X that takes the value 1 in y and 0
elsewhere. Then for all f in RX and x in X ,
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[M f ](x) =
⎡
⎣M

⎛
⎝∑

y∈X
f (y)Iy

⎞
⎠
⎤
⎦(x) =

∑
y∈X

[MIy](x) f (y) =
∑
y∈X

M(x, y) f (y). (5)

Clearly, the identity operator I is linear. For homogeneous Markovian jump processes, an important class of matrices are the 
rate matrices.

Definition 10. A rate matrix Q is an operator Q : RX →RX such that

R1. Q (μ f ) = μQ f for all μ in R and f in RX ; [homogeneity]
R2. Q ( f + g) = Q f + Q g for all f , g in RX ; [additivity]
R3. [Q Iy](x) ≥ 0 for all x, y in X such that x �= y; [non-negative off-diagonal components]
R4. Q μ = 0 for any constant real-valued function μ on X . [zero on constant functions]

We denote the set of all rate matrices by Q.

It might not be immediately clear that our definition of a rate matrix coincides with the usual one, for example that of 
Norris [25, Section 2.1]. To see that this is the case, it suffices to realise that (i) (R1) and (R2) ensure that Q is a matrix; and 
(ii) due to Eqn. (5), (R4) is equivalent to requiring that the matrix Q has zero row sums, in the sense that 

∑
y∈X Q (x, y) = 0

for all x in X .
We equip the real vector space RX with the maximum norm ‖•‖ [26, Section 23.3], defined by

‖ f ‖ := max
{| f (x)| : x ∈ X

}
for all f ∈RX .

The maximum norm ‖•‖ on RX induces an operator norm on the real vector space of non-negatively homogeneous oper-
ators [2, Eqn. (1)], which we will also denote by ‖•‖: for any non-negatively homogeneous operator M on RX ,

‖M‖ := sup{‖M f ‖: f ∈RX ,‖ f ‖ = 1};
this is a straightforward generalisation of the induced operator norm for matrices [see 26, Section 23.1] to non-negatively 
homogeneous operators. It is well-known [see 26, Section 23.3] that for any matrix M ,

‖M‖ = max

⎧⎨
⎩
∑
y∈X

|M(x, y)| : x ∈ X

⎫⎬
⎭,

and – see for example [11, Eqn. (5)] or [13, (R5) on p. 81] – that for any rate matrix Q ,

‖Q ‖ = 2 max{−Q (x, x) : x ∈ X }. (6)

With this machinery in place, let us now get back to homogeneous Markovian jump processes. Fix a probability mass 
function p : X → [0, 1] and a rate matrix Q : RX → RX . Then it is essentially well-known – see for example [13, Theo-
rem 3.37] or [2, Corollary 5.3] – that there is a unique jump process such that its so-called initial probabilities are given by 
p, in the sense that

P (X0 = x) = p(x) for all x ∈ X , (7)

and its so-called transition probabilities are given by the matrix exponential3 of Q , in the sense that

P (Xt+� = y | Xu = xu, Xt = x) = [
e�Q Iy

]
(x) for all t,� ∈R≥0, u ∈ U≺t, xu ∈ Xu, x, y ∈ X . (8)

Clearly, this unique jump process P is Markovian and homogeneous. Because it is fully characterised by p and Q , we 
denote it by P p,Q . It follows from Eqns. (4), (5) and (8) that for all t, � in R≥0, u in U≺t , xu in Xu , x in X and f
in RX ,

E P p,Q ( f (Xt+�) | Xu = xu, Xt = x) =
∑
y∈X

f (y)P p,Q (Xt+� = y | Xu = xu, Xt = x) = [
e�Q f

]
(x). (9)

3 For any matrix M and real number μ, the matrix exponential eμM of μM is

eμM := lim
n→+∞

(
I + μ

n
M
)n = lim

n→+∞

n∑
k=0

μk Mk

k! .
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It is now natural to wonder whether the converse is true as well: is there, for every homogeneous Markov jump process 
P , a probability mass function p and rate matrix Q such that P = P p,Q ? The answer is yes, provided that we focus on 
homogeneous Markovian jump process that are continuous in zero, in the sense that

lim
t↘0

P (Xt = x | X0 = x) = 1 for all x ∈ X ;

see for example [13, Theorem 3.35]. Since this condition is extremely mild – it basically requires that the probability of 
jumping instantaneously is zero – we see that, in practice, homogeneous Markovian jump process can be thought of as 
being of the form P p,Q .

Suppose now that P is a general – not necessarily homogeneous nor Markovian – jump process. It is then again natural 
to wonder whether there is an initial probability mass function p and a rate matrix Q such that P = P p,Q . As far as the 
initial probability mass function p is concerned, it is clear from Eqn. (7) that the only possibility is the initial probability 
mass function p P : X → [0, 1] corresponding to P , defined by

p P (x) := P (X0 = x) for all x ∈ X .

For the transition probabilities, things are a bit more intricate. Due to the properties of the matrix exponential – see, for 
example, [13, Corollary 3.31] – it suffices to look at the dynamics of the transition probabilities, or more exactly, the right-
sided derivative of P (X• = y | Xu = xu, Xt = x) in t and, if t > 0, the left-sided derivative of P (Xt = y | Xu = xu, X• = x) in t . 
To elegantly deal with these derivatives, we introduce some additional notation. For all t, r in R≥0 such that t < r, u in U≺t

and xu in Xu , the corresponding history-dependent rate matrix Q {Xu=xu}
t,r : RX →RX is defined by

Q {Xu=xu}
t,r (x, y) := P (Xr = y | Xt = x, Xu = xu) − P (Xt = y | Xt = x, Xu = xu)

r − t
for all x, y ∈ X .

We are now interested in the right-sided limit of Q {Xu=xu}
t,• in t , and if t > 0, in the left-sided limit of Q {Xu=xu}

•,t . In general, 
these limits need not exist, but whenever they do and are all equal, say to the matrix Q P : RX → RX , the transition 
probabilities of the jump process P are given by the matrix exponential of Q P , as in Eqn. (9); the following result, taken 
from [13, Proposition 3.42], formalises this.

Proposition 11. Consider a rate matrix Q . Then a jump process P is a homogeneous Markovian jump process with rate matrix Q – in 
the sense that P = P p,Q with p := p P = P (X0 = •) – if and only if for all t in R≥0 , u in U≺t and xu in Xu ,

lim
r↘t

Q {Xu=xu}
t,r = Q and, if t > 0, lim

s↗t
Q {Xu=xu}

s,t = Q .

Example 12. Troffaes et al. [10, Section 2.3] explain that the power network could be modelled by a homogeneous Marko-
vian jump process P p,Q with rate matrix

Q =

⎛
⎜⎜⎝

Q (AB,AB) Q (AB,A) Q (AB,B) Q (AB,F)

Q (A,AB) Q (A,A) Q (A,B) Q (A,F)

Q (B,AB) Q (B,A) Q (B,B) Q (B,F)

Q (F,AB) Q (F,A) Q (F,B) Q (F,F)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

� qB1 qA1 q2
rB � 0 qA1 + q2
rA 0 � qB1 + q2
0 rA rB �

⎞
⎟⎟⎠ ,

where the non-negative real numbers qA1 and qB1 are the rates of an independent failure of A and B, the non-negative real 
numbers rA and rB are the repair rates of A and B, the non-negative real number q2 is the rate of a common cause failure 
of both A and B, and the diagonal elements are such that the rows sum to zero. The initial probability mass function p
plays no role in their analysis, so we can just take it to be any arbitrary probability mass function on X .

3. Imprecise jump processes

One is not always able to or willing to specify precise values for the characterising parameters p and Q of a homoge-
neous Markovian jump process. One application where this is the case is the power network of our running example.

Example 13. Troffaes et al. [10, Section 3.1] argue that in the setting of Example 12, estimating the rates exactly is difficult 
due to a lack of data and because these rates may not be constant over time, for example due to seasonal effects. Their 
estimation method for the rates gives the following lower and upper bounds for the rates listed in Table 1. To take this into 
account, they do not consider a single rate matrix, but consider the set Q of rate matrices of the form given in Example 12, 
where for every row separately, the rates should be in the bounds of Table 1. In other words [see 10, Eqn. (58)], they 
consider the set Q of rate matrices specified through lower and upper bounds on the off-diagonal components of the rate 
matrices:
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Table 1
Lower and upper bounds for the rates of Example 12.

qA1 qB1 q2 rA rB

lower bound 0.32 0.32 0.19 730 730
upper bound 0.37 0.37 0.24 1460 1460

Q := {
Q ∈ Q : (∀x, y ∈ X , x �= y) Q L(x, y) ≤ Q (x, y) ≤ Q U(x, y)

}
,

where the matrices

Q L :=

⎛
⎜⎜⎝

� 0.32 0.32 0.19
730 � 0 0.51
730 0 � 0.51

0 730 730 �

⎞
⎟⎟⎠ and Q U :=

⎛
⎜⎜⎝

� 0.37 0.37 0.24
1460 � 0 0.61
1460 0 � 0.61

0 1460 1460 �

⎞
⎟⎟⎠

collect the bounds on the off-diagonal components. Because every rate matrix has rows that sum to zero, the constraints on 
the diagonal elements of Q are implied by the others.

While they talk at great length about rate matrices, Troffaes et al. [10] do not mention anything about the initial prob-
ability mass function p. The reason for this is simple: the initial probability mass function does not play a role in their 
analysis. Here too, however, if p cannot be accurately estimated, this can be dealt with by considering a set M of proba-
bility mass functions instead of a single such function. For example, if we want to make it explicit that no information is 
given about p, we can let M be the set of all probability mass functions on X .

To deal with these kinds of situations, Krak et al. [2] allow that instead of a single probability mass function p and rate 
matrix Q , we have a non-empty set M of probability mass functions and a non-empty and bounded set Q of rate matrices, 
where a set Q of rate operators is bounded if

‖Q‖ := sup
{‖Q ‖: Q ∈ Q

}
< +∞.

Example 14. It is easy to verify with Eqn. (6) that for the set of rate matrices Q defined in Example 13,

‖Q‖ = 2(1460 + 1460) = 5840,

so this set is bounded.

Naturally, it makes sense to consider the set

PHM
M,Q := {

P p,Q : p ∈ M, Q ∈ Q
}

of homogeneous Markovian jump processes that are characterised by an initial probability mass function p in M and a rate 
matrix Q in Q. This is a first example of an imprecise jump process, with which we generally mean a non-empty set P ⊆P
of jump processes.

There is an alternative way to look at the definition of PHM
M,Q though, and that is through the notion of ‘consistency’ 

with M and Q. The notion of consistency with M is inspired by Eqn. (7): a jump process P in P is consistent with M, 
denoted by P ∼M, if there is a probability mass function p in M such that

P (X0 = x) = p(x) for all x ∈ X .

The notion of consistency with Q is motivated by Proposition 11, from which we know that the rate matrix Q of a 
homogeneous Markovian jump process P uniquely characterises the dynamics of the transition probabilities of P . So how 
do we extend this ‘characterising the dynamics’ from a single rate matrix Q to a set of rate matrices Q? The first idea 
that springs to mind is to say that a jump process P is consistent with Q if for all t in R≥0, u in U≺t and xu in Xu , 
the right-sided limit limr↘t Q {Xu=xu}

t,r belongs to Q and, if t > 0, so does the left-sided limit lims↗t Q {Xu=xu}
s,t . However, 

these limits are not guaranteed to exist, so this naive definition would rule out a lot of jump processes. In fact, Q {Xu=xu}
t,r

can have more than one accumulation point as r decreases to t , and similarly for Q {Xu=xu}
s,t as s increases to t . Intuitively, 

the idea behind the actual definition of consistency with Q is that if for a jump process P all these accumulation points 
belong to Q, then this jump process P is consistent with Q. Formally – see Krak et al. [2, Definition 6.1] and Erreygers [13, 
Definition 3.50]4 – a jump process P is consistent with Q, and we denote this by P ∼ Q, if for all t in R≥0, u in U≺t and 
xu in Xu , the set ∂r↘t T {Xu=xu}

t,r
5 of ‘right-sided accumulation points of Q{Xu=xu}

t,• ’ belongs to Q and, if t > 0, so does the 

4 Because the set of rate operators Q is bounded, these two notions of consistency with Q are in fact equivalent; for a proof, see Lemma 3.55 and 
Proposition 3.57 in [13].

5 We do not use ‘standard’ notation here: Krak et al. [2, Definition 4.8] use ∂+T t
t,xu

while Erreygers [13, Eqn. (3.55)] uses ∂+T {Xu =xu }
t,t , and similarly for 

the set of left-sided accumulation points.
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set ∂s↗t T {Xu=xu}
s,t of ‘left-sided accumulation points of Q{Xu=xu}

•,t ’; the formal definition of these sets of accumulations points 
does not really matter for the remainder, but the interested reader is invited to consult [2, Definition 4.8 and Definition 6.1]
or [13, Definition 3.46 and Definition 3.50]. One thing that is important for the remainder though, and which clearly follows 
from this definition of consistency, is that if a jump process P is consistent with Q, then it is also consistent with any larger 
bounded set R ⊃Q of rate matrices.

Our reason for introducing the notions of consistency with M and Q was to rewrite the definition of PHM
M,Q . With the 

help of Proposition 11, it is not all too difficult to show – see Erreygers [13, Proposition 3.56] for a formal proof – that this 
is indeed possible:

PHM
M,Q = {P ∈ PHM : P ∼ M, P ∼ Q}. (10)

At this point, it is important to reiterate that one usually makes the Markovianity and homogeneity assumptions out of 
convenience – that is, because they make specifying the jump process a matter of specifying the initial probability mass 
function p and rate matrix Q – and not because one is absolutely convinced that these are justified; for example, this is 
the case in our running example [see 10, Section 3.1]. It is for this reason that Krak et al. [2, Definition 6.4] consider two 
additional imprecise jump processes characterised by M and Q by relaxing the homogeneity and Markovianity assumptions 
in Eqn. (10):

PM
M,Q := {P ∈ PM : P ∼ M, P ∼ Q} and PM,Q := {P ∈ P : P ∼ M, P ∼ Q}.

Note that, by construction,

PHM
M,Q ⊆ PM

M,Q ⊆ PM,Q. (11)

Example 15. From their – somewhat informal – exposition in [10, Section 3.2], it is clear that Troffaes et al. model the 
power network with the imprecise jump process PM,Q , with M and Q as defined in Example 13.

The three imprecise jump processes PHM
M,Q , PM

M,Q and PM,Q all generalise the ‘classical’ notion of the homoge-
neous Markovian jump process P p,Q characterised by a single probability mass function p and a single rate matrix Q : 
Erreygers [13, Eqn. (3.66)] shows that

PHM{p},{Q } = PM{p},{Q } = P{p},{Q } = {P p,Q }.
As we will see in Section 3.2 further on, they also generalise the notion of a homogeneous Markovian jump process in a 
different way, in the sense that they are ‘Markovian’ and ‘homogeneous’. This becomes clear when looking at their corre-
sponding lower and upper expectations.

3.1. Lower and upper expectations

Consider some imprecise jump process P ⊆ P . Every jump process P in P corresponds to an expectation operator E P

with domain JS. This means that for any ( f | Xu = xu) in this shared domain JS, there is not a single value for the 
expectation of f conditional on {Xu = xu} but a range {E P ( f | Xu = xu) : P ∈ P}. We could set out to determine this range, 
but it often suffices to determine its lower and upper bounds – for example if we are interested in the worst-case and/or 
best-case scenario. For this reason, we consider the lower expectation EP : JS →R, defined by

EP ( f | Xu = xu) := inf{E P ( f | Xu = xu) : P ∈ P} for all ( f | Xu = xu) in JS,

and the upper expectation EP : JS →R, defined by

EP ( f | Xu = xu) := sup{E P ( f | Xu = xu) : P ∈ P} for all ( f | Xu = xu) in JS.

Note that EP and EP are real valued due to (E1), and that they are conjugate, in the sense that for all ( f | Xu = xu) in JS,

EP ( f | Xu = xu) = sup{E P ( f | Xu = xu) : P ∈ P}
= sup{−E P (− f | Xu = xu) : P ∈ P}
= − inf{−E P ( f | Xu = xu) : P ∈ P} = −EP (− f | Xu = xu),

where we used (E2) for the second equality. Due to this conjugacy, it suffices to study one of the two; we will focus on the 
lower envelope EP . Furthermore, the lower expectation EP also captures lower and upper probabilities: for all (A | Xu = xu)

in D,

EP (IA | Xu = xu) = inf
{

E P (IA | Xu = xu) : P ∈ P
}= inf

{
P (A | Xu = xu) : P ∈ P

}
,
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and similarly for the upper probability but with −EP (−IA | Xu = xu).
It follows more or less immediately from (E1)–(E5) and the definition of the lower and upper expectation – see also [4, 

Proposition 4.20 and Theorem 4.13] – that, for all u in U and xu in Xu ,

LD1. min f ≤ EP ( f | Xu = xu) ≤ EP ( f | Xu = xu) ≤ max f for all f in Su ;
LD2. EP (μ f | Xu = xu) = μEP ( f | Xu = xu) for all f in Su and μ in R≥0;
LD3. EP ( f + g | Xu = xu) ≥ EP ( f | Xu = xu) + EP (g | Xu = xu) for all f , g in Su ;
LD4. EP ( f | Xu = xu) ≤ EP (g | Xu = xu) for all f , g in Su such that f ≤ g;
LD5. EP ( f + μ | Xu = xu) = EP ( f | Xu = xu) + μ for all f in Su and μ in R.

To somewhat shorten our notation, we follow Krak et al. [2, Definition 6.5] in denoting the lower expectations cor-
responding to the imprecise jump processes PHM

M,Q , PM
M,Q and PM,Q by EHM

M,Q , EM
M,Q and EM,Q , respectively, and 

similarly for their conjugate upper expectations; due to Eqn. (11),

EM,Q(• | •) ≤ EM
M,Q(• | •) ≤ EHM

M,Q(• | •),
and conversely for the conjugate upper expectations.

In general, determining these tight lower and upper bounds on the expectations corresponding to the imprecise jump 
processes PHM

M,Q , PM
M,Q and PM,Q is intractable if not impossible, as one would have to explicitly construct these sets in 

order to optimise over them. However, as we will see in Section 6.1 further on, there are particular cases in which tight 
lower and upper bounds can be determined by repeatedly solving a more straightforward optimisation problem.

3.2. Markovianity and homogeneity

The three imprecise jump processes PHM
M,Q , PM

M,Q and PM,Q all generalise the ‘classical’ notion of the homogeneous 
Markovian jump process, in the sense that they are characterised by a set M of initial probability mass functions and a 
set Q of rate matrices instead of a single probability mass function p and a single rate matrix Q . This raises the question 
whether these imprecise jump processes also have similar properties, so whether they are Markovian and homogeneous. 
For this, we need to generalise these two properties from jump processes to imprecise jump processes.

While we could generalise Definitions 8 and 9 directly, it makes more sense to generalise their equivalent ‘expectation-
centred’ statements. With the help of Eqn. (4), it is easy to verify that for the degenerate imprecise jump process P = {P }, 
the following two definitions reduce to Definitions 8 and 9.

Definition 16. An imprecise jump process P is Markovian – or alternatively, has the Markov property – if for all t, � in R≥0, 
x in X , f in RX , u in U≺t and xu in Xu ,

EP ( f (Xt+�) | Xt = x, Xu = xu) = EP ( f (Xt+�) | Xt = x).

Definition 17. A Markovian imprecise jump process P is homogeneous if for all t, � in R≥0, x in X , and f in RX ,

EP ( f (Xt+�) | Xt = x) = EP ( f (X�) | X0 = x).

It is easy to show that PHM
M,Q is a homogeneous Markovian jump process, and that PM

M,Q is a Markovian – but not 
necessarily homogeneous6 – jump process.

Proposition 18. Any imprecise jump process P ⊆ PM is Markovian, and any (Markovian) imprecise jump process P ⊆ PHM is ho-
mogeneous. Consequently, PHM

M,Q is a homogeneous Markovian imprecise jump process, and PM
M,Q is a Markovian jump process.

Proof. First, we assume that P is a subset of PM. To verify that P satisfies the condition in Definition 16, we fix some t, �
in R≥0, x in X , f in RX , u in U≺t and xu in Xu . Observe that for any jump process P in P ⊆PM,

E P ( f (Xt+�) | Xt = x, Xu = xu) =
∑
y∈X

f (y)P (Xt+� | Xt = x, Xu = xu)

=
∑
y∈X

f (y)P (Xt+� | Xt = x) = E P ( f (Xt+�) | Xt = x),

6 Actually, we conjecture that PM
M,Q is homogeneous too, but providing a formal proof would lead us to far astray.
89



A. Erreygers and J. De Bock International Journal of Approximate Reasoning 147 (2022) 78–124
where for the first and last equality we used Eqn. (4) and for the second equality we used the Markovianity of P . It follows 
immediately from the preceding equality and the definition of the lower envelope EP that

EP ( f (Xt+�) | Xt = x, Xu = xu) = inf
{

E P ( f (Xt+�) | Xt = x, Xu = xu) : P ∈ P
}

= inf
{

E P ( f (Xt+�) | Xt = x) : P ∈ P
}

= EP ( f (Xt+�) | Xt = x),

as required.
Second, we assume that the jump process P is a subset of PHM. Because PHM ⊆PM, we know that P is Markovian. To 

prove that P satisfies the condition in Definition 17, it suffices to add one extra step – where we use that every P in P is 
homogeneous – to the argument in the first part of our proof. �

One case in which we do have that the Markovian imprecise jump process PM
M,Q is homogeneous, is when Q has 

‘separately specified rows’, meaning that we can select the ‘rows’ of the rate matrices in Q independently [2, Definition 7.3].

Definition 19. A set R of rate matrices has separately specified rows if for any selection (Q x)x∈X of rate matrices in R, there 
is a rate matrix Q in R such that

Q (x, y) = Q x(x, y) for all x, y ∈ X .

The following result states that if Q has separately specified rows, then the Markovian imprecise jump process PM
M,Q

is indeed homogeneous. Furthermore, quite remarkably, the imprecise jump process PM,Q turns out to be Markovian and 
homogeneous as well.

Corollary 20. If Q has separately specified rows, then any imprecise jump processP such that PM
M,Q ⊆P ⊆PM,Q is a homogeneous 

Markovian imprecise jump process.

Proof. Follows immediately from Lemma 57 further on, which repeats Corollary 8.3 in [2]. �
Example 21. Obviously, the (non-empty and bounded) set Q of rate matrices defined in Example 13 has separately specified 
rows, since the conditions are given row by row. Hence, our model PM,Q is a homogeneous Markovian imprecise jump 
process.

4. Extending the domain

The domain JS of the (conditional) lower expectation EP corresponding to an imprecise jump process P ⊆ P – or 
simply the expectation E P corresponding to a jump process P – is not rich enough for many applications: the domain JS
only contains variables that depend on the state of the system at a finite number of time points, and many practically 
relevant inferences correspond to variables that depend on the state of the system at all time points in some – possibly 
unbounded – interval. Examples of such variables are abundant, but let us give two examples relevant to our running 
example.

Example 22. As we mentioned previously in Section 1, Troffaes et al. [10, Eqns. (16) and (17)] are specifically interested 
in two types of variables: (i) the amount of time spent in a particular state during a particular time period, and (ii) the 
number of transitions to a particular state during a particular time period. The first type generalises to what is known as an 
‘occupancy time’: in general, it is the length of time that the system is in some subset A of X during some interval [s, r]; 
we will formally define this type of variable in Section 4.3.2 further on. The second type generalises to what we call ‘the 
number of selected jumps’: in general, it is the number of times that during some interval ]s, r] the system jumps from 
some state x to state y, with (x, y) in a particular set of couples of distinct states; we will formally define this type of 
variable in Section 4.3.1 further on.

So how can we extend the domain of the lower (and upper) expectation corresponding to P to include these general 
variables? We could extend this lower expectation directly, for example through ‘natural extension’ [4, Section 13.7], which 
relies on a notion of coherence for lower expectations, or through the notion of ‘previsibility’ [4, Chapter 15], which basically 
extends the notion of convergence in probability to (unconditional) coherent lower expectations. Our reasons for not using 
these methods are the following. The natural extension is motivated through a betting interpretation that need not make 
sense for these general variables and is often overly conservative – as argued by Troffaes and De Cooman [4, Section 13.11]
and Erreygers [13, Section 5.1.1]. The notion of previsibility does not line up well with our setting either: it starts from a 
coherent lower expectation on the set of all bounded real variables, while – for every conditioning event {Xu = xu} – we 
90



A. Erreygers and J. De Bock International Journal of Approximate Reasoning 147 (2022) 78–124
seek to extend a coherent lower expectation on the set of all Au-simple variables. Furthermore, both of these approaches 
are limited to real variables, and we also desire to deal with extended real variables. Hence, we propose the following 
alternative approach: we extend the domain of the expectation E P corresponding to every jump process P in P to a larger 
domain through the ‘classical’ approach in measure-theoretic probability theory – albeit with a twist – and subsequently 
take the lower (and upper) envelope over these extended expectations.

In this section, we will rely heavily on some standard definitions and results from measure-theoretical probability theory. 
While most reference works – for example [17], [18] or [27] – agree on the basics, there are some subtle technical points 
that matter in our context. For this reason, we repeat the specific definitions and results that we will need as we go; for a 
more gentle and thorough introduction to measure theory in general and its application to probability theory in particular, 
we refer the reader to Fristedt and Gray [18] and Schilling [27].

4.1. Extending a jump process through Caratheodory’s Theorem

Consider a jump process P . We set out to extend the domain of E P by extending the domain of E P (• | Xu = xu) for 
every conditioning event {Xu = xu}, and we will do so with the help of ‘countable additivity’. Before we do so, let us 
briefly reconsider the notion of countable additivity in the general setting of a generic sample space S. A probability 
charge P on an algebra S on S is countably additive if for any sequence (An)n∈N of pair-wise disjoint events in S such that 
A :=⋃

n∈N An belongs to S ,

P (A) =
∑
n∈N

P (An).

A collection S of subsets of S is a σ -algebra (of events) on S – sometimes also called a σ -field – if it is an algebra of events 
over S that is furthermore closed under countable unions, meaning that for any sequence (An)n∈N in S , 

⋃
n∈N An belongs 

to S – see [18, Definition 1 in Chapter 1] or [27, Definition 3.1]. If S is an algebra (on S), then there is a unique smallest 
σ -algebra (again on S) that includes S , and this is the intersection of all σ -algebras that include S – see [18, Section 1.3]
or [27, Theorem 3.4]; we denote this σ -algebra by σ(S), and call it the σ -algebra generated by S .

Given a σ -algebra S on S, a probability measure P on S is a countably additive probability charge on S [18, Definition 2 
in Chapter 1], or equivalently, a non-negative real map on S that is normalised and countably additive, in the sense that 
P (S) = 1 and that for any sequence (An)n∈N of pair-wise disjoint events in S ,

P

(⋃
n∈N

An

)
=
∑
n∈N

P (An).

Crucial to our extension method is that a countably additive probability charge P on some algebra S can be extended to 
a probability measure on the σ -algebra σ(S) generated by S: Caratheodory’s Theorem – see [18, Theorem 14 in Chapter 7]
or [27, Theorem 6.1] – ensures that there is a unique probability measure Pσ on σ(S) that extends P , or equivalently, that 
coincides with P on S .

Now that we have refreshed the notion of countable additivity, we can find out what it can do for us in the setting of 
jump processes. Recall from Section 2.3 that P (• | Xu = xu) is a probability charge on the algebra of cylinder events Au ; 
whenever this probability charge is countably additive for any conditioning event, we call the jump process P countably 
additive.

Definition 23. A jump process P is countably additive if for all u in U and xu in Xu , P (• | Xu = xu) is countably additive.

Suppose P is a countably additive jump process. Then for any u in U and xu in Xu , P (• | Xu = xu) is a countably additive 
probability charge on Au , so by Caratheodory’s Theorem, there is a unique probability measure Pσ (• | Xu = xu) on the 
σ -algebra σ(Au) generated by Au that extends P (• | Xu = xu). The real-valued map Pσ on7

Dσ := {
(A | Xu = xu) : u ∈ U, xu ∈ Xu, A ∈ σ(Au)

}
thus defined coincides with P on D, so one might wonder whether this real-valued map Pσ is a coherent extension of P
to Dσ – that is, whether Pσ is a coherent conditional probability on Dσ . We have not been able to prove that this is the 
case, nor have we found a counterexample. Yet, we do not perceive this as an issue, and the reason for this is that the 
extended domain Dσ contains events that are not well-determined, so as explained right after Definition 3, there is no 
compelling argument to demand coherence on this extended domain. For example, fix some state x in X , and consider the 
event

7 Because the state space X equipped with the discrete topology is a Polish space, it follows from [18, Chapter 31, Theorem 2] that σ(Au) is the σ -
algebra of events that are measurable with respect to the Skorokhod topology on � – at least if u = ( ) or u = (0). For more information, we refer to 
Billingsley [20, Section 16].
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Aσ :=
⋂

n∈N
{Xn = x}.

Because every event on the right-hand side belongs to A ⊆ σ(A) and the generated σ -algebra σ(A) is closed under count-
able intersections, Aσ belongs to σ(A). However, it is clear that there is no point in time after which we can unequivocally 
determine whether or not the event has occurred, so a bet based upon it cannot be decided without question; consequently, 
the event Aσ is not well-determined.

4.2. Extending the expectation corresponding to a countably additive jump process through Lebesgue integration

Consider a countably additive jump process P , and fix some u in U and xu in Xu . The extension Pσ (• | Xu = xu) of the 
countably additive probability charge P (• | Xu = xu) is a (countably additive) probability charge on σ(Au). Hence, as we 
know from Section 2.5, there is a corresponding expectation operator E Pσ (•|Xu=xu) on the set Sσ

u := S(σ (Au)) of σ(Au)-
simple variables. As the generated σ -algebra σ(Au) includes the algebra Au of cylinder events, it is clear that every Au -
simple variable is σ(Au)-simple, so Su ⊆ Sσ

u . Even more, E Pσ (•|Xu=xu) coincides with E P (• | Xu = xu) on Su : for any Au-
simple variable f , it follows immediately from Eqn. (3) that

E Pσ (•|Xu=xu)( f ) =
n∑

k=1

ak Pσ (Ak | Xu = xu) =
n∑

k=1

ak P (Ak | Xu = xu) = E P ( f | Xu = xu), (12)

with n in N , a1, . . . , an in R and A1, . . . , An in Au such that f =∑n
k=1 akIAk . However, this extended domain Sσ

u is not 
sufficiently large for our purposes. For example, the number of jumps in some interval and the occupancy time of some set 
of states during some interval, two real-valued variables which we informally introduced in Example 22 and will formally 
introduce in Section 4.3 further on, are not Sσ

u -simple: the former is not bounded, while the latter is bounded but does not 
have a finite range. What we need is an extension to the so-called measurable variables, and we can achieve this through 
Lebesgue integration.

To introduce Lebesgue integration, we briefly return to the general setting: as before, we consider a generic sample 
space S and a σ -algebra S on this sample space. An extended real-variable f : S →R is S-measurable8 if

{ f > α} := {s ∈S : f (s) > α} ∈ S for all α ∈R, (13)

and we collect all S-measurable variables in M(S). This set M(S) of S-measurable variables is closed under several 
operations. In the remainder, we will rely on the following operations; whenever the proof of a property is not immediate 
from the condition in Eqn. (13), a proof can be found in [27, Chapter 8].

M1. Any S-simple variable is S-measurable.
M2. For any S-measurable variable f and any real number λ, λ f is S-measurable.
M3. For any S-measurable variables f and g , their sum f + g is S-measurable whenever it is defined.9

M4. For any S-measurable variable f , | f | is S-measurable.
M5. For any sequence ( fn)n∈N of S-measurable variables that converges point-wise, its point-wise limit, denoted 

by limn→+∞ fn , is S-measurable.

Another important property of S-measurable variables is that an extended real variable f is S-measurable if and only 
if its non-negative part f + := f ∨ 0 and its non-positive part f − = −( f ∧ 0) are S-measurable. This is used implicitly in 
the definition of the Lebesgue integral, and here we repeat the one given by Fristedt and Gray [18, Definition 8]. Consider a 
probability measure P on S . Then for any S-measurable variable f such that at least one of the suprema

sup
{

E P (g) : g ∈ S(S),0 ≤ g ≤ f +} and sup
{

E P (g) : g ∈ S(S),0 ≤ g ≤ f −}
is real, the (Lebesgue) integral of f with respect to P exists and is

EL
P ( f ) := sup

{
E P (g) : g ∈ S(S),0 ≤ g ≤ f +}− sup

{
E P (g) : g ∈ S(S),0 ≤ g ≤ f −};

otherwise, the (Lebesgue) integral does not exist. We denote the set of all S-measurable variables for which the Lebesgue 
integral with respect to P exists by dom EL

P . In general, this domain need not be the same for different probability measures. 
However, it is relatively easy to prove that dom EL

P always contains the S-measurable variable f if it is either bounded 
below or bounded above, meaning that inf f > −∞ or sup f < +∞, respectively.

8 Technically, we should say S/B-measurable, where B denotes the Borel σ -algebra on R, being the σ -algebra generated by the open sets of the 
topology on R that is the product of the usual topology on R and the discrete topology on {−∞, +∞}. For more details, we refer to Chapter 2 in [18] and 
Chapter 8 in [27].

9 We use the standard extensions of the binary operations of addition, subtraction and multiplication from R to R – see [4, Appendix D] or [27, p. 58]. 
This means that we leave (+∞) + (−∞), (+∞) − (+∞), (−∞) + (+∞) and (−∞) − (−∞) undefined.
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Lemma 24. Consider a σ -algebra S over S, a probability measure P on S and a S-measurable variable f . If f is bounded below or 
bounded above, then the (Lebesgue) integral of f exists, or equivalently, f belongs to dom EL

P .

Proof. Assume that f is bounded below. Note that for any S-simple variable g such that 0 ≤ g ≤ f − , 0 ≤ min g ≤ max g ≤
sup f − . It follows from this inequality and (E1) that

0 ≤ sup
{

E P (g) : g ∈ S(S),0 ≤ g ≤ f −}≤ sup f −.

Either sup f − = 0 if f ≥ 0, or sup f − = sup(− f ) = − inf f otherwise. Because inf f > −∞ by assumption, we infer from 
this that sup f − < +∞, and this proves that the Lebesgue integral of f exists.

The proof for the case that f is bounded above is analogous. �
It is well-known – see [18, Problem 14 in Chapter 4] – that the (Lebesgue) expectation EL

P on dom EL
P extends the 

(Dunford) expectation E P on S(S): any S-simple variable f belongs to dom EL
P , and EL

P ( f ) = E P ( f ). For future reference, 
we list some additional well-known properties of the Lebesgue integral EL

P ; for a proof, we refer to Fristedt and Gray [18, 
Theorem 9 in Chapter 4]. For all f , g in dom EL

P and μ in R,

LI1. inf f ≤ EL
P ( f ) ≤ sup f ;

LI2. μ f ∈ dom EL
P and EL

P (μ f ) = μEL
P ( f );

LI3. if f + g and EL
P ( f ) + EL

P (g) are defined, then f + g ∈ dom EL
P and EL

P ( f + g) = EL
P ( f ) + EL

P (g);
LI4. EL

P ( f ) ≤ EL
P (g) whenever f ≤ g;

LI5. | f | ∈ dom EL
P and |EL

P ( f )| ≤ EL
P (| f |).

Furthermore, for all f in dom EL
P , its Lebesgue expectation is given by the Choquet integral [28, Chapter 5]:

EL
P ( f ) =

+∞∫
0

P ({ f + > α})dα −
+∞∫
0

P ({ f − > α})dα =
+∞∫
0

P ({ f > α})dα−
0∫

−∞
P ({ f < α})dα,

where the integrals are – possibly improper – Riemann integrals that always exists because their integrand is monotone.
Let us now return to the setting of jump processes. As before, we consider a countably additive jump process P . For all u

in U and xu in Xu , we denote the Lebesgue integral corresponding to the probability measure Pσ (• | Xu = xu) on σ(Au) by 
Eσ

P (• | Xu = xu) := EL
Pσ (•|Xu=xu) . While the domain of this Lebesgue integral may depend on the specific jump process P , 

Lemma 24 guarantees that this domain includes all σ(Au)-measurable variables that are bounded below or bounded 
above. Therefore, we choose to restrict the domain of the Lebesgue integral Eσ

P (• | Xu = xu) to these variables, so to the 
set Mu :=M(σ (Au)) ∩V b, where V b is the set of all extended real variables f : � →R that are either bounded below or 
bounded above. This ensures that the domain of Eσ

P (• | Xu = xu) is the same for any countably additive jump process P . In 
Section 4.4 further on, it will become clear that this choice is especially convenient in the setting of imprecise jump pro-
cesses. Furthermore, to the best of our knowledge, this somewhat non-standard restriction of the domain does not hinder 
the applicability of our framework: we are yet to encounter an application where all of the ‘conventional’ (extended) real 
variables that may be of interest are not bounded below or above.

To summarise, we have defined an expectation operator Eσ
P with domain

JM := {
( f | Xu = xu) : u ∈ U, xu ∈ Xu, f ∈Mu

}
.

But does Eσ
P extend E P to a domain that includes interesting (extended) real variables that are not σ(Au)-simple? The 

following result establishes that Eσ
P extends E P , which partially answers this question.

Lemma 25. Consider a countably additive jump process P . Then JS ⊆ JM, and

Eσ
P ( f | Xu = xu) = E P ( f | Xu = xu) for all ( f | Xu = xu) ∈ JS.

Proof. Fix any u in U and xu in U . Recall from right before (LI1) that Eσ
P (• | Xu = xu) = EL

Pσ (•|Xu=xu) coincides with 
E Pσ (•|Xu=xu) on S(σ (Au)), and from around Eqn. (12) that E Pσ (•|Xu=xu) coincides with E P (• | Xu = xu) on Su ⊆ S(σ (Au)). 
Consequently, Eσ

P (• | Xu = xu) coincides with E P (• | Xu = xu) on Su . �
4.3. Two classes of measurable variables

It remains for us to show that the extended domain JM contains many – if not most or all – of the non-simple variables 
that may be of interest in applications. We cannot possibly give an exhaustive list, so we will formally introduce two classes 
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of such variables: Section 4.3.1 deals with the number of (selected) jumps in an interval ]s, r], while Section 4.3.2 takes a 
closer look at real variables that take the form of a Riemann integral of f (Xt) as t ranges over the interval [s, r]. We have 
chosen these two classes because they cover the two types of variables which Troffaes et al. [10] consider, and which we 
have informally introduced in Example 22. That said, we would like to emphasise that the extended domain JM includes 
a lot more variables that appear in applications. For example, this domain also includes indicators of until events [13, 
Section 6.2] – which play an important role in model checking [29,30] – and hitting times [13, Section 6.3].

Our exposition simplifies due to the following notation and terminology. Fix two time points s, r in R≥0 such that s < r. 
A grid over [s, r] is a sequence of time points v = (t0, . . . , tn) in Une that starts in t0 = s and ends in tn = r. For any such 
grid v = (t0, . . . , tn) over [s, r], we call

�(v) := max
{

tk − tk−1 : k ∈ {1, . . . ,n}}
the maximum grid width of v . For grids v, w over [s, r], we say that w refines v , and denote this by v ⊆ w , if w includes all 
the time points in v .

4.3.1. The number of selected jumps
Fix some càdlàg path ω in �. Recall from Section 2.1 that then, by definition, for all t in R>0, ω has a left-sided limit 

in t and ω is continuous from the right in t . Whenever the value of ω in t differs from the left-sided limit of ω in t , 
meaning that

lim
�↘0

ω(t − �) �= ω(t),

we say that a jump occurs at time t . For any time points s, r in R≥0 such that s < r, we collect the jump times in ]s, r] in the 
set

J]s,r](ω) :=
{

t ∈ ]s, r] : lim
�↘0

ω(t − �) �= ω(t)

}
; (14)

it is essentially well known – see for example Lemma 5.20 in [13] – that this set of jump times is always finite. Hence, for 
all s, r in R≥0 such that s < r, the number of jumps in ]s, r], which we denote by

η]s,r] : � → Z≥0 : ω �→ η]s,r](ω) := ∣∣J]s,r](ω)
∣∣,

is a non-negative real-valued variable. Sometimes we are not interested in all jumps, but only in jumps between specific 
couples of states, which we then collect in some subset A of X 2�= := {(x, y) ∈X 2 : x �= y}. To deal with this more general case, 
for any such subset A of X 2�= and any time points s, r in R≥0 such that s < r, we let ηA]s,r] : � → Z≥0 be the non-negative 
real variable that is defined for any ω in � by

ηA]s,r](ω) :=
∣∣∣∣
{

t ∈ ]s, r] :
(

lim
�↘0

ω(t − �),ω(t)

)
∈ A

}∣∣∣∣,
and we refer to this variable as the number of selected jumps. It follows immediately from this definition that

0 ≤ ηA]s,r] ≤ η]s,r], (15)

and that for A =X 2�= , ηA]s,r] = η]s,r] .
In order to show that the number of (selected) jumps belongs to our domain, we set out to show that we can approxi-

mate the number of (selected) jumps by means of a specific type of simple variables. Fix time points s, r in R≥0 such that 
s < r, and a subset A of X 2�= . The crucial idea is that we can approximate the number of selected jumps ηA]s,r] in ]s, r] by 
looking at the number of selected jumps along some grid v over [s, r]. More precisely, for any grid v = (t0, . . . , tn) over 
[s, r], we use the corresponding approximation

ηA
v : � → Z≥0 : ω �→ ηA

v (ω) := ∣∣{k ∈ {1, . . . ,n} : (ω(tk−1),ω(tk)
) ∈ A

}∣∣;
to simplify our notation, we write ηv instead of ηA

v whenever A =X 2�= . It is easy to see that

ηA
v =

n∑
k=1

IA
(

Xtk−1 , Xtk

)
, (16)

where here and in the remainder, we follow the convention that the empty sum is zero, and where we let IA be the 
function on X 2 defined by

IA(x, y) :=
{

1 if (x, y) ∈ A

0 otherwise
for all x, y ∈ X .
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It follows immediately from Eqn. (16) that

0 ≤ ηA
v ≤ ηv . (17)

Because ηA
v clearly only depends on the state of the system at the time points in v , we have the following corollary of 

Lemma 7.

Corollary 26. Consider some u in U and some s, r in R≥0 such that max u ≤ s < r. Then for any subset A of X 2�= and any grid v

over [s, r], the corresponding approximation ηA
v is a non-negative Au-simple variable.

Because the number of jumps of a càdlàg path ω in � in the interval ]s, r] is finite, there is a grid width �ω]s,r] such that 
every grid v with a grid width �(v) smaller than �ω]s,r] captures all (selected) jumps in ]s, r]. The following result, which is 
a generalisation of Lemma 5.25 in [13], establishes this.

Lemma 27. Consider time points s, r in R≥0 such that s < r and a subset A of X 2�= . For any càdlàg path ω in �, there is a positive real 
number δ such that if v is a grid over [s, r] with �(v) < δ, then

ηA
v (ω) = ηA]s,r](ω).

Proof. Fix some path ω in �. Recall from right after Eqn. (14) that the set J]s,r](ω) of the jump times of ω in ]s, r] is finite, 
so we can order this finite set. This way, we obtain a grid (t0, . . . , tn) over [s, r], where we always add t0 = s and only add 
tn = r if it is not a jump time of ω. Note that for all k in {1, . . . , n}, ω(t) = ω(tk−1) for all t in [tk−1, tk[, so ω is constant 
over [tk−1, tk[. Let

δ := min
{

tk − tk−1 : k ∈ {1, . . . ,n}},
and take any grid v = (tv

0 , . . . , tv
m) over [s, r] such that �(v) < δ. It follows from this condition on v that, for all k

in {1, . . . , n}, v contains at least one time point tv
� in the subinterval [tk−1, tk[ where ω is constant. In other words, for 

every jump time tk of ω in ]s, r], there is an index � in {1, . . . , m} such that tv
�−1 is a time point in [tk−1, tk[ and tv

� is a time 
point in [tk, tk+1[ if k < n or tv

� = tk if k = n. It is not difficult to see that this implies that ηA[s,r](ω) = ηA
v (ω), as required. �

Due to Lemma 27, the approximation ηA
v converges point-wise to ηA]s,r] as the grid width �(v) of the grid v over [s, r]

vanishes; in combination with Corollary 26, this implies that the number of (selected) jumps belongs to our domain.

Lemma 28. Consider some u in U and s, r in R≥0 such that max u ≤ s < r. Fix some subset A of X 2�= and let (vn)n∈N be a sequence 
of grids over [s, r] such that limn→+∞ �(vn) = 0. Then (ηA

vn
)n∈N is a sequence of Au-simple variables that converges point-wise to 

ηA]s,r] . Consequently, ηA]s,r] belongs to Mu .

Proof. For all n in N , ηA
vn

is a non-negative Au -simple variable due to Corollary 26. Furthermore, because limn→+∞ �(vn) =
0 by assumption, it follows from Lemma 27 that the sequence (ηA

vn
)n∈N converges point-wise to ηA]s,r] . This proves the first 

part of the statement. The second part of the statement follows immediately from the first part because (i) every Au -simple 
variable is trivially σ(Au)-simple and therefore σ(Au)-measurable due to (M1); (ii) the point-wise limit of a sequence of 
σ(Au)-measurable variables is again σ(Au)-measurable due to (M5); and (iii) ηA]s,r] is non-negative and therefore trivially 
bounded below. �

In general, the convergence of ηA
v to ηA]s,r] need not be monotone. However, it can be in the case of all jumps, so if 

A =X 2�= . The reason for this is that for any two grids v and w over [s, r] such that w refines v , the number of jumps 
along w is (point-wise) greater than or equal to the number of jumps along v; Erreygers [13, Lemma 5.23] gives a formal 
proof.

Lemma 29. Consider some u in U and some s, r in R≥0 such that max u ≤ s < r. Then for all grids v, w over [s, r] with v ⊆ w, 
ηv ≤ ηw .

Closely related to this, we also have that ηA]s,r] need not yield an upper bound for ηA
v . However, here too, it will if 

A =X 2�= .

Lemma 30. Consider some u in U and some s, r in R≥0 such that max u ≤ s < r. Then for all grids v over [s, r], ηv ≤ η]s,r] .
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Proof. We fix some grid v = (t0, . . . , tn) over [s, r]. Furthermore, for all k in N , we let vk be the grid over [s, r] that is the 
(ordered) union of the grids vk,1, . . . , vk,n , where for all � in {1, . . . , n},

vk,� :=
(

t�−1, t�−1 + 1

2k−1
(t� − t�−1), . . . , t�−1 + 2k−1

2k−1
(t� − t�−1)

)

is the grid over [t�−1, t�] that consists of 2k−1 + 1 evenly spaced time points. Then by construction, v1 = v , vk ⊆ vk+1 for all 
k in N , and limk→+∞ �(vk) = limk→+∞ �(v)/2k−1 = 0. Hence, it follows from Lemmas 28 and 29 that the corresponding 
sequence (ηvk )k∈N is a non-decreasing sequence of variables that converges point-wise to η]s,r] . Because v = v1, this proves 
that ηv ≤ η]s,r] . �
4.3.2. Integral of f (Xt) over the interval [s, r]

As a second example of a class of measurable variables that is included in our extended domain, we treat real variables 
that take the form of (Riemann) integrals over time. As we will see momentarily, this class of variables includes occupancy 
times, which we have previously encountered in Example 22.

Fix some real-valued function f on X and any two time points s, r in R≥0 such that s < r. Then for any path ω in �, the 
function composition f ◦ ω is piece-wise constant over [s, r] because ω is càdlàg; as every piece-wise constant real-valued 
function on [s, r] is Riemann integrable [26, Section 24.26], it follows that f ◦ ω is Riemann integrable over [s, r]. Hence,

r∫
s

f (Xt)dt : � → R : ω �→
r∫

s

f
(
ω(t)

)
dt

is well-defined, and we call this real variable the integral of f (Xt) over [s, r]. Without much extra effort, we could generalise 
this to families ( ft)t∈[s,r] of real-valued functions on X that are piece-wise constant. However, because the ‘stationary’ case 
already encompasses a lot of important types of measurable variables, and because it allows for a simpler exposition, we do 
not treat this more general set-up here; instead, we refer the interested reader to Section 6.4 in [13].

Before we continue, let us mention two types of measurable variables that take the form of an integral over time. For 
the first example, we take the real-valued function f = IA for some subset A of X . Then the integral

∫ r
s IA(Xt) dt of IA(Xt)

over [s, r] is the length of time that the system’s state is in A between time points s and r; as explained in Example 22, we 
call this the occupancy time of A over [s, r] [31, Section 4.5]. As a second example, for any real-valued function h on X , the 
temporal average of h(Xt) over [s, r] is the integral

1

r − s

r∫
s

h(Xt)dt =
r∫

s

1

r − s
h(Xt)dt =

r∫
s

f (Xt)dt,

of f (Xt) over [s, r], with f := 1
r−s h.

For any path ω in �, the integral
∫ r

s f
(
ω(t)

)
dt is defined through a limit of Riemman sums [see 26, Definition 24.3], so 

it is natural to use these Riemann sums to construct a sequence of simple variables that converges point-wise to
∫ r

s f (Xt) dt . 
More precisely, for any grid v = (t0, . . . , tn) over [s, r], we consider the corresponding Riemann sum

〈 f 〉v :=
n∑

k=1

(tk − tk−1) f (Xtk ). (18)

Note that in this expression, for every k in {1, . . . , n}, we could replace f (Xtk ) with f (Xsk ) where sk is any element 
of [tk−1, tk]; we choose to use f (Xtk ) for the sake of simplicity. By construction, 〈 f 〉v only depends on the state of the 
system at the time points in the grid v; for this reason, we have the following corollary of Lemma 7.

Corollary 31. Consider some u in U and s, r in R≥0 such that max u ≤ s < r. Then for any grid v over [s, r] and any real-valued 
function f on X , the corresponding Riemann sum 〈 f 〉v is Au-simple, and

(r − s)min f ≤ 〈 f 〉v ≤ (r − s)max f .

Due to the definition of the Riemann integral [26, Definition 24.3], the Riemann sum 〈 f 〉v converges to the inte-
gral

∫ r
s f (Xt) dt as the grid width �(v) of the grid v vanishes.

Lemma 32. Consider some u in U and s, r in R≥0 such that max u ≤ s < r. Fix some real-valued function f on X , and let (vn)n∈N
be a sequence of grids over [s, r] such that limn→+∞ �(vn) = 0. Then (〈 f 〉vn )n∈N is a uniformly bounded sequence of Au-simple 
variables that converges point-wise to 

∫ r f (Xt) dt. Consequently, 
∫ r f (Xt) dt belongs to Mu .
s s
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Proof. That (〈 f 〉vn )n∈N is a uniformly bounded sequence of Au-simple variables follows immediately from Corollary 31. 
That (〈 f 〉vn )n∈N converges point-wise to 

∫ r
s f (Xt) dt follows immediately from the definition of the Riemann integral – see, 

for example, Definition 24.3 in [26]. The second part of the statement follows from the preceding part due to the same 
argument as in the second part of our proof for Lemma 28: (i) every Au-simple variable is σ(Au)-simple and therefore 
σ(Au)-measurable; (ii) the point-wise limit of a sequence of σ(Au)-measurable variables is again σ(Au)-measurable; and 
(iii) the integral of f (Xt) over [s, r] is bounded below by (r − s) min f and above by (r − s) max f . �
4.4. Extending the domain of Markovian imprecise jump processes

The extension method that we have laid out in Sections 4.1 and 4.2 allows us to extend the domain JS of the ex-
pectation E P corresponding to any countably additive jump process P to the larger domain JM that includes many – if 
not all – relevant variables. Clearly, this method is only applicable to an imprecise jump processes P ⊆ P if every jump 
processes P in P is countably additive. The following result establishes that this is the case for PM,Q and therefore, by 
Eqn. (11), also for PM

M,Q and PHM
M,Q . Although it might seem a bit underwhelming, we believe that this is in fact the single 

most important result in this contribution – without it, we would not be able to state the others – and definitely the most 
difficult one to obtain; the interested reader can find a rather long proof in [13, Corollary 5.30].

Theorem 33. Every jump process P in the imprecise jump process PM,Q is countably additive.

To appreciate this result, it should be contrasted with the ‘standard’ measure-theoretical approach to continuous-time 
stochastic processes. On that approach, one starts off with the set XR≥0 of all paths – so not only those that are càdlàg 
– to ensure countable additivity of any probability charge on the algebra of cylinder events, subsequently extends this 
probability charge by means of Caratheodory’s Theorem to a probability measure on the product σ -algebra, and finally 
constructs a ‘modification’ of the projectors (Xt)t∈R≥0 to obtain càdlàg sample paths – see, for example, [17, Section 38], 
[15, Lemma 3.16 and Theorem 3.18] or [19, Chapter 18]. Theorem 33 demonstrates that this somewhat convoluted method 
is not needed – at least not for bounded Q and finite X – as it is possible to immediately start with càdlàg paths. Ironically, 
our proof for Theorem 33 does make use of this ‘modification’ method, albeit as an intermediate step under the hood.

Due to Theorem 33, we can extend the domain of the lower and upper expectations corresponding to any imprecise 
jump process P ⊆ PM,Q – and so in particular PM,Q , PM

M,Q and PHM
M,Q – as follows. First, for every jump process P

in P , we use the method in Sections 4.1 and 4.2 to extend the domain of the expectation E P on JS by going over to the 
expectation Eσ

P on JM. Second, we take the lower and upper envelopes over these extended expectations: this yields the 
lower and upper expectation Eσ

P and E
σ
P on JM, defined for all ( f | Xu = xu) in JM by

Eσ
P ( f | Xu = xu) := inf

{
Eσ

P ( f | Xu = xu) : P ∈ P
}

and E
σ
P ( f | Xu = xu) := sup

{
Eσ

P ( f | Xu = xu) : P ∈ P
}
.

It follows from the properties of (Eσ
P )P∈P that Eσ

P and E
σ
P extend EP and EP to JM, and that they are conjugate, in the 

sense that for all ( f | Xu = xu) in JM,

E
σ
P ( f | Xu = xu) = −Eσ

P (− f | Xu = xu).

In order not to burden our notation, we will implicitly extend the domain of the (conditional) lower and upper expectations 
corresponding to PHM

M,Q , PM
M,Q and PM,Q; that is, we will henceforth use EHM

M,Q to denote Eσ
PHM

M,Q
, and similarly for 

PM
M,Q and PM,Q and their corresponding lower expectation, making the superscript σ implicit.

5. Convergence theorems

For any countably additive jump process P , u in U and xu in Xu , the corresponding (conditional) expectation opera-
tor Eσ

P (• | Xu = xu) has two well-known continuity properties. First and foremost, it is continuous with respect to monotone 
sequences of σ(Au)-measurable variables. The general result for the (Lebesgue) expectation with respect to a probability 
measure is known as the Monotone Convergence Theorem [18, Theorem 11 and Corollary 13 in Chapter 4]; in our specific 
setting of jump processes, it specialises to the following result.

Theorem 34. Consider a countably additive jump process P , fix some u in U , xu in Xu and f in Mu , and let ( fn)n∈N be a sequence 
in Mu that converges point-wise to f . If the sequence ( fn)n∈N is non-decreasing and Eσ

P ( f1 | Xu = xu) > −∞, then

lim
n→+∞ Eσ

P ( fn | Xu = xu) = Eσ
P ( f | Xu = xu).

A similar statement holds if the sequence ( fn)n∈N is non-increasing and Eσ
P ( f1 | Xu = xu) < +∞.

The second continuity result is known as Lebesgue’s Dominated Convergence Theorem [18, Theorem 9 in Chapter 8]. 
As with the Monotone Convergence Theorem, we only state this convergence result in the particular setting of countably 
additive jump processes.
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Theorem 35. Consider a countably additive jump process P , fix some u in U , xu in Xu and f in Mu , and let ( fn)n∈N be a sequence 
in Mu that converges point-wise to f . If there is some g in Mu such that | fn| ≤ g for all n in N and Eσ

P (g | Xu = xu) < +∞, then

lim
n→+∞ Eσ

P ( fn | Xu = xu) = Eσ
P ( f | Xu = xu).

The conditions in Theorem 35 regarding g are trivially satisfied if there is a non-negative real number B such that 
| fn| ≤ B for all n in N . Fristedt and Gray [18, Theorem 10 in Chapter 8] call this well-known special case of Lebesgue’s 
Dominated Convergence Theorem the Bounded Convergence Theorem.

Unfortunately, similar continuity results are not available for the (conditional) lower and upper expectations Eσ
P (• | Xu =

xu) and E
σ
P (• | Xu = xu) corresponding to an imprecise jump process P ⊆PM,Q , at least not in general. This (potential) lack 

of continuity is not exclusive to imprecise jump processes. In a more general setting, Miranda and Zaffalon [32, Section 5.1]
establish that for any given set of probability measures, the lower envelope of the corresponding expectations – in essence, 
the corresponding Lebesgue integrals – is always continuous with respect to monotone non-increasing sequences but may 
not be continuous with respect to non-decreasing sequences. In our setting, this translates to the following result.

Theorem 36. Consider an imprecise jump process P ⊆PM,Q , fix some u in U , xu in Xu and f in Mu , and let ( fn)n∈N be a sequence 
in Mu that converges point-wise to f . If the sequence ( fn)n∈N is non-decreasing and Eσ

P ( f1 | Xu = xu) > −∞, then

lim
n→+∞ Eσ

P ( fn | Xu = xu) ≤ Eσ
P ( f | Xu = xu) and lim

n→+∞ E
σ
P ( fn | Xu = xu) = E

σ
P ( f | Xu = xu).

Similarly, if the sequence ( fn)n∈N is non-increasing and Eσ
P ( f1 | Xu = xu) < +∞, then

lim
n→+∞ Eσ

P ( fn | Xu = xu) = Eσ
P ( f | Xu = xu) and lim

n→+∞ E
σ
P ( fn | Xu = xu) ≥ E

σ
P ( f | Xu = xu).

Proof. This proof is essentially that of Theorem 5.31 in [13], but with the necessary modifications to account for the 
difference between Lebesgue and Daniell integration. We will only prove the first part of the statement; the proof for the 
second part is analogous, but it also follows from the first part due to conjugacy.

Fix some P in P . Then

Eσ
P ( f1 | Xu = xu) ≥ Eσ

P ( f1 | Xu = xu) > −∞,

where the strict inequality holds by assumption. Consequently, it follows from Theorem 34 that

Eσ
P ( f | Xu = xu) = lim

n→+∞ Eσ
P ( fn | Xu = xu).

Because ( fn)n∈N is non-decreasing by assumption, it follows from (LI4) that the corresponding sequence (Eσ
P ( fn | Xu =

xu))n∈N is non-decreasing, and therefore

Eσ
P ( f | Xu = xu) = lim

n→+∞ Eσ
P ( fn | Xu = xu) = sup

{
Eσ

P ( fn | Xu = xu) : n ∈N
}
. (19)

Because for every P in P , (Eσ
P ( fn | Xu = xu))n∈N is a non-decreasing sequence of extended real numbers (bounded below 

by Eσ
P ( f1 | Xu = xu) > −∞), it is easy to see that(

Eσ
P ( fn | Xu = xu)

)
n∈N and

(
E

σ
P ( fn | Xu = xu)

)
n∈N

are non-decreasing sequences of extended real numbers (bounded below by Eσ
P ( f1 | Xu = xu) > −∞), so the limits of these 

sequences exist. Because these sequences are non-decreasing,

lim
n→+∞ Eσ

P ( fn | Xu = xu) = sup
{

Eσ
P ( fn | Xu = xu) : n ∈N

}
(20)

and

lim
n→+∞ E

σ
P ( fn | Xu = xu) = sup

{
E

σ
P ( fn | Xu = xu) : n ∈N

}
(21)

To verify the equality in the first part of the statement, we recall that by definition of the upper envelope E
σ
P ,

E
σ
P ( f | Xu = xu) = sup

{
Eσ

P ( f | Xu = xu) : P ∈ P
}
.

From this and Eqn. (19), it follows that
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E
σ
P ( f | Xu = xu) = sup

{
sup

{
Eσ

P ( fn | Xu = xu) : n ∈N
} : P ∈ P

}

= sup

{
sup

{
Eσ

P ( fn | Xu = xu) : P ∈ P
} : n ∈N

}
= sup

{
E

σ
P ( fn | Xu = xu) : n ∈ N

}
.

The equality in the first part of the statement follows immediately from the preceding equality and Eqn. (21):

E
σ
P ( f | Xu = xu) = sup

{
E

σ
P ( fn | Xu = xu) : n ∈ N

}= lim
n→+∞ E

σ
P ( fn | Xu = xu).

The inequality in the first part of the statement follows from a similar argument. By definition of Eσ
P ,

Eσ
P ( f | Xu = xu) = inf

{
Eσ

P ( f | Xu = xu) : P ∈ P
}
.

From this and Eqn. (19), it follows that

Eσ
P ( f | Xu = xu) = inf

{
sup

{
Eσ

P ( fn | Xu = xu) : n ∈N
} : P ∈ P

}

≥ sup

{
inf
{

Eσ
P ( fn | Xu = xu) : P ∈ P

} : n ∈N

}
= sup

{
Eσ
P ( fn | Xu = xu) : n ∈ N

}
,

where the inequality holds because we have changed the order of the supremum and the infimum – for a proof of this 
property, we refer to [4, Lemma 15.18]. The inequality in the first part of the statement follows immediately from the 
preceding inequality and Eqn. (20):

Eσ
P ( f | Xu = xu) ≥ sup

{
Eσ
P ( fn | Xu = xu) : n ∈N

}= lim
n→+∞ Eσ

P ( fn | Xu = xu). �
We would like to emphasise that for non-decreasing sequences ( fn)n∈N of variables in Mu , the limit of Eσ

P ( fn | Xu = xu)

exists as n recedes to +∞, but this limit is only guaranteed to be a – possibly conservative – lower bound; a similar remark 
holds for the limit of E

σ
P ( fn | Xu = xu) for non-increasing sequences. For dominated sequences, we have a similar type of 

conservative limit behaviour.

Theorem 37. Consider an imprecise jump process P ⊆PM,Q , fix some u in U , xu in Xu and f in Mu , and let ( fn)n∈N be a sequence 
in Mu that converges point-wise to f . If there is some g in Mu with Eσ

P (g | Xu = xu) < +∞ such that | fn| ≤ g for all n in N , then

lim sup
n→+∞

Eσ
P ( fn | Xu = xu) ≤ Eσ

P ( f | Xu = xu) and lim inf
n→+∞ E

σ
P ( fn | Xu = xu) ≥ E

σ
P ( f | Xu = xu).

Proof. This proof is essentially that of Theorem 5.32 in [13], but with some obvious modifications to adapt it to the 
Lebesgue integral instead of the Daniell expectation. It clearly suffices to prove the inequality for the conditional lower 
expectation Eσ

P , because this implies the inequality for the conditional upper expectation E
σ
P due to the conjugacy relation.

Observe that by assumption,

(∀P ∈ P) Eσ
P (g | Xu = xu) ≤ E

σ
P (g | Xu = xu) =: β < +∞. (22)

Due to Eqn. (22), and because | fn| ≤ g for all n in N by assumption, it follows from Theorem 35 that

(∀P ∈ P) Eσ
P ( f | Xu = xu) = lim

n→+∞ Eσ
P ( fn | Xu = xu). (23)

Furthermore, because −g ≤ fn ≤ g for all n in N by assumption, it follows from Eqn. (22), (LI4) and (LI2) that

(∀n ∈N)(∀P ∈ P) − β ≤ Eσ
P ( fn | Xu = xu) ≤ β. (24)

From Eqns. (23) and (24), we infer that −β ≤ Eσ
P ( f | Xu = xu) ≤ β for all P in P , and therefore also −β ≤ Eσ

P ( f | Xu = xu) ≤
β .

Fix any ε in R>0. As Eσ
P ( f | Xu = xu) is real, there is some P in P such that

Eσ
P ( f | Xu = xu) > Eσ

P ( f | Xu = xu) − ε = lim
n→+∞ Eσ

P ( fn | Xu = xu) − ε.

Note that Eσ ( fn | Xu = xu) ≥ Eσ ( fn | Xu = xu) for all n in N , and therefore
P P

99



A. Erreygers and J. De Bock International Journal of Approximate Reasoning 147 (2022) 78–124
lim
n→+∞ Eσ

P ( fn | Xu = xu) = lim sup
n→+∞

Eσ
P ( fn | Xu = xu) ≥ lim sup

n→+∞
Eσ
P ( fn | Xu = xu).

It follows immediately from the preceding two inequalities that

Eσ
P ( f | Xu = xu) > lim sup

n→+∞
Eσ
P ( fn | Xu = xu) − ε.

Because ε was an arbitrary positive real number, we conclude that

Eσ
P ( f | Xu = xu) ≥ lim sup

n→+∞
Eσ
P ( fn | Xu = xu),

and this is what we set out to prove. �
While there is a (potential) lack of continuity in general, it turns out that for many practically relevant variables g

in Mu , the lower and upper expectations corresponding to P ⊆PM,Q are actually continuous for appropriately chosen se-
quences (gn)n∈N of Au -simple variables. In Section 5.1 we show that this is the case for the number of selected jumps ηA]s,r]
and the sequence (ηA

vn
)n∈N with (vn)n∈N a sequence of grids over [s, r] such that limn→+∞ �(vn) = 0, and we do the same 

in Section 5.2 for
∫ r

s f (Xt) dt and the sequence (〈 f 〉vn ) with (vn)n∈N again a sequence of grids over [s, r] with vanishing 
grid width. In both of these cases, we make use of the following straightforward intermediary result to show that the 
lower/upper expectation of the simple variable gn converges to that of the measurable variable g as n recedes to +∞.

Lemma 38. Consider an imprecise jump process P ⊆ PM,Q . Fix some u in U , xu in Xu , f in Mu and g in Su . If ε is a non-negative 
real number such that

(∀P ∈ P) Eσ
P

(| f − g| ∣∣ Xu = xu
)≤ ε,

then

∣∣Eσ
P ( f | Xu = xu) − EP (g | Xu = xu)

∣∣≤ ε and
∣∣Eσ

P ( f | Xu = xu) − EP (g | Xu = xu)
∣∣≤ ε.

Proof. We only prove the inequality of the statement for the lower expectation. The inequality for the upper expectation 
can be proven in an analogous manner, but also follows from the one for the lower expectation due to conjugacy.

Observe that for any jump process P in P ,

∣∣Eσ
P ( f | Xu = xu) − E P (g | Xu = xu)

∣∣= ∣∣Eσ
P ( f | Xu = xu) − Eσ

P (g | Xu = xu)
∣∣

= ∣∣Eσ
P ( f | Xu = xu) + Eσ

P (−g | Xu = xu)
∣∣

= ∣∣Eσ
P ( f − g | Xu = xu)

∣∣
≤ Eσ

P (
∣∣ f − g

∣∣ | Xu = xu),

where for the first equality we used that Eσ
P extends E P , for the second equality we used (LI2), for the third equality we 

used (LI3) and the fact that Eσ
P (−g | Xu = xu) = −Eσ

P (g | Xu = xu) is real (due to (LI1)), and for the inequality we used (LI5). 
It follows from this inequality and the assumption in the statement that

(∀P ∈ P)
∣∣Eσ

P ( f | Xu = xu) − E P (g | Xu = xu)
∣∣≤ ε.

This implies that

Eσ
P ( f | Xu = xu) = inf

{
Eσ

P ( f | Xu = xu) : P ∈ P
}≤ inf

{
E P (g | Xu = xu) + ε : P ∈ P

}
= inf

{
E P (g | Xu = xu) : P ∈ P

}+ ε

= EP (g | Xu = xu) + ε.

Similarly, we find that

Eσ
P ( f | Xu = xu) ≥ EP (g | Xu = xu) − ε.

The inequality of the statement follows immediately from these two inequalities because EP (g | Xu = xu) is real valued due 
to (LD1). �
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5.1. Convergence for the expected number of (selected) jumps

Consider an imprecise jump process P ⊆ PM,Q , and fix a sequence of time points u in U , a state instantiation xu

in Xu , time points s, t in R≥0 such that max u ≤ s < r and a subset A of X 2�= . Our aim is to obtain a convergence result for 
EP (ηA]s,r] | Xu = xu) and/or EP (ηA]s,r] | Xu = xu). In particular, we want to specialise Theorems 36 and 37 for f = ηA]s,r] and 
( fn)n∈N = (ηA

vn
)n∈N , with (vn)n∈N a suitable sequence of grids over [s, r]. From Lemma 28, we know that (ηA

vn
)n∈N con-

verges point-wise to ηA]s,r] if limn→+∞ �(vn) = 0. Furthermore, if A =X 2�= , then we know from Lemma 29 that this sequence 
is non-decreasing if vn ⊆ vn+1 for all n in N . Hence, if all these conditions are satisfied, then we can use Theorem 36 to 
determine conservative bounds on the lower/upper expectation of ηA]s,r] = η]s,r] . If we only have that limn→+∞ �(vn) = 0, 
then we need to resort to Theorem 37. In that case, we need to find some g in Mu with E

σ
P (g | Xu = xu) < +∞ such that 

|ηA
vn

| ≤ g for all n in N . To this end, we observe that for all n in N , |ηA
vn

| ≤ η]s,r] by Eqn. (17) and Lemma 30. So all we 
need to apply Theorem 37 is a real-valued upper bound on the upper expectation of η]s,r] . The following result, which will 
also play an essential role in our proofs for Theorem 40 – via Lemma 44 – and Theorem 46 further on, provides such a 
bound. The proof is rather lengthy, and can be found in [13, Corollary 5.18 and Theorem 5.27].

Theorem 39. Consider any jump process P in PM,Q . Fix some u in U , xu in Xu and time points s, r in R≥0 such that max u ≤ s < r. 
Then for any grid v over [s, r],

E P (ηv | Xu = xu) ≤ (r − s)
‖Q‖

2
and Eσ

P (η]s,r] | Xu = xu) ≤ (r − s)
‖Q‖

2
.

Because E
σ
P (η]s,r] | Xu = xu) < +∞ due to Theorem 39, this means that g = η]s,r] satisfies our needs, so we could invoke 

Theorem 37 to bound the lower/upper expectation of ηA]s,r] . Remarkably, however, in the particular case of the number 
of (selected) jumps, the bounds in Theorems 36 and 37 turn out to be tight, and the limit superior and limit inferior in 
Theorem 37 are in fact limits. The reason for this is the following important result, which generalises Proposition 6.3 in [33].

Theorem 40. Consider an imprecise jump process P ⊆ PM,Q . Fix some u in U , xu in Xu and time points s, r in R≥0 such that 
max u ≤ s < r, and fix any subset A of X 2�= . Then for any grid v over [s, r],

∣∣Eσ
P (ηA]s,r] | Xu = xu) − EP (ηA

v | Xu = xu)
∣∣≤ 1

4
�(v)(r − s)‖Q‖2,

and the same inequality holds for the upper expectation.

For our proof, we use several intermediary results. The first one is a consequence of Theorem 39, and is taken from [13, 
Corollary 5.18 and Lemma 6.53].

Lemma 41. Consider a jump process P in PM,Q . Fix some u in U , xu in Xu and time points s, t, r in R≥0 such that max u ≤ s < t < r. 
Then

{Xs �= Xt �= Xr} := {
ω ∈ � : ω(s) �= ω(t) and ω(t) �= ω(r)

}
belongs to Au , and

P (Xs �= Xt �= Xr | Xu = xu) ≤ 1

4
(t − s)(r − t)‖Q‖2.

The second intermediary result we need is a generalisation of Lemma 5.24 in [13] from ηv to ηA
v ; the original statement 

of this result contained a small error, and we thank Arne Decadt for pointing this out to us.

Lemma 42. Consider time points s, r in R≥0 such that s < r and a grid v = (t0, . . . , tn) over [s, r] with n ≥ 2. Then for any subset A
of X 2�= ,

ηA
(s,r) −

n−1∑
k=1

I{Xtk−1 �=Xtk �=Xr
} ≤ ηv ≤ ηA

(s,r) + 2
n−1∑
k=1

I{Xtk−1 �=Xtk �=Xr
}.

Proof. Crucial to our proof is the following observation. Let w = (s0, . . . , sm) be any grid over [s, r], and fix some time 
point t in ]sm−1, sm[. Then it follows from Eqn. (16) that

ηA − ηA
w = IA(Xsm−1 , Xt) + IA(Xt , Xsm ) − IA(Xsm−1 , Xsm ).
w∪(t)
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For all x, y, z in X , IA(x, y) +IA(y, z) −IA(x, z) = 0 if x = y or y = z, and −1 ≤ IA(x, y) +IA(y, z) −IA(x, z) ≤ 2 otherwise, 
so if x �= y �= z. Hence,

ηA
w − I{Xsm−1 �=Xt �=Xsm

} ≤ ηA
w∪(t) ≤ ηA

w + 2I{Xsm−1 �=Xt �=Xsm
}. (25)

Let v0 := (t0, tn), and for all k in {1, . . . , n − 1}, let vk := (t0, . . . , tk, tn); note that vn−1 = v . Then it follows from Eqn. (25)
that for all k in {1, . . . , n − 1},

ηA
vk−1

− I{Xtk−1 �=Xtk �=Xtn
} ≤ ηA

vk
≤ ηA

vk−1
+ 2I{Xtk−1 �=Xtk �=Xtn

}.
We repeatedly apply the second inequality, to yield

ηA
v = ηA

vn−1
≤ ηA

vn−2
+ 2I{Xtn−2 �=Xtn−1 �=Xtn

} ≤ · · · ≤ ηA
v0

+ 2
n−1∑
k=1

I{Xtk−1 �=Xtk �=Xtn
}

= ηA
(s,r) + 2

n−1∑
k=1

I{Xtk−1 �=Xtk �=Xr
};

similarly, by repeated use of the first inequality we find that

ηA
v = ηA

vn−1
≥ ηA

vn−2
− I{Xtn−2 �=Xtn−1 �=Xtn

} ≥ · · · ≥ ηA
v0

−
n−1∑
k=1

I{Xtk−1 �=Xtk �=Xtn
}

= ηA
(s,r) −

n−1∑
k=1

I{Xtk−1 �=Xtk �=Xr
}.

This proves the inequalities in the statement. �
Next, we establish that the absolute value of the difference between the number of selected jumps in ]s, r] and the 

number of selected jumps along a grid v over [s, r] is measurable and bounded below; this result is similar to – and, in 
some sense, is a corollary of – Lemma 28.

Lemma 43. Consider some u in U and s, r in R≥0 such that max u ≤ s < r. Fix some subset A of X 2�= and a grid v over [s, r], and 
let (vn)n∈N be a sequence of grids over [s, r] such that limn→+∞ �(vn) = 0. Then (|ηA

vn
− ηA

v |)n∈N is a sequence of Au-simple 
variables that converges point-wise to |ηA]s,r] − ηA

v |. Consequently, |ηA]s,r] − ηA
v | belongs to Mu .

Proof. Recall from Lemma 28 that (ηA
vn

)n∈N is a sequence of Au -simple variables that converges point-wise to ηA]s,r] , and 
from Corollary 26 that ηA

v is a Au-simple variable. For any two Au -simple variables f and g , the non-negative real variable 
| f − g| is Au-simple too. Hence, (|ηA

vn
− ηA

v |)n∈N is a sequence of Au -simple variables, and it is obvious that this sequence 
converges point-wise to |ηA]s,r] − ηA

v |. By the same argument as in the second part of the proof of Lemma 28, this verifies 
that |ηA]s,r] − ηA

v | belongs to Mu . �
As a final intermediary result, we use Lemmas 41, 42 and 43 to bound the expectation of the absolute value of the 

difference between the number of selected jumps in some interval ]s, r] and the number of selected jumps along the trivial 
grid (s, r) over [s, r].

Lemma 44. Consider a jump process P in PM,Q . Fix some u in U , xu in Xu and time points s, r in R≥0 such that max u ≤ s < r. Then 
for any subset A of X 2�= ,

Eσ
P

(|ηA]s,r] − ηA
(s,r)|

∣∣ Xu = xu
)≤ 1

4
(r − s)2‖Q‖2.

Proof. For all n in N , we let vn := (tn,0, . . . , tn,n) be the grid over [s, r] that consists of n + 1 evenly spaced time points, so 
with

tn,k := s + k

n
(r − s) for all k ∈ {0, . . . ,n}.

Our construction of the sequence (vn)n∈N guarantees that limn→+∞ �(vn) = limn→+∞ r−s
n = 0. Therefore, it follows from 

Lemma 43 that (|ηA
vn

− ηA
(s,r)|)n∈N is a sequence in Su ⊆Mu that converges point-wise to |ηA]s,r] −ηA

(s,r)| ∈Mu . Because this 
convergence is not monotone, we need to resort to Theorem 35. To this end, we observe that for all n in N ,
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|ηA
vn

− ηA
(s,r)| ≤ max{ηA

vn
, ηA

(r,s)} ≤ max{ηvn , η(r,s)} ≤ η]s,r],

where for the first inequality we used that ηA
vn

and ηA
(s,r) are non-negative, for the second inequality we used Eqn. (17) and 

for the final inequality we used Lemma 30. Due to the preceding, and because Eσ
P (η]s,r] | Xu = xu) < +∞ due to Theorem 39, 

it follows from Theorem 35 that

Eσ
P

(|ηA]s,r] − ηA
(s,r)|

∣∣ Xu = xu
)= lim

n→+∞ Eσ
P

(|ηA
vn

− ηA
(s,r)|

∣∣ Xu = xu
)
. (26)

In order to bound the right-hand side of Eqn. (26), we fix any n in N . Because |ηA
vn

− ηA
(s,r)| is Au-simple and because 

Eσ
P extends E P ,

Eσ
P

(|ηA
vn

− ηA
(s,r)|

∣∣ Xu = xu
)= E P

(|ηA
vn

− ηA
(s,r)|

∣∣ Xu = xu
)
.

Next, we recall from Lemma 42 that

|ηA
vn

− ηA
(s,r)| ≤ 2

n−1∑
k=1

I{Xtn,k−1 �=Xtn,k �=Xr},

and from Lemma 41 that each of the events occurring on the right-hand side belongs to Au , which makes the expression 
on the right-hand side an Au -simple variable. Due to (E4), this implies that

Eσ
P

(|ηA
vn

− ηA
(s,r)|

∣∣ Xu = xu
)≤ E P

(
2

n−1∑
k=1

I{Xtn,k−1 �=Xtn,k �=Xr}

∣∣∣∣∣ Xu = xu

)

= 2
n−1∑
k=1

P ({Xtn,k−1 �= Xtn,k �= Xr} | Xu = xu),

where for the equality we used Eqn. (3). We replace the probabilities on the right-hand side of the equality with the upper 
bound in Lemma 41 and execute some straightforward manipulations, to yield

Eσ
P

(|ηA
vn

− ηA
(s,r)|

∣∣ Xu = xu
)≤ 2

n−1∑
k=1

1

4
(tn,k − tn,k−1)(r − tn,k)‖Q‖2 = 2

n−1∑
k=1

1

4

r − s

n

(
n − k

n
(r − s)

)
‖Q‖2

= 2
n−1∑
k=1

1

4

(r − s)2

n2
(n − k)‖Q‖2 = 1

2

(r − s)2

n2
‖Q‖2

n−1∑
k=1

(n − k).

Because 
∑n−1

k=1(n − k) = (n−1)n
2 , it follows from this inequality that

Eσ
P

(|ηA
vn

− ηA
(s,r)|

∣∣ Xu = xu
)≤ 1

4

n − 1

n
(r − s)2‖Q‖2. (27)

Finally, it follows from Eqns. (26) and (27) that

Eσ
P

(|ηA]s,r] − ηA
(s,r)|

∣∣ Xu = xu
)≤ lim

n→+∞
1

4

n − 1

n
(r − s)2‖Q‖2 = 1

4
(r − s)2‖Q‖2. �

At long last, we can get around to proving Theorem 40, and we do this with the help of Lemmas 38, 43 and 44 and 
some properties of the Lebesgue integral Eσ

P (• | Xu = xu).

Proof of Theorem 40. Due to Lemma 38, it suffices to prove that for any jump process P in P ⊆PM,Q ,

Eσ
P

(|ηA]s,r] − ηA
v | ∣∣ Xu = xu

)≤ 1

4
�(v)(r − s)‖Q‖2. (28)

Hence, we fix any jump process P in P ⊆PM,Q .
Let us enumerate the time points in v as (t0, . . . , tn). It follows immediately from the definition of ηA]s,r] and ηA

v that

ηA]s,r] =
n∑

k=1

ηA]tk−1,tk] and ηA
v =

n∑
k=1

ηA
(tk−1,tk)

,

and therefore
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∣∣ηA]s,r] − ηA
v

∣∣=
∣∣∣∣∣

n∑
k=1

ηA]tk−1,tk] −
n∑

k=1

ηA
(tk−1,tk)

∣∣∣∣∣=
∣∣∣∣∣

n∑
k=1

(
ηA]tk−1,tk] − ηA

(tk−1,tk)

)∣∣∣∣∣≤
n∑

k=1

∣∣ηA]tk−1,tk] − ηA
(tk−1,tk)

∣∣.
Due to Lemma 43, |ηA]s,r] −ηA

v | belongs to the domain Mu , and so does |ηA]s,r] −ηA
(tk−1,tk)

| for all k in {1, . . . , n}. Furthermore, 
for all k in {1, . . . , n}, Eσ

P (|ηA]tk−1,tk] −ηA
(tk−1,tk)

| | Xu = xu) ≥ 0 due to (LI1). Hence, due to the monotonicity (LI4) and additivity 
(LI3) of Eσ

P , it follows from the preceding inequality that

Eσ
P

(|ηA]s,r] − ηA
v | ∣∣ Xu = xu

)≤ Eσ
P

(
n∑

k=1

∣∣ηA]tk−1,tk] − ηA
(tk−1,tk)

∣∣ ∣∣∣∣∣ Xu = xu

)

=
n∑

k=1

Eσ
P

(∣∣ηA]tk−1,tk] − ηA
(tk−1,tk)

∣∣ ∣∣∣ Xu = xu

)
.

We substitute the expectations on the right-hand side of the equality by the upper bound in Lemma 44, to yield

Eσ
P

(|ηA]s,r] − ηA
v | ∣∣ Xu = xu

)≤
n∑

k=1

1

4
(tk − tk−1)

2‖Q‖2.

Finally, because (tk − tk−1) ≤ �(v) for all k in {1, . . . , n} and 
∑n

k=1(tk − tk−1) = (tn − t0) = (r − s), it follows from this 
inequality that

Eσ
P

(|ηA]s,r] − ηA
v | ∣∣ Xu = xu

)≤ 1

4
�(v)‖Q‖2

n∑
k=1

(tk − tk−1) = 1

4
�(v)(r − s)‖Q‖2,

and this is precisely the inequality in Eqn. (28). �
Finally, it follows immediately from Theorem 40 that in the particular case of the number of selected jumps, the con-

vergence in Theorem 37 – and, if A = X 2�= and vn ⊆ vn+1 for all n in N , also that in Theorem 36 – is not conservative but 
tight, and that we have limits instead of a limit superior and a limit inferior.

Corollary 45. Consider an imprecise jump process P ⊆ PM,Q . Fix some u in U , xu in Xu and s, r in R≥0 such that max u ≤ s < r, 
and fix a subset A of X 2�= . Then for any sequence (vn)n∈N of grids over [s, r] such that limn→+∞ �(vn) = 0,

Eσ
P
(
ηA]s,r]

∣∣ Xu = xu
)= lim

n→+∞ EP
(
ηA

vn

∣∣ Xu = xu
)

and E
σ
P
(
ηA]s,r]

∣∣ Xu = xu
)= lim

n→+∞ EP
(
ηA

vn

∣∣ Xu = xu
)
.

Proof. Follows immediately from Theorem 40. �
Theorem 40 and Corollary 45 allow us to compute – or approximate – the lower/upper expected number of selected 

jumps with respect to an imprecise jump process P ⊆ PM,Q . Obviously, however, this requires that we can compute 
EP (ηA

v | Xu = xu) and/or EP (ηA
v | Xu = xu) for any grid v over [s, r]. In Section 6.1 further on, we will identify conditions 

on P under which this is possible as well as present other, more explicit methods for computing lower/upper expectations 
of the number of selected jumps.

5.2. Convergence for the expected Riemann sums

Next, we set out to prove a (tight) convergence result for the lower/upper expectation of
∫ r

s f (Xt) dt . Fix some se-
quence (vn)n∈N of grids over [s, r] with limn→+∞ �(vn) = 0 – take, for example, the sequence with grids defined for all n
in N by

vn :=
(

s, s + r − s

n
, s + 2

r − s

n
, . . . , s + n

r − s

n

)
.

Then by Lemma 32, the corresponding sequence (〈 f 〉vn )n∈N of Riemann sums is a uniformly-bounded sequence of sim-
ple variables that converges point-wise to

∫ r
s f (Xt) dt . Consequently, we could invoke Theorem 37 – with g the constant 

(and therefore bounded and measurable) real variable (r − s)‖ f ‖ – to conservatively bound the lower/upper expectation 
of
∫ r

s f (Xt) dt . Here too, however, the approximation in Theorem 37 is actually tight, and the limit superior and limit in-
ferior in the statement are actually limits. The reason for this is the following important result; it is a special case of 
Proposition 6.38 in [13], but we provide a formal proof for the sake of completeness.
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Theorem 46. Consider an imprecise jump process P ⊆ PM,Q . Fix some u in U , xu in Xu and time points s, r in R≥0 such that 
max u ≤ s < r, and fix a real-valued function f on X . Then for any grid v over [s, r],∣∣∣∣∣∣Eσ

P

⎛
⎝ r∫

s

f (Xt)dt

∣∣∣∣∣∣ Xu = xu

⎞
⎠− EP (〈 f 〉v | Xu = xu)

∣∣∣∣∣∣≤
1

2
(max f − min f )�(v)(r − s)‖Q‖,

and the same inequality holds for the upper expectation.

Our proof for Theorem 46 uses the following rather obvious intermediary result, which is a special case of Lemma 6.37 
in [33]; again, we provide a formal proof here for the sake of completeness.

Lemma 47. Consider time points s, r in R≥0 such that s ≤ r, and a real-valued function f on X . Then for any grid v over [s, r],∣∣∣∣∣∣
r∫

s

f (Xt)dt − 〈 f 〉v

∣∣∣∣∣∣≤ (max f − min f )�(v)η[s,r].

Proof. We enumerate the time points in v as (t0, . . . , tn). Then

〈 f 〉v =
n∑

k=1

f (Xtk )(tk − tk−1),

by definition, and it is a well-known property of Riemann integrals [see 26, Theorem 24.19] that

r∫
s

f (Xt)dt =
n∑

k=1

tk∫
tk−1

f (Xt)dt.

It follows from these two equalities and the triangle inequality that∣∣∣∣∣∣
r∫

s

f (Xt)dt − 〈 f 〉v

∣∣∣∣∣∣=
∣∣∣∣∣∣∣

n∑
k=1

tk∫
tk−1

f (Xt)dt −
n∑

k=1

f (Xtk )(tk − tk−1)

∣∣∣∣∣∣∣
≤

n∑
k=1

∣∣∣∣∣∣∣
tk∫

tk−1

f (Xt)dt − f (Xtk )(tk − tk−1)

∣∣∣∣∣∣∣. (29)

We now investigate the terms of the sum on the right-hand side of this inequality individually. To this end, we fix some 
k in {1, . . . , n} and ω in �. Because the Riemann integral is additive,∣∣∣∣∣∣∣

tk∫
tk−1

f
(
ω(t)

)
dt − f

(
ω(tk)

)
(tk+1 − tk)

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

tk∫
tk−1

f
(
ω(t)

)
dt −

tk∫
tk−1

f
(
ω(tk)

)
dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
tk∫

tk−1

f
(
ω(t)

)− f
(
ω(tk)

)
dt

∣∣∣∣∣∣∣. (30)

First, we consider the case that ω is constant over [tk−1, tk], meaning that η]tk−1,tk](ω) = 0. Then for all t in [tk−1, tk], 
ω(t) = ω(tk), and hence f

(
ω(t)

)= f
(
ω(tk)

)
. Consequently, using Eqn. (30),∣∣∣∣∣∣∣

tk∫
tk−1

f
(
ω(t)

)
dt − f

(
ω(tk)

)
(tk − tk−1)

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

tk∫
tk−1

0 dt

∣∣∣∣∣∣∣= 0 = (max f − min f )�(v)η]tk−1,tk](ω).

Second, we consider the case that ω is not constant over [tk−1, tk], in the sense that η]tk−1,tk](ω) > 0. Observe that(∀t ∈ [tk−1, tk]
) ∣∣ f

(
ω(t)

)− f
(
ω(tk)

)∣∣≤ (max f − min f ).
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It follows from Eqn. (30), this inequality, the counterpart of (LI5) for the Riemann integral and the monotonicity of the 
Riemann integral that∣∣∣∣∣∣∣

tk∫
tk−1

f
(
ω(t)

)
dt − f

(
ω(tk)

)
(tk+1 − tk)

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

tk∫
tk−1

f
(
ω(t)

)− f
(
ω(tk)

)
dt

∣∣∣∣∣∣∣
≤

tk∫
tk−1

∣∣ f
(
ω(t)

)− f
(
ω(tk)

)∣∣dt

≤
tk∫

tk−1

(max f − min f )dt

= (max f − min f )(tk − tk−1) ≤ (max f − min f )�(v),

where for the final inequality we used that (tk − tk−1) ≤ �(v). Hence, and because η]tk−1,tk](ω) ≥ 1, it follows that∣∣∣∣∣∣∣
tk∫

tk−1

f
(
ω(t)

)
dt − f

(
ω(tk)

)
(tk+1 − tk)

∣∣∣∣∣∣∣≤ (max f − min f )�(v)η]tk−1,tk](ω).

Thus, we have shown that for all k in {1, . . . , n},∣∣∣∣∣∣∣
tk∫

tk−1

f (Xt)dt − f (Xtk )(tk − tk−1)

∣∣∣∣∣∣∣≤ (max f − min f )�(v)η]tk−1,tk].

It follows from this and Eqn. (29) that∣∣∣∣∣∣
r∫

s

f (Xt)dt − 〈 f 〉v

∣∣∣∣∣∣≤
n∑

k=1

(max f − min f )�(v)η]tk−1,tk] = (max f − min f )�(v)η]s,r],

where for the equality we used that 
∑n

k=1 η]tk−1,tk] = η]s,r] . �
Proof of Theorem 46. For any jump process P in P , it follows from Lemma 47, the monotonicity and homogeneity of Eσ

P
and Theorem 39 that

Eσ
P

⎛
⎝
∣∣∣∣∣∣

r∫
s

f (Xt)dt − 〈 f 〉v

∣∣∣∣∣∣
∣∣∣∣∣∣ Xu = xu

⎞
⎠≤ Eσ

P

(
(max f − min f )�(v)η]s,r]

∣∣ Xu = xu
)

= (max f − min f )�(v)Eσ
P (η]s,r] | Xu = xu)

≤ 1

2
(max f − min f )�(v)(r − s)‖Q‖.

Since this inequality holds for any jump process P in P , it implies the inequalities in the statement due to Lemma 38. �
Clearly, Theorem 46 implies that in the case of a measurable variable that can be written as the integral of f (Xt) over 

some interval [s, r], the bounds in Theorem 37 are actually tight; even more, the lower/upper expectation of 〈 f 〉n converges 
to a limit.

Corollary 48. Consider an imprecise jump process P ⊆PM,Q . Fix some u in U , xu in Xu , s, r in R≥0 such that max u ≤ s < r and f
in RX . Then for any sequence (vn)n∈N of grids over [s, r] such that limn→+∞ �(vn) = 0,

Eσ
P

⎛
⎝ r∫

s

f (Xt)dt

∣∣∣∣∣∣ Xu = xu

⎞
⎠= lim

n→+∞ EP
(〈 f 〉vn

∣∣ Xu = xu
)

and
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E
σ
P

⎛
⎝ r∫

s

f (Xt)dt

∣∣∣∣∣∣ Xu = xu

⎞
⎠= lim

n→+∞ EP
(〈 f 〉vn

∣∣ Xu = xu
)
.

We can make a similar remark here as the one we made right after Corollary 45: Theorem 46 and Corollary 48 allow us 
to compute – or approximate – the lower/upper expectation of 

∫ r
s f (Xt) dt for an imprecise jump process P ⊆PM,Q , given 

that we can determine the lower/upper expectation of 〈 f 〉v for any sufficiently fine grid v over [s, r]. Here too, we leave a 
more thorough discussion, and improved algorithms, for Section 6.1 further on.

6. Computational methods

In Section 5.1, we learned that we can use Theorem 40 or Corollary 45 to determine the lower/upper expectation of 
the number of selected jumps ηA]s,r] if we can determine the lower/upper expectation of ηA

v for a suitably fine grid v
over [s, r], and we learned a similar thing for variables of the form of a Riemann integral in Section 5.2, provided we 
can determine the lower/upper expectation of 〈 f 〉v . In this section, we go deeper into this idea of determining these 
lower/upper expectations. In Section 6.1, we investigate conditions on the set of rate operators Q under which we can 
compute the lower/upper expectation of ηA

v and 〈 f 〉v with respect to PM,Q . Quite surprisingly, this provides the ideal 
starting point for a computational method that works under fewer conditions on Q and for any imprecise jump process P
such that PM

M,Q ⊆P ⊆PM,Q , as we will see in Section 6.2.

6.1. Computing the lower expectation of simple variables with a specific sum decomposition

Fix a sequence of time points u in U , a state instantiation xu in Xu and time points s, r in R≥0 such that max u ≤ s < r, 
and let v = (t0, . . . , tn) be any grid over [s, r]. The aim of this section is to investigate under which conditions on the 
imprecise jump process P we can determine EP ( f (Xv) | Xu = xu) and/or EP ( f (Xv) | Xu = xu). We are particularly interested 
in the case that f (Xv) = ηA

v or f (Xv) = 〈 f 〉v ; we cover both of these cases if we point our attention to a generic Au -simple 
variable f (Xv) with a sum decomposition of the form

f (Xv) =
n∑

k=1

gk
(

Xtk−1 , Xtk

)
, (31)

where g1, . . . , gn are real-valued functions on X 2. This specific sum decomposition suffices because both ηA
v and 〈 f 〉v are 

of this form: it follows from Eqn. (16) that ηA
v is of this form with gk = IA for all k in {1, . . . , n}, and from Eqn. (18) that 

〈 f 〉v is of this form with gk(Xtk−1 , Xtk ) = (tk − tk−1) f (Xtk ) for all k in {1, . . . , n}. Even more, both −ηA
v and −〈 f 〉v are 

obviously of this form as well; due to conjugacy, it therefore suffices to focus on determining the lower expectation of a 
generic Au-simple variable f (Xv) with a sum decomposition of the form in Eqn. (31).

6.1.1. The law of iterated lower expectations
Krak et al. [2, Section 9] essentially argue – but see [13, Section 4.1] for a more generic and detailed explanation – 

that determining lower expectations becomes simpler whenever P satisfies the ‘law of iterated lower expectations’, which 
generalises the well-known ‘law of iterated expectations’. To state this law of iterated expectations in the setting of jump 
processes, we need to introduce some additional notation: for all u in U , v in Une such that u � v and f in RXv , we define 
the Su-simple variable

E P ( f (Xv) | Xu) :=
∑

xu∈Xu

E P ( f (Xv) | Xu = xu)I{Xu=xu}. (32)

Proposition 49. Consider any jump process P . Then for all u in U , v, w in Une such that u ≺ v and u ∪ v � w, f in RXw and xu

in Xu ,

E P ( f (Xw) | Xu = xu) = E P
(

E P ( f (Xw) | Xu∪v)
∣∣ Xu = xu

)
.

For imprecise jump processes, a result similar to Proposition 49 exists for the corresponding lower expectation, but it 
is a bit more involved. To see why, we let P be any imprecise jump process. First, we generalise the variable defined in 
Eqn. (32): for all u in U , v in Une such that u � v and f in RXv , we define the Su-simple variable

EP ( f (Xv) | Xu) :=
∑

xu∈Xu

EP ( f (Xv) | Xu = xu)I{Xu=xu}.

Fix some u in U , some v, w in Une such that u ≺ v and u ∪ v � w , some real-valued function f on Xw and some xu in Xu . 
It is obvious that
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EP ( f (Xw) | Xu∪v) ≤ E P ( f (Xw) | Xu∪v) for all P ∈ P,

and we infer from this inequality, Proposition 49 and (E4) that for any jump process P in the imprecise jump process P ,

E P ( f (Xw) | Xu = xu) = E P (E P ( f (Xw) | Xu∪v) | Xu = xu) ≥ E P (EP ( f (Xw) | Xu∪v) | Xu = xu).

Inequalities are preserved under taking the infimum, so we can conclude that

EP ( f (Xw) | Xu = xu) ≥ EP
(

EP ( f (Xw) | Xu∪v)
∣∣ Xu = xu

)
.

In the special case that this inequality always holds with equality, we say that P satisfies the law of iterated lower expec-
tations.

Definition 50. An imprecise jump process P satisfies the law of iterated lower expectations if for all u in U , v, w in Une such 
that u ≺ v and u ∪ v � w , f in RXw and xu in Xu ,

EP ( f (Xw) | Xu = xu) = EP
(

EP ( f (Xw) | Xu∪v)
∣∣ Xu = xu

)
. (33)

Unfortunately, many imprecise jump processes do not satisfy this law of iterated lower expectations; see for example [2, 
Example 9.2]. However, Krak et al. [2, Theorem 6.5] show that whenever the non-empty and bounded set Q of rate matrices 
is convex and has separately specified rows,10 PM,Q satisfies this law – and it is important to stress that PM

M,Q or PHM
M,Q

may not [2, Example 9.2].

Proposition 51. If Q is convex and has separately specified rows, then PM,Q satisfies the law of iterated lower expectations.

Example 52. It follows immediately from its definition in Example 13 that the set Q is convex, and we have seen in 
Example 21 that Q also has separately specified rows. Hence, our model PM,Q of the power network is a Markovian jump 
process that satisfies the law of iterated lower expectations.

Crucially, if an imprecise jump process P satisfies the law of iterated lower expectations, then we can compute con-
ditional lower expectations of the general form EP ( f (Xv) | Xu = xu) – with u � v – through backwards recursion. This 
recursive method goes back to earlier work on imprecise Markov chains – see [35, Section 4.5] and [36, Section 3]. In this 
contribution, we will only give this backwards recursive method for a special case. First, we make the additional assumption 
that P is Markovian. Second, we only consider variables f (Xv) that have a sum decomposition of the form in Eqn. (31). 
Third, we assume that the sequence of time points u in the conditioning event is non-empty, and that the last time point 
of u equals the first time point of v; formally, we do this by considering conditioning events of the form {Xu = xu, Xs = x}
with u ≺ (s) and non-empty sequences of time points v such that t0 = s. This third assumption is not strictly necessary, 
but it does allow for more elegant statements – we refer the interested reader to Lemma 6.44 in [13] for ideas on how 
to remove this condition. We prove in Appendix A that, under these three additional assumptions, Proposition 4.11 in [13]
specialises to the following result.

Proposition 53. Consider a Markovian imprecise jump process P that satisfies the law of iterated lower expectations. Fix time 
points s, r in R≥0 such that s < r, a grid v = (t0, . . . , tn) over [s, r] and real-valued functions g1 , . . . , gn on X 2 . Let f0 , . . . , fn be 
the real-valued functions on X defined by the initial condition fn := 0 and, for all k in {0, . . . , n − 1}, by the recursive relation

fk : X → R : x �→ EP (gk+1(x, Xtk+1) + fk+1(Xtk+1) | Xtk = x).

Then for all x in X , u in U≺s and xu in Xu ,

EP

(
n∑

k=1

gk(Xtk−1 , Xtk )

∣∣∣∣∣ Xu = xu, Xs = x

)
= f0(x).

6.1.2. The lower envelope Q of Q and its exponential
Obviously, Proposition 53 is only useful if we can determine lower expectations of the form

EP (h(Xt+�) | Xu = xu, Xt = x).

10 The published result lacks the condition that Q has separately specified rows, but this is implicitly used in the proof given there; the interested reader 
can find the corrected statement and proof in [13, Theorem 3.88] or [34, Theorem 5.32].
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As we will presently see, this turns out to be the case for any imprecise jump process P such that PM
M,Q ⊆P ⊆PM,Q , at 

least if Q has separately specified rows. To explain how this works, we need to introduce the operator exponential e�Q of 
the lower envelope Q of Q.

Given a non-empty and bounded set R ⊆ Q of rate matrices, Krak et al. [2, Eqn. (38)] define the corresponding lower 
envelope RR : RX →RX as the operator that maps any real-valued function f on X to

RR f : X → R : x �→ [RR f ](x) := inf
{[Q f ](x) : Q ∈ R

}; (34)

the upper envelope RR : RX → RX is defined similarly, and is related to the lower envelope RR by conjugacy: RR f :=
−RR(− f ) for any real-valued function f on X . Krak et al. [2, Proposition 7.5] show that the lower envelope RR is a so-
called lower (transition) rate operator – a generalisation of the notion of a rate matrix that relaxes linearity to non-negative 
homogeneity and superadditivity.

Definition 54. A lower rate operator R is an operator R : RX →RX such that

LR1. R(λ f ) = λR f for all λ in R≥0 and f in RX ; [non-negative homogeneity]
LR2. R( f + g) ≥ R f + R g for all f , g in RX ; [superadditivity]
LR3. [RIy](x) ≥ 0 for all x, y in X such that x �= y; [non-negative off-diagonal components]
LR4. Rμ = 0 for any constant function μ on X . [zero on constant functions]

In order to shorten our notation, we will denote the lower envelope of Q by Q := RQ , and its conjugate upper envelope 
by Q := RQ .

Example 55. In Example 13, we defined a set of rate matrices through inequalities on the off-diagonal components. For 
this reason, the lower envelope Q of this set Q can be easily determined: for all f in RX and x in X , [Q f ](x) can be 
determined either through a straightforward case study or through linear programming [see also 10, p. 293].

One interesting property of the lower envelope Q of Q is that its operator norm ‖Q ‖ is equal to the supremum of the 
norms of the rate matrices in Q.

Lemma 56. For any non-empty and bounded set R of rate matrices, ‖RR‖ = ‖R‖.

Proof. Let us denote the lower envelope of R by R := RR . For any rate operator Q in R, it follows from Eqn. (6) and the 
non-positivity of the off-diagonal elements of Q that

‖Q ‖ = 2 max
{−Q (x, x) : x ∈ X

}= −2 min
{

Q (x, x) : x ∈ X
}= −2 min

{[Q Ix](x) : x ∈ X
}
.

Similarly, by (LR7) in [13, p. 111] or Proposition 4 in [33],

‖R‖ = 2 max
{−[RIx](x) : x ∈ X

}= −2 min
{[RIx](x) : x ∈ X

}
.

To obtain the equality in the statement, we substitute the definition of R in the preceding equality, change the order of 
minimisations and substitute our expression for ‖Q ‖:

‖R‖ = −2 min
{

inf
{[Q Ix](x) : Q ∈ R

} : x ∈ X
}

= −2 inf
{

min
{[Q Ix](x) : x ∈ X

} : Q ∈ R
}

= sup
{−2 min

{[Q Ix](x) : x ∈ X
} : Q ∈ R

}= sup
{‖Q ‖: Q ∈ R

}= ‖R‖. �
More importantly, the ‘operator exponential’ e�Q of the lower envelope Q of Q plays the same role for the imprecise 

jump processes PM
M,Q and PM,Q as the matrix exponential e�Q of the rate matrix Q does for the homogeneous Markovian 

jump process P p,Q in Eqn. (9). We formalise this statement in Lemma 57 further on, but we need to introduce the operator 
exponential of a lower rate operator before we can do so.

Consider a lower rate operator R . Krak et al. [2, Corollary 7.11 and Theorem 7.12] – see also Section 6 in [37] – prove 
that for all � in R≥0,

e�R : RX → RX : f �→ e�Q f := lim
n→+∞

(
I + �

n
R

)n

f

is well-defined. If the lower rate operator R is linear – or equivalently, if R is a rate matrix – then e�R is the (matrix) 
exponential of R; for this reason, we call e�R the (operator) exponential of R .
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Now recall from Eqn. (9) that the matrix exponential e�Q of the rate matrix Q can be used to compute specific ex-
pectations for a homogeneous Markovian jump process with rate matrix Q . Interestingly, the (operator) exponential e�Q

of the lower envelope Q of Q plays a similar role for the homogeneous Markovian imprecise jump processes PM
M,Q and 

PM,Q , in the sense that whenever Q has separately specified rows, the operator exponential of its lower envelope Q
gives the (lower) expectation of any real variable that depends on the state of the system at a single future time point [2, 
Corollary 8.3].

Lemma 57. If Q has separately specified rows, then for all t, � in R≥0 , f in RX , x in X , u in U≺t and xu in Xu ,

EM
M,Q( f (Xt+�) | Xu = xu, Xt = x) = [

e�Q f
]
(x) and EM,Q( f (Xt+�) | Xu = xu, Xt = x) = [

e�Q f
]
(x),

and hence, more generally, for any imprecise jump process P such that PM
M,Q ⊆P ⊆PM,Q ,

EP ( f (Xt+�) | Xu = xu, Xt = x) = [
e�Q f

]
(x).

Finally, combining Proposition 53 and Lemma 57 gives us the straightforward backwards-recursive method we are after, 
although it only works for PM,Q and in case Q is convex and has separately specified rows.

Corollary 58. Fix time points s, r in R≥0 such that s < r, a grid v = (t0, . . . , tn) over [s, r] and real-valued functions g1 , . . . , gn on X 2 . 
Let h0 , . . . , hn be the real-valued functions on X defined by the initial condition hn := 0 and, for all k in {0, . . . , n − 1}, by the recursive 
relation

hk : X → R : x �→ [
e(tk+1−tk)Q (gk+1(x,•) + hk+1)

]
(x).

If Q is convex and has separately specified rows, then for all x in X , u in U≺s and xu in Xu ,

EM,Q

(
n∑

k=1

gk(Xtk−1 , Xtk )

∣∣∣∣∣ Xu = xu, Xs = x

)
= h0(x).

Proof. Because Q is convex and has separately specified rows, PM,Q is Markovian due to Corollary 20 and satisfies the 
law of iterated lower expectations due to Proposition 51. Hence, the equality in the statement follows immediately from 
Lemma 57 and Proposition 53. �

At first sight, Corollary 58 simply shifts the problem we had with Proposition 53: we now need to determine [e�Q h](x)
instead of EP (h(Xt+�) | Xt = x) for h in RX . This is not an issue though, because there are plenty of methods to determine 
e�Q h. We will not treat these computational methods in detail, but the interested reader may refer to [2, Proposition 8.5], 
[33] or [13, Section 4.2]. Because it is relevant further on, we do mention that it is standard practice to use ‘Euler’s method’ 
to approximate e�Q with (I + �

n Q )n for some (sufficiently large) natural number n. Krak et al. [2, Lemma E.8] give an 
upper bound on the resulting error, but here we only need this bound for the special case that n = 1 – in fact, we repeat 
the slightly tighter bound from [13, Lemma 4.16].

Lemma 59. Consider a lower rate operator R. Then for any � in R≥0 ,

∥∥e�R − (I + �R)
∥∥≤ 1

2
�2‖R‖2.

If Q is not convex and/or does not have separately specified rows, we can still use the method in Corollary 58 to give 
a lower bound on the lower expectation, even for imprecise jump processes other than PM,Q . To see this, consider an 
imprecise jump process P such that P ⊆ PM,Q , and some bounded set R of rate matrices that includes Q. Recall from 
Section 3 that every jump process P that is consistent with Q ⊆ R is also consistent with R. Consequently, P ⊆ PM,Q ⊆
PM,R , and therefore

EP (• | •) ≥ EM,Q(• | •) ≥ EM,R(• | •).
Hence, if R is convex and has separately specified rows, then we can use the method in Corollary 58 to compute a lower 
bound on the lower expectation of interest, provided we can evaluate the lower rate operator R associated with R. Krak 
et al. [2, Propositions 7.6 to 7.8] prove that the set

RQ := {Q ∈Q : (∀ f ∈RX ) Q f ≥ Q f },
of rate matrices that dominate the lower envelope Q of Q has the required properties, and – quite conveniently – that it 
turns out to have the same lower envelope as Q.
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Lemma 60. The set RQ of rate matrices that dominate the lower envelope Q of Q (i) includes Q; (ii) is bounded and convex and has 
separately specified rows; and (iii) its lower envelope RRQ , as defined by Eqn. (34), is Q .

Because RQ includes Q, is convex, has separately specified rows and has Q as lower envelope, we end up with the 
following immediate consequence of Corollary 58 by applying it to PM,RQ .

Corollary 61. Fix time points s, r in R≥0 such that s < r, a grid v = (t0, . . . , tn) over [s, r] and real-valued functions g1 , . . . , gn on X 2 . 
Let h0 , . . . , hn be the real-valued functions on X as defined in Corollary 58. Then for all imprecise jump processes P ⊆ PM,Q , x in X , 
u in U≺s and xu in Xu ,

EP

(
n∑

k=1

gk(Xtk−1 , Xtk )

∣∣∣∣∣ Xu = xu, Xs = x

)
≥ h0(x);

in particular, this holds for P =PHM
M,Q , P =PM

M,Q and P =PM,Q .

Our next result shows that if Q has separately specified rows – but isn’t necessarily convex – we do not have to settle 
for a conservative lower bound; instead, we can replace it by an approximation, at least up to an error that is proportional 
to �(v). This approximation furthermore has the added benefit that instead of the operator exponential e(tk+1−tk)Q that 
appears in the definition of hk , it uses its ‘one-step Euler approximation’ I + (tk+1 − tk)Q . Our proof for this result is rather 
technical and quite long, which is why we have relegated it to Appendix B.

Theorem 62. Fix time points s, r in R≥0 such that s < r, a grid v = (t0, . . . , tn) over [s, r] and real-valued functions g1 , . . . , gn on X 2 . 
Let ∼h0 , . . . , ∼hn be the real-valued functions on X defined by the initial condition ∼hn := 0 and, for all k in {0, . . . , n − 1}, by the recursive 
relation

∼hk : X → R : x �→ [
(I + (tk+1 − tk)Q )(gk+1(x,•) + ∼hk+1)

]
(x).

If (i) Q has separately specified rows, (ii) �(v)‖Q‖ ≤ 2 and (iii) there is a non-negative real number β such that

(∀k ∈ {0, . . . ,n − 1})(∀x ∈ X )(∀P ∈ PM,R) |E P (gk+1(Xtk , Xtk+1) | Xtk = x)| ≤ β(tk+1 − tk),

with R :=RQ , then for any imprecise jump process P such that PM
M,Q ⊆P ⊆PM,Q and all x in X , u in U≺s and xu in Xu ,

∣∣∣∣∣EP

(
n∑

k=1

gk(Xtk−1 , Xtk )

∣∣∣∣∣ Xu = xu, Xs = x

)
− ∼h0(x)

∣∣∣∣∣≤ 1

4
�(v)

n−1∑
k=0

�k‖Q‖2(‖gk+1‖ + β(r − s)
)
,

where for all k in {0, . . . , n − 1}, we let �k := (tk+1 − tk) and ‖gk+1‖ := max{|gk+1(y, z)| : (y, z) ∈X 2}.

6.2. Two direct computational methods

Corollary 58 and Theorem 62 solve the issue we encountered at the end of Sections 5.1 and 5.2. To return to that setting, 
we fix an imprecise jump process P such that PM

M,Q ⊆ P ⊆ PM,Q , time points s, r in R≥0 such that s < r, a subset A

of X 2�= , a real-valued function f on X , a sequence of time points u in U≺s and a tuple of states xu in Xu . The issue we raised 
there was that for a sufficiently fine grid v over [s, r], we need to be able to determine the lower/upper expectation of ηA

v
or 〈 f 〉v conditional on {Xu = xu, Xs = s}. Clearly, Corollary 58 allows us to do so whenever Q is convex and has separately 
specified rows, at least if we can easily evaluate the operator exponential e�Q of the lower envelope Q of Q. Alternatively, 
Theorem 62 also allows us to do so, although only up to some bounded error. This method furthermore has the advantage 
that it does not require Q to be convex, but only that it has separately specified rows, and that it does not require us to 
evaluate e�Q , but only the lower envelope Q . However, it does require that the condition regarding the non-negative real 
number β is satisfied.

Hence, let us deal with the condition in Theorem 62 regarding β . In the case of the number of selected jumps, this 
condition is satisfied due to Theorem 39.

Lemma 63. Fix time points s, r in R≥0 such that s < r, a grid v = (t0, . . . , tn) over [s, r] and a subset A of X 2�= . Then for any non-empty 
and bounded set of rate matrices R,

(∀k ∈ {0, . . . ,n − 1})(∀x ∈ X )(∀P ∈ PM,R) |E P (IA(Xtk , Xtk+1) | Xtk = x)| ≤ 1
(tk+1 − tk)‖R‖.
2
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Proof. Fix any index k in {0, . . . , n − 1} and x in X . Then obviously minIA(Xtk , Xtk+1 ) = 0 and IA(Xtk , Xtk+1 ) = ηA
(tk,tk+1) . 

Hence, for all P in PM,R , it follows from (E1) and Theorem 39 that

0 ≤ E P (IA(Xtk , Xtk+1) | Xtk = x) ≤ (tk+1 − tk)
‖R‖

2
.

Clearly, this implies the inequality in the statement. �
In the case of the Riemann sum 〈 f 〉v that approximates the integral of f (Xt) over [s, r], the condition regarding β in 

Theorem 62 is trivially satisfied due to (LI1).

Lemma 64. Fix time points s, r in R≥0 such that s < r, a grid v = (t0, . . . , tn) over [s, r] and a real-valued function f on X . Then for 
any non-empty and bounded set of rate matrices R,

(∀k ∈ {0, . . . ,n − 1})(∀x ∈ X )(∀P ∈ PM,R) |E P ((tk+1 − tk) f (Xtk+1) | Xtk = x)| ≤ (tk+1 − tk)‖ f ‖.

Proof. Fix any index k in {0, . . . , n − 1} and x in X . Then −(tk+1 − tk)‖ f ‖ ≤ min(tk+1 − tk) f (Xtk+1 ) and max(tk+1 −
tk) f (Xtk+1 ) ≤ (tk+1 − tk)‖ f ‖. Hence, for all P in PM,R , it follows from (E1) that

−(tk+1 − tk)‖ f ‖ ≤ E P (�n f (Xtk+1) | Xtk = y) ≤ (tk+1 − tk)‖ f ‖,
and this verifies the inequality in the statement. �

At this point, it should be clear that together with the preceding results – Lemma 63 and either Theorem 40 or Corol-
lary 45, or Lemma 64 and either Theorem 46 or Corollary 48 – Theorem 62 provides us with a method to compute the 
lower/upper expectation of ηA]s,r] or 

∫ t
s f (Xt) dt up to arbitrary precision, and that this method will only require the (re-

peated) evaluation of Q . If we were to go with Theorems 40 and 46, we would get a theoretical upper bound on the error 
made by the approximation, but we know from past experience – for example [33] and [13, Section 6.5.2] – that when 
replacing e�Q by (I + �

n Q )n , the theoretical upper bound on the error is usually overly – and often ridiculously – conser-
vative. Hence, we choose to lean on Corollaries 45 and 48 with a sequence of ‘uniform’ grids (vn)n∈N over [s, r], as the 
resulting theorems make clear that one can rely on empirical convergence. For the number of selected jumps, this yields 
the following result.

Theorem 65. Consider an imprecise jump process P such that PM
M,Q ⊆ P ⊆ PM,Q , and fix time points s, r in R≥0 such that s < r

and a subset A of X 2�= . For all n in N , let �n := (r − s)/n and let fn,0 be recursively defined by the initial condition fn,n := 0 and, for 
all k in {0, . . . , n − 1}, by the recursive relation

fn,k : X → R : x �→ [
(I + �n Q )(IA(x,•) + fn,k+1)

]
(x). (35)

If Q has separately specified rows, then for all x in X , u in U≺s and xu in Xu ,

Eσ
P
(
ηA]s,r]

∣∣ Xu = xu, Xs = x
)= lim

n→+∞ fn,0(x);

a similar equality holds for the upper expectation E
σ
P if we replace Q by Q in Equation (35).

Proof. We only prove the statement for the lower expectation, the proof for the upper expectation is similar, although here 
and there one may have to use the conjugacy of EP and EP or the homogeneity of E P with P a jump process. For all n
in N , we let vn be the grid over [s, r] that consists of n + 1 evenly spaced time points, so

vn := (tn,0, . . . , tn,n) = (s, s + �n, . . . , s + n�n).

Because P ⊆PM,Q by assumption, it follows from Theorem 40 that for all n in N

∣∣Eσ
P (ηA]s,r] | Xu = xu, Xs = x) − EP (ηA

vn
| Xu = xu, Xs = x)

∣∣≤ 1

4
�n(r − s)‖Q‖2. (36)

Next, we seek to apply Theorem 62. To this end, we fix any natural number n such that �(vn)‖Q‖ ≤ 2, or equivalently, 
because �(vn) = �n = (r − s)/n by construction, any n such that (r − s)‖Q‖/2 ≤ n. Recall from Eqn. (16) that

ηA
vn

=
n∑

IA(Xtk−1 , Xtk ).
k=1
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Furthermore, we recall from Lemma 60 that the set R := RQ of rate operators that dominate Q includes Q, is bounded 
and has Q as lower envelope. Hence, it follows from Lemma 63 that

(∀k ∈ {0, . . . ,n − 1})(∀y ∈ X )(∀P ∈ PM,R) |E P (IA(Xtn,k , Xtn,k+1) | Xtn,k = y)| ≤ 1

2
(tn,k+1 − tn,k)‖R‖.

Because RR = Q , it follows from Lemma 56 twice that ‖R‖ = ‖RR‖ = ‖Q ‖ = ‖Q‖. Hence, we conclude that the condition 
in Theorem 62 regarding g1 = IA , . . . , gn = IA is satisfied for β = ‖Q‖/2. For this reason, and because Q has separately 
specified rows and PM

M,Q ⊆P ⊆PM,Q by assumption, it follows from Theorem 62 that

∣∣EP (ηA
vn

| Xu = xu, Xs = x) − fn,0(x)
∣∣≤ 1

4
�n

n−1∑
k=0

�n‖Q‖2
(

‖IA‖ + 1

2
(r − s)‖Q‖

)

≤ 1

8
�n‖Q‖2(2 + (r − s)‖Q‖)

n−1∑
k=0

�n

= 1

8
�n(r − s)‖Q‖2(2 + (r − s)‖Q‖), (37)

where for the second inequality we used that ‖IA‖ ≤ 1 and for the first equality we used that 
∑n−1

k=0 �n = n�n = (r − s).
For all n in N such that (r − s)‖Q‖/2 ≤ n, it follows from the triangle inequality and Eqns. (36) and (37) that

∣∣Eσ
P (ηA]s,r] | Xu = xu, Xs = x) − fn,0(x)

∣∣≤ 1

4
�n(r − s)‖Q‖2 + 1

8
�n(r − s)‖Q‖2(2 + (r − s)‖Q‖)

= 1

8
�n(r − s)‖Q‖2(4 + (r − s)‖Q‖). (38)

Because �n = (r − s)/n vanishes as n recedes to +∞, this proves the limit in the statement. �
It is relatively straightforward to adapt the argument in our proof for Theorem 65 so that it works for

∫ r
s f (Xt) dt instead 

of ηA]s,r] . This gives the following result, which is a special case of Theorem 6.50 in [13] as well – but the proof given there 
differs from the one we give here.

Theorem 66. Consider an imprecise jump process P such that PM
M,Q ⊆ P ⊆ PM,Q . Fix time points s, r in R≥0 such that s < r and 

a real-valued function f on X . For all n in N , let �n := (r − s)/n and let fn,0 be recursively defined by the initial condition fn,n := 0
and, for all k in {0, . . . , n − 1}, by the recursive relation

fn,k := (I + �n Q )(�n f + fn,k+1). (39)

If Q has separately specified rows, then for all x in X , u in U≺s and xu in Xu ,

Eσ
P

⎛
⎝ r∫

s

f (Xt)dt

∣∣∣∣∣∣ Xu = xu, Xs = x

⎞
⎠= lim

n→+∞ fn,0(x);

a similar equality holds for the upper expectation E
σ
P if we replace Q by Q in Eqn. (39).

Proof. The proof is almost entirely the same as that for Theorem 65, so we only highlight the differences between both 
proofs. Clearly, we need to invoke Theorem 46 instead of Theorem 40. To verify that Theorem 62 is applicable here, we 
recall from Eqn. (18) that

〈 f 〉vn =
n∑

k=1

�n f (Xtn,k ),

and we invoke Lemma 64 instead of Lemma 63. Hence, we may use Theorem 62 with β = ‖ f ‖, to find that for all n in N
such that (r − s)‖Q‖/2 ≤ n,

∣∣EP (〈 f 〉vn | Xu = xu, Xs = x) − fn,0(x)
∣∣≤ 1

�n(r − s)‖Q‖2(�n + (r − s))‖ f ‖.

4
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Table 2
The lower/upper expected number of downtimes during the first 10-year period.

x AB A B F [10, Eqn. (62)]

β
x

1.902 1.902 1.902 1.902 1.900
βx 2.405 2.405 2.405 2.405 2.407

For all n in N , we know from Theorem 46 that∣∣∣∣∣∣Eσ
P

⎛
⎝ r∫

s

f (Xt)dt

∣∣∣∣∣∣ Xu = xu, Xs = x

⎞
⎠− Eσ

P (〈 f 〉vn | Xu = xu, Xs = x)

∣∣∣∣∣∣≤
1

2
�n(r − s)‖Q‖(max f − min f )

≤ �n(r − s)‖Q‖‖ f ‖,
where for the second inequality we used that (max f − min f ) ≤ 2‖ f ‖. Hence, for all n in N such that (r − s)‖Q‖/2 ≤ n, 
we find that∣∣∣∣∣∣Eσ

P

⎛
⎝ r∫

s

f (Xt)dt

∣∣∣∣∣∣ Xu = xu, Xs = x

⎞
⎠− fn,0(x)

∣∣∣∣∣∣≤
1

4
�n(r − s)‖Q‖(4 + (�n + (r − s))‖Q‖)‖ f ‖. (40)

Because �n = (r − s)/n vanishes as n recedes to +∞, this proves the limit in the statement. �
Let us put these two methods to the test in the setting of our running example.

Example 67. Recall from Example 22 that Troffaes et al. [10] are interested in the expected number of jumps to a particular 
set. Specifically, they heuristically determine conservative bounds on the lower/upper expected number of downtimes – that 
is, the number of jumps to F – during a period of 10 years, and the lower/upper expected downtime – that is, the amount 
of time in F – during the same period. We do not have to resort to heuristics any more, because we can use our methods 
to determine these quantities exactly.

We start with the number of downtimes. Let F := {(AB, F), (A, F), (B, F)}. Then in our more formal setting, the expected 
down period over the first 10-year period is tightly bounded by

β
x
:= EM,Q

(
ηF]0,10]

∣∣ X0 = x
)

and βx := EM,Q
(
ηF]0,10]

∣∣ X0 = x
)
,

where x in X is the initial state of the system. Because Q has separately specified rows, we can use Theorem 65 to compute 
the lower and upper expected number of downtimes. More precisely, we start with nmin = 29 200 iterations11 and repeatedly 
double the number of iterations until we observe empirical convergence, up to four significant digits. Quite remarkably, in 
this case convergence aleardy occurs after the first doubling, and the first four significant digits remain the same even after 
10 doublings. Even more, halving the minimum number of iterations nmin also gives the same results up to at least four 
significant digits; halving the number of iterations again gives ‘NaN’ values, which indicates that something is going wrong, 
as we would expect. Our results can be found in Table 2. Quite remarkably, the exact values we find are quite close to the 
conservative bounds that Troffaes et al. [10, Eqn. (62)] obtain with their heuristic. While they appear not to depend on the 
initial state x, this is only true for the first four significant digits, and we find that the lower/upper expected downtimes 
differ more for shorter time periods.

Next, we deal with the downtime. In our formalism, the downtime over a period of 10 years corresponds to

αx := EM,Q

⎛
⎝ 10∫

0

IF(Xt)dt

∣∣∣∣∣∣ X0 = x

⎞
⎠ and αx := EM,Q

⎛
⎝ 10∫

0

IF(Xt)dt

∣∣∣∣∣∣ X0 = x

⎞
⎠,

where x is the initial state of the system. For any such initial state x in X , we use Theorem 66 to compute the lower 
and upper expected downtime. Here too, we start with nmin = 29 200 iterations and repeatedly increase the number of 
iterations by a factor 2 until we observe empirical convergence, up to four significant digits; this time around, we need 
to double the number of iterations about twelve times before we observe convergence. This yields the values reported in 
Table 3. Remarkably, for the initial states AB, A and B, the lower and upper bounds reported by Troffaes et al. [10, Eqn. 60]
agree with the values we find up to three significant digits. However, this is not the case if we start in the state x = F where 
both power lines are down. The heuristics of Troffaes et al. [10] do not take into account this initial state because they are 
designed for a system that is in regime; for this reason, they do not pick up the transient effect caused by the initial state.

11 The reason for this specific start is straightforward: it is the smallest value of n for which the condition in Theorem 62 regarding �(v) is satisfied, or 
equivalently, due to Lemma 70 in Appendix B, such that (I + �n Q ) is a so-called lower transition operator.
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Table 3
The lower/upper expected downtime during the first 10-year period.

x AB A B F [10, Eqn. (60)]

αx · 104 6.512 6.513 6.513 9.938 6.513
αx · 103 1.647 1.647 1.647 2.332 1.647

Fig. 1. Maximum relative difference between the approximation for n = 2knmin and that for n = 215nmin for αx and αx .

In Fig. 1, we report the maximum relative difference

max

{∣∣∣∣∣ f2knmin,0(x) − f215nmin,0(x)

f215nmin,0(x)

∣∣∣∣∣ : x ∈ X
}

between the k-th estimate and the last estimate, with k ranging from 0 to 14. The maximum relative difference for k = 0
is 0.147 and then decreases as the number of iterations grows; the decrease is linear on the log-log graph, so the error 
decreases exponentially as the number of iterations increases. For n = 2knmin, the theoretical upper bound on the error 
given by Eqn. (40) is

1

4

102

2knmin
‖Q‖

(
4 +

(
10

2knmin
+ 10

)
‖Q‖

)
‖IF‖ = 292 030

2k
,

where we used that ‖IF‖ = 1 and used the value of ‖Q‖ which we determined in Example 14. While this bound does 
decrease exponentially, it is clearly overly conservative; it overestimates the error by about five orders of magnitude!

For our running example, our limited experiments in Example 67 show that our method based on Theorems 65 and 
66 gives similar results as the heuristics proposed in [10]. There are a couple of important differences though. First, their 
heuristics can only be used to conservatively bound the lower and upper expected ‘number of jumps to some state’ – that 
is, it works for ηA]s,r] with A = {(y, x) : y ∈ X , y �= x} for some x in X – while our method works for the lower and upper 
expected ‘number of selected jumps’ – so with A any arbitrary subset of X 2�= . In the example of the power network, this 
means that in contrast to Troffaes et al. [10], we can for example determine the lower and upper expected number of 
common cause failures – so the number of jumps from AB to F. Second, our method takes into account transient effects 
due to the initial state, while Troffaes et al. their heuristics are based around a system in regime.

That said, even if the system is in regime – so if the time period is long enough – our method can outperform that of 
Troffaes et al.; while this is not so in our running example, it is clear in the following example.

Example 68. Let us consider an imprecise jump process with ternary state space X := {a, b, c}, set of rate matrices

Q :=
⎧⎨
⎩
⎛
⎝−λa λa 0

μb −μb − λb λb
0 μc −μc

⎞
⎠ : λa = 1,μb = 10, λb ∈ [1,100],μc ∈ [1,100]

⎫⎬
⎭

and arbitrary set M of initial probability mass functions. This time around, we are after the upper expected fraction of time 
that the system is in state b. For each initial state x in X and period of time T in R>0, this upper expected fraction is
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EM,Q

⎛
⎝ 1

T

T∫
0

Ib(Xt)dt

∣∣∣∣∣∣ X0 = x

⎞
⎠= EM,Q

⎛
⎝ T∫

0

1

T
Ib(Xt)dt

∣∣∣∣∣∣ X0 = x

⎞
⎠,

and can thus be obtained by applying Theorem 66. We observe that for increasing values of T , this upper expected fraction 
converges to about 0.091, or 9.1%, and does not depend on the initial state. The heuristic of Troffaes et al. [10], on the 
other hand, comes down to determining the limit of EM,Q(Ib(Xt) | X0 = x) = −[et Q (−Ib)](x) for t going to +∞ – that this 
limit exists follows from the ergodicity of Q , see [37]. This way, we find that an upper bound on the fraction is 0.703, or 
70.3%. The fact that this bound differs a lot from the upper expected fraction may come as a surprise to the reader who is 
familiar with the (Point-Wise) Ergodic Theorem for homogeneous Markovian jump processes – see [38, Section 8.6.6] or [25, 
Theorem 3.8.1]. Indeed, in the case of a homogeneous Markovian jump process P with so-called ergodic rate operator Q , 
this Ergodic Theorem implies that

lim
T →+∞ E P

⎛
⎝ 1

T

T∫
0

Ib(Xt)dt

∣∣∣∣∣∣ X0 = x

⎞
⎠= lim

t→+∞ E P (Ib(Xt) | X0 = x) = lim
t→+∞[et Q Ib](x).

In our example, the ‘upper expectation’ counterpart of the first of these equalities turns out to be a strict inequality! This is 
in line with recent results regarding the Point-Wise Ergodic Theorem in the setting of imprecise Markov chains [39–41].

This example, together with Example 67, shows that while the heuristic of Troffaes et al. [10] performs surprisingly well 
in some instances, there are also instances where it yields approximations that are much too conservative compared to the 
exact results provided by our methods.

7. Conclusion

We have extended the domain of imprecise jump processes, so that these can formally deal with (extended) real variables 
that depend on the state of the system at more than a finite number of time points. Furthermore, we have investigated the 
continuity properties of the extended lower and upper expectations, similar to the Monotone Convergence Theorem and 
Lebesgue’s Dominated Convergence Theorem. While the extended lower and upper expectations may not be continuous 
with respect to monotone and dominated convergence in general, we have identified two particular cases in which they 
are. For these two particular cases, being the number of selected jumps and integrals over time, we have also established 
recursive numerical methods to iteratively compute the lower and upper expectations exactly. Our experiments indicate 
that these methods can – significantly – outperform the heuristics of Troffaes et al. [10], at least with respect to transient 
behaviour and the tightness of the bounds.

As far as future research is concerned, we see two promising avenues. First, one could study other measurable variables 
in a similar fashion as we have studied the number of selected jumps and integrals over time here, so with the intent of ob-
taining a convergence theorem similar to Corollaries 45 and 48 and/or a recursive computational method as in Theorems 65
and 66. For so-called ‘until events’ and ‘(truncated) hitting times’, this has already been done in [13], where the focus lies 
on approximating these measurable variables with simple variables f (Xv) of the form

f (Xv) =
n∑

k=0

gk(Xtk )

k−1∏
�=0

h�(Xt� ) = g0(Xt0) + h0(Xt0)g1(Xt1) + · · · + h0(Xt0) · · ·hn−1(Xtn−1)gn(Xtn ),

with g1, . . . , gn real-valued functions on X and h1, . . . , hn−1 non-negative real-valued functions on X . However, it is possible 
to deal with much more intricate measurable variables, for example the number of visits to some state x over some period 
of time [s, r] before you visit an ‘unsafe’ state – that is, a state outside of a given set S ⊆ X of ‘safe’ states. The reason for 
this is that as an intermediary step, one could generalise the results in Section 6.1 from Au-simple variables f (Xv) that 
have a sum decomposition of the form in Eqn. (31) to those that have a ‘sum-product’ decomposition of the form

f (Xv) =
n∑

k=1

gk(Xtk−1 , Xtk )

k−1∏
�=1

h�(Xt�−1 , Xt� )

= g1(Xt0 , Xt1) + h1(Xt0 , Xt1)g2(Xt1 , Xt2) + · · · + h1(Xt0 , Xt1) · · ·hn−1(Xtn−2 , Xtn−1)gn(Xtn−1 , Xtn ),

where g1, . . . , gn are real-valued functions on X 2 and h1, . . . , hn−1 are non-negative real-valued functions on X 2. Second, 
because temporal averages belong to the extended domain of imprecise jump processes, one can now set out to investigate if 
and how the Point-Wise Ergodic Theorem for homogeneous Markovian jump processes, which we mentioned in Example 68, 
generalises to imprecise jump processes. A good starting point is the second author’s work on ergodicity [37], as well as the 
work done on ergodicity and the Point-Wise Ergodic Theorem in the setting of imprecise Markov chains [39–41].
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Appendix A. Proof of Proposition 53

Proposition 53 follows from Proposition 4.11 in [13] and the combination of the sum decomposition of f (Xv) and (LD5), 
but our formal proof is rather long.

Proof of Proposition 53. For all k in {1, . . . , n}, we let t1:k := (t1, . . . , tk) and t0:k := (t0, . . . , tk). Fix any xs in X , u in U≺s

and xu in Xu . Then by Corollary 4.1 in [13],

EP ( f (Xv) | Xu = xu, Xs = xs) = EP ( f (xs, Xt1:n ) | Xu = xu, Xs = xs).

Due to this equality, and because P satisfies the law of iterated lower expectations, it follows from Proposition 4.11 in [13]
that

EP ( f (Xv) | Xu = xu, Xs = xs) = EP ( f ′
1(Xt1) | Xu = xu, Xs = xs), (A.1)

where f ′
1 is the real-valued function on X that is defined recursively by the initial condition

f ′
n : Xt1:n → R : xt1:n �→ f (xv) =

n∑
k=1

gk(xtk−1 , xtk )

and, for all k in {1, . . . , n − 1}, by the recursive relation

f ′
k : Xt1:k → R : xt1:k �→ EP ( f ′

k+1(xt1:k , Xtk+1) | Xu = xu, Xt0:k = xt0:k );
in both of these expressions, we silently used the fact that xs = xt0 has already been fixed.

We now claim that for all k in {1, . . . , n} and xt1:k in Xt1:k ,

f ′
k(xt1:k ) =

k∑
�=1

g�(xt�−1 , xt� ) + fk(xtk ). (A.2)

Our proof for this claim will be one by induction. For the base case that k = n, this is obvious from the definition of f ′
n and 

fn . For the inductive step, we fix some � in {1, . . . , n − 1}, and assume that the equality in Eqn. (A.2) holds for k = � + 1. 
Fix any xt1:� in X1:� . Then by the definition of f ′

� and the induction hypothesis,

f ′
�(xt1:� ) = EP

(
�∑

i=1

gi(xti−1 , xti ) + g�+1(xt� , Xt�+1) + f�+1(Xt�+1)

∣∣∣∣∣ Xu = xu, Xt0:� = xt0:�

)
.

From this and (LD5), it follows immediately that

f ′
�(xt1:� ) =

�∑
i=1

gi(xti−1 , xti ) + EP
(

g�+1(xt� , Xt�+1) + f�+1(Xt�+1)
∣∣ Xu = xu, Xt0:� = xt0:�

)
.

Because P is Markovian, it follows that

f ′
�(xt1:� ) =

�∑
i=1

gi(xti−1 , xti ) + EP
(

g�+1(xt� , Xt�+1) + f�+1(Xt�+1)
∣∣ Xt� = xt�

)

=
�∑

i=1

gi(xti−1 , xti ) + f�(xt� ).
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As this equality holds for all xt1:� in Xt1:� , this proves that Eqn. (A.2) holds for k = �, and this finalises our proof of our claim 
in Eqn. (A.2).

Finally, we substitute Eqn. (A.2) for k = 1 in Eqn. (A.1) and use the Markovianity of P , to yield

EP ( f (Xv) | Xu = xu, Xs = xs) = EP (g1(xs, Xt1) + f1(Xt1) | Xu = xu, Xs = xs)

= EP (g1(xs, Xt1) + f1(Xt1) | Xs = xs)

= f0(xs),

as required. �
Appendix B. Proof of Theorem 62

In our proof for Theorem 62, we make use of several intermediary results. In many of these intermediary results, we 
use that for any lower rate operator R , its corresponding operator exponential e�R is a so-called ‘lower transition operator’ 
– see [2, Corollary 7.10] or [37, Proposition 8 and 10]. This notion of a lower transition operator generalises the notion of 
a (linear) transition operator – also known as a transition matrix [42, Theorem 9.2.3] or a stochastic matrix [25, p. 2] – by 
relaxing the linearity to non-linear homogeneity and superadditivity; see, for example, Definition 7.1 in [2].

Definition 69. A lower transition operator T is an operator T : RX →RX such that

LT1. T (λ f ) = λT f for all λ in R≥0 and f in RX ; [non-negative homogeneity]
LT2. T ( f + g) ≥ T f + T g for all f , g in RX ; [superadditivity]
LT3. T f ≥ min f for all f in RX . [bounded below by the minimum]

For any lower transition operator T , its conjugate upper transition operator T is the (non-negatively homogeneous, 
subadditive) operator defined by T f := −T (− f ) for all f in RX ; in the particular case of the operator exponential e�R of 
a lower rate operator R , it is not difficult to verify that the conjugate is

e�R := lim
n→+∞

(
I + �

n
R

)n

,

where R is the conjugate of the lower rate operator R – so R f := −R(− f ) for all f in RX . Furthermore, De Bock [37, 
(L10), p. 165] proves that for any lower transition operator T ,

LT4. ‖T f − T g‖ ≤ ‖ f − g‖ for all f , g in RX .

The following result, which links lower rate operators and lower transition operators and is taken from [13, Lemma 3.72] – 
see also Proposition 5 in [37] – will also be of use in the remainder.

Lemma 70. Consider a lower rate operator R. Then for all � in R≥0 such that �‖R‖ ≤ 2, (I + �R) is a lower transition operator.

Now that we have covered lower transition operators, we can start with establishing the necessary intermediary results. 
The first of these results deals with replacing e�n Q by (I + �n Q ).

Lemma 71. Consider a non-empty sequence of time points v = (t0, . . . , tn) in U with n ≥ 1, real-valued functions g1, . . . , gn on X 2 and 
lower rate operators R0 , . . . , Rn−1 . Let h0 , . . . , hn and ∼h0 , . . . , ∼hn be the real-valued functions on X defined by the initial condition hn :=
0 =: ∼hn and for all k in {0, . . . , n − 1} by the recursive relations

hk : X → R : x �→ [
e�k Rk (gk+1(x,•) + hk+1)

]
(x)

and

∼hk : X → R : x �→ [
(I + �k Rk)(gk+1(x,•) + ∼hk+1)

]
(x),

with �k := (tk+1 − tk). If �k‖Rk‖ ≤ 2 for all k in {0, . . . , n − 1}, then for all k in {0, . . . , n},

‖hk − ∼hk‖ ≤ 1

4
�(v)

n−1∑
�=k

��‖R�‖2(‖g�+1‖ + ‖h�+1‖
)
,

with ‖g�+1‖ := max{|g�+1(y, z)| : (y, z) ∈X 2}.
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Proof. Our proof will be by induction. For the base case that k = n, we observe that ‖hn − ∼hn‖ = 0 because hn = 0 = ∼hn by 
definition. Clearly, this agrees with the inequality in the statement.

For the inductive step, we fix some � in {0, . . . , n − 1}, assume that the inequality in the statement holds for k = � + 1, 
and set out to prove that it then also holds for k = �. To this end, we fix any x in X . Then by definition of h� and ∼h� ,

|h�(x) − ∼h�(x)| = ∣∣[e�� R� (g�+1(x,•) + h�+1)
]
(x) − [

(I + ��R�)(g�+1(x,•) + ∼h�+1)
]
(x)
∣∣.

It follows from this equality and the triangle inequality that

|h�(x) − ∼h�(x)| ≤ ∣∣[e�� R� (g�+1(x,•) + h�+1)
]
(x) − [

(I + ��R�)(g�+1(x,•) + h�+1)
]
(x)
∣∣

+ ∣∣[(I + ��R�)(g�+1(x,•) + h�+1)
]
(x) − [

(I + ��R�)(g�+1(x,•) + ∼h�+1)
]
(x)
∣∣. (B.1)

Let us deal with the two terms on the right-hand side of this inequality separately.
For the first term, it follows from the definition of the maximum norm ‖•‖, [37, (N1) on p. 163] – that is, that ‖M f ‖ ≤

‖M‖‖ f ‖ for any non-negatively homogeneous operator M and f in RX – and Lemma 59 that∣∣[e�� R� (g�+1(x,•) + h�+1)
]
(x) − [

(I + ��R�)(g�+1(x,•) + h�+1)
]
(x)
∣∣

≤ ∥∥e�� R� (g�+1(x,•) + h�+1) − (I + ��R�)(g�+1(x,•) + h�+1)
∥∥

≤ ∥∥e�� R� − (I + ��R�)
∥∥‖g�+1(x,•) + h�+1‖

≤ 1

2
�2

�‖R�‖2‖g�+1(x,•) + h�+1‖.
Due to the triangle inequality

‖g�+1(x,•) + h�+1‖ ≤ ‖g�+1(x,•)‖ + ‖h�+1‖ ≤ ‖g�+1‖ + ‖h�+1‖,
and therefore∣∣[e�� R� (g�+1(x,•) + h�+1)

]
(x) − [

(I + ��R�)(g�+1(x,•) + h�+1)
]
(x)
∣∣≤ 1

2
�2

�‖R�‖2(‖g�+1‖ + ‖h�+1‖
)
. (B.2)

For the second term, we observe that (I + ��R�) is a lower transition operator due to Lemma 70 because ��‖R�‖ ≤ 2 by 
assumption. Hence, it follows from (LT4) that∣∣[(I + ��R�)(g�+1(x,•) + h�+1)

]
(x) − [

(I + ��R�)(g�+1(x,•) + ∼h�+1)
]
(x)
∣∣

≤ ∥∥(I + ��R�)(g�+1(x,•) + h�+1) − (I + ��R�)(g�+1(x,•) + ∼h�+1)
∥∥

≤ ‖(g�+1(x,•) + h�+1) − (g�+1(x,•) + ∼h�+1)‖
= ‖h�+1 − ∼h�+1‖. (B.3)

We substitute each of the two terms on the right-hand side of the inequality in Eqn. (B.1) with the upper bounds in 
Eqns. (B.2) and (B.3), to yield

|h�(x) − ∼h�(x)| ≤ 1

4
�2

�‖Rk‖2(‖g�+1‖ + ‖h�+1‖
)+ ‖h�+1 − ∼h�+1‖

≤ 1

4
�(v)��‖R�‖2(‖g�+1‖ + ‖h�+1‖

)+ ‖h�+1 − ∼h�+1‖,
where for the second inequality we used that �� ≤ �(v). Since this inequality holds for arbitrary x in X , it follows that

‖h� − ∼h�‖ ≤ 1

4
�(v)��‖R�‖2(‖g�+1‖ + ‖h�+1‖

)+ ‖h�+1 − ∼h�+1‖.
We substitute ‖h�+1 − ∼h�+1‖ on the right-hand side of this inequality by the upper bound of the induction hypothesis – 
that is, by the right-hand side of the inequality in the statement for k = � + 1 – to yield

‖h� − ∼h�‖ ≤ 1

4
�(v)��‖R�‖2(‖g�+1‖ + ‖h�+1‖

)+ 1

4
�(v)

n−1∑
i=�+1

�i‖Ri‖2(‖gi+1‖ + ‖hi+1‖
)

= 1

4
�(v)

n−1∑
i=�

�i‖Ri‖2(‖gi+1‖ + ‖hi+1‖
);

this shows that the inequality in the statement holds for k = �. �
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The second technical result that we need is a construction method for Markovian jump processes starting from some 
rate matrices, and this is exactly what Proposition 5.6 in [2] provides us. Here, we give a version of this result using our 
notation and tailored to our needs.

Lemma 72. Consider a non-empty sequence of time points (t0, . . . , tn) in Une with n ≥ 1 and rate matrices Q 0 , . . . , Q n−1 in Q. Then 
there is a Markovian jump process P in PM

M,Q such that for all k in {0, . . . , n − 1}, x in X , f in RX , u in U≺tk and xu in Xu ,

E P ( f (Xtk+1) | Xu = xu, Xtk = x) = [
e(tk+1−tk)Q k f

]
(x).

Proof. Krak et al. [2] actually prove a stronger result, but they use a lot of notation and terminology regarding so-called 
‘transition matrix systems’ to do so. Because we have no need for these ‘transition matrix systems’ except in this lemma, 
we choose not to introduce them; instead, we will explain why this lemma is a special case of Proposition 5.6 in [2]. Let p
be any mass function in M. Then it follows from Proposition 5.6 – and Definitions 3.5, 3.6 and 4.5 – in [2] that there is a 
Markovian jump process P in PM

M,Q such that

(i) P (X0 = x) = p(x) for all x in X ;
(ii) for all indices k in {0, . . . , n − 1}, time points s, r in [tk, tk+1] such that s ≤ r and states x, y in X ,

P (Xr = y | Xs = x) = [
e(r−s)Q kIy

]
(x). (B.4)

What remains for us is to verify the equality in the statement. To this end, we fix any k in {0, . . . , n − 1}, x in X , f
in RX , u in U≺tk and xu in Xu . Then by Eqn. (4),

E P ( f (Xtk+1) | Xu = xu, Xtk = x) =
∑
y∈X

f (y)P (Xtk+1 = y | Xu = xu, Xtk = x).

Because P is Markovian,

E P ( f (Xtk+1) | Xu = xu, Xtk = x) =
∑
y∈X

f (y)P (Xtk+1 = y | Xtk = x).

Finally, we substitute Eqns. (B.4) and (5) to yield the equality in the statement:

E P ( f (Xtk+1) | Xu = xu, Xtk = x) =
∑
y∈X

f (y)
[
e(tk+1−tk)Q kIy

]
(x) = [

e(tk+1−tk)Q k f
]
(x). �

The third and final technical result allows us to replace the lower rate operator Q by rate matrices Q 0, . . . , Q n−1 in Q. In 
essence, this result is a consequence of the definition of the lower envelope, Lemma 70 and of several properties of (lower) 
transition operators.

Lemma 73. Consider a non-empty sequence of time points (t0, . . . , tn) in U with n ≥ 1 and real-valued functions g1 , . . . , gn on X 2 . 
Let ∼h0 , . . . , ∼hn be the real-valued functions on X defined by the initial condition ∼hn := 0 and for all k in {0, . . . , n − 1} by the recursive 
relation

∼hk : X → R : x �→ [
(I + �k Q )(gk+1(x,•) + ∼hk+1)

]
(x),

with �k := (tk+1 − tk). If Q has separately specified rows and �(v)‖Q‖ ≤ 2, then for any positive real number ε in R>0 , there are 
rate matrices Q 0 , . . . , Q n−1 in Q such that for all k in {0, . . . , n} and x in X ,

‖∼hk − h̃k‖ ≤ tn − tk

tn − t0
ε, (B.5)

where h̃0 , . . . , h̃n are the real-valued functions on X defined by the initial condition h̃n := 0 and, for all k in {0, . . . , n − 1}, by the 
recursive relation

h̃k : X → R : x �→ [
(I + �k Q k)(gk+1(x,•) + h̃k+1)

]
(x).

Proof. Let us determine the rate matrices Q 0, . . . , Q n−1. To this end, we fix any k in {0, . . . , n − 1}. Then for all x in X , it 
follows from Eqn. (34), the definition of the lower envelope Q , that there is a rate matrix Q k,x in Q such that

∣∣[Q (gk+1(x,•) + ∼hk+1)
]
(x) − [

Q k,x(gk+1(x,•) + ∼hk+1)
]
(x)
∣∣< 1

ε.

tn − t0
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Let Q k be the matrix defined by Q k(x, y) := Q k,x(x, y) for all x, y in X – or more formally put, we let Q k : RX →RX be 
the operator defined by [Q k f ](x) := [Q k,x f ](x) for all f in RX and x in X . Then because Q has separately specified rows, 
it is clear that Q k belongs to Q. Furthermore, our definition of Q k ensures that for all x in X ,

∣∣[Q (gk+1(x,•) + ∼hk+1)
]
(x) − [

Q k(gk+1(x,•) + ∼hk+1)
]
(x)
∣∣< 1

tn − t0
ε. (B.6)

Next, we set out to verify Eqn. (B.5), and we will do so using induction. For the base case that k = n, it follows immedi-
ately from the definition of ∼hn and h̃n that

‖∼hn − h̃n‖ = 0 = tn − tn

tn − t0
ε.

For the inductive step, we fix some � in {0, . . . , n − 1} assume that Eqn. (B.5) holds for k = � + 1, and set out to prove 
that Eqn. (B.5) holds for k = �. To this end, we fix any x in X . Then by definition of ∼h� and h̃� , the triangle inequality and 
the definition of the maximum norm ‖•‖,∣∣

∼h�(x) − h̃�(x)
∣∣= ∣∣[(I + �� Q )(g�+1(x,•) + ∼h�+1)](x) − [(I + �� Q �)(g�+1(x,•) + h̃�+1)](x)

∣∣
≤ ∣∣[(I + �� Q )(g�+1(x,•) + ∼h�+1)](x) − [(I + �� Q �)(g�+1(x,•) + ∼h�+1)](x)

∣∣
+ ∣∣[(I + �� Q �)(g�+1(x,•) + ∼h�+1)](x) − [(I + �� Q �)(g�+1(x,•) + h̃�+1)](x)

∣∣
≤ ∣∣[(I + �� Q )(g�+1(x,•) + ∼h�+1)](x) − [(I + �� Q �)(g�+1(x,•) + ∼h�+1)](x)

∣∣
+ ∥∥(I + �� Q �)(g�+1(x,•) + ∼h�+1) − (I + �� Q �)(g�+1(x,•) + h̃�+1)

∥∥.
For the first term, it follows from some straightforward manipulations and Eqn. (B.6) that∣∣

∼h�(x) − h̃�(x)
∣∣≤ ��

∣∣[Q (g�+1(x,•) + ∼h�+1)](x) − [Q �(g�+1(x,•) + ∼h�+1)](x)
∣∣

+ ∥∥(I + �� Q �)(g�+1(x,•) + ∼h�+1) − (I + �� Q �)(g�+1(x,•) + h̃�+1)
∥∥

<
t�+1 − t�

tn − t0
ε + ∥∥(I + �� Q �)(g�+1(x,•) + ∼h�+1) − (I + �� Q �)(g�+1(x,•) + h̃�+1)

∥∥.
For the second term, we observe that (I +�� Q �) is a (lower) transition operator due to Lemma 70 because (i) �(v)‖Q‖ ≤ 2
by assumption, and (ii) Q � belongs to Q by construction and therefore ‖Q �‖ ≤ ‖Q‖. Hence, it follows from the preceding 
inequality and (LT4) that∣∣

∼h�(x) − h̃�(x)
∣∣< t�+1 − t�

tn − t0
ε + ‖(g�+1(x,•) + ∼h�+1) − (g�+1(x,•) + h̃�+1)‖

= t�+1 − t�
tn − t0

ε + ‖∼h�+1 − h̃�+1‖.

Because this inequality holds for all x in X , we infer that

‖∼h� − h̃�‖ <
t�+1 − t�

tn − t0
ε + ∥∥

∼h�+1 − h̃�+1
∥∥.

Finally, it follows from the induction hypothesis – so from Eqn. (B.5) for k = � + 1 – that

‖∼h� − h̃�‖ <
t�+1 − t�

tn − t0
ε + tn − t�+1

tn − t0
ε = tn − t�

tn − t0
ε,

and this shows that Eqn. (B.5) holds for k = � too. �
Finally, we combine these intermediary technical results and Corollary 61 in our proof for Theorem 62.

Proof of Theorem 62. Fix any x in X , u in U≺s and xu in Xu . To simplify our notation, we let

f :=
n∑

k=1

gk(Xtk−1 , Xtk ).

Recall from Lemma 60 that R includes Q – and is bounded and convex, has separately specified rows and has Q as lower 
envelope. Because P ⊆PM,Q by assumption, it follows that P ⊆PM,Q ⊆PM,R , and therefore
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EP ( f | Xu = xu, Xs = x) = inf
{

E P ( f | Xu = xu, Xs = x) : P ∈ P
}

≥ inf
{

E P ( f | Xu = xu, Xs = x) : P ∈ PM,R
}

= EM,R( f | Xu = xu, Xs = x). (B.7)

Because R is bounded and convex and has separately specified rows, it follows from Corollary 20 that PM,R is Markovian, 
and from Proposition 51 that PM,R satisfies the law of iterated lower expectations. Hence, it follows from Proposition 53
and Lemma 57 that

EM,R( f | Xu = xu, Xs = x) = h0(x), (B.8)

where h0 is the real-valued function on X defined by the initial condition hn := 0 and, for all k in {0, . . . , n − 1}, by the 
recursive relation

hk : X → R : y �→ EM,R
(

gk+1(y, Xtk+1) + hk+1(Xtk+1)
∣∣ Xtk = y

)= [
e�k Q (gk+1(y,•) + hk+1)

]
(y).

Recall from Lemma 56 that ‖Q ‖ = ‖Q‖. Because (tk+1 − tk) ≤ �(v) for all k in {0, . . . , n − 1} and �(v)‖Q‖ ≤ 2 by assump-
tion, it now follows from Lemma 71 – with R0 = Q , . . . , Rn−1 = Q – that

‖h0 − ∼h0‖ ≤ 1

4
�(v)

n−1∑
k=0

�k‖Q‖2(‖gk+1‖ + ‖hk+1‖
)
.

To obtain and expression similar to the one in the inequality in the statement, we set out to verify that for all k in {1, . . . , n}, 
‖hk‖ ≤ β(r − tk). Our proof will be one by induction. For the base case that k = n, this is trivial because hn = 0 by definition, 
and therefore ‖hn‖ = 0 = β(r − tn). For the inductive step, we fix some k in {1, . . . , n − 1} and assume that ‖hk+1‖ ≤
β(r − tk+1). Fix any y in X . Then by definition of hk

hk(y) = EM,R
(

gk+1(y, Xtk+1) + hk+1(Xtk+1)
∣∣ Xtk = y

)
.

For all P in PM,R , it follows from (E3) and the triangle inequality that∣∣E P (gk+1(y, Xtk+1) + hk+1(Xtk+1) | Xtk = y)
∣∣≤ ∣∣E P (gk+1(y, Xtk+1) | Xtk = y)

∣∣+ ∣∣E P (hk+1(Xtk+1) | Xtk = y)
∣∣.

The second term on the right-hand side of this expression can be bounded with (E1), and the first term is indirectly bounded 
by the condition on gk+1 in the statement because

E P (gk+1(y, Xtk+1) | Xtk = y) = E P (gk+1(Xtk , Xtk+1) | Xtk = y)

due to Corollary 3.18 in [13]. Hence, for all P in PM,R∣∣E P (gk+1(y, Xtk+1) + hk+1(Xtk+1) | Xtk = y)
∣∣≤ β(tk+1 − tk) + ‖hk+1‖ ≤ β(tk+1 − tk) + β(r − tk+1) = β(r − tk),

where we used the induction hypothesis for the second inequality. Because this inequality holds for all P in PM,R and y
in X , we conclude that ‖hk‖ ≤ β(r − tk), as required.

We substitute this upper bound on ‖hk‖ in our upper bound on ‖h0 − ∼h0‖, to yield

‖h0 − ∼h0‖ ≤ 1

4
�(v)

n−1∑
k=0

�k‖Q‖2(‖gk+1‖ + β(r − tk+1)) ≤ 1

4
�(v)

n−1∑
k=0

�k‖Q‖2(‖gk+1‖ + β(r − s)),

where for the second inequality we used that (r − tk+1) ≤ (r − s). Finally, it follows from Eqns. (B.7) and (B.8) and the 
preceding inequality that

EP ( f | Xu = xu, Xs = x) ≥ h0(x) ≥ ∼h0(x) − 1

4
�(v)

n−1∑
k=0

�k‖Q‖2(‖gk+1‖ + β(r − s)). (B.9)

Eqn. (B.9) proves ‘one side’ of the inequality in the statement. In the second part of this proof, we will prove the ‘other 
side’. To this end, we fix any positive real number ε . Then by Lemma 73 – which is applicable here because by assumption 
Q has separately specified rows and satisfies �(v)‖Q‖ ≤ 2 – there are rate matrices Q 0, . . . , Q n−1 in Q such that

‖∼h0 − h̃0‖ ≤ ε, (B.10)

where h̃0, . . . , h̃n are the real-valued functions on X defined by the initial condition h̃n := 0 and, for all k in {0, . . . , n − 1}, 
by the recursive relation
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h̃k : X → R : y �→ [
(I + �k Q k)(gk+1(y,•) + h̃k+1)

]
(y).

For all k in {0, . . . , n − 1}, ‖Q k‖ ≤ ‖Q‖ because the rate matrix Q k belongs to Q by construction. Because (tk+1 − tk) ≤ �(v)

for all k in {0, . . . , n −1} and �(v)‖Q‖ ≤ 2 by assumption, it now follows from Lemma 71 – with R0 = Q 0, . . . , Rn−1 =Qn−1

– that

‖∼h0 − h0‖ ≤ 1

4
�(v)

n−1∑
k=0

�k‖Q k‖2(‖gk+1‖ + ‖hk+1‖
)≤ 1

4
�(v)

n−1∑
k=0

�k‖Q‖2(‖gk+1‖ + ‖hk+1‖
)
, (B.11)

where h1, . . . , hn are the real-valued functions on X defined by the initial condition hn := 0 and, for all k in {1, . . . , n − 1}, 
by the recursive relation

hk : X → R : y �→ [e�k Q k (gk+1(y,•) + hk+1)](y).

By Lemma 72, there is a Markovian jump process P in PM
M,Q ⊆P such that for all k in {0, . . . , n − 1} and y in X ,

E P (gk+1(y, Xtk+1) + hk+1(Xtk+1) | Xtk = y) = [
e(tk+1−tk)Q k (gk+1(y,•) + hk+1)

]
(y) = hk(y). (B.12)

With this equality, it is easy to verify that ‖hk‖ ≤ β(r − tk) for all k in {1, . . . , n}. As before, our proof for this claim will be 
one by induction. For the base case that k = n, this is trivial because hn = 0 by definition and therefore ‖hn‖ = 0 = β(r − tn). 
For the inductive step, we fix any k in {1, . . . , n −1} and assume that ‖hk+1‖ ≤ β(r − tk+1). We use Eqn. (B.12), the additivity 
of E P – so (E3) – and the triangle inequality, to find that for all y in X ,

|hk(y)| = ∣∣E P (gk+1(y, Xtk+1) + hk+1(Xtk+1) | Xtk = y)
∣∣

≤ ∣∣E P (gk+1(y, Xtk+1) | Xtk = y)
∣∣+ ∣∣E P (hk+1(Xtk+1) | Xtk = y)

∣∣.
As before, it follows from this inequality, the condition on gk+1 in the statement – which is relevant due to [33, 
Corollary 3.18] and because P belongs to PM

M,Q ⊆ PM,R by construction – (E1) and the induction hypothesis that 
‖hk‖ ≤ β(tk+1 − tk) + β(r − tk+1) = β(r − tk), as required. Hence, it follows from Eqns. (B.10) and (B.11) that

∼h0(x) ≥ h̃0(x) − ε ≥ h0(x) − 1

4
�(v)

n−1∑
k=0

�k‖Q‖2(‖gk+1‖ + β(r − s)
)− ε, (B.13)

where for the last inequality we used that ‖hk+1‖ ≤ β(r − tk+1) ≤ β(r − s) for all k in {0, . . . , n − 1}.
It also follows from Eqn. (B.12) and Proposition 53 for the degenerate imprecise jump process {P } – which trivially 

satisfies the law of iterated lower expectation due to Proposition 49 and is Markovian due to Proposition 18 because P is 
Markovian by construction – that

E P ( f | Xu = xu, Xs = x) = h0(x).

Because P belongs to PM
M,Q by construction and PM

M,Q ⊆P by assumption, we infer from this equality that

EP ( f | Xu = xu, Xs = x) = inf{E P ( f | Xu = xu, Xs = x) : P ∈ P} ≤ h0(x). (B.14)

Finally, we combine Eqns. (B.13) and (B.14), to yield

∼h0(x) ≥ EP ( f | Xu = xu, Xs = x) − 1

4
�(v)

n−1∑
k=0

�k‖Q‖2(‖gk+1‖ + β(r − s)
)− ε.

Because this inequality holds for any positive real number ε , we conclude that

∼h0(x) ≥ EP ( f | Xu = xu, Xs = x) − 1

4
�(v)

n−1∑
k=0

�k‖Q‖2(‖gk+1‖ + β(r − s)
)
.

Together with Eqn. (B.9), this implies the inequality in the statement. �
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