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—

E.1 Issues due to Lemma 5.24

Unfortunately, Lemma 5.24234 is incorrect – and I thank Arne Decadt for
pointing this out. That said, we can fix this statement in such a way that
all – non-intermediary – results in the dissertation still hold, although in
some cases we need to slightly alter the statement. Let us start by stating and
proving the replacement for Lemma 5.24234. Here and in the remainder, we
indicate changes as follows: this is new, this replacesthis is replaced and this
is deleted.

Lemma 5.24. Consider time points s,r in R≥0 such that s < r and a grid v =
(t0, . . . , tn) over [s,r ] with n ≥ 2. Then

η(s,r ) +
n−1∑
k=1

I{
X tk−1

̸=X tk
̸=Xr

} ≤ηv≤=η(s,r ) +2
n−1∑
k=1

I{
X tk−1

̸=X tk
̸=Xr

}.

Proof. Crucial to our proof is the following observation. Let w = (s0, . . . , sm ) be any
grid over [s,r ], and fix some time point t in ]sm−1, sm [. Then for all ω inΩ,

ηw∪(t )(ω) =


ηw (ω)+2 if ω(sm−1) ̸=ω(t ) ̸=ω(smn ) and ω(sm−1) =ω(sm ),

ηw (ω)+1 if ω(sm−1) ̸=ω(t ) ̸=ω(smn ) and ω(sm−1) ̸=ω(sm ),

ηw (ω) otherwise.

Hence,
ηw + I{

Xsm−1 ̸=X t ̸=Xsm

} ≤ηw∪(t )≤=ηw +2I{
Xsm−1 ̸=X t ̸=Xsm

}. (E.1)

Fix some ω inΩ, and let v0 := (s,r ). Furthermore, for all k in {1, . . . ,n −1}, we let
vk := (t0, t1, . . . , tk , tn ); note that vn−1 = v . Then it follows from Eq. (E.1) that for all k
in {1, . . . ,n −1},

ηvk−1 + I{X tk−1
̸=X tk

̸=Xr

} ≤ηvk ≤=ηvk−1 +2I{
X tk−1

̸=X tk
̸=Xr

}.

We repeatedly apply the second inequalitypreceding equality, to yield

ηv = ηvn−1≤=ηvn−2 +2I{
X tn−2 ̸=X tn−1 ̸=Xr

} = ·· ·≤=η(s,r ) +2
n−1∑
k=1

I{
X tk−1

̸=X tk
̸=Xr

};.

similarly, by repeated use of the first inequality we find that

ηv = ηvn−1 ≥ ηvn−2 + I{X tn−2 ̸=X tn−1 ̸=Xr

} ≥ ·· · ≥ η(s,r ) +
n−1∑
k=1

I{
X tk−1

̸=X tk
̸=Xr

}.
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Lemma 5.24234 is used in the proof of Lemma 5.23234 and Proposi-
tion 6.2275; we need to change the statement and proof of the former and the
proof of the latter accordingly. First let us fix Lemma 5.23234.

Lemma 5.23. Consider time points s and r in R≥0 such that s ≤ r , and two
grids v and w over [s,r ] such that w refines v – that is, w ⊇ v. Then for all ω
inΩ, there is some kω in Z≥0 such that

ηw (ω) = ηv (ω)+2kω;

consequently, ηw ≥ ηv .

Proof. The statement is clearly trivial in case [s,r ] is a degenerate interval, so we
assume without loss of generality that s < r . Enumerate the time points in v as
(t0, . . . , tn ), and note that n ≥ 1 because s < r . For all ℓ in {1, . . . ,n}, we let wℓ be the
sequence of time points that consists of those time points in w that belong to [tℓ−1, tℓ];
because w refines v , wℓ is a grid over [tℓ−1, tℓ]. It follows from repeated application
of Lemma 5.22234 that

ηv =
n∑
ℓ=1

η(tℓ−1,tℓ) and ηw =
n∑
ℓ=1

ηwℓ
. (E.2)

Fix some ω in Ω. Then it follows from Lemma 5.24234 that for all ℓ in {1, . . . ,n},
ηwℓ

≥ η(tℓ−1,tℓ).there is a non-negative integer kω,ℓ such that

ηwℓ
(ω) = η(tℓ−1,tℓ)(ω)+2kω,ℓ.

It follows immediately from this and Eq. (E.2) that ηw ≥ ηv .

ηw (ω) =
n∑
ℓ=1

ηwℓ
(ω) =

n∑
ℓ=1

(
η(tℓ−1,tℓ)(ω)+2kω,ℓ

)= ηv (ω)+
n∑
ℓ=1

2kω,ℓ = ηv (ω)+2kω,

where we let kω :=∑n
ℓ=1 kω,ℓ.

Lemma 5.23234 is used in the proof of Theorem 5.26236, Theorem 5.27236,
Proposition 6.2275 and Lemma 6.8279. Of these proofs, the only one that
uses the (incorrect) equality is that of Lemma 6.8279. We will get to this in
Section E.1.1IV further on.

Second, we fix the proof of Proposition 6.2275.

Proposition 6.2. Consider a jump process P that has uniformly bounded rate,
with rate bound λ. Fix a state history {Xu = xu} in H, time points s,r in R≥0

such that maxu ≤ s < r and a grid v = (t0, . . . , tn) over [s,r ]. Then η[s,r ] −ηv is
a non-negative Fu-over variable, and

E D
P (η[s,r ] −ηv |Xu = xu) = E D

P (η[s,r ] |Xu = xu)−EP (ηv |Xu = xu)

≤ 1

4
∆(v)(r − s)λ2.
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Proof. For every ℓ inN and k in {1, . . . ,n}, we let vℓ,k be the grid over [tk−1, tk ] that

divides this subinterval in 2ℓ subintervals of equal length. That is, for all ℓ inN and k
in {1, . . . ,n}, we let vℓ,k := (

tℓ,k,0, . . . , tℓ,k,2ℓ
)

where for all i in {0, . . . ,2ℓ},

tℓ,k,i := tk−1 + (tk − tk−1)
i

2ℓ
.

Next, for all ℓ in N, we let vℓ be the (ordered) union of vℓ,1, . . . , vℓ,n ; this way,

vℓ is a grid over [s,r ] with ∆(vℓ) = ∆(v)2−ℓ such that v ⊆ vℓ ⊆ vℓ+1. Recall from
Lemma 5.21234 that ηv and, for all ℓ inN, ηvℓ are Fu -simple variables. Therefore, it
follows immediately from Lemma 2.3936 that for all ℓ inN, (ηvℓ −ηv ) is an Fu -simple
variable. Furthermore, for all ℓ inN, it follows immediately from Lemma 5.23234 that
ηvℓ+1 ≥ ηvℓ ≥ ηv because vℓ+1 ⊇ vℓ ⊇ v by construction. Thus, we have shown that
(ηvℓ −ηv )ℓ∈N is a non-decreasing sequence of non-negative Fu -simple variables;
that this sequence converges point-wise to η[s,r ] −ηv follows immediately from The-
orem 5.26236. Hence, η[s,r ] −ηv is a non-negative Fu -over variable, and it follows
from (DE1)225, (DE3)335 and Theorem 5.10226 that

E D
P (η[s,r ] −ηv |Xu = xu ) = lim

ℓ→+∞
EP (ηvℓ −ηv |Xu = xu ). (E.3)

In order to verify the inequality of the statement, we investigate the expectations
on the right-hand side of the preceding equality. To this end, we fix any ℓ in N. It
follows from (repeated application of) Lemma 5.22234 that

ηvℓ −ηv =
n∑

k=1
ηvℓ,k −

n∑
k=1

η(tk−1,tk ) =
n∑

k=1

(
ηvℓ,k −η(tk−1,tk )

)
. (E.4)

Recall from Lemma 5.24234 that, for all k in {1, . . . ,n},

ηvℓ,k ≤=η(tk−1,tk ) +2
2ℓ−1∑
i=1

I{
X tℓ,k,i−1

̸=X tℓ,k,i
̸=X t

ℓ,k,2ℓ

}.

It follows immediately from this inequality and Eq. (E.4) thatWe substitute the preced-
ing equality in Eqn. (E.4), to yield

ηvℓ −ηv≤=2
n∑

k=1

2ℓ−1∑
i=1

I{
X tℓ,k,i−1

̸=X tℓ,k,i
̸=X t

ℓ,k,2ℓ

};

from this inequality and (DE6)226, it follows that

EP (ηvℓ −ηv |Xu = xu )≤=EP

(
2

n∑
k=1

2ℓ−1∑
i=1

I{
X tℓ,k,i−1

̸=X tℓ,k,i
̸=X t

ℓ,k,2ℓ

} ∣∣∣∣∣ Xu = xu

)

= 2
n∑

k=1

2ℓ−1∑
i=1

P
(
Xtℓ,k,i−1 ̸= Xtℓ,k,i ̸= Xt

ℓ,k,2ℓ

∣∣ Xu = xu
)
,
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where for the second equality we used Eqn (2.19)36. We replace the probabilities on
the right-hand side of the equality by the upper bound in Lemma 6.53322, to yield

EP (ηvℓ −ηv |Xu = xu ) ≤ 2
n∑

k=1

2ℓ−1∑
i=1

1

4

(
tℓ,k,i − tℓ,k,i−1

)(
tℓ,k,2ℓ − tℓ,k,i

)
λ2

= 2
n∑

k=1

2ℓ−1∑
i=1

1

4

tk − tk−1

2ℓ
(tk − tk−1)(2ℓ− i )

2ℓ
λ2

= 1

2
λ2

n∑
k=1

(tk − tk−1)2 1

2ℓ

2ℓ−1∑
i=1

2ℓ− i

2ℓ
,

where the two equalities follow after some straightforward manipulations. Because

2ℓ−1∑
i=1

2ℓ− i

2ℓ
= 1

2ℓ

2ℓ−1∑
i=1

(2ℓ− i ) = 1

2ℓ

2ℓ−1∑
i=1

i = 1

2ℓ
(2ℓ−1)2ℓ

2
= 2ℓ−1

2
,

it follows from this inequality that

EP (ηvℓ −ηv |Xu = xu ) ≤ 1

2
λ2

n∑
k=1

(tk − tk−1)2 1

2ℓ
2ℓ−1

2

= 1

4
λ2 2ℓ−1

2ℓ

n∑
k=1

(tk − tk−1)2

≤ 1

4
∆(v)(r − s)λ2 2ℓ−1

2ℓ
,

where for the last inequality we used that (tk − tk−1) ≤∆(v) for all k in {1, . . . ,n} and
that

∑n
k=1(tk − tk−1) = (r − s).

It follows from the preceding inequality and Eq. (E.3)III that

E D
P (η[s,r ] −ηv |Xu = xu ) ≤ lim

ℓ→+∞
1

4
∆(v)(r − s)λ2 2ℓ−1

2ℓ
= 1

4
∆(v)(r − s)λ2,

establishing the inequality in the statement. Furthermore, because η[s,r ] and η[s,r ] −
ηv are non-negative Fu -over variables – see Theorem 5.26236 for the former – and
because ηv is an Fu -simple variable (and hence bounded), it follows from (DE1)225,
(DE2)225, (DE3)225 and (DE5)225 that

E D
P (η[s,r ] −ηv |Xu = xu ) = E D

P (η[s,r ] |Xu = xu )−E D
P (ηv |Xu = xu )

= E D
P (η[s,r ] |Xu = xu )−EP (ηv |Xu = xu ),

and this proves the equality in the statement.

E.1.1 Fixing Lemma 6.8 and its dependencies

Next, let us fix the statement and proof of Lemma 6.8279.
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Lemma 6.8. Consider some time points s and r in R≥0 such that s < r . Then
for any grid v over [s,r ],

1

2
(η[s,r ] −ηv ) ≥ IA with A := {

ω ∈Ω : ηv (ω) < η[s,r ](ω)
}
.

Proof. Let (vℓ)ℓ∈N be the sequence of grids as constructed in the proof of Proposi-
tion 6.2275 – see Appendix 6.A321. Furthermore, for all ℓ inN, we let

Aℓ := {
ω ∈Ω : ηv (ω) < ηvℓ (ω)

}
.

Fix some ℓ in N. Then because vℓ ⊇ v by construction, it follows from
Lemma 5.23234 that ηvℓ ≥ ηv , and thereforefor any ω in Ω, ηvℓ (ω)−ηv (ω) is either
equal to 0 or greater than or equal to 2. Consequently,

IAℓ = (ηvℓ −ηv )∧1 ≤ 1

2
(ηvℓ −ηv ). (E.5)

Recall from the proof of Proposition 6.2275 that the sequence (ηvℓ −ηv )ℓ∈N con-
verges point-wise to η[s,r ] −ηv . It follows immediately from this and Eq. (E.5) that IAℓ
converges point-wise to IA , and that

IA = p-w lim
ℓ→+∞

IAℓ ≤ p-w lim
ℓ→+∞

1

2
(ηvℓ −ηv ) = 1

2
(η[s,r ] −ηv ),

as required.

Lemma 6.8279 is used in the proof of Lemma 6.11282 and Lemma 6.20292.
Changing the proof of these results is trivial, so here we will only give the
changed statement.

Lemma 6.11. Consider subsets S,G of X and time points s,r in R≥0 such
that s ≤ r . Then for any grid v over [s,r ],

∣∣hS,G
[s,r ] −hS,G

v

∣∣≤ 1

2
(η[s,r ] −ηv ).

Lemma 6.20. Consider a subset G of X and time points s,r in R≥0 such
that s ≤ r . Then for any grid v over [s,r ],

∣∣τG
[s,r ] −τG

v

∣∣≤∆(v)+ 1

2
(r − s)(η[s,r ] −ηv ).

Changes due to the corrected statement of Lemma 6.11

In turn, Lemma 6.11282 is used in two follow-up results. It is used in the
proof of Lemma 6.12283, and the trivial required change in the proof does
not change the statement of this intermediary result. It is also used in the
proof of Proposition 6.13283, and the correction to Lemma 6.11282 leads to
the following corrected statement of Proposition 6.13283.
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Proposition 6.13. Consider a non-empty and bounded set Q of rate oper-
ators, and an imprecise jump process P such that P ⊆ PQ. Fix some sub-
sets S,G of X, a state history {Xu = xu} in H and time points s,r in R≥0 such
that maxu ≤ s ≤ r . Then for any grid v over [s,r ],

∣∣P D
P

(
H S,G

[s,r ]

∣∣ Xu = xu
)−PP

(
H S,G

v

∣∣ Xu = xu
)∣∣≤ 1

4

1

8
∆(v)(r − s)∥Q∥2

op

and ∣∣P D
P

(
H S,G

[s,r ]

∣∣ Xu = xu
)−PP

(
H S,G

v

∣∣ Xu = xu
)∣∣≤ 1

4

1

8
∆(v)(r − s)∥Q∥2

op.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.

Proposition 6.13283 is subsequently used in the proof of Theorem 6.46314,
and this leads to the following change in its statement.

Theorem 6.46. Consider a non-empty set M of initial mass functions, a
non-empty and bounded set Q of rate operators that has separately specified
rows and an imprecise jump process P such that PM

M,Q ⊆ P ⊆ PM,Q. Fix
subsets S,G of X and time points s,r in R≥0 such that s < r . For all n inN, we
let ∆n := (r−s)/n and let f̃n,0 be the gamble on X that is defined by the initial
condition f̃n,n := IG and, for all k in {0, . . .n −1}, by the recursive relation

f̃n,k := IG + IS\G
(
I +∆nQQ

)
f̃n,k+1. (E.6)

Then for all x in X and n inN such that (r − s)∥QQ∥op ≤ 2n,

∣∣P D
P

(
H S,G

[s,r ]

∣∣ Xs = x
)− f̃n,0(x)

∣∣≤ 1

2

3

8

(r − s)2

n
∥QQ∥2

op,

and therefore
P D
P

(
H S,G

[s,r ]

∣∣ Xs = x
)= lim

n→+∞ f̃n,0(x).

The same holds for P D
P

if in Eq. (E.6) we replace QQ by QQ.

Proof. Let Q := QQ . Because every rate operator Q in Q dominates Q, it follows
immediately from (LR7)111 that ∥Q∥op ≤ ∥Q∥op.

Fix some n in N such that (r − s)∥Q∥op ≤ 2n, and let v be the grid over [s,r ]
with n subintervals of length ∆n – that is, we let v := (s, s +∆n , . . . , s +n∆n ). Then by
Proposition 6.13283,∣∣∣P D

P

(
HS,G

[s,r ]

∣∣ Xs = x
)−EP

(
hS,G

v
∣∣ Xs = x

)∣∣∣≤ 1

4

1

8
∆(v)(r − s)∥Q∥2

op

≤ 1

4

1

8

(r − s)2

n
∥Q∥2

op, (E.7)

where for the second inequality we used that ∆(v) = (r−s)/n and that ∥Q∥op ≤ ∥Q∥op.
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Recall from Lemma 6.10281 that hS,G
v has a sum-product representation over v :

hS,G
v =

n∑
k=0

gk
(
Xs+k∆n

)k−1∏
ℓ=0

hℓ
(
Xs+ℓ∆n

)
,

with gk := IG for all k in {0, . . . ,n} and hℓ := IS\G for all ℓ in {0, . . . ,n−1}. For this reason,
it follows from Theorem 4.9166 that

EP

(
hS,G

v
∣∣ Xs = x

)= fn,0(x), (E.8)

where fn,0 is the gamble on X that is defined by the initial condition fn,n := gn = IG
and, for all k in {0, . . . ,n −1}, by the recursive relation

fn,k := IG + IS\G e∆nQ fn,k+1.

Furthermore, it follows from Lemma 6.43311 that

∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ ∥∥ fn,0 − f̃n,0

∥∥
op ≤ 1

2
∥Q∥2

op
(r − s)2

n2

n∑
k=1

∥ f̃n,k∥c. (E.9)

We now claim that for all k in {1, . . . ,n}, min f̃n,k ≥ 0 and max f̃n,k ≤ 1, and there-

fore ∥ f̃n,k∥c ≤ 1
2 . Our proof will be one by induction. For the base case k = n,

this is obvious because f̃n,n = IG by definition. For the inductive step, we fix
some k in {1, . . . ,n −1} and assume that min f̃n,k+1 ≥ 0 and max f̃n,k+1 ≤ 1. Because
∆n∥Q∥op ≤ 2, (I +∆nQ) is a lower transition operator due to Lemma 3.72112. Hence,
it follows from the induction hypothesis and (LT4)108 that

0 ≤ min f̃n,k+1 ≤ (I +∆nQ) f̃n,k+1 ≤ max f̃n,k+1 ≤ 1.

For this reason, and because f̃n,k = IG +IS\G (I +∆nQ) f̃n,k+1 by definition, we see that

min f̃n,k ≥ 0 and max f̃n,k ≤ 1, as required.
Because ∥ f̃n,k∥c ≤ 1/2 for all k in {1, . . . ,n}, it follows from Eq. (E.9) that

∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ 1

4
∥Q∥2

op
(r − s)2

n
. (E.10)

Finally, it follows from Eqs. (E.7)VI, (E.8) and (E.10) and the triangle inequality that∣∣∣P D
P

(
HS,G

[s,r ]

∣∣ Xs = x
)− f̃n,0(xs )

∣∣∣≤ 1

4

1

8

(r − s)2

n
∥Q∥2

op + 1

4
∥Q∥2

op
(r − s)2

n

= 1

2

3

8

(r − s)2

n
∥Q∥2

op. (E.11)

Because Eq. (E.11) holds for all n in N such that (r − s)∥Q∥op ≤ 2n and because
the right-hand side of the inequality vanishes as n recedes to +∞, we have proven the
limit statement for P D

P
.

The statement for P D
P

essentially follows from conjugacy. More precisely, the
argument is almost exactly the same as the argument in the first part of this proof. We
do need a couple of extra steps though. First, we use that

EP
(
hS,G

v
∣∣ Xs = x

)=−EP

(−hS,G
v

∣∣ Xs = x
)
,
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for any grid v over [s,r ]. Second, we use that −hS,G
v also has a sum-product represen-

tation over v : by Lemma 4.7165,

−hS,G
v =

n∑
k=0

[−IG ](
Xs+k∆n

)k−1∏
ℓ=0

IS\G
(
Xs+ℓ∆n

)
Third, we again use Lemmas 4.9166 and 6.43311, but this time to approximate

EP

(−hS,G
v

∣∣ Xs = x
)

instead of EP

(
hS,G

v
∣∣ Xs = x

)
. This way, we find that

∣∣EP(−hS,G
v |Xs = x)− f̌n,0(x)

∣∣≤ 1

2
∥Q∥2

op
(r − s)2

n2

n∑
k=1

∥ f̌n,k∥c,

where f̌n,0(x) is recursively defined by the initial condition f̌n,n :=−IG and, for all k
in {0, . . . ,n −1}, by the recursive relation

f̌n,k :=−IG + IS\G
(
I +∆nQ

)
f̌n,k+1.

Obviously, f̃n,n =− f̌n,n . Furthermore, it is easy to verify that, for all k in {0, . . . ,n −1},
∥ f̌n,k∥c ≤ 1/2 and that, by conjugacy,

f̃n,k = IG + IS\G
(
I +∆nQ

)
f̃n,k =−

(
−IG + IS\G

(
I +∆nQ

)
(− f̃n,k+1)

)
=− f̌n,k .

Therefore, and because EP
(
hS,G

v
∣∣ Xs = x

)=−EP

(−hS,G
v

∣∣ Xs = x
)
,

∣∣EP(hS,G
v |Xs = x)− f̃n,0(x)

∣∣≤ 1

4
∥Q∥2

op
(r − s)2

n
.

The remainder of the proof is again similar to the first part of the proof.

Changes due to the corrected statement of Lemma 6.20

Lemma 6.20292 is also used in two follow-up results. It is used in the proof
of Lemma 6.21293, and the trivial required change in the proof does not
change the statement of this intermediary result. It is also used in the proof
of Proposition 6.22293, and the correction to Lemma 6.20292 induces the
following obvious change to Proposition 6.22293.

Proposition 6.22. Consider a non-empty and bounded set Q of rate operators,
and an imprecise jump process P such that P ⊆PQ, and let λ := ∥Q∥op. Fix
some subset G of X, a state history {Xu = xu} in H and time points s,r in R≥0

such that maxu ≤ s ≤ r . Then for any grid v over [s,r ],∣∣E D
P

(
τG

[s,r ]

∣∣ Xu = xu
)−EP

(
τG

v

∣∣ Xu = xu
)∣∣≤∆(v)+ 1

4

1

8
∆(v)(r − s)2∥Q∥2

op

and∣∣E D
P

(
τG

[s,r ]

∣∣ Xu = xu
)−EP

(
τG

v

∣∣ Xu = xu
)∣∣≤∆(v)+ 1

4

1

8
∆(v)(r − s)2∥Q∥2

op.

In particular, this holds for P = PHM
M,Q, P = PM

M,Q and P = PM,Q, with M a
non-empty set of initial mass functions.
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Proposition 6.22293 is subsequently used in the proof of Theorem 6.48316,
and this leads to the following change in its statement.

Theorem 6.48. Consider a non-empty set M of initial mass functions, a
non-empty and bounded set Q of rate operators that has separately specified
rows and an imprecise jump process P such that PM

M,Q ⊆P ⊆PM,Q. Fix some
subset G of X and time points s,r in R≥0 such that s < r . For all n in N, we
let ∆n := (r−s)/n and let f̃n,0 be the gamble on X that is defined by the initial
condition f̃n,n :=∆n and, for all k in {0, . . .n −1}, by the recursive relation

f̃n,k :=
{
∆n + IGc

(
I +∆nQQ

)
f̃n,k+1 if k ≥ 1,

s + IGc
(
I +∆nQQ

)
f̃n,k+1 if k = 0.

(E.12)

Then for all x in X and all n inN such that (r − s)∥QQ∥op ≤ 2,

∣∣E D
P

(
τG

[s,r ]

∣∣ Xs = x
)− f̃n,0(x)

∣∣≤ r − s

n
+ 1

8

(r − s)3

n

32n +1

n
∥QQ∥2

op,

and therefore
E D
P

(
τG

[s,r ]

∣∣ Xs = x
)= lim

n→+∞ f̃n,0(x).

The same holds for E D
P

if in Eq. (E.12) we replace QQ by QQ.

Proof. Let Q := QQ . Because every rate operator Q in Q dominates Q, it follows
immediately from (LR7)111 that ∥Q∥op ≤ ∥Q∥op.

Fix some n in N such that (r − s)∥Q∥op ≤ 2n, and let v be the grid over [s,r ]
with n subintervals of length ∆n – that is, we let v := (s, s +∆n , . . . , s +n∆n ). Then by
Proposition 6.22293,∣∣∣E D

P

(
τG

[s,r ]

∣∣ Xs = x
)−EP

(
τG

v
∣∣ Xs = x

)∣∣∣≤∆(v)+ 1

4

1

8
∆(v)(r − s)2∥Q∥2

op

≤ r − s

n
+ 1

4

1

8

(r − s)3

n
∥Q∥2

op, (E.13)

where for the second inequality we used that ∆(v) = (r−s)/n and that ∥Q∥op ≤ ∥Q∥op.

Recall from Lemma 6.18290 that τG
v has a sum-product representation over v :

τG
v =

n∑
k=0

gk
(
Xs+k∆

)k−1∏
ℓ=0

hℓ
(
Xs+ℓ∆

)
,

with g0 := s and, for all k in {1, . . . ,n}, gk := ∆n and hk−1 := IGc . For this reason, it
follows from Theorem 4.9166 that

EP

(
τG

v
∣∣ Xs = x

)= fn,0(x), (E.14)

where fn,0 is the gamble on X that is defined by the initial condition fn,n := gn and,
for all k in {0, . . . ,n −1}, by the recursive relation

fn,k := gk +hk−1e∆nQ fn,k+1.
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Furthermore, it follows from Lemma 6.43311 that

∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ ∥∥ fn,0 − f̃n,0

∥∥
op ≤ 1

2
∥Q∥2

op
(r − s)2

n2

n∑
k=1

∥ f̃n,k∥c. (E.15)

We now claim that for all k in {1, . . . ,n}, min f̃n,k ≥ 0 and max f̃n,k ≤ (n −k +1)∆n ,

and therefore ∥ f̃n,k∥c ≤ (n−k+1)∆n
2 . Our proof will be one by induction. For the base

case k = n, this is obvious because f̃n,n =∆n by definition. For the inductive step, we
fix some k in {1, . . . ,n−1} and assume that min f̃n,k+1 ≥ 0 and max f̃n,k+1 ≤ (n−k)∆n .
Because ∆n∥Q∥op ≤ 2, (I +∆nQ) is a lower transition operator due to Lemma 3.72112.
Hence, it follows from the induction hypothesis and (LT4)108 that

0 ≤ min f̃n,k+1 ≤ (I +∆nQ) f̃n,k+1 ≤ max f̃n,k+1 ≤ (n −k)∆n .

For this reason, and because f̃n,k =∆n + IGc (I +∆nQ) f̃n,k+1 by definition, we see that

min f̃n,k ≥ 0 and max f̃n,k ≤ (n −k +1)∆n , as required.

Because ∥ f̃n,k∥c ≤ (n−k+1)∆n
2 for all k in {1, . . . ,n}, it follows from Eq. (E.15) that

∣∣ fn,0(x)− f̃n,0(x)
∣∣≤ 1

4
∥Q∥2

op
(r − s)3

n3

n∑
k=1

(n −k +1)

= 1

4
∥Q∥2

op
(r − s)3

n3

n(n +1)

2

= 1

8
∥Q∥2

op
(r − s)3

n

n +1

n
, (E.16)

where for the inequality we also used that ∆n = (r−s)/n. Finally, it follows from
Eqs. (E.13)IX, (E.14)IX and (E.16) and the triangle inequality that

∣∣∣E D
P

(
τG

[s,r ]

∣∣ Xs = x
)− f̃n,0(x)

∣∣∣≤ r − s

n
+ 1

4

1

8

(r − s)3

n
∥Q∥2

op + 1

8

(r − s)3

n

n +1

n
∥Q∥2

op

= r − s

n
+ 1

8

(r − s)3

n

32n +1

n
∥Q∥2

op. (E.17)

Because Eq. (E.17) holds for all n in N such that (r − s)∥Q∥op ≤ 2n and because
the right-hand side of the inequality vanishes as n recedes to +∞, we have proven the
limit statement for E D

P
.

The statement for E D
P

essentially follows from conjugacy; as in the proof of Theo-
rem 6.46314, we need some obvious extra/different steps.
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