Markovian Imprecise Jump Processes:
Foundations, Algorithms and Applications
Corrigendum
version of 10/11/2021

E.1 Issues due to Lemma 5.24

Unfortunately, Lemma 5.24,34 is incorrect — and I thank Arne Decadt for
pointing this out. That said, we can fix this statement in such a way that
all — non-intermediary — results in the dissertation still hold, although in
some cases we need to slightly alter the statement. Let us start by stating and
proving the replacement for Lemma 5.24,34. Here and in the remainder, we
indicate changes as follows: this is new, and

Lemma 5.24. Consider time points s,r in Rxq such that s <r and a grid v =
(to,..., tn) over [s,r) withn =2. Then

n—1 n-1
N, + l; I]{X,kd#er#X/-} SNv= N +2 kz:"ll]{xtkq#ka#X’}.

Proof. Crucial to our proof is the following observation. Let w = (sp, ..., i) be any
grid over [s, 7], and fix some time point ¢ in 1s;;,—1, Sy [. Then for all w in Q,
Nw)+2 ifwlsy-1)# 0@ #w(s; )and w(sy-1) = w(sm),
Nwu @) =4 nw)+1 fwlsy-—1) #w(t) #w(s;y, ) and w(sy,-1) # 0(Sm),
Nw(w) otherwise.
Hence,
77LU+U{XSm71¢XI¢XSm} SNwun = Nw +2|]{Xsm71¢X’¢XS’"}. E-1)
Fix some w in Q, and let vg := (s, r). Furthermore, for all kin {1,...,n— 1}, we let

vy = (fo, t1,..., tg, tn); note that v, = v. Then it follows from Eq. (E.1) that for all k
in{l,...,n—1},

Tve-s +H{X/k71¢x'/;¢xr} =M= vy +2H{th71#xtk7fxr}'
We repeatedly apply the , to yield

-1

n
Mo =Nvpy = Mg ¥2Ny Ly, ax ) =0 ”(S,f)+2]§1”{th_1¢xtk¢xr}

similarly, by repeated use of the first inequality we find that

n-1
Mo =My =Mvn-r * U{X"n—2¢xfn—l¢x"} = ENen kgl U{Xflx'—l #th¢x"}. H
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Lemma 5.24,34 is used in the proof of Lemma 5.23,34 and Proposi-
tion 6.2575; we need to change the statement and proof of the former and the
proof of the latter accordingly. First let us fix Lemma 5.23534.

Lemma 5.23. Consider time points s and r in R such that s < r, and two
grids v and w over [s,r] such that w refines v — that is, w2 v. Then

Nw =My

Proof. The statement is clearly trivial in case [s, 7] is a degenerate interval, so we
assume without loss of generality that s < r. Enumerate the time points in v as
(to,...,tn), and note that n = 1 because s < r. Forall ¢ in {1,..., n}, we let w, be the
sequence of time points that consists of those time points in w thatbelongto [t,_, #/];
because w refines v, wy is a grid over [t,_1, ty]. It follows from repeated application
of Lemma 5.22934 that

n n
Nv= Z n(l‘[_l,l‘[) and NMw = Z 77w;~ (EZ)
/=1 /=1

Fix some w in Q. Then it follows from Lemma 5.24534 that for all £ in {1,..., n},
It follows immediately from this and Eq. (E.2) that

O

Lemma 5.23,34 is used in the proof of Theorem 5.2636, Theorem 5.27,3,
Proposition 6.2,75 and Lemma 6.8,79. Of these proofs, the only one that
uses the (incorrect) equality is that of Lemma 6.8279. We will get to this in
Section E.1.1y further on.

Second, we fix the proof of Proposition 6.2,75.

Proposition 6.2. Consider a jump process P that has uniformly bounded rate,
with rate bound A. Fix a state history {X,, = x,} in ¥ , time points s,1 in Ry
suchthatmaxu<s<randagridv=(t,...,t,) over[s,r]. Thenns, —1ny is
a non-negative ¥, -over variable, and

E}?(n[s,r] Nyl Xy=xy) = Eg(n[s,r] | Xy =xu) —EpMy| Xy = x4)

< %A(v)(r—s)/lz.
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Proof. Forevery ¢inNand kin {1,...,n}, we let vy ;. be the grid over [f;_;, t;] that
divides this subinterval in 2¢ subintervals of equal length. That s, for all £ in N and k
inf{l,...,n}, welet vy i = (tg k0., t; j. ,¢) Where for all i in 0,...,2%},

i
t[,k,i =1+ (Ik - tk—1)27'

Next, for all £ in N, we let v, be the (ordered) union of vy 1, ..., vy ,; this way,
vy is a grid over [s,r] with A(vy) = Aw)2~¢ such that v < V¢ € Vp4q. Recall from
Lemma 5.21234 thatn, and, for all £ inN, 1, are ¥ -simple variables. Therefore, it
follows immediately from Lemma 2.393¢ that for all in N, (,, — 1) is an F,-simple
variable. Furthermore, for all ¢ in N, it follows immediately from Lemma 5.23534 that
Nves, =M, =My because vy, 1 2 vy 2 v by construction. Thus, we have shown that
(Mv, —Mv)¢eN is a non-decreasing sequence of non-negative %, -simple variables;
that this sequence converges point-wise to 15 ;] — 17y follows immediately from The-
orem 5.26336. Hence, 1[5 ;] — Ny is a non-negative F-over variable, and it follows
from (DE1)225, (DE3)335 and Theorem 5.1022¢6 that

Eg(n[s,r] =Nyl Xy=xy)= lim Epny, —nyl Xy = xu). (E.3)
{—+o00

In order to verify the inequality of the statement, we investigate the expectations
on the right-hand side of the preceding equality. To this end, we fix any ¢ in N. It
follows from (repeated application of) Lemma 5.22534 that

n

n n
Mo =1 = kZlnvg,k - kZlmtk_l,rk) = 2 (Mogx =Nt 10)- (E.4)

Recall from Lemma 5.24934 that, for all kin {1,..., n},

201
+2 I .
Nve = Mtr_1,t1) l; {Xt[,k,i—l¢Xti,k,i¢Xt[Yk'zi}
E.4
E.4
n 20-1
- 2 I ;
Mg =T kg’l ,; {Xf/,k,ifl¢Xfé,k,i#Xf[yk,2/}
from this inequality and (DE6)22¢, it follows that
n 2f-1
Ep(Mmy, —nulXu=xy)= Ep|2 I Xu=x
ve v " k; ,; {sz,k,i-l ¢Xff,k,i¢X‘,‘kY2£} " "
n 20-1
=2 Z P[Xt[,k,i—l 7 Xtg i 7 Xt, k2l |XM = xu),
k=1 i=1 "
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where for the second equality we used Eqn (2.19)36. We replace the probabilities on
the right-hand side of the equality by the upper bound in Lemma 6.53322, to yield

nzfll

Ep(y, —nv| Xu=xy)<2 ) Z (toki— fi,k,i—l)(fe,k,zf—l‘z,k,i)/lz
k=1 i=1

n 2! U -t (- )R-

A2

k=1 i=1 2! 2!
) 20-150 _;
:—;\, (t — tp— ) »

where the two equalities follow after some straightforward manipulations. Because

21yl Z (2[ - il 1 @f-12f 201
= -i)= ==

i=1 20 i=1 izl 2 2

it follows from this inequality that

Ep( 1X, )<17L2 §n (te—t )212[_1
— =X < — — _ _——
PNy, —NviAdu u 5 k— k-1 20 2

n

22[
ﬂ Z(tk—tk 1)

< iA(U)(r—s))LZ—

where for the last inequality we used that (¢} — #;_1) < A(v) forall kin {1,...,n} and
that Y3, (fp — tx—1) = (r —s).
It follows from the preceding inequality and Eq. (E.3)yjj that

1 201 1
Er]?(ms,n—nulXuzxu)S[ETOOZA(U)U—S)/IZZ—Z:ZA(U)(r—s)/lz.

establishing the inequality in the statement. Furthermore, because 7y} and 1y —
1y are non-negative &, -over variables — see Theorem 5.26,3¢ for the former — and

because 1, is an F;,-simple variable (and hence bounded), it follows from (DE1)225,
(DE2)225, (DE3)225 and (DE5)225 that

ER s, = Nv| Xu = Xu) = ES (5,11 | Xu = %) — ED (0 | X = Xu1)
= ED ({5,111 Xu = xu) = Ep(0v | Xu = xu),

and this proves the equality in the statement. O

E.1.1 Fixing Lemma 6.8 and its dependencies

Next, let us fix the statement and proof of Lemma 6.8579.
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Lemma 6.8. Consider some time points s and r in Rxg such that s <r. Then
for any grid v over [s, 1],

M =N Z0a with A= {w € Q: ny(0) <N, @)}

Proof. Let (vy)yen be the sequence of grids as constructed in the proof of Proposi-
tion 6.2275 — see Appendix 6.A32; . Furthermore, for all ¢ in N, we let

Ap={weQ: ny() <1y, (W)}

Fix some ¢ in N. Then because vy 2 v by construction, it follows from
Lemma 5.2334 that

la, =My, —n)ALS (Mo, —N0). (E.5)

Recall from the proof of Proposition 6.2;75 that the sequence (1, — 1) gen cOD-
verges point-wise to (5 ;] — 7y It follows immediately from this and Eq. (E.5) thatl,
converges point-wise to [ 4, and that

lg=p-wlimly, <p-wlim (v, —=nv) = 05,11 = N0),
{—+o00 {—+o00
as required. O
Lemma 6.8,79 is used in the proof of Lemma 6.112g2 and Lemma 6.2029,.

Changing the proof of these results is trivial, so here we will only give the
changed statement.

Lemma 6.11. Consider subsets S,G of & and time points s,r in Rxq such
that s < r. Then for any grid v over [s, r],

§,G S,G
|h[s,r]_hv |S (n[S,T]_T)V)-

Lemma 6.20. Consider a subset G of & and time points s,r in Rxg such
that s < r. Then for any grid v over [s,1],

|T[Gs,r] _Tﬂ AW+ (1=, —Nv)-

Changes due to the corrected statement of Lemma 6.11

In turn, Lemma 6.115g, is used in two follow-up results. It is used in the
proof of Lemma 6.12,33, and the trivial required change in the proof does
not change the statement of this intermediary result. It is also used in the
proof of Proposition 6.13,g3, and the correction to Lemma 6.11,g, leads to
the following corrected statement of Proposition 6.13,g3.
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Proposition 6.13. Consider a non-empty and bounded set @ of rate oper-
ators, and an imprecise jump process P such that P < Py. Fix some sub-
sets S,G of &, a state history {X,, = x,} in Z and time points s,r inRxq such
that maxu < s < r. Then for any grid v over [s, ],

P (55 X = x0) - P (M5 X = )] = - AGIC -1l

and

|PO.(HYS | Xu=xu) - P (HyO | Xu=x4)| =~ AW -9)lQI5,

[s,7]

In particular, this holds for & = P/H%%, P = IF"M and P =Py g, with M/ a

non-empty set of initial mass functlons

Proposition 6.13,g3 is subsequently used in the proof of Theorem 6.46314,
and this leads to the following change in its statement.

Theorem 6.46. Consider a non-empty set M of initial mass functions, a
non-empty and bounded set @ of rate operators that has separately specified
rows and an imprecise jump process & such that IPM 0.6 S C PPy Fix
subsets S,G of X and time points s,r inRxq such that s<r. Forall n inN, we
let A, := (r=9)/n and let f, o be the gamble on X that is defined by the initial
condition fy, , := g and, for all k in{0,...n— 1}, by the recursive relation

Fak =6 +s\6(1+8,Q6) frks1- (E.6)

Then for all x in & and n inN such that (r — s) IIQ@ lop <2n,

(r—s)

e =
|£D Hsr]|Xs=x)_fn,0(x)|S op’
and therefore
e L
Po(H | Xs=x) = lim_foo(0).

The same holds for ifin Eq. (E.6) we replace Qq by Qo-

Proof. Let Q= Qg. Because every rate operator Q in @ dominates Q, it follows
lmmedlately from (LR7)111 that |@llop = | Qllop

Fix some n in N such that (r — $)[|Qllop < 2n, and let v be the grid over [s,r]
with n subintervals of length A, — thatis, welet v:=(s,s+ Ayp,..., s+ nAy). Then by
Proposition 6.135g3,

|gD (H3% | Xs = x) - Ego(hy | Xs =x]‘ = AW -9lals,

(r—s)

(E.7)

where for the second inequality we used that A(v) = =s)/n and that | @llop =< |Qllop-
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Recall from Lemma 6.102g; that hg'G has a sum-product representation over v:

n k-1

S,G

hy™ = Z gk(Xs+kAn) H hI(Xs+[An)’
k=0 =0

with g =0 forall kin {0,...,n} and hy =g\ for all £in {0, ..., n—1}. For this reason,

it follows from Theorem 4.91g¢ that

Eg(hy® | Xs=x) = fno0(x), (E.8)

where f is the gamble on 2 that is defined by the initial condition f, 5, := gn =g
and, for all kin {0,...,n -1}, by the recursive relation

. A
fnk=lg+Is\ge ”an,k+1~
Furthermore, it follows from Lemma 6.4331; that

2 (r—9)° 5)?
n

|£2.000 = Fro 0| < [l fn0 = Frollop = 5 ZIQI3, Z Ifuile: (B9

We now claim that for all kin {1,...,n}, minfn’k =0and maxfn,k <1, and there-
fore ||fn,k||c < % Our proof will be one by induction. For the base case k = n,
this is obvious because f; ; = Ig by definition. For the inductive step, we fix
some kin {1,...,n—1} and assume that minfn,kﬂ >0 and maxfmk“ < 1. Because
Ay ||9||0p <2,(I+ Ang) is a lower transition operator due to Lemma 3.72112. Hence,
it follows from the induction hypothesis and (LT4)10g that

0<min fy, g1 < T +AnQ) fiy k1 Smax fiy gy < 1.

For this reason, and because fn,k =lg+is\gU+ Ang)fn,kﬂ by definition, we see that
min f,, = 0 and max f,, ;. <1, as required.
Because ||fn,k lc <V2forall kin{1,..., n}, it follows from Eq. (E.9) that

(r—s)?

= 1
|£n000) = Fao ()] < S1QIG, (E.10)
Finally, it follows from Egs. (E.7)yy, (E.8) and (E.10) and the triangle inequality that

(r—s) (r—s)?

|PO (S5 | X5 = %)= Faoxs)| < + 1013,

(r s)2
= Q5. (E.11)

Because Eq. (E.11) holds for all  in N such that (r — s) 1Qllop =21 and because
the right-hand side of the inequality vanishes as n recedes to +oo, we have proven the
limit statement for Bg.

The statement for 55 essentially follows from conjugacy. More precisely, the
argument is almost exactly the same as the argument in the first part of this proof. We
do need a couple of extra steps though. First, we use that

Egp(hy®| Xs=2) = ~Egp(~hy®| Xs = x
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for any grid v over [s, r]. Second, we use that —hg'G

tation over v: by Lemma 4.71¢5,

also has a sum-product represen-

k-1

n
=3 [-16](Xs+ka,) [T 0576 (Xssea,,)
k=0 7=0

_hﬁc
Third, we again use Lemmas 4.916¢ and 6.43311, but this time to approximate
Eg(~h3% | X, = x) instead of E s (13 | X5 = x). This way, we find that

2 r—97 5)2

|Egp(~ 1y 1 X5 = )~ f0 ()] < —IIQII =

Z ||fn k”c,

where fn,o (x) is recursively defined by the initial condition fnn = —lg and, for all k
in {0,...,n—1}, by the recursive relation

Fak =16 +1s\G(I+AnQ) f k+1-

Obviously, fn n=- fn n. Furthermore, it is easy to verify that, for all kin {0,...,n -1},
| fn,kllc < 1/2 and that, by conjugacy,

Tk =16 +1516(1+ 80 Q) F ke = = (16 +I\6 1+ BnQ) (= Fr 1)) = =k
Therefore, and because Ega(h*g’c | Xs=x) = —E@(—hﬁ‘G | Xs = x)

2
[Bap (51X = 00 = o] = 71QUZ, -

The remainder of the proof is again similar to the first part of the proof. O

Changes due to the corrected statement of Lemma 6.20

Lemma 6.2029; is also used in two follow-up results. It is used in the proof
of Lemma 6.21,93, and the trivial required change in the proof does not
change the statement of this intermediary result. It is also used in the proof
of Proposition 6.22,93, and the correction to Lemma 6.20,9, induces the
following obvious change to Proposition 6.22,93.

Proposition 6.22. Consider a non-empty and bounded set @ of rate operators,
and an imprecise jump process & such that & < Pg, and let A = ||@| op. Fix
some subset G of 2, a state history {X,, = x,} in # and time points s,r inRxg
such that maxu < s < r. Then for any grid v over [s, ],

|ED(t(i | Xu = %) = Egu (75 | Xu = xu) | AW+~ AW)(r = 9%lI€I15,

G
[s,7]

and

[ES (x5 ) | Xu = %) = o (5| Xu = %) < AW+ AW)(r=9)°l@l5,

In particular; this holds for # = PN, # =Pl . and P =Py 6, with M a

non-empty set of initial mass functlons
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Proposition 6.22,93 is subsequently used in the proof of Theorem 6.4831¢,
and this leads to the following change in its statement.

Theorem 6.48. Consider a non-empty set M of initial mass functions, a
non-empty and bounded set @ of rate operators that has separately specified
rows and an imprecise jump process P such that P /% 0 S P <Puq. Fix some
subset G of X and time points s,r inRxq such that s <r. For all n inN, we
let Ay, := =9)/n and let fy,o be the gamble on X that is defined by the initial
condition fy, , := A, and, for all k in{0,...n— 1}, by the recursive relation

. Ap+lGe(1+8,Q0) fupr1  ifk=1,
fuk =

~ ) (E.12)
S+I]GC(I+An9@)fn,k+1 ifk=0.

Then forall x in & and all n inN such that (r — s) IIQ@ lop =2,

1(r—s)3 n+1
8 n

ES (¢ | X5 = %) = Fo)] < 1Qall2,,
and therefore
E%(T[Gs,r] |X5 = x) = l_l}}rl Jno(x).

The same holds for ifin Eq. (E.12) we replace Qg by Q@

Proof. Let Q := Qg. Because every rate operator Q in @ dominates Q, it follows
immediately from (LR7)11; that [|@llop < | Qllop. N

Fix some n in N such that (r — S)llQllop < 2n, and let v be the grid over [s,r]
with 7 subintervals of length A, —thatis, we let v:= (s,s+ Ay, ..., s+ nAy). Then by
Proposition 6.22593,

ED. (70 | X5 = 0) - B (70 | Xs = 0)| = Ay + - A -2 l@I3,

r—s (r—s)
<

(E.13)

n

where for the second inequality we used that A(v) = (r—s)/n and that [|@llop < [ Qllop-
Recall from Lemma 6.1829( that rg has a sum-product representation over v:

ng s+kA th s+CA)>

with go := sand, for all kin {1,...,n}, gk := Ay and hj_; = lge. For this reason, it
follows from Theorem 4.91g6 that

(t§ | X5 = x) = fa0(0), (E.14)

where f, o is the gamble on X that is defined by the initial condition fy, , := g5 and,
forall kin {0,..., n— 1}, by the recursive relation

Ap
Jfnk=8k+hie an,k+1~

X



Furthermore, it follows from Lemma 6.4331; that

2,

| fn,00) = Fa0 (0] < || 0~ fnollop_ IQl annknc (E.15)

We now claim that for all kin {1,..., n}, minfn r=0and rnaxfn r<s(n—k+DAy,
and therefore || fn rlle = (nk;l)An . Our proof will be one by induction. For the base
case k = n, this is obvious because fn.n = Ay by definition. For the inductive step, we
fixsome kin {1,...,n—1} and assume that minfnykﬂ =0and maxfn,kﬂ < (n-kAn.
Because Ay, IIQIIOP <2, (I+ AnQ) is a lower transition operator due to Lemma 3.72172.
Hence, it follows from the induction hypothesis and (LT4)10g that

0=min fy, g1 < T+AnQ) fy k1 SMaX fiy oy < (= K)Ap.

For this reason, and because fn,k =Ap+lge(I+ Ang)fn,kﬂ by definition, we see that
minfn,,C =0and maxfnyk < (n-k+1)Ay, asrequired.
Because ||f,,yk||C < m forall kin {1,..., n}, it follows from Eq. (E.15) that

3 n
| 000 = an(x)|<l||Q||2 =97 S ks 1)
4 n (5
|2 (r— s) nn+1)
n3 2

1 Sn+1
IIQII2 r=s”n+l (E.16)
n n

1|||
4Q

where for the inequality we also used that A, = (r—s)/n. Finally, it follows from
Egs. (E.13)1x, (E.14)1x and (E.16) and the triangle inequality that

(r- s)3 1(r- ¥ n+1
1QU3, + 5

r-s 1 (r—s)3 n+1
L 1Q5, (E.17)
n 8 n

|ED (e | Xs =) = Fo)| = ==+ —1QI5p

Because Eq. (E.17) holds for all n in N such that (r — ) IIQIIOP < 2n and because
the right-hand side of the inequality vanishes as n recedes to +oo, we have proven the
limit statement for E;.

The statement for fgb essentially follows from conjugacy; as in the proof of Theo-
rem 6.46314, we need some obvious extra/different steps. O
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