Markovian Imprecise Jump Processes: Foundations, Algorithms and Applications

Corrigendum

version of 10/11/2021

E.1 Issues due to Lemma 5.24

Unfortunately, Lemma 5.24_{234} is incorrect – and I thank Arne Decadt for pointing this out. That said, we can fix this statement in such a way that all – non-intermediary – results in the dissertation still hold, although in some cases we need to slightly alter the statement. Let us start by stating and proving the replacement for Lemma 5.24_{234} . Here and in the remainder, we indicate changes as follows: this is new, this replaces this is replaced and this is deleted.

Lemma 5.24. Consider time points s, r in $\mathbb{R}_{\geq 0}$ such that s < r and a grid $v = (t_0, ..., t_n)$ over [s, r] with $n \geq 2$. Then

$$\eta_{(s,r)} + \sum_{k=1}^{n-1} \mathbb{I}_{\left\{X_{t_{k-1}} \neq X_{t_k} \neq X_r\right\}} \leq \eta_{\nu} \leq = \eta_{(s,r)} + 2 \sum_{k=1}^{n-1} \mathbb{I}_{\left\{X_{t_{k-1}} \neq X_{t_k} \neq X_r\right\}}$$

Proof. Crucial to our proof is the following observation. Let $w = (s_0, ..., s_m)$ be any grid over [s, r], and fix some time point t in $]s_{m-1}, s_m[$. Then for all ω in Ω ,

$$\eta_{w\cup(t)}(\omega) = \begin{cases} \eta_w(\omega) + 2 & \text{if } \omega(s_{m-1}) \neq \omega(t) \neq \omega(s_{mn}) \text{ and } \omega(s_{m-1}) = \omega(s_m), \\ \eta_w(\omega) + 1 & \text{if } \omega(s_{m-1}) \neq \omega(t) \neq \omega(s_{mn}) \text{ and } \omega(s_{m-1}) \neq \omega(s_m), \\ \eta_w(\omega) & \text{otherwise.} \end{cases}$$

Hence,

$$\eta_{w} + \mathbb{I}_{\{X_{s_{m-1}} \neq X_{t} \neq X_{s_{m}}\}} \leq \eta_{w \cup (t)} \leq = \eta_{w} + 2\mathbb{I}_{\{X_{s_{m-1}} \neq X_{t} \neq X_{s_{m}}\}}.$$
(E.1)

Fix some ω in Ω , and let $v_0 \coloneqq (s, r)$. Furthermore, for all k in $\{1, \ldots, n-1\}$, we let $v_k \coloneqq (t_0, t_1, \ldots, t_k, t_n)$; note that $v_{n-1} = v$. Then it follows from Eq. (E.1) that for all k in $\{1, \ldots, n-1\}$,

$$\eta_{v_{k-1}} + \mathbb{I}_{\left\{X_{t_{k-1}} \neq X_{t_k} \neq X_r\right\}} \leq \eta_{v_k} \leq = \eta_{v_{k-1}} + 2\mathbb{I}_{\left\{X_{t_{k-1}} \neq X_{t_k} \neq X_r\right\}}$$

We repeatedly apply the second inequality preceding equality, to yield

$$\eta_{\nu} = \eta_{\nu_{n-1}} \leq = \eta_{\nu_{n-2}} + 2\mathbb{I}_{\left\{X_{t_{n-2}} \neq X_{t_{n-1}} \neq X_r\right\}} = \dots \leq = \eta_{(s,r)} + 2\sum_{k=1}^{n-1} \mathbb{I}_{\left\{X_{t_{k-1}} \neq X_{t_k} \neq X_r\right\}};$$

similarly, by repeated use of the first inequality we find that

$$\eta_{\nu} = \eta_{\nu_{n-1}} \ge \eta_{\nu_{n-2}} + \mathbb{I}_{\left\{X_{t_{n-2}} \neq X_{t_{n-1}} \neq X_r\right\}} \ge \dots \ge \eta_{(s,r)} + \sum_{k=1}^{n-1} \mathbb{I}_{\left\{X_{t_{k-1}} \neq X_{t_k} \neq X_r\right\}}.$$

Lemma 5.24_{234} is used in the proof of Lemma 5.23_{234} and Proposition 6.2_{275} ; we need to change the statement and proof of the former and the proof of the latter accordingly. First let us fix Lemma 5.23_{234} .

Lemma 5.23. Consider time points *s* and *r* in $\mathbb{R}_{\geq 0}$ such that $s \leq r$, and two grids *v* and *w* over [*s*, *r*] such that *w* refines *v* – that is, $w \supseteq v$. Then for all ω in Ω , there is some k_{ω} in $\mathbb{Z}_{\geq 0}$ such that

$$\eta_w(\omega) = \eta_v(\omega) + 2k_\omega;$$

consequently, $\eta_w \ge \eta_v$.

Proof. The statement is clearly trivial in case [s, r] is a degenerate interval, so we assume without loss of generality that s < r. Enumerate the time points in v as $(t_0, ..., t_n)$, and note that $n \ge 1$ because s < r. For all ℓ in $\{1, ..., n\}$, we let w_{ℓ} be the sequence of time points that consists of those time points in w that belong to $[t_{\ell-1}, t_{\ell}]$; because w refines v, w_{ℓ} is a grid over $[t_{\ell-1}, t_{\ell}]$. It follows from repeated application of Lemma 5.22₂₃₄ that

$$\eta_{v} = \sum_{\ell=1}^{n} \eta_{(t_{\ell-1}, t_{\ell})} \quad \text{and} \quad \eta_{w} = \sum_{\ell=1}^{n} \eta_{w_{\ell}}.$$
 (E.2)

Fix some ω in Ω . Then it follows from Lemma 5.24₂₃₄ that for all ℓ in $\{1, ..., n\}$, $\eta_{W_{\ell}} \ge \eta_{(t_{\ell-1}, t_{\ell})}$.there is a non-negative integer $k_{\omega, \ell}$ such that

$$\eta_{w_{\ell}}(\omega) = \eta_{(t_{\ell-1}, t_{\ell})}(\omega) + 2k_{\omega, \ell}$$

It follows immediately from this and Eq. (E.2) that $\eta_w \ge \eta_v$.

$$\eta_{w}(\omega) = \sum_{\ell=1}^{n} \eta_{w_{\ell}}(\omega) = \sum_{\ell=1}^{n} \left(\eta_{(t_{\ell-1}, t_{\ell})}(\omega) + 2k_{\omega, \ell} \right) = \eta_{v}(\omega) + \sum_{\ell=1}^{n} 2k_{\omega, \ell} = \eta_{v}(\omega) + 2k_{\omega},$$
where we let $k_{\omega} := \sum_{\ell=1}^{n} k_{\omega, \ell}$.

Lemma 5.23₂₃₄ is used in the proof of Theorem 5.26₂₃₆, Theorem 5.27₂₃₆, Proposition 6.2₂₇₅ and Lemma 6.8₂₇₉. Of these proofs, the only one that uses the (incorrect) equality is that of Lemma 6.8₂₇₉. We will get to this in Section E.1.1_{IV} further on.

Second, we fix the proof of Proposition 6.2_{275} .

Proposition 6.2. Consider a jump process *P* that has uniformly bounded rate, with rate bound λ . Fix a state history $\{X_u = x_u\}$ in \mathcal{H} , time points *s*, *r* in $\mathbb{R}_{\geq 0}$ such that $\max u \leq s < r$ and a grid $v = (t_0, ..., t_n)$ over [s, r]. Then $\eta_{[s,r]} - \eta_v$ is a non-negative \mathcal{F}_u -over variable, and

$$E_P^D(\eta_{[s,r]} - \eta_v | X_u = x_u) = E_P^D(\eta_{[s,r]} | X_u = x_u) - E_P(\eta_v | X_u = x_u)$$

$$\leq \frac{1}{4} \Delta(v)(r-s)\lambda^2.$$

Proof. For every ℓ in \mathbb{N} and k in $\{1, ..., n\}$, we let $v_{\ell,k}$ be the grid over $[t_{k-1}, t_k]$ that divides this subinterval in 2^{ℓ} subintervals of equal length. That is, for all ℓ in \mathbb{N} and k in $\{1, ..., n\}$, we let $v_{\ell,k} := (t_{\ell,k,0}, ..., t_{\ell,k,2^{\ell}})$ where for all i in $\{0, ..., 2^{\ell}\}$,

$$t_{\ell,k,i} := t_{k-1} + (t_k - t_{k-1}) \frac{i}{2^{\ell}}.$$

Next, for all ℓ in \mathbb{N} , we let v_{ℓ} be the (ordered) union of $v_{\ell,1}, \ldots, v_{\ell,n}$; this way, v_{ℓ} is a grid over [s, r] with $\Delta(v_{\ell}) = \Delta(v)2^{-\ell}$ such that $v \subseteq v_{\ell} \subseteq v_{\ell+1}$. Recall from Lemma 5.21₂₃₄ that η_v and, for all ℓ in \mathbb{N} , $\eta_{v_{\ell}}$ are \mathcal{F}_u -simple variables. Therefore, it follows immediately from Lemma 2.39₃₆ that for all ℓ in \mathbb{N} , $(\eta_{v_{\ell}} - \eta_v)$ is an \mathcal{F}_u -simple variable. Furthermore, for all ℓ in \mathbb{N} , it follows immediately from Lemma 5.23₂₃₄ that $\eta_{v_{\ell+1}} \geq \eta_{v_{\ell}} \geq \eta_v$ because $v_{\ell+1} \supseteq v_{\ell} \supseteq v$ by construction. Thus, we have shown that $(\eta_{v_{\ell}} - \eta_v)_{\ell \in \mathbb{N}}$ is a non-decreasing sequence of non-negative \mathcal{F}_u -simple variables; that this sequence converges point-wise to $\eta_{[s,r]} - \eta_v$ follows immediately from Theorem 5.26₂₃₆. Hence, $\eta_{[s,r]} - \eta_v$ is a non-negative \mathcal{F}_u -over variable, and it follows from (DE1)₂₂₅, (DE3)₃₃₅ and Theorem 5.10₂₂₆ that

$$E_P^D(\eta_{[s,r]} - \eta_v \,|\, X_u = x_u) = \lim_{\ell \to +\infty} E_P(\eta_{\nu_\ell} - \eta_v \,|\, X_u = x_u). \tag{E.3}$$

In order to verify the inequality of the statement, we investigate the expectations on the right-hand side of the preceding equality. To this end, we fix any ℓ in \mathbb{N} . It follows from (repeated application of) Lemma 5.22₂₃₄ that

$$\eta_{\nu_{\ell}} - \eta_{\nu} = \sum_{k=1}^{n} \eta_{\nu_{\ell,k}} - \sum_{k=1}^{n} \eta_{(t_{k-1}, t_k)} = \sum_{k=1}^{n} (\eta_{\nu_{\ell,k}} - \eta_{(t_{k-1}, t_k)}).$$
(E.4)

Recall from Lemma 5.24₂₃₄ that, for all k in $\{1, \ldots, n\}$,

$$\eta_{v_{\ell,k}} \leq = \eta_{(t_{k-1}, t_k)} + 2 \sum_{i=1}^{2^{\ell} - 1} \mathbb{I}_{\left\{X_{t_{\ell,k,i-1}} \neq X_{t_{\ell,k,i}} \neq X_{t_{\ell,k,2}\ell}\right\}}$$

It follows immediately from this inequality and Eq. (E.4) that We substitute the preceding equality in Eqn. (E.4), to yield

$$\eta_{\nu_{\ell}} - \eta_{\nu} \leq = 2 \sum_{k=1}^{n} \sum_{i=1}^{2^{\ell}-1} \mathbb{I}_{\{X_{t_{\ell,k,i-1}} \neq X_{t_{\ell,k,i}} \neq X_{t_{\ell,k,2}\ell}\}};$$

from this inequality and (DE6)226, it follows that

$$\begin{split} E_P(\eta_{\nu_\ell} - \eta_{\nu} \mid X_u = x_u) &\leq -E_P \left(2 \sum_{k=1}^n \sum_{i=1}^{2^\ell - 1} \mathbb{I}_{\left\{ X_{t_{\ell,k,i-1}} \neq X_{t_{\ell,k,i}} \neq X_{t_{\ell,k,2}\ell} \right\}} \middle| X_u = x_u \right) \\ &= 2 \sum_{k=1}^n \sum_{i=1}^{2^\ell - 1} P(X_{t_{\ell,k,i-1}} \neq X_{t_{\ell,k,i}} \neq X_{t_{\ell,k,2}\ell} \mid X_u = x_u), \end{split}$$

where for the second equality we used Eqn $(2.19)_{36}$. We replace the probabilities on the right-hand side of the equality by the upper bound in Lemma 6.53₃₂₂, to yield

$$\begin{split} E_P(\eta_{\nu_\ell} - \eta_{\nu} | X_u &= x_u) \leq 2 \sum_{k=1}^n \sum_{i=1}^{2^\ell - 1} \frac{1}{4} \Big(t_{\ell,k,i} - t_{\ell,k,i-1} \Big) \Big(t_{\ell,k,2^\ell} - t_{\ell,k,i} \Big) \lambda^2 \\ &= 2 \sum_{k=1}^n \sum_{i=1}^{2^\ell - 1} \frac{1}{4} \frac{t_k - t_{k-1}}{2^\ell} \frac{(t_k - t_{k-1})(2^\ell - i)}{2^\ell} \lambda^2 \\ &= \frac{1}{2} \lambda^2 \sum_{k=1}^n (t_k - t_{k-1})^2 \frac{1}{2^\ell} \sum_{i=1}^{2^\ell - 1} \frac{2^\ell - i}{2^\ell}, \end{split}$$

where the two equalities follow after some straightforward manipulations. Because

$$\sum_{i=1}^{2^{\ell}-1} \frac{2^{\ell}-i}{2^{\ell}} = \frac{1}{2^{\ell}} \sum_{i=1}^{2^{\ell}-1} (2^{\ell}-i) = \frac{1}{2^{\ell}} \sum_{i=1}^{2^{\ell}-1} i = \frac{1}{2^{\ell}} \frac{(2^{\ell}-1)2^{\ell}}{2} = \frac{2^{\ell}-1}{2},$$

it follows from this inequality that

$$\begin{split} E_P(\eta_{\nu_\ell} - \eta_{\nu} | X_u &= x_u) \leq \frac{1}{2} \lambda^2 \sum_{k=1}^n (t_k - t_{k-1})^2 \frac{1}{2^\ell} \frac{2^\ell - 1}{2} \\ &= \frac{1}{4} \lambda^2 \frac{2^\ell - 1}{2^\ell} \sum_{k=1}^n (t_k - t_{k-1})^2 \\ &\leq \frac{1}{4} \Delta(\nu) (r - s) \lambda^2 \frac{2^\ell - 1}{2^\ell}, \end{split}$$

where for the last inequality we used that $(t_k - t_{k-1}) \le \Delta(v)$ for all k in $\{1, ..., n\}$ and that $\sum_{k=1}^{n} (t_k - t_{k-1}) = (r - s)$.

It follows from the preceding inequality and Eq. $(E.3)_{III}$ that

$$E_P^{\mathrm{D}}(\eta_{[s,r]} - \eta_v \mid X_u = x_u) \leq \lim_{\ell \to +\infty} \frac{1}{4} \Delta(v)(r-s)\lambda^2 \frac{2^\ell - 1}{2^\ell} = \frac{1}{4} \Delta(v)(r-s)\lambda^2,$$

establishing the inequality in the statement. Furthermore, because $\eta_{[s,r]}$ and $\eta_{[s,r]} - \eta_v$ are non-negative \mathcal{F}_u -over variables – see Theorem 5.26₂₃₆ for the former – and because η_v is an \mathcal{F}_u -simple variable (and hence bounded), it follows from (DE1)₂₂₅, (DE2)₂₂₅, (DE3)₂₂₅ and (DE5)₂₂₅ that

$$\begin{split} E_P^{D}(\eta_{[s,r]} - \eta_v \,|\, X_u = x_u) &= E_P^{D}(\eta_{[s,r]} \,|\, X_u = x_u) - E_P^{D}(\eta_v \,|\, X_u = x_u) \\ &= E_P^{D}(\eta_{[s,r]} \,|\, X_u = x_u) - E_P(\eta_v \,|\, X_u = x_u), \end{split}$$

and this proves the equality in the statement.

E.1.1 Fixing Lemma 6.8 and its dependencies

Next, let us fix the statement and proof of Lemma 6.8279.

Lemma 6.8. Consider some time points *s* and *r* in $\mathbb{R}_{\geq 0}$ such that *s* < *r*. Then for any grid *v* over [*s*, *r*],

$$\frac{1}{2}(\eta_{[s,r]} - \eta_{v}) \ge \mathbb{I}_{A} \qquad with \ A := \{\omega \in \Omega : \eta_{v}(\omega) < \eta_{[s,r]}(\omega)\}.$$

Proof. Let $(v_{\ell})_{\ell \in \mathbb{N}}$ be the sequence of grids as constructed in the proof of Proposition 6.2₂₇₅ – see Appendix 6.A₃₂₁. Furthermore, for all ℓ in \mathbb{N} , we let

$$A_{\ell} \coloneqq \{ \omega \in \Omega \colon \eta_{\nu}(\omega) < \eta_{\nu_{\ell}}(\omega) \}$$

Fix some ℓ in \mathbb{N} . Then because $\nu_{\ell} \supseteq \nu$ by construction, it follows from Lemma 5.23₂₃₄ that $\eta_{\nu_{\ell}} \ge \eta_{\nu}$, and therefore for any ω in Ω , $\eta_{\nu_{\ell}}(\omega) - \eta_{\nu}(\omega)$ is either equal to 0 or greater than or equal to 2. Consequently,

$$\mathbb{I}_{A_{\ell}} = (\eta_{\nu_{\ell}} - \eta_{\nu}) \land 1 \le \frac{1}{2} (\eta_{\nu_{\ell}} - \eta_{\nu}).$$
(E.5)

Recall from the proof of Proposition 6.2₂₇₅ that the sequence $(\eta_{\nu_{\ell}} - \eta_{\nu})_{\ell \in \mathbb{N}}$ converges point-wise to $\eta_{[s,r]} - \eta_{\nu}$. It follows immediately from this and Eq. (E.5) that $\mathbb{I}_{A_{\ell}}$ converges point-wise to \mathbb{I}_{A} , and that

$$\mathbb{I}_{A} = \operatorname{p-w} \lim_{\ell \to +\infty} \mathbb{I}_{A_{\ell}} \leq \operatorname{p-w} \lim_{\ell \to +\infty} \frac{1}{2} (\eta_{\nu_{\ell}} - \eta_{\nu}) = \frac{1}{2} (\eta_{[s,r]} - \eta_{\nu}),$$

as required.

Lemma 6.8_{279} is used in the proof of Lemma 6.11_{282} and Lemma 6.20_{292} . Changing the proof of these results is trivial, so here we will only give the changed statement.

Lemma 6.11. Consider subsets S, G of \mathcal{X} and time points s, r in $\mathbb{R}_{\geq 0}$ such that $s \leq r$. Then for any grid v over [s, r],

$$|h_{[s,r]}^{S,G} - h_{v}^{S,G}| \leq \frac{1}{2}(\eta_{[s,r]} - \eta_{v}).$$

Lemma 6.20. Consider a subset G of \mathcal{X} and time points s, r in $\mathbb{R}_{\geq 0}$ such that $s \leq r$. Then for any grid v over [s, r],

$$\left|\tau_{[s,r]}^{G}-\tau_{v}^{G}\right|\leq\Delta(v)+\frac{1}{2}(r-s)(\eta_{[s,r]}-\eta_{v}).$$

Changes due to the corrected statement of Lemma 6.11

In turn, Lemma 6.11_{282} is used in two follow-up results. It is used in the proof of Lemma 6.12_{283} , and the trivial required change in the proof does not change the statement of this intermediary result. It is also used in the proof of Proposition 6.13_{283} , and the correction to Lemma 6.11_{282} leads to the following corrected statement of Proposition 6.13_{283} .

Proposition 6.13. Consider a non-empty and bounded set \mathcal{Q} of rate operators, and an imprecise jump process \mathcal{P} such that $\mathcal{P} \subseteq \mathbb{P}_{\mathcal{Q}}$. Fix some subsets *S*, *G* of \mathcal{X} , a state history $\{X_u = x_u\}$ in \mathcal{H} and time points *s*, *r* in $\mathbb{R}_{\geq 0}$ such that $\max u \leq s \leq r$. Then for any grid *v* over [*s*, *r*],

$$\left|\underline{P}_{\mathscr{P}}^{\mathrm{D}}\left(H_{[s,r]}^{S,G} \mid X_{u} = x_{u}\right) - \underline{P}_{\mathscr{P}}\left(H_{v}^{S,G} \mid X_{u} = x_{u}\right)\right| \leq \frac{1}{4} \frac{1}{8} \Delta(v)(r-s) \left\|\mathcal{Q}\right\|_{\mathrm{op}}^{2}$$

and

$$\left|\overline{P}_{\mathscr{P}}^{\mathrm{D}}\left(H_{[s,r]}^{S,G} \mid X_{u} = x_{u}\right) - \overline{P}_{\mathscr{P}}\left(H_{v}^{S,G} \mid X_{u} = x_{u}\right)\right| \leq \frac{1}{4} \frac{1}{8} \Delta(v)(r-s) \left\|\mathcal{Q}\right\|_{\mathrm{op}}^{2}.$$

In particular, this holds for $\mathscr{P} = \mathbb{P}_{\mathscr{M}, \mathscr{Q}}^{\mathrm{HM}}$, $\mathscr{P} = \mathbb{P}_{\mathscr{M}, \mathscr{Q}}^{\mathrm{M}}$ and $\mathscr{P} = \mathbb{P}_{\mathscr{M}, \mathscr{Q}}$, with \mathscr{M} a non-empty set of initial mass functions.

Proposition 6.13_{283} is subsequently used in the proof of Theorem 6.46_{314} , and this leads to the following change in its statement.

Theorem 6.46. Consider a non-empty set \mathcal{M} of initial mass functions, a non-empty and bounded set \mathbb{Q} of rate operators that has separately specified rows and an imprecise jump process \mathcal{P} such that $\mathbb{P}^{\mathcal{M}}_{\mathcal{M},\mathbb{Q}} \subseteq \mathcal{P} \subseteq \mathbb{P}_{\mathcal{M},\mathbb{Q}}$. Fix subsets S, G of \mathcal{X} and time points s, r in $\mathbb{R}_{\geq 0}$ such that s < r. For all n in \mathbb{N} , we let $\Delta_n := (r-s)/n$ and let $\tilde{f}_{n,0}$ be the gamble on \mathcal{X} that is defined by the initial condition $\tilde{f}_{n,n} := \mathbb{I}_G$ and, for all k in $\{0, \ldots n-1\}$, by the recursive relation

$$\tilde{f}_{n,k} := \mathbb{I}_G + \mathbb{I}_{S \setminus G} \left(I + \Delta_n \underline{Q}_{\mathcal{Q}} \right) \tilde{f}_{n,k+1}.$$
(E.6)

Then for all x in \mathcal{X} and n in \mathbb{N} such that $(r - s) \|Q_{\mathcal{Q}}\|_{\text{op}} \leq 2n$,

$$\left|\underline{P}^{\mathrm{D}}_{\mathcal{P}}\left(H^{S,G}_{[s,r]} \mid X_{s} = x\right) - \tilde{f}_{n,0}(x)\right| \leq \frac{1}{2} \frac{3}{8} \frac{(r-s)^{2}}{n} \left\|\underline{Q}_{\mathcal{Q}}\right\|_{\mathrm{op}}^{2},$$

and therefore

$$\underline{P}^{\mathrm{D}}_{\mathscr{P}}(H^{S,G}_{[s,r]} \mid X_s = x) = \lim_{n \to +\infty} \tilde{f}_{n,0}(x).$$

The same holds for $\overline{P}_{\mathscr{P}}^{\mathrm{D}}$ if in Eq. (E.6) we replace $Q_{\mathscr{Q}}$ by $\overline{Q}_{\mathscr{Q}}$.

Proof. Let $\underline{Q} \coloneqq \underline{Q}_{\underline{Q}}$. Because every rate operator Q in \underline{Q} dominates \underline{Q} , it follows immediately from (LR7)₁₁₁ that $\|\underline{Q}\|_{op} \le \|Q\|_{op}$.

Fix some *n* in \mathbb{N} such that $(r - s) ||Q||_{\text{op}} \le 2n$, and let *v* be the grid over [s, r] with *n* subintervals of length Δ_n – that is, we let $v \coloneqq (s, s + \Delta_n, ..., s + n\Delta_n)$. Then by Proposition 6.13₂₈₃,

$$\begin{split} \left| \underline{P}_{\mathscr{P}}^{\mathrm{D}} \left(H_{[s,r]}^{S,G} \, \big| \, X_s = x \right) - \underline{E}_{\mathscr{P}} \left(h_v^{S,G} \, \big| \, X_s = x \right) \right| &\leq \frac{1}{4} \frac{1}{8} \Delta(v)(r-s) \left\| \underline{\mathcal{Q}} \right\|_{\mathrm{op}}^2 \\ &\leq \frac{1}{4} \frac{1}{8} \frac{(r-s)^2}{n} \left\| \underline{Q} \right\|_{\mathrm{op}}^2, \end{split} \tag{E.7}$$

where for the second inequality we used that $\Delta(v) = (r-s)/n$ and that $\|Q\|_{op} \le \|Q\|_{op}$.

Recall from Lemma 6.10₂₈₁ that $h_v^{S,G}$ has a sum-product representation over v:

$$h_{v}^{S,G} = \sum_{k=0}^{n} g_k (X_{s+k\Delta_n}) \prod_{\ell=0}^{k-1} h_\ell (X_{s+\ell\Delta_n}),$$

with $g_k := \mathbb{I}_G$ for all k in $\{0, ..., n\}$ and $h_{\ell} := \mathbb{I}_{S \setminus G}$ for all ℓ in $\{0, ..., n-1\}$. For this reason, it follows from Theorem 4.9₁₆₆ that

$$\underline{E}_{\mathscr{P}}(h_{v}^{S,G} \mid X_{s} = x) = f_{n,0}(x), \qquad (E.8)$$

where $f_{n,0}$ is the gamble on \mathcal{X} that is defined by the initial condition $f_{n,n} \coloneqq g_n = \mathbb{I}_G$ and, for all k in $\{0, ..., n-1\}$, by the recursive relation

$$f_{n,k} \coloneqq \mathbb{I}_G + \mathbb{I}_{S \setminus G} e^{\Delta_n \underline{Q}} f_{n,k+1}.$$

Furthermore, it follows from Lemma 6.43311 that

$$\left| f_{n,0}(x) - \tilde{f}_{n,0}(x) \right| \le \left\| f_{n,0} - \tilde{f}_{n,0} \right\|_{\text{op}} \le \frac{1}{2} \left\| \underline{Q} \right\|_{\text{op}}^2 \frac{(r-s)^2}{n^2} \sum_{k=1}^n \| \tilde{f}_{n,k} \|_{\text{c}}.$$
(E.9)

We now claim that for all k in $\{1, ..., n\}$, min $\tilde{f}_{n,k} \ge 0$ and max $\tilde{f}_{n,k} \le 1$, and therefore $\|\tilde{f}_{n,k}\|_{\mathbb{C}} \le \frac{1}{2}$. Our proof will be one by induction. For the base case k = n, this is obvious because $\tilde{f}_{n,n} = \mathbb{I}_G$ by definition. For the inductive step, we fix some k in $\{1, ..., n-1\}$ and assume that min $\tilde{f}_{n,k+1} \ge 0$ and max $\tilde{f}_{n,k+1} \le 1$. Because $\Delta_n \|\underline{Q}\|_{\mathrm{op}} \le 2$, $(I + \Delta_n \underline{Q})$ is a lower transition operator due to Lemma 3.72₁₁₂. Hence, it follows from the induction hypothesis and (LT4)₁₀₈ that

$$0 \leq \min \tilde{f}_{n,k+1} \leq (I + \Delta_n \underline{Q}) \tilde{f}_{n,k+1} \leq \max \tilde{f}_{n,k+1} \leq 1.$$

For this reason, and because $\tilde{f}_{n,k} = \mathbb{I}_G + \mathbb{I}_{S \setminus G}(I + \Delta_n \underline{Q}) \tilde{f}_{n,k+1}$ by definition, we see that $\min \tilde{f}_{n,k} \ge 0$ and $\max \tilde{f}_{n,k} \le 1$, as required.

Because $\|\tilde{f}_{n,k}\|_{c} \leq 1/2$ for all k in $\{1, ..., n\}$, it follows from Eq. (E.9) that

$$\left|f_{n,0}(x) - \tilde{f}_{n,0}(x)\right| \le \frac{1}{4} \|\underline{Q}\|_{\text{op}}^2 \frac{(r-s)^2}{n}.$$
 (E.10)

Finally, it follows from Eqs. $(E.7)_{VI}$, (E.8) and (E.10) and the triangle inequality that

$$\begin{split} \left| \underline{P}_{\mathscr{P}}^{\mathrm{D}} \left(H_{[s,r]}^{\mathrm{S},G} \, \big| \, X_{s} = x \right) - \tilde{f}_{n,0}(x_{s}) \right| &\leq \frac{1}{4} \frac{1}{8} \frac{(r-s)^{2}}{n} \| \underline{Q} \|_{\mathrm{op}}^{2} + \frac{1}{4} \| \underline{Q} \|_{\mathrm{op}}^{2} \frac{(r-s)^{2}}{n} \\ &= \frac{1}{2} \frac{3}{8} \frac{(r-s)^{2}}{n} \| \underline{Q} \|_{\mathrm{op}}^{2}. \end{split}$$
(E.11)

Because Eq. (E.11) holds for all n in \mathbb{N} such that $(r - s) ||\underline{Q}||_{op} \le 2n$ and because the right-hand side of the inequality vanishes as n recedes to $+\infty$, we have proven the limit statement for $\underline{P}_{\mathscr{P}}^{\mathrm{D}}$.

The statement for $\overline{P}_{\mathcal{P}}^{D}$ essentially follows from conjugacy. More precisely, the argument is almost exactly the same as the argument in the first part of this proof. We do need a couple of extra steps though. First, we use that

$$\overline{E}_{\mathscr{P}}(h_{v}^{S,G} \mid X_{s} = x) = -\underline{E}_{\mathscr{P}}(-h_{v}^{S,G} \mid X_{s} = x),$$

for any grid v over [s, r]. Second, we use that $-h_v^{S,G}$ also has a sum-product representation over v: by Lemma 4.7₁₆₅,

$$-h_{v}^{S,G} = \sum_{k=0}^{n} \left[-\mathbb{I}_{G}\right] \left(X_{s+k\Delta_{n}}\right) \prod_{\ell=0}^{k-1} \mathbb{I}_{S \setminus G} \left(X_{s+\ell\Delta_{n}}\right)$$

Third, we again use Lemmas 4.9₁₆₆ and 6.43₃₁₁, but this time to approximate $\underline{E}_{\mathcal{P}}(-h_v^{S,G} | X_s = x)$ instead of $\underline{E}_{\mathcal{P}}(h_v^{S,G} | X_s = x)$. This way, we find that

$$\left|\underline{E}_{\mathscr{P}}(-h_{v}^{S,G} \mid X_{s} = x) - \check{f}_{n,0}(x)\right| \leq \frac{1}{2} \|\underline{Q}\|_{\text{op}}^{2} \frac{(r-s)^{2}}{n^{2}} \sum_{k=1}^{n} \|\check{f}_{n,k}\|_{\text{charged}}$$

where $f_{n,0}(x)$ is recursively defined by the initial condition $f_{n,n} := -\mathbb{I}_G$ and, for all k in $\{0, ..., n-1\}$, by the recursive relation

$$\check{f}_{n,k} := -\mathbb{I}_G + \mathbb{I}_{S \setminus G} (I + \Delta_n \underline{Q}) \check{f}_{n,k+1}$$

Obviously, $\tilde{f}_{n,n} = -\check{f}_{n,n}$. Furthermore, it is easy to verify that, for all k in $\{0, ..., n-1\}$, $\|\check{f}_{n,k}\|_{\mathbb{C}} \leq 1/2$ and that, by conjugacy,

$$\tilde{f}_{n,k} = \mathbb{I}_G + \mathbb{I}_{S \setminus G} \left(I + \Delta_n \overline{Q} \right) \tilde{f}_{n,k} = - \left(-\mathbb{I}_G + \mathbb{I}_{S \setminus G} \left(I + \Delta_n \underline{Q} \right) (-\tilde{f}_{n,k+1}) \right) = -\check{f}_{n,k}.$$

Therefore, and because $\overline{E}_{\mathcal{P}}(h_v^{S,G} | X_s = x) = -\underline{E}_{\mathcal{P}}(-h_v^{S,G} | X_s = x),$

$$\left|\overline{E}_{\mathcal{P}}(h_{v}^{S,G} \mid X_{s} = x) - \widetilde{f}_{n,0}(x)\right| \leq \frac{1}{4} \left\|\underline{Q}\right\|_{\text{op}}^{2} \frac{(r-s)^{2}}{n}$$

The remainder of the proof is again similar to the first part of the proof.

Changes due to the corrected statement of Lemma 6.20

Lemma 6.20_{292} is also used in two follow-up results. It is used in the proof of Lemma 6.21_{293} , and the trivial required change in the proof does not change the statement of this intermediary result. It is also used in the proof of Proposition 6.22_{293} , and the correction to Lemma 6.20_{292} induces the following obvious change to Proposition 6.22_{293} .

Proposition 6.22. Consider a non-empty and bounded set Q of rate operators, and an imprecise jump process \mathcal{P} such that $\mathcal{P} \subseteq \mathbb{P}_Q$, and let $\lambda := \|Q\|_{\text{op}}$. Fix some subset G of \mathcal{X} , a state history $\{X_u = x_u\}$ in \mathcal{H} and time points s, r in $\mathbb{R}_{\geq 0}$ such that $\max u \leq s \leq r$. Then for any grid v over [s, r],

$$\left|\underline{E}_{\mathscr{P}}^{\mathrm{D}}\left(\tau_{[s,r]}^{G} \mid X_{u} = x_{u}\right) - \underline{E}_{\mathscr{P}}\left(\tau_{v}^{G} \mid X_{u} = x_{u}\right)\right| \leq \Delta(v) + \frac{1}{4} \frac{1}{8} \Delta(v)(r-s)^{2} \|\mathscr{Q}\|_{\mathrm{op}}^{2}$$

and

$$\overline{E}^{\mathrm{D}}_{\mathscr{P}}\left(\tau^{G}_{[s,r]} \mid X_{u} = x_{u}\right) - \overline{E}_{\mathscr{P}}\left(\tau^{G}_{v} \mid X_{u} = x_{u}\right) \leq \Delta(v) + \frac{1}{4} \frac{1}{8} \Delta(v)(r-s)^{2} \|\mathcal{Q}\|_{\mathrm{op}}^{2}.$$

In particular, this holds for $\mathscr{P} = \mathbb{P}_{\mathscr{M}, \mathbb{Q}}^{\mathrm{HM}}$, $\mathscr{P} = \mathbb{P}_{\mathscr{M}, \mathbb{Q}}^{\mathrm{M}}$ and $\mathscr{P} = \mathbb{P}_{\mathscr{M}, \mathbb{Q}}$, with \mathscr{M} a non-empty set of initial mass functions.

Proposition 6.22_{293} is subsequently used in the proof of Theorem 6.48_{316} , and this leads to the following change in its statement.

Theorem 6.48. Consider a non-empty set \mathcal{M} of initial mass functions, a non-empty and bounded set \mathcal{Q} of rate operators that has separately specified rows and an imprecise jump process \mathcal{P} such that $\mathbb{P}^{\mathsf{M}}_{\mathcal{M},\mathcal{Q}} \subseteq \mathcal{P} \subseteq \mathbb{P}_{\mathcal{M},\mathcal{Q}}$. Fix some subset G of \mathcal{X} and time points s, r in $\mathbb{R}_{\geq 0}$ such that s < r. For all n in \mathbb{N} , we let $\Delta_n := (r-s)/n$ and let $\tilde{f}_{n,0}$ be the gamble on \mathcal{X} that is defined by the initial condition $\tilde{f}_{n,n} := \Delta_n$ and, for all k in $\{0, \ldots n-1\}$, by the recursive relation

$$\tilde{f}_{n,k} := \begin{cases} \Delta_n + \mathbb{I}_{G^c} \left(I + \Delta_n \underline{Q}_{\mathcal{Q}} \right) \tilde{f}_{n,k+1} & \text{if } k \ge 1, \\ s + \mathbb{I}_{G^c} \left(I + \Delta_n \underline{Q}_{\mathcal{Q}} \right) \tilde{f}_{n,k+1} & \text{if } k = 0. \end{cases}$$
(E.12)

Then for all x in \mathcal{X} and all n in \mathbb{N} such that $(r-s) \|Q_{\hat{Q}}\|_{op} \leq 2$,

$$\left|\underline{E}_{\mathscr{P}}^{\mathrm{D}}\left(\tau_{[s,r]}^{G} \mid X_{s}=x\right) - \tilde{f}_{n,0}(x)\right| \leq \frac{r-s}{n} + \frac{1}{8} \frac{(r-s)^{3}}{n} \frac{3^{2}n+1}{n} \|\underline{Q}_{\mathscr{Q}}\|_{\mathrm{op}}^{2}$$

and therefore

$$\underline{E}^{\mathrm{D}}_{\mathscr{P}}(\tau^{G}_{[s,r]} \mid X_{s} = x) = \lim_{n \to +\infty} \tilde{f}_{n,0}(x).$$

The same holds for $\overline{E}^{\mathrm{D}}_{\mathscr{P}}$ if in Eq. (E.12) we replace $\underline{Q}_{\mathscr{Q}}$ by $\overline{Q}_{\mathscr{Q}}$.

Proof. Let $\underline{Q} \coloneqq \underline{Q}_{\mathcal{Q}}$. Because every rate operator Q in \mathcal{Q} dominates \underline{Q} , it follows immediately from (LR7)₁₁₁ that $\|\mathcal{Q}\|_{op} \le \|Q\|_{op}$.

Fix some *n* in \mathbb{N} such that $(r - s) ||Q||_{op} \le 2n$, and let *v* be the grid over [s, r] with *n* subintervals of length Δ_n – that is, we let $v := (s, s + \Delta_n, ..., s + n\Delta_n)$. Then by Proposition 6.22₂₉₃,

$$\begin{split} \left| \underline{E}_{\mathscr{P}}^{\mathrm{D}} \left(\tau_{[s,r]}^{G} \mid X_{s} = x \right) - \underline{E}_{\mathscr{P}} \left(\tau_{v}^{G} \mid X_{s} = x \right) \right| &\leq \Delta(v) + \frac{1}{4} \frac{1}{8} \Delta(v) (r-s)^{2} \| \mathcal{Q} \|_{\mathrm{op}}^{2} \\ &\leq \frac{r-s}{n} + \frac{1}{4} \frac{1}{8} \frac{(r-s)^{3}}{n} \| \underline{Q} \|_{\mathrm{op}}^{2}, \end{split}$$
(E.13)

where for the second inequality we used that $\Delta(v) = (r-s)/n$ and that $\|\mathcal{Q}\|_{op} \le \|\underline{Q}\|_{op}$.

Recall from Lemma 6.18₂₉₀ that τ_v^G has a sum-product representation over v:

$$\tau_v^G = \sum_{k=0}^n g_k(X_{s+k\Delta}) \prod_{\ell=0}^{k-1} h_\ell(X_{s+\ell\Delta}),$$

with $g_0 := s$ and, for all k in $\{1, ..., n\}$, $g_k := \Delta_n$ and $h_{k-1} := \mathbb{I}_{G^c}$. For this reason, it follows from Theorem 4.9₁₆₆ that

$$\underline{E}_{\mathscr{P}}\left(\tau_{v}^{G} \mid X_{s} = x\right) = f_{n,0}(x), \tag{E.14}$$

where $f_{n,0}$ is the gamble on \mathcal{X} that is defined by the initial condition $f_{n,n} \coloneqq g_n$ and, for all k in $\{0, ..., n-1\}$, by the recursive relation

$$f_{n,k} \coloneqq g_k + h_{k-1} e^{\Delta_n \underline{Q}} f_{n,k+1}$$

Furthermore, it follows from Lemma 6.43311 that

$$\left| f_{n,0}(x) - \tilde{f}_{n,0}(x) \right| \le \left\| f_{n,0} - \tilde{f}_{n,0} \right\|_{\text{op}} \le \frac{1}{2} \left\| \underline{Q} \right\|_{\text{op}}^2 \frac{(r-s)^2}{n^2} \sum_{k=1}^n \| \tilde{f}_{n,k} \|_{\text{c.}}$$
(E.15)

We now claim that for all k in $\{1, ..., n\}$, min $\tilde{f}_{n,k} \ge 0$ and max $\tilde{f}_{n,k} \le (n-k+1)\Delta_n$, and therefore $\|\tilde{f}_{n,k}\|_c \leq \frac{(n-k+1)\Delta_n}{2}$. Our proof will be one by induction. For the base case k = n, this is obvious because $\tilde{f}_{n,n} = \Delta_n$ by definition. For the inductive step, we fix some k in $\{1, ..., n-1\}$ and assume that min $\tilde{f}_{n,k+1} \ge 0$ and max $\tilde{f}_{n,k+1} \le (n-k)\Delta_n$. Because $\Delta_n \|Q\|_{op} \le 2$, $(I + \Delta_n Q)$ is a lower transition operator due to Lemma 3.72₁₁₂. Hence, it follows from the induction hypothesis and (LT4)108 that

$$0 \leq \min \tilde{f}_{n,k+1} \leq (I + \Delta_n \underline{Q}) \tilde{f}_{n,k+1} \leq \max \tilde{f}_{n,k+1} \leq (n-k) \Delta_n.$$

For this reason, and because $\tilde{f}_{n,k} = \Delta_n + \mathbb{I}_{G^c} (I + \Delta_n Q) \tilde{f}_{n,k+1}$ by definition, we see that $\min \tilde{f}_{n,k} \ge 0 \text{ and } \max \tilde{f}_{n,k} \le (n-k+1)\Delta_n, \text{ as required.} \\ \text{Because } \|\tilde{f}_{n,k}\|_{\mathbb{C}} \le \frac{(n-k+1)\Delta_n}{2} \text{ for all } k \text{ in } \{1, \dots, n\}, \text{ it follows from Eq. (E.15) that} \\ \end{cases}$

$$\begin{split} \left| f_{n,0}(x) - \tilde{f}_{n,0}(x) \right| &\leq \frac{1}{4} \|\underline{Q}\|_{\text{op}}^2 \frac{(r-s)^3}{n^3} \sum_{k=1}^n (n-k+1) \\ &= \frac{1}{4} \|\underline{Q}\|_{\text{op}}^2 \frac{(r-s)^3}{n^3} \frac{n(n+1)}{2} \\ &= \frac{1}{8} \|\underline{Q}\|_{\text{op}}^2 \frac{(r-s)^3}{n} \frac{n+1}{n}, \end{split}$$
(E.16)

where for the inequality we also used that $\Delta_n = (r-s)/n$. Finally, it follows from Eqs. $(E.13)_{IX}$, $(E.14)_{IX}$ and (E.16) and the triangle inequality that

$$\begin{aligned} \left| \underline{E}_{\mathscr{P}}^{\mathrm{D}} \left(\tau_{[s,r]}^{G} \right| X_{s} = x \right) - \tilde{f}_{n,0}(x) \right| &\leq \frac{r-s}{n} + \frac{1}{4} \frac{1}{8} \frac{(r-s)^{3}}{n} \|\underline{Q}\|_{\mathrm{op}}^{2} + \frac{1}{8} \frac{(r-s)^{3}}{n} \frac{n+1}{n} \|\underline{Q}\|_{\mathrm{op}}^{2} \\ &= \frac{r-s}{n} + \frac{1}{8} \frac{(r-s)^{3}}{n} \frac{32n+1}{n} \|\underline{Q}\|_{\mathrm{op}}^{2}. \end{aligned}$$
(E.17)

Because Eq. (E.17) holds for all *n* in \mathbb{N} such that $(r - s) ||Q||_{op} \le 2n$ and because the right-hand side of the inequality vanishes as n recedes to $+\infty$, we have proven the limit statement for $\underline{E}_{\mathscr{P}}^{\mathrm{D}}$.

The statement for $\overline{E}^{\mathrm{D}}_{\mathscr{P}}$ essentially follows from conjugacy; as in the proof of Theorem 6.46314, we need some obvious extra/different steps.