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Poisson-events
We are interested in the repeated occurrences
of a Poisson-event over time, but the exact
time instants of these occurrences are uncer-
tain to us; for example, the arrival of a cus-
tomer to some queue.
For every time instant t, we let Xt be the num-
ber of Poisson-events that have occurred up
to t; hence, Xt is non-decreasing with t.

Counting processes in general
In general, we model our beliefs by specifying
the transition probabilities

P(Xt+∆ = y | Xt = x,Xtn = xn, . . . ,Xt1 = x1︸ ︷︷ ︸
Xu=xu

),

where t1, . . . , tn, t is an increasing sequence in
R≥0 and x1, . . . ,xn,x is a non-decreasing se-
quence in Z≥0.

For a counting process, we assume that
CP1.we start at zero:

P(X0 = 0) = 1;

CP2. two Poisson-events can not occur at the
same time:

P(Xt+∆ ≥ x+2 | Xt = x,Xu = xu) = o(∆).

The Poisson process in particular
For a Poisson process, one additionally as-
sumes that the transition probabilities
PP1. are Markov:

P(Xt+∆ = y | Xt = x,Xu = xu)

= P(Xt+∆ = y | Xt = x);

PP2.only depend on the length of the time in-
terval:

P(Xt+∆ = y | Xt = x) = P(X∆ = y | X0 = x);

PP3.only depend on the number of occurred
events in the time interval:

P(X∆ = y | X0 = x) = P(X∆ = y−x | X0 = 0).

It is well-known that a Poisson process is
uniquely characterised by a single parameter:
the rate λ .

In particular, the transition probabilities are
given by the Poisson distribution with param-
eter λ∆, which explains the name.
Hence, the expected number of Poisson-
events in any time-period is proportional to λ :

EP(Xt+∆ | Xt = x,Xu = xu) = x+λ∆.

Furthermore, λ is the rate at which the prob-
ability that a single Poisson-event occurs in a
time interval increases with the length of this
time interval:

P(Xt+∆ = x+1 | Xt = x,Xu = xu) = λ∆+o(∆).

What if we only know
that the rate λ belongs
to the rate interval [λ ,λ ]?

Set of Poisson processes
One option is to consider the set PPP of all
Poisson processes with a rate that belongs to
the rate interval [λ ,λ ].
We let EPP(· | ·) denote the lower envelope of
the expectations EP(· | ·) with respect to all P
in PPP. Clearly, we can compute this lower
expectation by means of a one-parameter op-
timisation problem.
This lower expectation EPP(· | ·) satisfies im-
precise versions of (PP1)–(PP3):
1.Markovianity:

EPP( f (Xt+∆) | Xt = x,Xu = xu)

= EPP( f (Xt+∆) | Xt = x);

2. time-homogeneity:

EPP( f (Xt+∆) | Xt = x) = EPP( f (X∆) | X0 = x);

3. state-homogeneity:

EPP( f (X∆−X0) |X0 = x)=EPP( f (X∆) |X0 = 0).

Furthermore,

EPP(Xt+∆ | Xt = x,Xu = xu) = x+λ∆ (1)

and

EPP(Xt+∆ | Xt = x,Xu = xu) = x+λ∆. (2)

However, assuming (PP1)–(PP3) is not always
justified!

Set of consistent counting processes
Another option is to consider the setPCP of all
counting processes P that are consistent with
the rate interval [λ ,λ ], in the sense that

λ∆+o(∆)
≤ P(Xt+∆ = x+1 | Xt = x,Xu = xu)

≤ λ∆+o(∆).

As every Poisson process is a counting process,
this set is more general than the set of Poisson
processes:

PPP ⊆PCP;

this inclusion is in fact strict!
We let ECP(· | ·) denote the lower envelope of
the expectations EP(· | ·) with respect to all P
in PCP. Then clearly,

ECP(· | ·)≤ EPP(· | ·)≤ EPP(· | ·)≤ ECP(· | ·).

At first sight, computing the lower expec-
tation ECP requires the explicit construction
of and subsequent optimisation over the
set PCP; a non-trivial optimisation problem!
However, we show that

ECP( f (Xt+∆) | Xt = x,Xu = xu) = [T ∆ f ](x),

a tractable optimisation problem!
From this, it follows that—quite remarkably—
the lower expectation ECP(· | ·) satisfies the
imprecise versions of (PP1)–(PP3) as well as
Equations (1) and (2), just like EPP(· | ·).

Let L be the real vector space of all
bounded real-valued functions on Z≥0. Es-
sential to our approach is the genera-
tor Q : L →L , defined as

[Q f ](x) := min
λ∈[λ ,λ ]

λ f (x+1)−λ f (x).

We show that

Φ∆,n :=
(

I +
∆

n
Q
)n

converges to a transformation onL in the
limit for n→+∞. Hence, we can define

T ∆
:= lim

n→+∞
Φ∆,n.

For functions f such that

f (y) = f (y)I≤x(y)+ f (x)I>x(y),

we can determine [T ∆ f ](x) by means of
transformations on the vector space of
real-valued functions on the finite set

{y ∈ Z≥0 : y≤ x}.

This is extremely useful in practice be-
cause, for general bounded functions f ,

[T ∆ f ](x) = lim
x→+∞

[T ∆(I≤x f + f (x)I>x)](x).

Similar limit techniques also work for func-
tions that are only bounded below.

See arXiv:1905.05734 for all details!

Numerical example
Below, we have depicted tight lower and up-
per bounds—with respect to both sets—on the
probability of having no Poisson-event or a sin-
gle Poisson-event in a time period of length ∆

for the rate interval [λ ,λ ] = [1,2].
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