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If the state space of a homogeneous continuous-time Markov chain is too large, making 
inferences becomes computationally infeasible. Fortunately, the state space of such a chain 
is usually too detailed for the inferences we are interested in, in the sense that a less 
detailed—smaller—state space suffices to unambiguously formalise the inference. However, 
in general this so-called lumped state space inhibits computing exact inferences because 
the corresponding dynamics are unknown and/or intractable to obtain. We address this 
issue by considering an imprecise continuous-time Markov chain. In this way, we are able 
to provide guaranteed lower and upper bounds for the inferences of interest, without 
suffering from the curse of dimensionality.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

State space explosion, or the exponential dependency of the size of a finite state space on a system’s dimensions, is a 
frequently encountered inconvenience when constructing mathematical models of systems. In the setting of continuous-
time Markov chains this exponentially increasing number of states has as a consequence that using the model to perform 
inferences about large-scale systems becomes computationally intractable. Fortunately, for many of the inferences we would 
like to make, a higher-level state description actually suffices to formalise the inference, allowing for a reduced state space 
with considerably fewer states. However, unfortunately, this creates a new problem, because the low-level description and 
its corresponding larger state space are necessary in order to easily characterise the system’s dynamics.

The procedure of going from a low-level to a higher-level state description is called lumping. It was—to the best of our 
knowledge—first proposed by Kemeny and Snell [1] in the discrete-time setting and later considered by Burke and Rosenblatt 
[2] in both the discrete-time and continuous-time settings. These authors exploit the relation between the original state 
space—corresponding to the low-level state description—and the lumped state space—corresponding to the higher-level 
state description—to obtain a lumped stochastic process from the original Markov chain. Unfortunately, this lumped stochastic 
process is not necessarily a homogeneous Markov chain. In fact, Burke and Rosenblatt [2] provide a very stringent (necessary 
and) sufficient condition on the original Markov chain under which the lumped stochastic process is again a homogeneous 
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Markov chain. That this condition is not trivially satisfied is quite unfortunate, because if the lumped stochastic process is 
not a homogeneous Markov chain, then using it to make inferences about the system is not feasible in practice.

Further research on the lumping of Markov chains centred around two separate subjects. On the one hand, several 
authors generalised the aforementioned (necessary and) sufficient conditions to other settings—see for instance [3–6]—or 
devised algorithms to determine the smallest reduced state space for which the lumped process is still a homogeneous 
Markov chain—see for instance [7,8]. Franceschinis and Muntz [9] and Buchholz [10], on the other hand, proposed methods 
based on the lumping procedure to bound limit expectations with respect to the original Markov chain. Furthermore, the 
lumping procedure has also been used by Katoen et al. [11] in the context of model checking and bisimulation.

We here follow the historical evolution of the previously mentioned research: we start with a theoretical study of the 
lumped stochastic process and then propose methods based on the lumping procedure to bound expectations with respect 
to the original Markov chain. We start off our theoretical study in Section 2 with recalling some notation and terminology 
regarding Markov chains. This refresher is followed by a formal introduction of the lumping procedure and the resulting 
lumped stochastic process in Section 3. We consider the latter to be our first—albeit minor—contribution, because previ-
ous studies—for instance that of Burke and Rosenblatt [2]—always ignored some technicalities in the construction of the 
lumped stochastic process. Following this, we briefly introduce imprecise continuous-time Markov chains [12–14] in Sec-
tion 4. Subsequently, we look at the lumped stochastic process from the point of view of imprecise Markov chains in 
Section 5. Specifically, we argue that the lumping procedure induces an elegantly characterised imprecise Markov chain and 
explain how it yields bounds on (conditional) expectations with respect to the lumped stochastic process. Next, we use the 
(building blocks of) our lumped imprecise Markov chain to obtain bounds on (conditional) expectations with respect to the 
original Markov chain in Section 6 and limit expectations with respect to the original (ergodic) Markov chain in Section 7. 
Compellingly, for Markov chains with a very large original state space but a significantly smaller lumped state space, it turns 
out that these bounds can be tractably computed even if it is infeasible to compute the precise value of the expectation 
with respect to the original Markov chain! The performance of our methods is evaluated, and compared to the performance 
of the methods of Franceschinis and Muntz [9] and Buchholz [10], by means of some simple numerical experiments in 
Section 8. After a brief return to the original setting of lumping in Section 9, we report our conclusions and provide some 
suggestions for future research in Section 10. Proofs for the results in the main text, as well as some extra material, can be 
found in the Appendix.

This is by no means the first time that we approach the lumping procedure using imprecise Markov chains, but our 
present approach is significantly more general. In [15,16], we limited ourselves to providing bounds on the limit expectation 
of a specific irreducible Markov chain that appears in the context of telecommunication; an approach we generalised—to 
marginal expectations of general irreducible Markov chains—and properly justified from a theoretical point of view in [17]. 
We here extend [17] on three fronts: (i) we define the lumped stochastic process corresponding to a general Markov chain 
instead of an irreducible homogeneous Markov chain; (ii) we provide bounds for (conditional) expectations of real-valued 
functions on the state at any finite number of time points instead of marginal expectations of real-valued functions on the 
state at a single time point; and (iii) we provide two methods to determine bounds on the limit expectation of ergodic—that 
is, including irreducible—Markov chains instead of just one method for the limit expectation of irreducible Markov chains.

2. Continuous-time Markov chains

We are interested in making inferences about a system, and more specifically about the state of this system at any finite 
number of time points. The complication is that we are unable to predict the temporal evolution of this state with certainty. 
Therefore, at all times t ∈ R≥0,2 the state Xt of the system is a random variable that takes values—generically denoted by 
x, y or z—in the non-empty and finite state space X .

Because we limit ourselves to inferences that depend on the state of the system at any finite number of time points, 
we adopt the framework of Krak et al. [12] for stochastic processes, which is a bit different from the standard framework. 
The main difference is that they consider (finitely-additive) coherent conditional probability measures [18] instead of the 
more common σ -additive probability measures; we refer to [12] for several arguments in favour of this choice. In light 
of the current contribution, we here summarise three of these arguments. First and foremost, they—and we—only consider 
expectations of functions that depend on the state of the system at a finite number of time points, hence eliminating the 
need for a σ -algebra of events. A second argument is that, in their framework, the conditional probability of an event is 
always defined, even if the conditioning event has probability zero, whereas in the standard framework conditional events 
are derived from the unconditional probabilities and therefore not defined if the conditioning event has probability zero. 
Finally, Krak et al. [12] mention that their framework can be extended to allow for a σ -algebra of events, and therefore also 
functions of the state at a (countably) infinite number of time points; however, a proper theoretical study of this extension 
is no small feat and still remains to be done.

2 We use R, R≥0 and R>0 to denote the set of real numbers, non-negative real numbers and positive real numbers, respectively. Furthermore, we use 
N to denote the natural numbers and write N0 when including zero.



98 A. Erreygers, J. De Bock / International Journal of Approximate Reasoning 115 (2019) 96–133
2.1. Finite sequences of time points

Essential to the description of stochastic processes are finite and increasing sequences of time points t1, . . . , tn , which is 
why we introduce some simplifying notation. Following Krak et al. [12], we collect all such sequences—including the empty 
sequence ∅—in the set U , and denote a generic element of this set by u. We denote the set of all time sequences without 
the empty sequence by U∅ , and for all t in R≥0 use U<t to denote the set of all time sequences of which the last time 
point strictly precedes t . Furthermore, for any non-empty and finite set Y and any sequence u = t1, . . . , tn in U , we define 
Yu := Y n and then use xu to elegantly denote a generic n-tuple (xt1 , . . . , xtn ) in Yu . For the empty sequence ∅, we let 
Y∅ be the singleton containing the empty tuple, usually denoted by x∅ . We will sometimes also need to concatenate two 
increasing sequences of finite time points, for instance u and v in U . Since u and v can be identified with sets, we let 
u ∪ v denote their concatenation, taken to be their ordered union. Finally, for any sequence u = t1, . . . , tn in U∅ , we let 
min u := min{ti : i ∈ {1, . . . , n}} = t1 and max u := max{ti : i ∈ {1, . . . , n}} = tn . If u is the empty sequence, then conditions of 
the form “max u < ·” are taken to be trivially satisfied.

2.2. Continuous-time stochastic processes

For a formal treatment of the coherent conditional probability framework for continuous-time stochastic processes, we 
refer to the extensive exposition in [12, Section 4] or to the summary in A.2. For our present purposes, it suffices to think of 
a continuous-time stochastic process P with state space X as being fully defined by its initial and transition probabilities. 
The initial probabilities are

P (X0 = x0),

with x0 a state; the transition probabilities are of the form

P (Xt+� = y | Xu = xu, Xt = x),

where t and t +� are time points—that is, t and � are non-negative real numbers—u is a sequence of time points preceding 
t , x and y are states and xu is a state instantiation in Xu . Technically speaking, these initial and transition probabilities are 
assumed to be part of a coherent conditional probability, as explained in A.2. From a practical point of view, however, and 
for the purpose of following the main text of this contribution, it suffices to understand that we essentially demand that the 
initial and transition probabilities are compatible with the laws of probability: we demand that P is non-negative, normed, 
finitely additive for disjunct events and satisfies—the multiplicative version of—Bayes’ rule.

2.3. Homogeneous continuous-time Markov chains

A well-known and often-used type of stochastic processes are homogeneous continuous-time Markov chains. Their popular-
ity stems largely from the fact that they are easily characterised. Because most of the terminology and notation concerning 
homogeneous continuous-time Markov chains is essentially well-known, we here limit ourselves to the bare necessities; for 
a more thorough treatment, we refer to [12,19,20]. Since we deal exclusively with continuous-time Markov chains, we will 
henceforth drop the “continuous-time” adjective for the sake of brevity.

We now call a stochastic process P a Markov chain if satisfies the Markov property. Informally, this means that the 
transition probabilities only depend on the last state and not on the entire state history; formally, the Markov property 
holds if for all t, � in R≥0, u in U<t , x, y in X and xu in Xu ,

P (Xt+� = y | Xu = xu, Xt = x) = P (Xt+� = y | Xt = x). (1)

This Markov chain P is called homogeneous if furthermore

P (Xt+� = y | Xt = x) = P (X� = y | X0 = x). (2)

It is well-known that—both in the classical σ -additive or measure-theoretic framework [20] and the full conditional 
framework [12]—a homogeneous Markov chain is uniquely characterised by the triplet (X , π0, Q ), where X is the state 
space, π0 an initial distribution and Q a transition rate matrix. In practice—see for instance [9,10,15,16,21,22]—a homoge-
neous Markov chain model is therefore specified by providing such a triplet.

The initial distribution π0 models the initial state of the system. It is given by

π0(x) := P (X0 = x) for all x ∈ X , (3)

and hence is a probability mass function on X —that is, is a non-negative function that sums to one.
The transition rate matrix Q models the dynamics of the system. Informally, the transition rate Q (x, y) is to be un-

derstood as the rate of change—that is, the derivative—of the probability of going from a state x to another state y in an 
infinitesimal time period. More formally, it is the given by the limit expression
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Q (x, y) = lim
�→0+

P (X� = y | X0 = x) − I(x, y)

�
for all x, y ∈ X , (4)

where I is the identity matrix. It now follows from the laws of probability that the matrix Q is a transition rate matrix: 
it has non-negative off-diagonal entries and rows that sum up to zero. Before we continue with explaining the use of the 
transition rate matrix, we first need to introduce some notation and terminology concerning matrices and more general—not 
necessarily linear—transformations.

2.4. Functions, transformations and norms

For any non-empty and finite set Y , we let L (Y ) denote the set of all real-valued functions on Y . An often-used 
type of functions in L (Y ) are the probability mass functions, in this setting usually called distributions: a non-negative 
real-valued function on Y that sums up to one. We denote the subset of L (Y ) that consists of all distributions by D(Y ). 
A second often-used type of function in L (Y ) is the indicator of some subset A ⊆ Y , denoted by IA and defined by 
IA(x) := 1 if x is an element of A and IA(x) := 0 otherwise. In order not to obfuscate the notation too much, for all x in Y , 
we write Ix instead of I{x} . Another notational convenience that we will adopt is to implicitly identify any real number μ
with the corresponding constant function. Finally, the inner product 〈·, ·〉 on L (Y ) is given by 〈 f , g〉 =∑x∈Y f (x)g(x) for 
all f , g in L (Y ).

In the setting of (imprecise) Markov chains, we often use transformations on L (Y ): maps from L (Y ) to L (Y ). Such 
a transformation M is non-negatively homogeneous if, for all f in L (Y ) and λ in R≥0, M(λ f ) = λM f . If furthermore 
M( f + g) ≥ M f + Mg for all f , g in L (Y ), then M is super-additive; M is called linear if this relation holds with equality 
instead of inequality. Note that if M is linear, then M(λ f ) = λM f for negative real numbers λ as well. If we fix some 
ordering on the set Y , then we can identify any linear transformation with a square matrix, the (x, y)-component of which 
is [MIy](x). Therefore, we will use the terms matrix and linear transformation interchangeably. One example of a linear 
transformation is the identity transformation (or matrix) I that we have already used in Eqn. (4), which maps any f in 
L (Y ) to itself: I f := f . Another example are transition rate matrices such as the matrix Q defined in Eqn. (4).

We end our discussion of transformations on L (Y ) with norms. We bestow L (Y ) with the maximum norm:

‖ f ‖ := max| f | = max{| f (x)| : x ∈ Y } for all f in L (Y ).

This norm on L (Y ) induces a norm for non-negatively homogeneous transformations M : L (Y ) → L (Y ):

‖M‖ := sup{‖M f ‖: f ∈ L (Y ),‖ f ‖ = 1}.
Specifically, for any transition rate matrix R we have

‖R‖ = 2 max {−[RIx](x) : x ∈ Y } = 2 max {−R(x, x) : x ∈ Y } . (5)

2.5. Computing expectations

It is well-known—see for instance [12,19]—that for any t, s in R≥0 such that t ≤ s, any u in U<t , any xu in Xu , x in X
and f in L (X ),

E( f (Xs) | Xu = xu, Xt = x) = [T s
t f ](x), (6)

with

T s
t := e(s−t)Q = lim

n→+∞

(
I + s − t

n
Q

)n

, (7)

where the n-th power is to be interpreted as n consecutive applications. It is then well-known—see for instance [19, Theo-
rem 2.1.2]—that T s

t is a transition matrix: it has non-negative entries and rows that sum up to one.
Recall that our goal is to determine the expectation of functions on the state at any finite number of time points instead 

of just a single time point; that is, expectations of the form E( f (Xu, Xv) | Xu = xu). One well-known way to achieve this is 
to combine Eqn. (6) with the law of iterated expectation. We refer the interested reader to [12, Section 9] or our summary 
in A.3. For future reference, however, we here do explicitly mention that

E( f (Xt)) = 〈π0, T t
0 f 〉. (8)
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3. Lumping and the lumped process

As we have just established, evaluating T s
t f is essential when computing expectations for a homogeneous Markov chain. 

Unsurprisingly, analytically evaluating the limit in Eqn. (7) is often infeasible. Therefore, in order to compute expectations 
we usually have to resort to one of the many available numerical methods—see for example [23]—that approximate T s

t f . 
The problem is that these numerical methods turn out to be computationally intractable when the state space becomes too 
large. This is especially unfortunate in applications where Markov chains are used, because a system with practical relevance 
often results in a model with a state space that is too large. We refer to [16] for one example of an application where the 
size of the state space leads to tractability issues.

Fortunately, as we already mentioned in the Introduction, the state space X is often unnecessarily detailed. Indeed, 
many interesting inferences can usually still be unambiguously defined using real-valued functions on a less detailed state 
space that corresponds to a higher-order description of the system, denoted by X̂ . However, this provides no immediate 
solution as the rationale for using the detailed state space X in the first place is that this allows one to accurately model 
the system using a Markov chain; see [9,10,16,21] for practical examples. In contrast, the transition probabilities of the 
system with respect to the reduced state space X̂ —that is, (the dynamics of) the induced stochastic process—are often 
unknown and/or intractable to obtain, which inhibits us from making exact inferences using the induced stochastic process. 
We will determine the initial and transition probabilities of the lumped process in Section 3.2 and address the tractability 
issues by allowing for imprecision in Sections 5, 6 and 7.

3.1. Notation and terminology concerning lumping

We assume that the lumped state space X̂ is obtained by lumping—sometimes called grouping or aggregating, see [2,
3]—states in X , such that 1 ≤ |X̂ | ≤ |X |. This lumping is formalised by the surjective lumping map � : X → X̂ , which 
maps every state x in X to a state �(x) = x̂ in X̂ . In the remainder, we will implicitly use the obvious extension of the 
lumping map � to tuples of states—that is, to the domain Xu , where u is a sequence of time points. Using this (extended) 
lumping map, we define the inverse lumping map �−1: x̂∅ is mapped to �−1(x̂∅) := x∅ and, for any u in U∅ , x̂u in X̂u is 
mapped to

�−1(x̂u) := {xu ∈ Xu : �(xu) = x̂u
}= {xu ∈ Xu : (∀t ∈ u) �(xt) = x̂t

}
.

In order to lighten our notation, we will frequently shorten “xu ∈ �−1(x̂u)” to “xu ∈ x̂u”.
As far as our results are concerned, it does not matter in which way the states are lumped. Say we are interested in 

E( f (Xt)) for a given f in L (X ) and t in R≥0. Then a naive choice is to lump together all states that have the same image 
under f . However, this is not necessarily a good choice. One reason is that the resulting lumped state space can become 
very small, for example when f is an indicator, resulting in too much imprecision in the dynamics and/or the inference. 
Lumping-based methods therefore often let X̂ correspond to a natural higher-level description of the state of the system; 
see for example [9,10,16] for some positive results. An extra benefit of this approach is that the resulting model can be used 
to determine the expectation of multiple functions.

3.2. The lumped stochastic process

All of the necessary notation and tools have been introduced to define the lumped stochastic process. In order not to 
unnecessarily complicate our exposition, we here restrict ourselves to an intuitive summary; for the fully formal definition, 
we refer the interested reader to Appendix B. Furthermore, we will here and in the remainder limit ourselves to homoge-
neous Markov chains, while our formal definition of the lumped stochastic process actually concerns general Markov chains. 
We have two reasons for doing so: (i) it is in line with the historical interest in lumping, see for instance [2,3,9,10,21]
and Section 9; and (ii) almost all of the Markov chains that arise when modelling practical problems are assumed to be 
homogeneous for the sake of simplicity, see for instance [9,10,16,21].

Recall from Section 2 that a stochastic process is characterised by its initial and transition probabilities. For the lumped 
stochastic process, denoted by P̂ , these probabilities are determined by the homogeneous Markov chain P and the lumping 
map � : X → X̂ . More specifically, they follow from the relation

( X̂u = x̂u) ⇔ (Xu ∈ x̂u) =
⋃

xu∈x̂u

(Xu = xu) for all u in U and x̂u in X̂u . (9)

First, we observe that it follows from this relation that, for any u in U and x̂u in X̂u ,

P̂ ( X̂u = x̂u) = P (Xu ∈ x̂u) =
∑

xu∈x̂u

P (Xu = xu). (10)

The initial probabilities of the lumped stochastic process P̂ are obtained by setting u = 0 in Eqn. (10):
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P̂ ( X̂0 = x̂0) =
∑

x0∈x̂0

P (X0 = x0) for all x̂0 ∈ X̂ . (11)

The transition probabilities P̂ ( X̂t+� = ŷ | X̂u = x̂u, X̂t = x̂)—with t, � in R≥0, u in U<t , x̂, ŷ in X̂ and x̂u in X̂u—follow 
from Eqn. (10) and Bayes’ rule, at least if the conditioning event ( X̂u = x̂u, X̂t = x̂) has non-zero probability. In case the 
conditioning event has zero probability—that is, if P̂ ( X̂u = x̂u, X̂t = x̂) = 0—the transition probability does not follow from 
Bayes’ rule. Hence, if there are conditioning events with zero probability, “the” lumped stochastic process is not uniquely 
defined! Therefore, we need to speak of a lumped stochastic process instead of the lumped stochastic process. From a tech-
nical point of view, the non-uniqueness is a direct consequence of our formal definition of a lumped stochastic process—see 
Appendix B—because we use an extension of the Markov chain—or coherent conditional probability—P to a coherent condi-
tional probability on a larger domain, which need not be unique. That said, while the transition probabilities conditional on 
events with probability zero need not be uniquely defined, this does not mean that they can take any arbitrary value. For 
example, we show in Appendix D that for all t, � in R≥0, u in U<t , x, y in X , xu in Xu and f̂ in L (X̂ ),3

min
x∈x̂

E([ f̂ ◦ �](X�) | X0 = x) ≤ Ê( f̂ ( X̂t+�) | X̂u = x̂u, X̂t = x̂) ≤ max
x∈x̂

E([ f̂ ◦ �](X�) | X0 = x), (12)

where Ê denotes the expectation with respect to a lumped stochastic process P̂ . Setting f̂ = I ŷ , it follows from this in-
equality and the additivity of P that

min
x∈x̂

∑
y∈ ŷ

P (X� = y | X0 = x) ≤ P̂ ( X̂t+� = ŷ | X̂u = x̂u, X̂t = x̂) ≤ max
x∈x̂

∑
y∈ ŷ

P (X� = y | X0 = x). (13)

We emphasise here that the inequalities of Eqns. (12) and (13) hold for any conditioning event ( X̂u = x̂u, X̂t = x̂), regardless 
of whether it has probability zero or not.

In [17], we circumvented the non-uniqueness due to conditioning on events with probability zero by a priori limit-
ing ourselves to homogeneous Markov chains with an irreducible transition rate matrix Q —see Section 7 further on for a 
definition—and positive initial distribution π0. In that case, as more thoroughly explained in [24, Appendix D.1]—the ap-
pendix of the extended pre-print of [17]—the lumped stochastic process is uniquely defined because any conditioning event 
( X̂u = x̂u, X̂t = x̂) has non-zero probability.

Putting aside the issue of non-uniqueness for now, there is another, much more important issue that we need to address: 
how can we describe the lumped stochastic process directly, without resorting to the original process. It is precisely for this 
reason that the original interest in the lumping of a Markov chain was limited to the case that the—or, more precisely, 
any—lumped stochastic process is again a homogeneous Markov chain. As is essentially well-known, this is not necessarily 
the case. We will return to this specific case in Section 9 further on; for now, we only mention that in order for a lumped 
stochastic process to again be a homogeneous Markov chain, the original chain needs to satisfy a very restrictive condition.

This is a major setback because this means that in order to compute the transition probabilities of—or, more generally, 
expectations with respect to—a lumped stochastic process P̂ , we cannot simply determine a lumped transition rate matrix Q̂
and use the matrix exponential T̂ s

t that it generates according to Eqn. (7); instead, we have to explicitly determine the 
transition probabilities from the initial probability distribution and transition probabilities of the original chain. In the 
setting of large-scale Markov chains, computing the transition probabilities of the original chain is already intractable, and so 
explicitly determining the transition probabilities of—or, more generally, expectations with respect to—a lumped stochastic 
process is intractable as well! This is rather unfortunate, as it renders the whole lumping procedure useless at first sight: 
since lumping does not yield more tractable computations, we might as well just stick with the original Markov chain 
anyway.

The essential point of our contribution is that, while—in general—we cannot tractably determine (the dynamics of) a 
lumped stochastic process P̂ , we can consider a set of stochastic processes, not necessarily homogeneous and/or Markovian 
but all with X̂ as state space, that is fully characterised by π0, Q and � and definitely contains any lumped stochastic 
process P̂ . Crucially, it turns out that this set takes the form of a so-called imprecise (continuous-time) Markov chain.

In the upcoming section, we explain how tight lower and upper bounds on the expectations that correspond to this set 
of processes are relatively easy to obtain. In particular, they can be determined without having to explicitly optimise over 
this set of processes, thus mitigating the need to actually construct it. Besides computational tractability, another benefit of 
this approach is that we circumvent the uniqueness issue because we can obtain conclusions about any lumped stochastic 
process P̂ without having to explicitly determine it entirely.

4. Imprecise Markov chains

For a formal definition of (continuous-time) imprecise Markov chains, and an extensive study of their properties, we 
refer the reader to the work of Krak et al. [12] and De Bock [13]. We here only present a brief overview of the terminology, 
notation and results that are relevant in our setting.

3 Here and in the remainder we use h ◦ g to denote the composition of any two functions g and h, given by h ◦ g : dom g → range h : x �→ h(g(x)).
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4.1. Sets of consistent processes and lower expectations

In general, the main idea behind imprecise Markov chains is to consider a set of stochastic process instead of a single 
stochastic process. In particular, Krak et al. [12] focus on a set of processes that is fully characterised by a non-empty set 
of initial distributions M and a non-empty bounded set of transition rate matrices Q. More specifically, they collect in 
PW

Q,M all stochastic processes that are: (i) well-behaved, a technical condition [12, Definition 4.4]; (ii) consistent with Q, 
in the sense that at all times the “outer partial derivative of the history-dependent transition matrix” is contained in Q [12, 
Definition 6.1]; and (iii) consistent with M , in the sense that M contains the initial distribution [12, Definition 6.2].

Using this set PW
Q,M of well-behaved and consistent stochastic processes, Krak et al. [12] define lower and upper ex-

pectations as follows. For any non-empty set of initial distributions M and non-empty bounded set of transition rate 
matrices Q, they let

EW
Q,M (· | ·) := inf{E P (· | ·) : P ∈ PW

Q,M } and EW
Q,M (· | ·) := sup{E P (· | ·) : P ∈ PW

Q,M }, (14)

where E P denotes the expectation with respect to the process P . It is obvious from Eqn. (14) that the lower expecta-
tion EW

Q,M and the upper expectation EW
Q,M are conjugate, in the sense that

EW
Q,M ( f (Xu, Xv) | Xu = xu) = −EW

Q,M (− f (Xu, Xv) | Xu = xu),

with v in U∅ , u in U<min v , f in L (Xu∪v ) and xu in Xu . Because of this conjugacy, it suffices to focus on either one of 
them; we here focus on the lower expectation.

At first sight, it would seem that in order to execute the minimisation in Eqn. (14), we first have to explicitly construct 
the set of consistent processes PW

Q,M . Fortunately, Krak et al. [12] show that this is not the case. Instead, lower expectations 
can be computed using a non-linear semi-group that is generated by a so-called lower transition rate operator. The analogy 
with the case of homogeneous Markov chains is quite striking, as in that case expectations can be computed using a linear 
semi-group—the matrix exponential—that is generated by the transition rate matrix.

4.2. Lower transition rate operators

Let us first focus on the generator of the non-linear semi-group that we will be using. For any non-empty bounded set 
of transition rate matrices Q, this generator is given by the transformation Q

Q
: L (X ) → L (X ) : f �→ Q

Q
f , where

[Q
Q

f ](x) := inf {[Q f ](x) : Q ∈ Q} for all f ∈ L (X ), x ∈ X . (15)

This operator Q
Q

is called the lower envelope of Q. By [12, Proposition 7.5], we know that it is a lower transition rate 
operator [12, Definition 7.2]: a super-additive and non-negatively homogeneous transformation that has “non-negative off-
diagonal entries”—in the sense that [Q

Q
Iy](x) ≥ 0 if x �= y—and “rows that sum up to zero”—in the sense that Q

Q
μ = 0

for any constant function μ. Note that transition rate matrices are lower transition rate operators that are furthermore 
linear; hence, a lower transition rate operator is a non-linear generalisation of a transition rate matrix.

Just like a set of lower transition rate matrices Q defines a lower transition rate operator Q
Q

, any generic lower 
transition rate operator R defines a corresponding set of dominating transition rate matrices

QR := {Q ∈ R(X ) : (∀ f ∈ L (X )) Q f ≥ R f
}
, (16)

where R(X ) denotes the set of all transition rate matrices on L (X ). As we will see in Proposition 1 further on, the 
set QR has some very nice properties. One of these properties is that it has separately specified rows, which is defined as 
follows.

Definition 1 (Definition 7.3 in [12]). A non-empty set of transition rate matrices Q has separately specified rows if for any 
collection {Q x}x∈X in Q, there is a Q � in Q such that

Q �(x, y) = Q x(x, y) for all x, y ∈ X .

The following result establishes that the set of dominating rate matrices satisfies this as well as several other convenient 
properties. It is one of our motivations for introducing the specific lumped lower transition rate operator in Section 5.2
further on.

Proposition 1 (Propositions 7.6, 7.7 and 7.8 in [12]). Let R be a lower transition rate operator and QR be the corresponding set of 
dominating transition rate matrices. Then QR is non-empty, bounded, closed and convex. Furthermore, QR has separately specified 
rows and R is the lower envelope of QR .
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4.3. Computing lower expectations

As we already hinted at in the introduction of Section 4.2, the lower transition rate operator Q
Q

is an essential tool 
when computing lower (conditional) expectations for an imprecise Markov chain PW

Q,M , much like Q is essential when 
computing expectations for precise Markov chains; the following result establishes an imprecise version of Eqn. (6).

Proposition 2 (Corollary 8.3 in [12]). Let M be a non-empty set of initial distributions and Q a non-empty and bounded set of 
transition rate matrices that has separately specified rows. Then for any t, s in R≥0 with t ≤ s, u in U<t , x in X , xu in Xu and f in 
L (X ),

EW
Q,M ( f (Xs) | Xu = xu, Xt = x) = [T s

t f ](x) (17)

with

T s
t := lim

n→+∞

(
I + s − t

n
Q

Q

)n

, (18)

where the n-th power should be interpreted as n consecutive applications.

By [12, Theorem 7.12], we know that T s
t , as defined in Eqn. (18), is a lower transition operator [12, Definition 7.1]: a 

super-additive and non-negatively homogeneous transformation that dominates the minimum, so a non-linear generalisation 
of a transition matrix. Important to mention here is that, at least in general, it is infeasible if not impossible to determine 
T s

t f by analytically evaluating the limit in Eqn. (18), and we therefore have to resort to an approximation method. In 
essence, this approximation method comes down to (i) choosing a suitable sequence δ1, . . . , δn of—sufficiently small—positive 
real numbers such that 

∑n
k=1 δk = s − t; and (ii) iteratively determining gk := (I + δk Q )gk−1 = gk−1 + δk Q gk−1 for k ranging 

from 1 to n with initial condition g0 := f . This way, we end up with an approximation gn for T s
t f . We refer to [12, 

Section 8.2] and [25] for a more thorough treatment of this approximation method, including procedures for choosing 
δ1, . . . , δn such that the error of the approximation is guaranteed to be smaller than some desired maximal error.

It is an immediate consequence of Eqns. (17) and (18) that

EW
Q,M ( f (Xt+�) | Xu = xu, Xt = x) = EW

Q,M ( f (Xt+�) | Xt = x) = EW
Q,M ( f (X�) | X0 = x).

The first equality is an imprecise version of the Markov property, while the second equality is an imprecise version of 
the homogeneity property of a (precise) Markov chain. Therefore, Proposition 2 justifies calling PW

Q,M a (homogeneous) 
imprecise Markov chain. Even more, the imprecise Markov chain PW

Q,M also satisfies an imprecise version of the law of 
iterated expectation.

Proposition 3 (Theorem 6.5 in [12]). If M is a non-empty set of initial distributions and Q a non-empty, bounded and convex set of 
transition rate matrices, then for any u, v, w in U with max u < min v and max v < min w, xu in Xu and f in L (Xu∪v∪w),

EW
Q,M ( f (Xu, Xv , Xw) | Xu = xu) = EW

Q,M (EW
Q,M ( f (Xu, Xv , Xw) | Xu, Xv) | Xu = xu).

Propositions 2 and 3 imply a practical method to compute lower expectations that is entirely similar to the method for 
precise Markov chains outlined in A.3; for a detailed explanation of how and why this works, we refer to [12, Section 9.2]
or our summary in C.2. This method is tractable as long as the state space X is sufficiently small and either the number 
of time points in v is small—because the number of computations is clearly exponential in |v|—or the function f is of a 
particular type.

5. The induced imprecise Markov chain

Now that we have established what imprecise Markov chains are, we are ready to consider the lumping procedure 
from their point of view. More specifically, we set out to characterise an imprecise Markov chain that contains any lumped 
stochastic process corresponding to a given (precise) Markov chain. To that end, we need to determine a set of initial 
distributions that contains the lumped initial probabilities and a set of transition rate matrices that contains the “outer 
partial derivatives of the instantaneous transition matrix” of any lumped stochastic process. Throughout this section, we let 
P be some homogeneous Markov chain and � : X → X̂ some lumping map.

5.1. The set of lumped initial probability distributions

We start with determining a suitable set of initial distributions. Recall from Eqn. (11) that, for any lumped stochastic 
process P̂ ,
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P̂ ( X̂0 = x̂) =
∑
x∈x̂

P (X0 = x) =
∑
x∈x̂

π0(x) for all x̂ ∈ X̂ ,

where the final equality holds due to the definition of the initial distribution π0. From this, it follows immediately that the 
initial distribution of any lumped stochastic process P̂ is the lumped initial distribution

π̂0 : X̂ →R : x̂ �→ π̂0(x̂) :=
∑
x∈x̂

π0(x). (19)

Hence, if we let M̂ := {π̂0}, then any lumped stochastic process P̂ is consistent with M̂ ; see Section 4.1.

5.2. The set of lumped transition rate matrices

For the set transition rate matrices, we are looking for a set of transition rate matrices on L (X̂ ) that contains the 
“outer partial derivative of the instantaneous transition matrix” of any lumped stochastic process. We will not explicitly 
construct such a set of transition rate matrices; instead, we define a lower transition rate operator and then consider the 
set of dominating transition rate matrices; see Section 4.2.

We deliberately do not go into detail about what the “outer partial derivative of the instantaneous transition matrix” of a 
lumped stochastic process P̂ exactly is. For our present purposes, it suffices to understand that we are interested in the rate 
of change of Ê( f̂ ( X̂t+�) | X̂u = x̂u, X̂t = x̂) for � going to 0; the interested reader is referred to Appendix D. Using Eqn. (12), 
we show in Appendix D that there is a lower bound for this rate of change that applies to any lumped stochastic process. 
Specifically, this lower bound uses the transformation Q̂ : L (X̂ ) → L (X̂ ), defined for all f̂ in L (X̂ ) and x̂ in X̂ as

[Q̂ f̂ ](x̂) := min

⎧⎨
⎩
∑

ŷ∈X̂

f̂ ( ŷ)
∑
y∈ ŷ

Q (x, y) : x ∈ x̂

⎫⎬
⎭= min

{
[Q ( f̂ ◦ �)](x) : x ∈ x̂

}
. (20)

We call Q̂ the lumped lower transition rate operator because of the following straightforward result.

Proposition 4. Let Q be a transition rate matrix and � : X → X̂ a lumping map. Then the corresponding transformation Q̂ is a 
lower transition rate operator.

Important to mention here is that in case the lumped state space corresponds to some higher-order state description, we 
often find that executing the optimisation in Eqn. (20) is fairly straightforward—that is, reduces to computing the minimum 
over a very small (in our examples as low as two to four) number of cases—as is for instance observed in [15,16] and 
Section 8 further on. In fact, a numerical implementation of Q̂ usually does not require an explicit construction of the 
original transition rate matrix Q .

Because the lumped lower transition rate operator Q̂ is a lower transition rate operator, we know from Section 4.2 that 
it induces a set of dominating transition rate matrices. In the current setting, we call this set the set of lumped transition 
rate matrices

Q̂ :=
{

Q̂ ∈ R(X̂ ) : (∀ f̂ ∈ L (X̂ )) Q̂ f̂ ≥ Q̂ f̂
}

, (21)

where R(X̂ ) denotes the set of all transition rate matrices on L (X̂ ). The following result is now an immediate corollary 
of Propositions 1 and 4.

Corollary 5. Let Q be a transition rate matrix and � : X → X̂ a lumping map. The associated set Q̂ of lumped transition rate 
matrices is non-empty, bounded, closed and convex. Furthermore, it has separately specified rows and its lower envelope is Q̂ , in the 
sense that Q

Q̂
= Q̂ .

5.3. The imprecise lumped Markov chain

With some more work, we can furthermore prove that any lumped stochastic process P̂ is well-behaved; see Section 4.1. 
The exact statements and proofs of the relevant results are rather technical and do not immediately contribute to a better 
understanding of the main text, which is why we have relegated these to Appendix D. Nonetheless, we now know that any 
lumped stochastic process is well-behaved and consistent with ˆM and Q̂. Therefore, we immediately obtain the following 
result.

Theorem 6. Consider a homogeneous Markov chain P and a lumping map � : X → X̂ . Then any corresponding lumped stochastic 
process P̂ is contained in PW

ˆ ˆ .
Q,M
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We consider Theorem 6 to be one of our main contributions, as it establishes that we can use all of the results from the 
theory of imprecise Markov chains to determine bounds on (conditional) expectations with respect to any lumped stochastic 
process. At present—at least to the best of our knowledge—this is limited to lower and upper expectations of functions that 
depend on the state at a finite number of time points. However, if the theory of imprecise Markov chains were to be 
extended to more general inferences—for instance to lower and upper conditional expectations of functions that depend 
on the state at an infinite number of future time points—then this result will immediately allow us to obtain bounds for 
these more general inferences with respect to any lumped process. With our present knowledge, however, we are limited 
to inferences of the following type.

Corollary 7. Consider a homogeneous Markov chain P , a lumping map � : X → X̂ and a corresponding lumped stochastic process P̂ . 
Then for all u in U , v in U∅ with max u < min v, x̂u in X̂u and f̂ in L (X̂u∪v),

EW
Q̂,M̂

( f̂ ( X̂u, X̂v) | X̂u = x̂u) ≤ Ê( f̂ ( X̂u, X̂v) | X̂u = x̂u) ≤ E
W
Q̂,M̂ ( f̂ ( X̂u, X̂v) | X̂u = x̂u),

where Ê denotes expectation—in the usual sense—with respect to the lumped stochastic process P̂ .

The benefit of this result is that it mitigates the need to explicitly determine the lumped transition probabilities; instead—
as explained in Section 4.3—we can use the semi-group T̂ s

t generated by Q̂ instead. This is especially useful in case the size 
of the original state space X makes computing T s

t f infeasible, but the size of the lumped state space X̂ is significantly 
smaller so that computing T̂ s

t f̂ is feasible. In this case, our results allow us to obtain guaranteed bounds on an inference 
that we could not compute otherwise!

6. Bounding expectations

Corollary 7 allows us to bound expectations with respect to any lumped process. However, we are actually interested 
in (bounding) expectations with respect to the original Markov chain, and it is not immediately clear how one can use 
Corollary 7 to do this. In this section, we nevertheless set out to use the lumped imprecise Markov chain to determine 
bounds on expectations with respect to the original Markov chain.

One problem is that the expectations with respect to the original Markov chain are for real-valued functions on Xu , 
while the expectations with respect to the lumped imprecise Markov chain are for real-valued functions on X̂u . Therefore, 
we need a way to reduce real-valued functions on Xu to real-valued functions on X̂u . Fix some u in U∅ . The sole func-
tions f in L (Xu) for which this reduction is obvious are those that are constant on the lumps, in the sense that for all 
x̂u in X̂u , f (xu) = f (yu) for all xu, yu in �−1(x̂u). Clearly, this is equivalent to the existence of a real-valued function f̂ on 
X̂u such that f = f̂ ◦ �. If such a function f̂ in L (X̂u) exists, then the real-valued function f on Xu is called lumpable 
with respect to �. The reduction of a non-lumpable function f to X̂u is not unequivocally defined. In the remainder, we will 
make extensive use of the following two reductions:

f̂L : X̂u →R : x̂u �→ min{ f (xu) : xu ∈ x̂u} and f̂U : X̂u →R : x̂u �→ max{ f (xu) : xu ∈ x̂u}.
These two reductions are generalised versions of the reductions defined by Franceschinis and Muntz [9, p. 232]; they clearly 
provide bounds on the original function:

f̂L ◦ � ≤ f ≤ f̂U ◦ �. (22)

Using Eqn. (22) and after some additional work, we establish the following result.

Theorem 8. Consider a homogeneous Markov chain P and a lumping map � : X → X̂ . Then for all u in U , v in U∅ with max u <
min v, xu in Xu and f in L (Xu∪v ),

EW
Q̂,M̂

( f̂L( X̂u, X̂v) | X̂u = x̂u) ≤ E( f (Xu, Xv) | Xu = xu) ≤ E
W
Q̂,M̂ ( f̂U( X̂u, X̂v) | X̂u = x̂u), (23)

where x̂u := �(xu).

Theorem 8 is similar to Corollary 7, but it is more useful as it provides bounds on the (conditional) expectation with 
respect to the original Markov chain—instead of with respect to a lumped stochastic process—of a real-valued function that 
depends on the state at any finite number of time points. As the lower and upper bounds of Theorem 8 are exactly the 
same as those of Corollary 7, the remarks we made earlier—right after Corollary 7—about the tractability of the computations 
needed to determine these bounds are applicable here as well.

We repeat here that our sole reason for limiting ourselves to functions that depend on a finite number of future time 
points in Theorem 8 is that, for now, this is the most general type of inference that can be dealt with using the framework 
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of imprecise (continuous-time) Markov chains [12]. A possible alternative for the reader that is interested in more general 
inferences is the work of Katoen et al. [11], who also use lumping but follow a different approach that enables them to 
compute bounds on several specific types of inferences, including some that depend on an infinite number of future time 
points.

7. Bounding limit expectations

In many practical applications, see for instance [15,21,22], the Markov chain model of the system is used to determine 
the limit expectation limt→+∞ E( f (Xt)) of some real-valued function f on X . Under some conditions on the transition rate 
matrix Q —ergodicity, see Section 7.1 further on—this limit expectation limt→+∞ E( f (Xt)) does not depend on the initial 
distribution π0 of the Markov chain. In other applications—for instance those treated in [9,10,16]—one is interested in the 
long-term temporal average of f (Xt)

4:

lim
s→+∞

1

s

s∫
0

f (Xt)dt.

Under a slightly more stringent condition on the transition rate matrix Q —irreducibility, see for instance [19, Theo-
rem 3.8.1]—this long-term temporal average is (almost surely) equal to the limit expectation limt→+∞ E( f (Xt)), which 
then again does not depend on the initial distribution π0 of the Markov chain. Clearly, methods to efficiently determine the 
limit expectation are therefore of tremendous practical interest.

There are plenty of methods available to determine the limit expectation; we refer to [26, Section 10] for an overview. 
However, it is well-known—see [9,10,16]—that these methods to precisely determine the limit expectation become compu-
tationally intractable for Markov chains with large state spaces. In this section, we therefore set out to obtain bounds on 
the limit expectation using the lumped lower transition rate operator Q̂ . Our hope is that, if the lumped state space is 
sufficiently small, these bounds can be tractably computed. If this is the case, then we can bound inferences that we could 
not tractably compute using the precise methods for the original Markov chain. We refer to Sections 7.2 and 7.3 further on 
for more arguments regarding the tractability of the relevant methods.

We here consider two well-known methods to determine the limit expectation precisely. More specifically, we argue 
how these methods can be made computationally tractable again using the lumped transition rate operator Q̂ at the cost 
of imprecision—provided of course that Q̂ f̂ can be evaluated much more efficiently than Q f . First, however, we start with 
some general theory concerning ergodic Markov chains.

7.1. Ergodicity and irreducibility

Essential to the study of limit expectations and long-term temporal averages are the concepts of ergodicity and irre-
ducibility. These two terms are not always used in the same sense by all authors; we here adhere to the use of Norris [19]
and Tornambè [27].

Definition 2 (Definition 4.17 in [27]). A transition rate matrix Q is ergodic if there is a distribution π∞ on X such that, for 
all f in L (X ) and π0 in D(X ), limt→+∞〈π0, T t

0 f 〉 = 〈π∞, f 〉.

We call the distribution π∞ corresponding to an ergodic transition rate matrix Q the limit distribution. The reason for 
this name is that if Q is the transition rate matrix of a homogeneous Markov chain P , then

lim
t→+∞ E( f (Xt)) = lim

t→+∞〈π0, T t
0 f 〉 = 〈π∞, f 〉 for all f ∈ L (X ),

where the first equality follows from Eqn. (8). It is well-known—see for example [27, Theorem 4.12]—that if the transi-
tion rate matrix Q is ergodic, then the corresponding limit distribution π∞ is the unique distribution that satisfies the 
equilibrium condition

(∀y ∈ X )
∑

x∈X

π∞(x)Q (x, y) = 0. (24)

Many equivalent necessary and sufficient conditions for ergodicity exist; see for instance [19, Theorem 3.2.1]. The fol-
lowing is the one that is arguably the most easy to check for a given transition rate matrix. It is based on the accessibility 

4 Note that in our current framework, the expectation of this inference cannot be expressed because it depends on the state at an infinite number of 
time points. This is not a problem, however, because we can always extend the domain of the coherent conditional probability P so that the expectation 
is well-defined. Furthermore, in the classical framework this turns out to be almost surely equal to the limit expectation, which is well-defined in our 
framework.
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relation · � ·. We say that a state x is accessible from a state y, denoted by y � x, if there is a sequence y = x0, x1 . . . , xn = x
in X such that Q (xi−1, xi) > 0 for all i in {1, . . . , n}. Note that any state x is always accessible from itself because the se-
quence x = x0 = xn = x (with n = 0) trivially satisfies this condition.

Proposition 9. A transition rate matrix Q is ergodic if and only if

Xtop := {x ∈ X : (∀y ∈ X ) y � x} �= ∅.

A transition rate matrix Q is said to be irreducible if Xtop = X ; see for instance [19, Sections 1.2 and 3.2]. Most authors 
limit themselves to irreducible instead of the more general ergodic transition rate matrices whenever they are interested 
in limit expectations. Their reason for doing so is the following result, which states that as far as the limit expectation is 
concerned, one can limit the state space to the top class Xtop.

Proposition 10. Let Q be an ergodic transition rate matrix. Then the matrix Q ′ on L (Xtop), defined by

Q ′(x, y) := Q (x, y) for all x, y in Xtop,

is an irreducible transition rate matrix. Furthermore, for all f in L (X ), 〈π∞, f 〉 = 〈π ′∞, f ′〉, where π ′∞ is the limit distribution of 
Q ′ and f ′ is the restriction of f to Xtop .

Observe that in order to use this result, one has to explicitly determine the top class. If this top class can be easily 
obtained, then reducing the state space to this top class makes sense because it will speed up all methods to determine 
the limit expectation 〈π∞, f 〉. However, this is not always the case, as it might occur that checking that the top class is 
non-empty is straightforward, while explicitly determining the top class is not. Therefore, in the remainder, we will not a 
priori limit ourselves to irreducible transition rate matrices but will always consider general ergodic ones.

7.2. Bounding limit expectations iteratively

The first method we consider is based on a link between Markov chains in discrete and continuous time. Here, we are 
especially interested in the fact that (I + δQ ) is a transition matrix—at least under suitable conditions on δ. It is essentially 
well-known that (I + δQ ) is ergodic if Q is ergodic, and that both have the same limit distribution. The following result 
establishes these links in the form that we will need them.

Proposition 11. If Q is an ergodic transition rate matrix, then for all f in L (X ), δ in R>0 with δ‖Q ‖ < 2, and n in N0 ,

min(I + δQ )n f ≤ 〈π∞, f 〉 ≤ max(I + δQ )n f .

Furthermore, the lower and upper bounds in this expression become monotonously tighter with increasing n, and converge to 〈π∞, f 〉
as n approaches +∞.

Note that the step size δ in Proposition 11 is only required to be sufficiently small such that δ‖Q ‖ < 2. Empirically, we 
observe that the convergence of the bounds is faster—in the sense that we need smaller n—for larger values of δ.

Note, however, that if the size of the original state space is too large, then the bounds in Proposition 11 cannot be 
tractably computed. One way to make the computations tractable is to “replace” the transition rate matrix Q with the 
lumped lower transition rate operator Q̂ and its conjugate

Q̂ : L (X̂ ) → L (X̂ ) : f̂ �→ Q̂ f̂ := −Q̂ (− f̂ ).

The following result establishes that this replacement is allowed.

Theorem 12. Consider an ergodic transition rate matrix Q and a lumping map � : X → X̂ . Then for all f in L (X ), δ in R>0 with 
δ‖Q ‖ < 2, and n in N0 ,

min(I + δ Q̂ )n f̂L ≤ 〈π∞, f 〉 ≤ max(I + δ Q̂ )n f̂U.

Moreover, for fixed δ, the lower and upper bounds in this expression become monotonously tighter with increasing n, and each converges 
to a—possibly different—limit as n approaches +∞. If Q is furthermore irreducible, (I + δ Q̂ )n f̂L and (I + δ Q̂ )n f̂U both converge to 
a—possibly different—constant function as n approaches +∞.
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Theorem 12 naturally suggests an iterative method to determine guaranteed bounds on the limit expectation 〈π∞, f 〉. For 
the lower bound, one simply needs to (i) choose a step size δ such that δ‖Q ‖ < 2; (ii) iteratively compute ĝi := (I +δ Q̂ )gi−1

with initial condition g0 := f̂L; and (iii) stop after n iterations if min gn—or in case Q is irreducible, gn—has empirically 
converged; the lower bound is then min(I + δ Q̂ )n f̂L = min gn . As a consequence of the conjugacy of Q̂ , the upper bound 
can be iteratively obtained by applying the iterative scheme for the lower bound with initial condition g0 := − f̂U; the upper 
bound is then max(I + δ Q̂ )n f̂U = − min gn = − min(I + δ Q̂ )n g0. Empirically, we observe that larger step sizes δ result in 
faster convergence, in the sense that less iterations are required. The influence of the step size δ on the tightness of the 
bounds is something that we have not properly investigated yet. Our limited experiments suggest that a smaller step size δ

results in tighter bounds, although after some threshold—that depends on the specific model being used and that can be 
rather large—the tightness does not seem to change any more.

7.3. Bounding limit expectations with a linear program

Another popular method to determine the limit expectation 〈π∞, f 〉 is to first determine the limit distribution π∞
and then compute the inner product directly. Recall from Section 7.1 that π∞ is the unique distribution that satisfies the 
equilibrium condition, so—in theory—we can determine it by explicitly solving Eqn. (24), see for instance [26, Section 10.2]. 
Unfortunately, if the state space X is large then solving the resulting linear system of |X | equations becomes computation-
ally infeasible. Therefore, we here combine the equilibrium condition for several different states y; subsequent manipulation 
of the resulting expressions then allows us to establish the following result.

Theorem 13. Consider an ergodic transition rate matrix Q and a lumping map � : X → X̂ . Then for all Â ⊆ P(X̂ )5 and f in 
L (X ),

min{〈π̂ , f̂L〉 : π̂ ∈ DÂ} ≤ 〈π∞, f 〉 ≤ max{〈π̂ , f̂U 〉 : π̂ ∈ DÂ}
with

DÂ := {π̂ ∈ D(X̂ ) : (∀ Â ∈ Â) 〈π̂ , Q̂ I Â〉 ≤ 0}.

It might not immediately look like it, but closer inspection shows us that the two optimisations in the expression above 
are in fact straightforward linear programs. The variables of these linear programs are the components of π̂ . Since π̂ is a 
distribution on X̂ , there are |X̂ | variables and already |X̂ | + 1 constraints: π̂ (x̂) ≥ 0 for all x̂ in X̂ and 

∑
x̂∈X̂ π̂ (x̂) = 1. 

Some |Â| additional constraints are induced by the requirement that π̂ is an element of DÂ: for all Â in Â, 〈π̂ , Q̂ I Â〉 ≤ 0.

An obvious issue when applying the method of Theorem 13 is how to choose the collection of subsets Â. First and 
foremost, as Q̂ is a lower transition rate operator, Q̂ I∅ = 0 and Q̂ IX̂ = 0. Therefore, the condition

〈π̂ , Q̂ I Â〉 ≤ 0

is always satisfied if Â is equal to ∅ or X̂ . Knowing this, one obvious choice is Â=P(X̂ ) \ {∅, X̂ }, which leads to a linear 
program with |X̂ | + 2|X̂ | − 1 distinct constraints. As the number of constraints scales exponentially with the number of 
lumped states, this becomes computationally intractable if the lumped state space X̂ is large. An obvious alternative choice 
is to consider the collection of all singletons: Â = {{x̂} : x̂ ∈ X̂ }. This choice results in 2|X̂ | + 1 distinct constraints for 
the linear program, which is certainly tractable. From an implementation point of view, it makes sense to also add the 
complements of the singletons to the collection Â. The reason for this is that the functions IAc need not be explicitly 
constructed because Q̂ I Âc = Q̂ (−I Â)—as can be easily verified. In this case, the linear program has 3|X̂ | + 1 constraints. 
The tractability of this choice for a smaller collection Â can come at the cost of reduced tightness of the resulting bounds 
compared to using the power set, because the set DÂ is less constrained and hence can be larger. This trade-off between 
tractability and tightness is something that we leave for future research.

8. Numerical assessment

We leave the numerical assessment of Theorem 8 for future work. Our main reason for this is that the performance of 
this method is tied to the performance of the method used to approximate T̂ s

t f , and this would lead us too far astray. For 
a preliminary study of the performance of some methods to approximate T̂ s

t f , we refer to [25]. We here fully focus on 
bounding limit expectations: we compare the methods implied by Theorem 12 and 13 with the methods of Franceschinis 
and Muntz [9] and Buchholz [10] in Sections 8.1–8.3, and consider the large-scale tractability of our methods in Section 8.4.

5 Here and in the remainder, we denote the power set of the set S by P(S).
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Fig. 1. The closed queueing network.

8.1. A closed queueing network

Following Franceschinis and Muntz [9] and Buchholz [10], we test our methods on the closed queueing network depicted 
in Fig. 1. This closed queueing network is populated by N customers and consists of a single server, denoted by S0, in series 
with K parallel servers, denoted by S1, . . . , SK . In order not to unnecessarily complicate our exposition, we will assume 
that K is even. As is clear from Fig. 1, the customers alternatingly visit the server S0 and one of the parallel servers S1, . . . , 
SK .

One obvious way to describe this closed queueing network is to use states of the form (i, i1, . . . , iK ), where i is the 
number of customers in the single server and ik is the number of customers in the k-th parallel server. This state description 
yields the state space

X :=
{

(i, i1, . . . , iK ) ∈ {0,1, . . . , N}K+1 : i +
K∑

k=1

ik = N

}
.

As a reduced, higher-order state description, Franceschinis and Muntz [9] propose to use (i, j0, . . . , jN), where i is again the 
number of customers in the single server and j	 is the number of parallel servers that have 	 customers. This yields the 
lumped state space

X̂ :=
{

(i, j0, . . . , jN) ∈ {0,1, . . . , N} × {0,1, . . . , K }N+1 : i +
N∑

n=1

njn = N,

N∑
n=0

jn = K

}
.

The lumped state space X̂ is significantly smaller than the original state space X , as is clear from the number of states 
and lumps reported in [9, Table 3] and Table 2.

We are interested in two performance measures for the first server S0 of the queueing network: (i) the population—or, 
in the words of Franceschinis and Muntz, the mean queue length—of this server (POP), which is the limit expectation of the 
lumpable function

f : X →R : (i, i1, . . . , iK ) �→ i, with f̂ : X̂ →R : (i, j0, . . . , jN) �→ i

and (ii) the throughput at this server (TP), which is the limit expectation of the lumpable function

g : X →R : (i, i1, . . . , iK ) �→
{
μ if i < N,

0 otherwise,
with ĝ : X̂ →R : (i, j0, . . . , jN) �→

{
μ if i < N,

0 otherwise,

where μ is the rate of the distribution of the service time of S0.

8.2. Exponential service time

Franceschinis and Muntz [9] assume that the single server S0 has a service time that is exponentially distributed with 
rate μ—or equivalently, mean service time 1/μ. After its service in server S0 has completed, a customer randomly joins the 
queue of one of the parallel servers S1, . . . , SK , and for the sake of simplicity each choice is assumed to be equally probable. 
The parallel servers also have a service time that is exponentially distributed: half of the parallel servers have rate λ1 and 
the other half have rate λ2, with λ1 < λ2. Note that due to symmetry, without loss of generality, we may assume that 
S1, . . . , S K

2
have rate λ1 and the remaining servers have rate λ2 Under these assumptions, we can model the system as 

a homogeneous Markov chain with state space X , but the lumped state space X̂ is not sufficiently detailed to allow a 
homogeneous Markov chain model.
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Table 1
Comparison of the bounds obtained by using Theorems 12 and 13 with those obtained by the method presented in [9, Section 3.2]. Model parameters: 
K = 4, N = 5, μ = 1, λ1 = 1, λ2 = 1.01. Computation parameters: Â1 consists of all the singletons, Â2 consists of all the singletons and their complements.

Theorem 12 Theorem 13

[9, Table 2] δ = 1.8/‖Q ‖ δ = 0.9/‖Q ‖ Â1 Â2

Exact Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

POP 3.7262 3.6141 3.7493 3.7195 3.7336 3.7195 3.7336 3.6162 3.7487 3.7113 3.7414
TP 0.9828 0.9676 0.9835 0.9825 0.9831 0.9825 0.9831 0.9679 0.9835 0.9823 0.9834

Table 2
Comparison of the bounds obtained on the throughput by using Theorems 12 and 13 with those obtained by the method presented in [10, Section 4]. 
Model parameters: μ = 5, λ1 = 1, λ2 = λ1 + ε . Computation parameters: Â1 consists of all the singletons, Â2 consists of all the singletons and their 
complements.

Theorem 12 Theorem 13

[10, Figure 3] δ = 1.8/‖Q ‖ δ = 0.9/‖Q ‖ Â1 Â2

K N |X | |X̂ | Exact Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

ε = 0.1

4 6 336 45 2.611 2.509 2.730 2.529 2.713 2.531 2.713 1.928 3.181 2.401 2.820
4 8 825 91 2.892 2.784 3.028 2.813 3.003 2.814 3.003 1.982 3.633 2.582 3.171
4 10 1716 165 3.090 2.973 3.239 3.012 3.207 3.014 3.207 2.002 3.961 2.670 3.435
6 8 4719 108 3.486 3.365 3.624 3.382 3.613 3.383 3.613 2.068 4.188 3.069 3.846
6 10 13013 215 3.802 3.675 3.984 3.707 3.930 3.708 3.930 2.083 4.515 3.191 4.244
8 10 68068 232 4.202 4.087 4.327 4.103 4.320 4.104 4.320 2.111 4.736 3.542 4.595

ε = 0.01

4 6 336 45 2.520 2.509 2.532 2.511 2.530 2.511 2.530 2.428 2.591 2.500 2.541
4 8 825 91 2.793 2.780 2.806 2.784 2.803 2.784 2.803 2.655 2.894 2.764 2.821
4 10 1716 165 2.984 2.971 2.998 2.975 2.995 2.976 2.995 2.802 3.116 2.948 3.020
6 8 4719 108 3.378 3.365 3.392 3.367 3.391 3.367 3.391 3.121 3.488 3.340 3.416
6 10 13013 215 3.689 3.675 3.704 3.678 3.702 3.678 3.702 3.336 3.821 3.639 3.738
8 10 68068 232 4.100 4.087 4.113 4.088 4.113 4.088 4.113 3.609 4.213 4.047 4.151

The lumping map � that models the relation between these two state descriptions is easily obtained. Hence, we obtain 
the lumped lower transition rate operator Q̂ according to Eqn. (20). In this case, it turns out that the minimisation reduces 
to

[Q̂ f̂ ](i, j0, . . . , jN) = μ

N

N∑
n=1

( f̂ (i − 1, j0, . . . , jn−1, jn + 1, jn+1 . . . , jN) − f̂ (i, j0, . . . , jN))

+
∑
n∈N

λ′
n( f̂ (i + 1, j0, . . . , jn−1, jn − 1, jn+1 . . . , jN) − f̂ (i, j0, . . . , jN)), (25)

where the first summation is only present in case i > 0. In this expression, N is the set of all indices n such that jn > 0. 
The rates λ′

n are equal to either λ1 or λ2. One has to choose their values in such a way that the resulting value of the 
expression in Eqn. (25) is minimised, under the condition that at most K/2 can have value λ1 and at most K/2 can have 
value λ2.

Franceschinis and Muntz [9] compute bounds on the performance measures for the closed queueing network with K = 4
parallel servers and N = 5 customers. These parameters yield a state space X with 126 states and a lumped state space X̂
with 18 states. For the service time distributions, they use the parameters μ = 1, λ1 = 1 and λ2 = 1.01. In Table 1, we 
report bounds on the performance measures that we obtain with the two methods based on Theorems 12 and 13. Note 
that Franceschinis and Muntz actually report the limit expectation of N − i instead of that of i in [9, Table 2], but we have 
transformed their bounds to correspond to our setting.

For all cases reported in Table 1, our bounds are tighter than those of Franceschinis and Muntz [9]. Furthermore, the 
bounds obtained with the iterative method based on Theorem 12 are tighter than those obtained with the linear program-
ming method based on Theorem 13. For the method based on Theorem 12, the obtain bounds are the same—at least up 
to the reported precision—for both choices of step sizes. We observed that in this case, halving the step size results in a 
doubling of the number of iterations required to reach empirical convergence. For the method based on Theorem 13, the 
obtained bounds are noticeably tighter if we use the collection Â2 that consists of all singletons and their complements 
instead of the collection Â1 that consists of only the singletons. We have chosen not to use the power set as collection 
because we believe that adding 2|X̂ | − 2 = 65 534 constraints on 18 variables is a bit excessive.
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8.3. Erlang-2 service time

Buchholz [10] considers a slightly changed version of the closed queueing network: instead of assuming that the service 
time of S0 is exponentially distributed, he assumes an Erlang-2 distribution with mean service time 1/μ. This assumption 
still allows for a homogeneous Markov chain model, be it that the component i is replaced by two components in both 
the full state description and the lumped state description. The lumped lower transition rate operator Q̂ obtained with 
Eqn. (20) reduces to an expression similar to that of Eqn. (25).

Buchholz [10] considers several combinations of the number of parallel servers K and the number of customers N . 
For the service time distributions, he uses the parameters μ = 5, λ1 = 1 and λ2 = 1 + ε , with ε equal to 0.1 or 0.01. 
In Table 1, we report bounds on the throughput, obtained with the two methods based on Theorems 12 and 13, and 
compare those with the bounds obtained by Buchholz. First and foremost, we observe that the bounds obtained with the 
iterative method based on Theorem 12 are tighter than those obtained with the method of Buchholz [10], which in turn 
are tighter than those obtained with the linear programming method based on Theorem 13; hence, as was also the case 
in Section 8.1, our iterative method outperforms the linear programming method. Second, we observe that halving the step 
size δ in the iterative method does increase the tightness of the bounds, be it only marginally. Adding the complements to 
the collection Â in the linear programming method clearly results in tighter bounds, as was also the case in Section 8.1.

We end with two caveats. First, we have also conducted experiments for the population. However, the exact values we 
obtain for the population do not lie in the intervals reported in [10, Fig. 3]. We have not managed to clear out whether this 
is due to an error on our part or not. Since this prevents a proper comparison of our bounds with those reported in [10, 
Fig. 3], we have chosen not to report any bounds on the population. Second, Buchholz mentions in [10, Section 5.3] that he 
assumes “service rates between 1.0 and 1.0 + ε”, but it is unclear to us if he additionally assumes that half of the servers 
have rate 1.0 and the other half of the servers have rate 1.0 + ε . If he does not make this additional assumption, his bounds 
hold for the more general setting that the transition rate matrix Q is only known to belong to some set of transition rate 
matrices. Our methods can be adapted to this more general setting as well, in a similar fashion to the approach followed in 
[16], but we leave this for future work. We here only mention that this yields a lumped lower transition rate operator Q̂
that is very similar to that of Eqn. (25); it turns out that the λ′

n ’s can all be independently optimised without taking into 
account the restrictions on how many of them can take the value λ1 or λ2.

8.4. Large-scale tractability

We have chosen to limit the scenarios for our numerical experiments to those scenarios that were also considered by 
Franceschinis and Muntz [9] and Buchholz [10]. Our reason for this is two-fold. First, this allows us to compare our bounds 
with the exact result. Second, this allows us to compare our bounds with those obtained by Franceschinis and Muntz [9]
and Buchholz [10] without needing to implement their methods ourselves. As we have previously argued, our experiments 
seem to suggest that our bounds—or at least those obtained using the iterative approximation method—are tighter than 
those obtained by the existing methods.

As the precise value of the relevant limit expectations can still be tractably computed, these scenarios do not corre-
spond to the intended range of applications. We leave a thorough study of the tractability for large-scale Markov chains, 
as well as a comparison with the scalability of the existing methods, for future work. However, this does not mean that 
we are oblivious to the scalability of our methods. Quite the contrary, we have previously studied the tractability of our 
iterative approximation method for large-scale Markov chains in [16], where we used the iterative approximation method 
based on Theorem 12 to compute (bounds on) performance measures of a specific telecommunication system. The largest 
Markov chain model that we consider there has 1 221 759 states, which gets reduced to 35 301 states for the lumped im-
precise Markov chain. For that large-scale model, the precise methods turn out to be computationally infeasible, while the 
computations for our iterative approximation method are still tractable.

9. Lumpability

Until now, our sole objective has been to use the lumped imprecise Markov chain to determine bounds on expectations 
with respect to the original Markov chain. Recall from the Introduction that this is only a secondary setting in which the 
lumping of Markov chains has been previously studied. In this section, we briefly return to the original setting of lumping 
in Markov chains, and ask ourselves the question if the lumped process is again a homogeneous Markov chain. Crucial to 
this question is the concept of lumpability.

Definition 3. The transition rate matrix Q is lumpable with respect to the lumping map � : X → X̂ if there is a Q̂ in 
R(X̂ ) such that

(∀x̂, ŷ ∈ X̂ )(∀x ∈ x̂)
∑
y∈ ŷ

Q (x, y) = Q̂ (x̂, ŷ). (26)
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Burke and Rosenblatt consider homogeneous Markov chains and prove in [2, Theorem 4] that lumpability of the transition 
rate matrix is necessary and sufficient for the lumped stochastic process to be a Markov chain, regardless of the initial 
distribution. In [3, Theorem 2.4], Ball and Yeo establish that if the original homogeneous Markov chain has a denumerable 
state space and is irreducible, then lumpability of the transition rate matrix is also a necessary and sufficient condition for 
the lumped stochastic process to be a homogeneous Markov chain.

Since lumpability is clearly a strong property, we expect that our previous results can be simplified under the condition 
that it holds. First and foremost, we have the following obvious result.

Proposition 14. Consider a transition rate matrix Q and lumping map � : X → X̂ . Then Q is lumpable with respect to � if and 
only if Q̂ is linear, or equivalently, if and only if Q̂ is a singleton. In this case, Q̂ = {Q̂ } and Q̂ = Q̂ , where Q̂ is the unique transition 
rate matrix that satisfies Eqn. (26).

We combine Proposition 14 with Theorem 6 to immediately obtain the following very strong result.

Corollary 15. Consider a homogeneous Markov chain P with transition rate matrix Q , and a lumping map � : X → X̂ . If Q is 
lumpable with respect to �, then the lumped stochastic process P̂ is uniquely defined and equal to the homogeneous Markov chain 
characterised by the lumped initial distribution π̂0 and the transition rate matrix Q̂ .

Note that Corollary 15 is similar to [2, Theorem 4], although it only provides the sufficiency and not the necessity of the 
lumpability condition. However, if we follow the strategy that Burke and Rosenblatt use in the proof of [2, Theorem 4], then 
we also obtain the necessity of the condition, at least if—like Burke and Rosenblatt in [2, Theorem 4]—we demand that the 
lumped stochastic process is a homogeneous Markov chain for any initial distribution.

For our present purposes, what is particularly interesting about the above results, is that we can specialise the results 
of Sections 6 and 7 if combine them with Proposition 14 and/or Corollary 15. We limit ourselves to lumpable functions 
because this allows for more elegant statements. Our first result is then a specialisation of Theorem 8 that is useful in the 
same setting, and follows almost immediately from Corollary 15.

Corollary 16. Consider a homogeneous Markov chain P with transition rate matrix Q , and a lumping map � : X → X̂ . If Q is 
lumpable with respect to �, then for all u in U , v in U∅ with max u < min v, xu in Xu and all lumpable f in L (Xu∪v ),

E( f (Xu, Xv) | Xu = xu) = Ê( f̂ ( X̂u, X̂v) | X̂u = x̂u),

with x̂u := �(xu) and where Ê denotes the expectation with respect to the lumped homogeneous Markov chain P̂ .

We now turn to specialising the results of Section 7. While we could simply combine Theorems 12 and 13 with Corol-
lary 15, the following result makes more sense.

Theorem 17. Consider an ergodic transition rate matrix Q and a lumping map �. If Q is lumpable with respect to �, then Q̂ is 
ergodic. Furthermore, for any lumpable f in L (X ),

〈π∞, f 〉 = 〈π̂∞, f̂ 〉,
where π̂∞ denotes the limit distribution of Q̂ .

The reason why Theorem 17 is more sensible than simply specialising Theorems 12 and 13 is that we can use any of the 
standard methods to determine the limit expectation 〈π̂∞, f̂ 〉, instead of only our two (approximate) methods.

10. Conclusions

Broadly speaking, we can conclude that imprecise Markov chains are not only a robust uncertainty model—as they 
were originally intended to be—but also a useful computational tool for determining bounds on inferences for large-scale 
homogeneous (continuous-time) Markov chains. More concretely, we have shown that lumping states in a homogeneous 
Markov chain inevitably introduces imprecision, in the sense that—in general—we cannot exactly determine the transition 
probabilities of the lumped stochastic process without also explicitly determining the transition probabilities of the original 
Markov chain. However, we can easily characterise a set of processes that definitely contains the lumped process, in the 
form of an imprecise Markov chain. Using this imprecise Markov chain, we can then determine guaranteed lower and 
upper bounds on the (conditional) expectation—with respect to the original Markov chain—of a real-valued function on the 
state of the system at any finite number of time points. Furthermore, we also presented two methods to bound the limit 
expectations of ergodic Markov chains. From a practical point of view, these results are essential tools in cases where state 
space explosion occurs: they allow us to determine guaranteed lower and upper bounds on inferences that we otherwise 
could not determine at all!
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Regarding future work, we envision the following. For starters, a more thorough numerical assessment of the methods 
outlined in Sections 6 and 7.3 is necessary. Furthermore, we believe that almost all of our result can be adapted to the 
setting of discrete-time Markov chains. Moreover, Theorems 12 and 13 can also be quite easily extended to the setting in 
which we are interested in the limit expectation associated with some ergodic homogeneous Markov chain P , but where 
we only know that its transition rate matrix Q is contained in some non-empty and bounded set of (ergodic) transition rate 
matrices. Finally, it would be of theoretical as well as practical interest to determine bounds on the (conditional) expectation 
of functions that depend on the state at infinitely many time points.
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Appendix A. Extra material for Section 2

Recall from Section 2.3 that we can consider stochastic processes in two frameworks: the classical framework of measure-
theoretic probability and the slightly less standard framework of coherent conditional probability. For the former, we refer 
to [20, Section 1.1] and references therein. Since the latter is the approach that is introduced and followed by Krak et al. 
[12], it will also be the approach that we will follow here. We therefore briefly recall the notation, terminology and results 
from [12, Sections 4 and 5] that we will need in the remainder: we discuss coherent conditional probabilities in A.1, explain 
how stochastic processes are coherent conditional probabilities with a specific domain in A.2 and treat the special case of 
(homogeneous) Markov chains in A.3.

A.1. Coherent conditional probabilities

Fix some non-empty set S called the outcome space. For this outcome space S , we let E (S) denote the set of all events—
that is, the set of all subsets of S—and furthermore let E∅(S) := E (S) \ {∅}. Coherent conditional probabilities are maps from 
a subset C of E (S) × E∅(S) to the real numbers that, in essence, satisfy the laws of probability. More specifically, Regazzini 
[18] put forward the following definition.

Definition 4 (Definition 1 in [18] or Definition 4.2 in [12]). Let S be a non-empty set and P a real-valued map from C ⊆
E (S) × E∅(S) to R. Then P is a coherent conditional probability if, for all n in N , (A1, C1), . . . , (An, Cn) in C and λ1, . . . , λn

in R,

max

{
n∑

i=1

λiICi (s)
(

P (Ai | Ci) − IAi (s)
) : s ∈ ∪n

i=1Ci

}
≥ 0. (A.1)

Lemma 18 (5)–(8) in [18]. Let S be a non-empty set. If P is a coherent conditional probability on C ⊆ E (S) × E∅(S), then,

P1. P (A | C) ≥ 0 for all (A, C) in C ;
P2. P (A | C) = 1 for all (A, C) in C with C ⊆ A;
P3. P (A ∪ B | C) = P (A | C) + P (B | C) for all (A, C), (B, C) and (A ∪ B, C) in C such that A ∩ B = ∅;
P4. P (A ∩ B | C) = P (A | B ∩ C)P (B | C) for all (A ∩ B, C), (A, B ∩ C) and (B, C) in C .

Lemma 18 states that a coherent conditional probability satisfies the standard laws of (conditional) probability on its do-
main: properties (P1)–(P3) state that P (· | C) is a (finitely-additive) probability measure, while (P4) is Bayes’ rule. Important 
to mention here is that the conditions (P1)–(P4) are, at least in general, not sufficient for P to be a coherent conditional 
probability! However, as is established in the following result, the conditions (P1)–(P4) are necessary and sufficient for P to 
be a coherent conditional probability if the domain C has some special structure.

Proposition 19 (Theorem 3 in [18]). Let S be a non-empty set and P a real-valued map from C ⊆ E (S) × E∅(S) to R. If there are 
algebras A ⊆ E (S) and H ⊆ E (S) such that H ⊆ A and C = A × (H \ {∅}), then P is a coherent conditional probability if and 
only if it satisfies (P1)–(P4).

An additional reason for using the more abstract condition of Definition 4 are the two following results, which are 
essential to our formal definition of the lumped stochastic process in Appendix B further on.

Lemma 20 (Theorem 4 in [18]). Let S be a non-empty set. If P is a coherent conditional probability on C ⊆ E (S) × E∅(S), then for 
any C � such that C ⊆ C � ⊆ E (S) × E∅(S), P can be extended to a coherent conditional probability P � on C � , in the sense that 
P �(A | C) = P (A | C) for all (A, C) ∈ C .
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Lemma 21 (Corollary 4.3 in [12]). Let S be a non-empty set. Then P is a coherent conditional probability on C ⊆ E (S) × E∅(S) if and 
only if it can be extended to a coherent conditional probability on E (S) × E∅(S).

A.2. Stochastic processes

We here briefly introduce the coherent conditional framework for stochastic processes; we refer to [12, Section 4.2] for 
a more extensive introduction. The outcome space is now the set of paths �, where a path ω basically is the state of the 
system over time, so a map from the non-negative real numbers to the (non-empty and finite) state space X . In the current 
setting, the only thing that is required of this set � is that

(∀u ∈ U∅)(∀xu ∈ Xu)(∃ω ∈ �)(∀t ∈ u) ω(t) = xt . (A.2)

For all t in R≥0 and x in X , we then define the elementary event

(Xt = x) := {ω ∈ � : ω(t) = x}.
Similarly, for all u in U and xu in Xu , we let

(Xu = xu) :=
⋂
t∈u

(Xt = xt).

We follow the convention that an empty intersection in expressions similar to the one above corresponds to �; hence 
(X∅ = x∅) = �. For all u in U , the set of elementary events

Eu :=
{

{(Xt = x) : t ∈R≥0, x ∈ X } if u = ∅,

{(Xt = x) : t ∈ u ∪ [max u,+∞), x ∈ X } otherwise,
(A.3)

induces an algebra of sets Au := 〈Eu〉.

Definition 5 (Definition 4.3 in [12]). A stochastic process P is a coherent conditional probability P with domain

C SP := {(Au, Xu = xu) : u ∈ U , xu ∈ Xu, Au ∈ Au}.

In order not to unnecessarily clutter our notation, we leave out the conditioning event if it is (X∅ = x∅) = �:

P (A) := P (A | X∅ = x∅) = P (A | �) for any A in A∅.

It immediately follows from Lemma 18 that a stochastic process P satisfies the laws of (conditional) probability. Because 
these laws are so well-known, we will frequently use them without explicitly referring to Lemma 18.

A.3. Precise (homogeneous) continuous-time Markov chains

The following is a more formal definition of the terms introduced in Section 2.3.

Definition 6. A stochastic process P : C SP →R is a continuous-time Markov chain if, for all t, � in R≥0, u in U<t , x, y in X
and xu in Xu ,

P (Xt+� = y | Xu = xu, Xt = x) = P (Xt+� = y | Xt = x).

This Markov chain P is homogeneous if furthermore

P (Xt+� = y | Xt = x) = P (X� = y | X0 = x).

To ensure that the process behaves sufficiently nice, Krak et al. [12] always assume that the Markov chain P is well-
behaved [12, Definition 4.4]; throughout the remainder, we implicitly assume that the Markov chains we consider are 
well-behaved. Our statement in Section 2.3 that a (well-behaved) homogeneous Markov chain is uniquely characterised 
by the triplet (X , π0, Q ) is justified by [12, Corollary 5.3 and Theorem 5.4].

Let P be a homogeneous Markov chain. To compute expectations that depend on the state at multiple future time 
points, we make use of Eqn. (6) and the law of iterated expectation, which states that for all u in U , v and w in U∅ with 
max u < min v and max v < min w , xu in Xu and f in L (Xu∪v∪w ),

E( f (Xu, Xv , Xw) | Xu = xu) = E(E( f (Xu, Xv , Xw) | Xu, Xv) | Xu = xu). (A.4)
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In this expression, we use the notational convention that E( f (Xu, Xv , Xw) | Xu, Xv) is the real-valued function on Xu∪v

that maps any (xu, xv) in Xu∪v to E( f (Xu, Xv , Xw) | Xu = xu, Xv = xv ).
We now follow the exposition in [12, Section 9]. First, we consider a non-empty sequence of time points u = t1, . . . , tn

in U∅ and a single future time point s in R≥0 such that s > max u = tn . Fix some real-valued function f in L (Xu∪s) that 
depends on the state at these time points. It is then well-known that, for any xu in Xu ,

E( f (Xu, Xs) | Xu = xu) = E( f (xu, Xs) | Xu = xu) = E( fxu (Xs) | Xu = xu), (A.5)

where we let fxu : X →R : x �→ fxu (x) := f (xu, x). It now follows from Eqns. (6) and (A.5) that

E( f (Xu, Xs) | Xu = xu) = [T s
tn

fxu ](xtn ), (A.6)

where [T s
tn

fxu ](xtn ) depends on the entire state history xu , and not just on xtn . Inspired by this equation, for any s in R≥0, 
u = t1, . . . , tn in U∅ such that tn < s and f in L (Xu∪s), we let T s

tn
f be the real-valued function on Xu defined by

[T s
tn

f ](xu) := [T s
tn

fxu ](xtn ) = [T s
tn

f (xu, Xs)](xtn ) for all xu ∈ Xu . (A.7)

We are now ready to move on to functions that depend on multiple future time points. To that end, we fix some 
u = t1, . . . , tn and v = s1, . . . , sm in U∅ with tn = max u < min v = s1, and some f in L (Xu∪v ). With some tedious but 
straightforward work—essentially repeatedly applying the law of iterated expectation and Eqn. (A.6), see for instance [12, 
Section 9.2]—we obtain that

E( f (Xu, Xv) | Xu = xu) = [T s1
tn

T s2
s1 · · · T sm

sm−1 f ](xu) for all xu ∈ Xu, (A.8)

where we use the notational convention defined in Eqn. (A.7).
Finally, we are ready to consider marginal expectations. From the law of iterated expectation and Eqn. (A.8), it now 

follows that for all u = t0, . . . , tn in U∅ such that t0 = 0 and all f in Xu ,

E( f (Xu)) = E( f (Xu) | X∅ = x∅) = E(E( f (Xu) | X0 = x0)) = Eπ0(T t1
t0

T t2
t1

· · · T tn
tn−1

f ), (A.9)

where Eπ0 is the expectation operator defined by Eπ0 (g) := 〈π0, g〉 for all g in L (X ). The requirement t0 = 0 is a purely 
formal one and does not impose any restrictions. Indeed, if min u �= 0, then—as argued in [12, right after Proposition 9.5]—
one can simply consider the extension f � of f to X{0}∪u , defined by f �(x, xu) := f (xu) for all (x, xu) in X{0}∪u .

Appendix B. Extra material for and proofs of the results in Section 3

In order to define the lumped process rigorously, we need a more formal construction than that given in Section 3. To 
that end, we now consider an arbitrary Markov chain P and an arbitrary lumping map � : X → X̂ .

For starters, we observe that the lumping map naturally induces a set of lumped paths �̂:

�̂ := {� ◦ ω : ω ∈ �} . (B.1)

Note that because � satisfies Eqn. (A.2), �̂ clearly satisfies a lumped version of Eqn. (A.2):

(∀u ∈ U∅)(∀x̂u ∈ X̂u)(∃ω̂ ∈ �̂)(∀t ∈ u) ω̂(t) = x̂t .

The elementary events are now of the form

( X̂t = x̂) := {ω̂ ∈ �̂ : ω̂(t) = x̂},
with t in R≥0 and x̂ in X̂ . As before, for any u in U and x̂u in X̂u , we also let

( X̂u = x̂u) :=
⋂
t∈u

( X̂t = x̂t),

where ( X̂∅ = x̂∅) = �̂. For any u in U , the set of elementary elements

Êu :=
{

{( X̂t = x̂) : t ∈R≥0, x̂ ∈ X̂ } if u = ∅,

{( X̂t = x̂) : t ∈ u ∪ [max u,+∞), x̂ ∈ X̂ } otherwise,

induces the algebra of sets ˆAu := 〈Êu〉. The domain of the lumped stochastic process P̂ should hence be

Ĉ SP := {( Âu, X̂u = x̂u) : u ∈ U , x̂u ∈ X̂u, Âu ∈ ˆAu}.
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We have now introduced almost all concepts needed to formally define the lumped stochastic process P̂ . The sole 
remaining concept that we need is another inverse derived from �, this time from �̂ to �. To that end, we consider the 
map �−1

� : E (�̂) → E (�) that maps any subset Â of �̂ to

�−1
� ( Â) := {ω ∈ � : � ◦ ω ∈ Â}, (B.2)

which is a subset of �. Note that �−1
� is indeed an inverse, as clearly

{� ◦ ω : ω ∈ �−1
� ( Â)} = Â. (B.3)

The following result establishes that �−1
� maps events in the algebra ˆAu to events in the algebra Au .

Lemma 22. Consider a lumping map � : X → X̂ . Then for all u in U and x̂u in X̂u ,

�−1
� ( X̂u = x̂u) =

⋃
xu∈x̂u

(Xu = xu). (B.4)

More generally, for all u in U and Âu in ˆAu , �−1
� ( Âu) belongs to Au .

Proof. We start with proving the first part of the statement. To that end, we distinguish two cases: u = ∅ and u �= ∅. If 
u = ∅, then ( X̂u = x̂u) = �̂. From this and the definitions of �̂ and �−1

� , it then follows immediately that

�−1
� ( X̂u = x̂u) = �−1

� (�̂) = � = (Xu = xu),

which agrees with the stated.
Next, we assume that u �= ∅. Then

�−1
� ( X̂u = x̂u) = {ω ∈ � : � ◦ ω ∈ ( X̂u = x̂u)} = {ω ∈ � : (∀t ∈ u) [� ◦ ω](t) = x̂t}

=
⋂
t∈u

{ω ∈ � : [� ◦ ω](t) = x̂t} =
⋂
t∈u

⋃
xt∈x̂t

{ω ∈ � : ω(t) = xt}

=
⋂
t∈u

⋃
xt∈x̂t

(Xt = xt) =
⋃

xt1 ∈x̂t1

· · ·
⋃

xtn ∈x̂tn

(Xt1 = xt1) ∩ · · · ∩ (Xtn = xtn )

=
⋃

xu∈x̂u

⋂
t∈u

(Xt = xt) =
⋃

xu∈x̂u

(Xu = xu),

where we let u = t1, . . . , tn .
We now move on to the second part of the stated. If Âu = ∅, we infer from Eqn. (B.2) that �−1

� ( Â) = ∅, so �−1
� ( Âu)

belongs to Au . Fix some u in U and some Âu in ˆAu . It remains to consider the case Âu �= ∅. Because ˆAu is the algebra 
generated by the elementary events in Êu there is—see for instance also [12, Proof of Lemma C.3]—some time sequence v
in U with max u < min v and a non-empty set of tuples Ŝ ⊆ X̂u∪v such that

Âu =
⋃

ẑw∈ Ŝ

( X̂w = ẑw),

where we let w := u ∪ v . By Eqn. (B.2),

�−1
� ( Âu) =

⎧⎨
⎩ω ∈ � : � ◦ ω ∈

⋃
ẑw∈ Ŝ

( X̂w = ẑw)

⎫⎬
⎭=

⋃
ẑw∈ Ŝ

{ω ∈ � : � ◦ ω ∈ ( X̂w = ẑw)}.

Using the definition of ( X̂w = ẑw) and Eqn. (B.1), we write this as

�−1
� ( Âu) =

⋃
ẑw∈ Ŝ

{ω ∈ � : (∀t ∈ w) �(ω(t)) = ẑt} =
⋃

ẑw∈ Ŝ

(⋂
t∈w

{ω ∈ � : �(ω(t)) = ẑt}
)

=
⋃

ẑw∈ Ŝ

⎛
⎝⋂

t∈w

⎡
⎣⋃

zt∈ẑt

(Xt = zt)

⎤
⎦
⎞
⎠ .

It is now immediately clear that �−1( Âu) is an element of Au . �
�
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The inverse �−1
� naturally suggests a sensible formal definition of a lumped stochastic process P̂ : Ĉ SP →R. Recall from 

Definition 6, Definition 5 and Lemma 20 that the Markov chain P can be extended to a coherent conditional probability 
P � on E (�) × E∅(�). Then the lumped stochastic process P̂ : Ĉ SP → R corresponding to this extension P � is defined for all 
( Âu, X̂u = x̂u) in Ĉ SP as

P̂ ( Âu | X̂u = x̂u) := P �(�−1
� ( Âu) | �−1

� ( X̂u = x̂u)). (B.5)

This is a proper definition because �−1
� ( Âu) belongs to E (�) due to the definition of �−1

� and �−1
� ( X̂u = x̂u) belongs to 

E∅(�) due to Lemma 22 and Eqn. (A.2). Unfortunately, this definition is—at least in general—not unique, since the extension 
P � of the Markov chain P need not be unique. However, it does yield a stochastic process.

Theorem 23. Consider a Markov chain P and a lumping map � : X → X̂ . Let P � be a coherent extension of P to E (�) × E∅(X ). 
Then P̂ : Ĉ SP →R, as defined by Eqn. (B.5), is a stochastic process.

Proof. We first construct the real-valued map P̂ � on E (�̂) × E∅(�̂), defined by

P̂ �( Â | Ĉ) := P �(�−1
� ( Â) | �−1

� (Ĉ)) for all ( Â, Ĉ) ∈ E (�̂) × E∅(�̂). (B.6)

It is clear that P̂ is the restriction of P̂ � to Ĉ SP. Hence, it follows from Lemma 21 that P̂ is a stochastic process if P̂ � is a 
coherent conditional probability.

We now verify that P̂ � is indeed a coherent conditional probability. To that end, we fix any n in N , ( Â1, Ĉ1), . . . , ( Ân, Ĉn)

in E (�̂) × E∅(�̂) and λ1, . . . , λn in R and show that max S ≥ 0, where

S :=
{

n∑
i=1

λiIĈi
(ω̂)

(
P̂ �( Âi | Ĉi) − I Âi

(ω̂)
)

: ω̂ ∈
n⋃

i=1

Ĉi

}
.

Substituting Eqn. (B.6) yields

S =
{

n∑
i=1

λiIĈi
(ω̂)

(
P �(�−1

� ( Âi) | �−1
� (Ĉi)) − I Âi

(ω̂)
)

: ω̂ ∈
n⋃

i=1

Ĉi

}
.

Furthermore, using Eqns. (B.2) and (B.3) yields

S =
{

n∑
i=1

λiIĈi
(� ◦ ω)

(
P �(�−1

� ( Âi) | �−1
� (Ĉi)) − I Âi

(� ◦ ω)
)

: ω ∈
n⋃

i=1

�−1
� (Ĉi)

}
.

Observe that for all ω in � and Â ⊆ �̂,

I Â(� ◦ ω) =
{

1 if � ◦ ω ∈ Â

0 otherwise
=
{

1 if ω ∈ �−1
� ( Â)

0 otherwise
= I

�−1
� ( Â)

(ω), (B.7)

where the second equality follows from Eqn. (B.2). We substitute Eqn. (B.7) in our expression for S , to yield

S =
{

n∑
i=1

λiICi (ω)
(

P �(Ai | Ci) − IAi (ω)
) : ω ∈

n⋃
i=1

Ci

}
,

where, for all i in {1, . . . , n}, we let Ai := �−1
� ( Âi) and Ci := �−1

� (Ĉi). Because P � is a coherent conditional probability on 
E (�) × E∅(�), it follows from Definition 4 that max S ≥ 0. �

The previous theorem validates our use of the term “lumped stochastic process” for P̂ . However, at first sight, the 
sensibility of our definition might still not seem entirely obvious. That it nevertheless is, follows from the following two 
results. The first result provides a justification for Eqn. (10); the second one also makes clear that the lack of uniqueness in 
our definition is a consequence of conditioning on events with zero probability.

Corollary 24. Consider a Markov chain P , a coherent extension P � of P to E (�) × E∅(X ), a lumping map � : X → X̂ and the 
corresponding lumped stochastic process P̂ . For all u in U and x̂u in X̂u ,

P̂ ( X̂u = x̂u) = P �(�−1
� ( X̂u = x̂u)) =

∑
xu∈x̂u

P �(Xu = xu) =
∑

xu∈x̂u

P (Xu = xu) = P (Xu ∈ x̂u).
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Proof. It follows immediately from Eqn. (B.5) and Lemma 22 that

P̂ ( X̂u = x̂u) = P �(�−1
� ( X̂u = x̂u)) = P �(

⋃
xu∈x̂u

(Xu = xu)) =
∑

xu∈x̂u

P �(Xu = xu) =
∑

xu∈x̂u

P (Xu = xu),

where the third equality follows from the finite additivity of P � and the final equality holds because P � is an extension of 
P and (Xu = xu, �) belongs to the domain C SP of P for all xu in �−1(x̂u). Finally, it follows immediately from the finite 
additivity of P and Eqn. (9) that∑

xu∈x̂u

P (Xu = xu) = P (Xu ∈ x̂u). �

Proposition 25. Consider a Markov chain P and a lumping map � : X → X̂ , and let P̂ be a lumped stochastic process. Then for any 
( Âu, X̂u = x̂u) in Ĉ SP with P̂ ( X̂u = x̂u) =∑xu∈x̂u

P (Xu = xu) > 0,

P̂ ( Âu | X̂u = x̂u) =
∑

xu∈x̂u
P (�−1

� ( Âu) | Xu = xu)P (Xu = xu)∑
zu∈x̂u

P (Xu = zu)
.

Proof. Observe that by Eqn. (B.5),

P̂ ( Âu | X̂u = x̂u) = P �(�−1
� ( Âu) | �−1

� ( X̂u = x̂u)),

where P � is a coherent extension of P to E (�) × E∅(�). As P � is a coherent conditional probability, it follows from 
Lemma 18 (P4) that

P �(�−1
� ( Âu) | �−1

� ( X̂u = x̂u))P �(�−1
� ( X̂u = x̂u)) = P �(�−1

� ( Âu) ∩ �−1
� ( X̂u = x̂u)), (B.8)

where P �(�−1
� ( X̂u = x̂u)) := P �(�−1

� ( X̂u = x̂u) | �).
It follows immediately from Corollary 24 that

P �(�−1
� ( X̂u = x̂u)) = P̂ ( X̂u = x̂u) =

∑
zu∈x̂u

P (Xu = zu). (B.9)

Recall from Lemma 22 that �−1
� ( Âu) is an element of Au . Since �−1

� ( X̂u = x̂u) is clearly also an element of Au , this implies 
that �−1

� ( Âu) ∩ �−1
� ( X̂u = x̂u) is an element of Au as well. Consequently, we find that

P �(�−1
� ( Âu) ∩ �−1

� ( X̂u = x̂u)) = P (�−1
� ( Âu) ∩ �−1

� ( X̂u = x̂u)) = P (�−1
� ( Âu) ∩ (∪xu∈x̂u

(Xu = xu)))

=
∑

xu∈x̂u

P (�−1
� ( Âu) ∩ (Xu = xu))

=
∑

xu∈x̂u

P (�−1
� ( Âu) | Xu = xu)P (Xu = xu). (B.10)

Since 
∑

zu∈x̂u
P (Xu = zu) > 0, substituting Eqn. (B.9) and (B.10) in Eqn. (B.8) yields

P̂ ( Âu | X̂u = x̂u) = P �(�−1
� ( Âu) | �−1

� ( X̂u = x̂u)) =
∑

xu∈x̂u
P (�−1

� ( Âu) | Xu = xu)P (Xu = xu)∑
zu∈x̂u

P (Xu = zu)
. �

Appendix C. Extra material regarding Section 4

In this section of the appendix, we provide some more background information on (imprecise) Markov chains. More 
specifically, we focus on four relevant types of transformations in C.1, and explain how to compute lower expectations using 
the law of iterated expectation in C.2.

C.1. Lower transition (rate) operators

A lower transition rate operator—see for instance [12, Definition 7.2]—is a transformation R : L (X ) → L (X ) such that

LTR1. R( f + g) ≥ R f + R g for all f , g in L (X );
LTR2. R(λ f ) = λR f for all f in L (X ) and λ in R≥0;
LTR3. [RIy](x) ≥ 0 for all x, y in X with x �= y;
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LTR4. Rμ = 0 for all μ in R.

We have already seen in Section 4.2 that lower transition rate operators generate a lower transition rate operator, which can 
be thought of as the non-linear matrix exponential. The following lemma establishes a second connection between lower 
transition rate operators and lower transition operators.

Lemma 26 (Proposition 3 in [25]). Consider a transition rate operator Q on L (X ) and some � in R≥0 . Then (I + �Q ) is a lower 
transition operator if and only if �‖Q ‖ ≤ 2.

In the remainder, we will need the following interesting properties of lower transition operators. For their proofs, we 
refer to [28] and [12].

Lemma 27. Let T , T 1 and T 2 be lower transition operators on L (X ). Then

LT4. the composition T 1T 2 is a lower transition operator;
LT5. min f ≤ T f ≤ T f ≤ max f for all f in L (X );
LT6. T f ≤ T g for all f , g in L (X ) such that f ≤ g.

Because transition (rate) matrices are simply lower transition (rate) operators that are linear, Lemmas 26 and 27 spe-
cialise to transition (rate) matrices as follows.

Corollary 28. Consider a transition rate matrix Q on L (X ) and some � in R≥0 . Then (I + �Q ) is a transition matrix if and only if 
�‖Q ‖ ≤ 2.

Corollary 29. Let T , T1 and T2 be transition matrices on L (X ). Then

T4. the composition T1T2 is a transition matrix;
T5. min f ≤ T f ≤ max f for all f in L (X );
T6. T f ≤ T g for all f , g in L (X ) such that f ≤ g.

C.2. Computing lower (conditional) expectations

In order to compute lower (conditional) expectations of functions that depend on the state at a finite number of future 
time points, we follow exactly the same approach as the one for precise Markov chains that we have previously outlined 
in A.3; for a more detailed treatment, we refer to [12, Section 9]. We let M be a non-empty set of initial distributions 
and Q a non-empty bounded and convex set of transition rate matrices that has separately specified rows, and fix some 
u = t1, . . . , tn in U∅ . We first generalise the notational convention of Eqn. (A.7): for any s in R≥0 with s > max u = tn and 
any f in L (Xu∪s), we let T s

tn
f be the real-valued function on Xu defined by

[T s
tn

f ](xu) := [T s
tn

fxu ](xtn ) = [T s
tn

f (xu, Xs)](xtn ) for all xu ∈ Xu . (C.1)

It now follows from [12, Corollary 9.2] that, for any v = s1, . . . , sm in U∅ such that min v > max u and any f in L (Xu∪v ),

EW
Q,M ( f (Xu, Xv) | Xu = xu) = [T s1

tn
T s2

s1 · · · T sm
sm−1 f ](xu) for all xu ∈ Xu . (C.2)

Next, we move from conditional lower expectations to marginal ones. In [12, Proposition 9.5], Krak et al. establish that 
for all u = t0, . . . , tn in U∅ such that t0 = 0 and all f in L (Xu),

EW
Q,M ( f (Xu)) = EW

Q,M ( f (Xu) | X∅ = x∅) = EM (T t1
t0

T t2
t1

· · · T tn
tn−1

f ), (C.3)

where EM is the lower expectation operator defined by

EM (g) := inf {〈π, g〉 : π ∈ M } for all g ∈ L (X ).

Recall from A.3 that the requirement t0 = 0 is a purely formal one: if min u �= 0, then one considers the extension f � of f
to X{0}∪u .

Appendix D. Extra material for and proofs of the results in Section 5

Proposition 4. Let Q be a transition rate matrix and � : X → X̂ a lumping map. Then the corresponding transformation Q̂ is a 
lower transition rate operator.
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Proof. We simply need to verify (LTR1)–(LTR4).

(LTR1). Fix some x̂ in X̂ , and observe that for all f̂ and ĝ in L (X̂ ),

[Q̂ ( f̂ + ĝ)](x̂) = min

⎧⎨
⎩
∑

ŷ∈X̂

( f̂ ( ŷ) + ĝ( ŷ))
∑
y∈ ŷ

Q (x, y) : x ∈ x̂

⎫⎬
⎭

≥ min

⎧⎨
⎩
∑

ŷ∈X̂

f̂ ( ŷ)
∑
y∈ ŷ

Q (x, y) : x ∈ x̂

⎫⎬
⎭+ min

⎧⎨
⎩
∑

ŷ∈X̂

ĝ( ŷ)
∑
y∈ ŷ

Q (x, y) : x ∈ x̂

⎫⎬
⎭

= [Q̂ f̂ ](x̂) + [Q̂ ĝ](x̂).

(LTR2). Fix some x̂ in X̂ , and observe that for all f̂ in L (X̂ ) and λ in R≥0,

[Q̂ (λ f̂ )](x̂) = min

⎧⎨
⎩
∑

ŷ∈X̂

λ f̂ ( ŷ)
∑
y∈ ŷ

Q (x, y) : x ∈ x̂

⎫⎬
⎭= λmin

⎧⎨
⎩
∑

ŷ∈X̂

f̂ ( ŷ)
∑
y∈ ŷ

Q (x, y) : x ∈ x̂

⎫⎬
⎭= λ[Q̂ f̂ ](x̂).

(LTR3). Fix some x̂, ŷ in X̂ such that x̂ �= ŷ, and observe that

[Q̂ I ŷ](x̂) = min

⎧⎨
⎩
∑

ẑ∈X̂

I ŷ(ẑ)
∑
z∈ẑ

Q (x, z) : x ∈ x̂

⎫⎬
⎭= min

⎧⎨
⎩
∑
y∈ ŷ

Q (x, y) : x ∈ x̂

⎫⎬
⎭≥ 0,

where the inequality holds because Q (x, y) = [Q Iy](x) ≥ 0 for all x in x̂ and y in ŷ as Q is a transition rate matrix.

(LTR4). Fix some x̂ in X̂ and μ in R, and observe that

[Q̂ μ](x̂) = min

⎧⎨
⎩
∑

ŷ∈X̂

μ
∑
y∈ ŷ

Q (x, y) : x ∈ x̂

⎫⎬
⎭= min

⎧⎨
⎩
∑

y∈X

μQ (x, y) : x ∈ x̂

⎫⎬
⎭= 0,

where the final equality is immediate because the transition rate matrix Q has zero row-sums. �
Lemma 30. Let Q be a transition rate matrix and � : X → X̂ a lumping map. Then for any f̂ in L (X̂ ),

(Q̂ f̂ ) ◦ � ≤ Q ( f̂ ◦ �).

Proof. Fix an arbitrary x in X . Then some straightforward manipulations yield

[(Q̂ f̂ ) ◦ �](x) = (Q̂ f̂ )(�(x)) = min

⎧⎨
⎩
∑

ŷ∈X̂

f̂ ( ŷ)
∑
y∈ ŷ

Q (x′, y) : x′ ∈ �(x)

⎫⎬
⎭

= min

⎧⎨
⎩
∑

ŷ∈X̂

∑
y∈ ŷ

f̂ ( ŷ)Q (x′, y) : x′ ∈ �(x)

⎫⎬
⎭

= min

⎧⎨
⎩
∑

y∈X

[ f̂ ◦ �](y)Q (x′, y) : x′ ∈ �(x)

⎫⎬
⎭

= min
{
[Q ( f̂ ◦ �)](x′) : x′ ∈ �(x)

}
≤ [Q ( f̂ ◦ �)](x),

where the inequality follows from the fact that x is an element of �−1(�(x)). �
Lemma 31. Consider a Markov chain P and a lumping map � : X → X̂ . Let P � be a coherent extension of P to E (�) ×E∅(X ) and 
P̂ the corresponding lumped stochastic process. Fix some t in R≥0 , u in U<t , v in U∅ with min v > t, x̂ in X̂ and x̂u in X̂u . Then for 
any real-valued function f̂ on X̂v ,
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min{E([ f̂ ◦ �](Xv) | Xt = x) : x ∈ x̂} ≤ Ê( f̂ ( X̂v) | X̂u = x̂u, X̂t = x̂),

where Ê denotes the expectation with respect to the lumped stochastic process P̂ .

Proof. By definition of the lumped stochastic process, it holds that

Ê( f̂ ( X̂v) | X̂u = x̂u, X̂t = x̂) = E P∗([ f̂ ◦ �](Xv) | C),

where we let C := �−1
� ( X̂u = x̂u, X̂t = x̂) and where P∗ is the coherent extension of P to E (�) × E∅(�) used to define the 

lumped stochastic process P̂ . Recall from Lemma 22—more specifically, from Eqn. (B.4)—that

C = �−1
� ( X̂u = x̂u, X̂t = x̂) =

⋃
xu∈x̂u

⋃
x∈x̂

(Xu = xu, Xt = x).

We now use this in combination with the law of total probability, to yield

E P∗([ f̂ ◦ �](Xv) | C) =
∑

xu∈x̂u

∑
x∈x̂

E P∗([ f̂ ◦ �](Xv) | Xu = xu, Xt = x)P �(Xu = xu, Xt = x | C).

Observe that the right-hand side of this equality is a convex combination of terms of the form

E P∗([ f̂ ◦ �](Xv) | Xu = xu, Xt = x) = E([ f̂ ◦ �](Xv) | Xu = xu, Xt = x) = E([ f̂ ◦ �](Xv) | Xt = x),

where the first equality holds because P � is an extension of P and where the second equality follows from the Markov 
property. The stated now follows because a convex combination of terms is always bounded below by the minimum of 
these terms. �

In the remainder, we will need the following corollary.

Corollary 32. Consider a Markov chain P , a lumping map � : X → X̂ and a corresponding lumped stochastic process P̂ . Fix some 
t, � in R≥0 , u in U<t , x̂ and ŷ in X̂ and x̂u in X̂u . Then for any real-valued function f̂ on X̂ ,

min{[T t+�
t ( f̂ ◦ �)](x) : x ∈ x̂} ≤ Ê( f̂ ( X̂t+�) | X̂u = x̂u, X̂t = x̂),

where Ê denotes the expectation with respect to the lumped stochastic process P̂ .

Proof. This is an immediate consequence of Lemma 31 and Eqn. (6). �
A similar corollary of Lemma 31 provides a justification for Eqn. (12) in the main text.

Corollary 33. Consider a homogeneous Markov chain P , a lumping map � : X → X̂ and a corresponding lumped stochastic pro-
cess P̂ . Fix some t, � in R≥0 , u in U<t , x̂ and ŷ in X̂ and x̂u in X̂u . Then for any real-valued function f̂ on X̂ ,

min{E([ f̂ ◦�](X�) | X0 = x) : x ∈ x̂} ≤ Ê( f̂ ( X̂t+�) | X̂u = x̂u, X̂t = x̂) ≤ max{E([ f̂ ◦�](X�) | X0 = x) : x ∈ x̂},
where Ê denotes the expectation with respect to the lumped stochastic process P̂ .

Proof. The left inequality is an immediate consequence of Lemma 31 and the homogeneity of P ; the right inequality follows 
almost immediately from applying the left one to − f̂ . �

The following technical result allows us to use the results from [12].

Lemma 34. Consider a well-behaved Markov chain P and a lumping map � : X → X̂ , and let P̂ be a lumped process. Then P̂ is
well-behaved [12, Definition 4.4], in the sense that, for all t in R≥0 , u in U<t , x̂, ŷ in X̂ and x̂u in X̂u ,

lim sup
�→0+

1

�

∣∣∣ P̂ ( X̂t+� = ŷ | X̂u = x̂u, X̂t = x̂) − Ix̂( ŷ)

∣∣∣< +∞

and, if t �= 0,

lim sup
�→0+

1

�

∣∣∣ P̂ ( X̂t = ŷ | X̂u = x̂u, X̂t−� = x̂) − Ix̂( ŷ)

∣∣∣< +∞.
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Proof. We only prove the first inequality, the proof of the second inequality is entirely similar. To that end, we fix any 
arbitrary � ∈R>0 and observe that

P̂ ( X̂t+� = ŷ | X̂u = x̂u, X̂t = x̂) = Ê(I ŷ( X̂t+�) | X̂u = x̂u, X̂t = x̂)

≥ min
{

E([I ŷ ◦ �](Xt+�) | Xt = x) : x ∈ x̂
}

= min
{

E(I�−1( ŷ)(Xt+�) | Xt = x) : x ∈ x̂
}

= min

{∑
y∈ ŷ

P (Xt+� = y | Xt = x) : x ∈ x̂

}
,

where the inequality follows from Lemma 31 with v = t +� and f̂ = I ŷ . Similarly, it follows from Lemma 31 with f̂ = −I ŷ
that

P̂ ( X̂t+� = ŷ | X̂u = x̂u, X̂t = x̂) ≤ max

{∑
y∈ ŷ

P (Xt+� = y | Xt = x) : x ∈ x̂

}
.

We combine these two inequalities, to yield

min

{∑
y∈ ŷ

P (Xt+� = y | Xt = x) : x ∈ x̂

}
− Ix̂( ŷ) ≤ P̂ ( X̂t+� = ŷ | X̂u = x̂u, X̂t = x̂) − Ix̂( ŷ)

≤ max

{∑
y∈ ŷ

P (Xt+� = y | Xt = x) : x ∈ x̂

}
− Ix̂( ŷ),

where we have subtracted Ix̂( ŷ) on both sides of the inequalities. To continue, we move Ix̂( ŷ) inside the optimisations and 
use that Ix̂( ŷ) =∑y∈ ŷ Ix for all x in x̂, to yield

min

{∑
y∈ ŷ

P (Xt+� = y | Xt = x) − Ix(y) : x ∈ x̂

}
≤ P̂ ( X̂t+� = ŷ | X̂u = x̂u, X̂t = x̂) − Ix̂( ŷ)

≤ max

{∑
y∈ ŷ

P (Xt+� = y | Xt = x) − Ix(y) : x ∈ x̂

}
.

Next, we take the absolute value and use that both the absolute value of a minimum and the absolute value of a maximum 
are lower than the maximum of the absolute values, to yield

| P̂ ( X̂t+� = ŷ | X̂u = x̂, X̂t = x̂) − Ix̂( ŷ)| ≤ max

{∣∣∣∣∑
y∈ ŷ

P (Xt+� = y | Xt = x) − Ix(y)

∣∣∣∣ : x ∈ x̂

}
.

From this, it follows that

1

�
| P̂ ( X̂t+� = ŷ | X̂u = x̂, X̂t = x̂) − Ix̂( ŷ)| ≤ max

{
1

�

∣∣∣∣∑
y∈ ŷ

P (Xt+� = y | Xt = x) − Ix(y)

∣∣∣∣ : x ∈ x̂

}

≤ max

{∑
y∈ ŷ

1

�
|P (Xt+� = y | Xt = x) − Ix(y)| : x ∈ x̂

}
.

The inequality that we set out to prove follows almost immediately from the above inequality:

lim sup
�→0+

1

�
| P̂ ( X̂t+� = ŷ | X̂u = x̂, X̂t = x̂) − Ix̂( ŷ)|

≤ lim sup
�→0+

max

{∑
y∈ ŷ

1

�
|P (Xt+� = y | Xt = x) − Ix(y)| : x ∈ x̂

}

= max

{
lim sup
�→0+

∑
y∈ ŷ

1

�
|P (Xt+� = y | Xt = x) − Ix(y)| : x ∈ x̂

}
,
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where the equality holds because we may change the order of the supremum and the maximum and then subsequently—
since the maximum is taken over a finite set—of the limit and the maximum. Finally, we use that the limit superior is 
sub-additive, to yield

lim sup
�→0+

1

�
| P̂ ( X̂t+� = ŷ | X̂u = x̂, X̂t = x̂) − Ix̂( ŷ)|

≤ max

{∑
y∈ ŷ

lim sup
�→0+

1

�
|P (Xt+� = y | Xt = x) − Ix(y)| : x ∈ x̂

}
< +∞,

where the final inequality holds because P is well-behaved and the maximum is taken over a finite set. �
Proposition 35. Consider a homogeneous Markov chain P and a lumping map � : X → X̂ , and let P̂ be a lumped stochastic process. 
Then for any t in R≥0 , u ∈ U<t and x̂u in X̂u ,

∂ T̂ s
t,x̂u

⊆ Q̂,

where ∂ T̂ s
t,x̂u

denotes the outer partial derivative—as defined in [12, Definition 4.8]—of the history-dependent transition matrix T̂ s
t,x̂u

—

see [12, Definition 4.6]—that, for all s in R≥0 with s ≥ t, is defined by

T̂ s
t,x̂u

(x̂, ŷ) := P̂ ( X̂s = ŷ | X̂u = x̂u, X̂t = x̂) for all x̂, ŷ ∈ X̂ .

In our proof for Proposition 35, we need the following result.

Lemma 36 (Theorem 2.1.1 in [19]). Let Q be a transition rate matrix. Then for all t, s in R≥0 with t ≤ s and all x, y in X ,

lim
�→0+

T s+�
t (x, y) − T s

t (x, y)

�
= [Q T s

t ](x, y)

and, if t �= 0,

lim
�→0+

T s
t (x, y) − T s

t−�(x, y)

�
= [Q T s

t ](x, y).

Proof. First, recall from Lemma 34 that P̂ is well-behaved. Hence, it follows from [12, Proposition 4.6] that ∂ T̂ s
t,x̂u

is a 

non-empty, bounded and closed subset of R(X̂ ). Therefore, we can fix an arbitrary element Q̂ � of ∂ T̂ s
t,x̂u

. By definition 
of the outer partial derivative ∂ , this implies that there is a monotonously decreasing sequence {�n}n∈N in R>0 with 
limn→+∞ �i = 0 such that either

lim
n→+∞

T̂ t+�n
t,x̂u

− I

�n
= Q̂ � or lim

n→+∞
T̂ t

t−�n,x̂u
− I

�n
= Q̂ �. (D.1)

We now proceed our argument under the assumption that it is the left equality that holds. The argument for the alternate 
case is entirely similar due to the homogeneity of P .

Fix any arbitrary f̂ in L (X̂ ). Observe that as a consequence of Eqn. (D.1) and the equality [I f̂ ](x̂) = f̂ (x̂),

lim
n→+∞

[T̂ t+�n
t,x̂u

f̂ ](x̂) − f̂ (x̂)

�n
= [Q̂ � f̂ ](x̂). (D.2)

Observe that, for all n in N ,

Ê( f̂ ( X̂t+�n ) | X̂u = x̂u, X̂t = x̂) =
∑

ŷ∈X̂

f̂ ( ŷ) P̂ ( X̂t+�n = ŷ | X̂u = x̂u, X̂t = x̂)

=
∑

ŷ∈X̂

f̂ ( ŷ)T̂ t+�n
t,x̂u

(x̂, ŷ) = [T̂ t+�n
t,x̂u

f̂ ](x̂),

where the final equality follows from the linearity of T̂ t+�n
t,x̂u

. It follows from this equality, Corollary 32 and the fact that 

[ f̂ ◦ �](x) = f̂ (�(x)) = f̂ (x̂) for all x ∈ x̂ that, for all n in N ,
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min

{
[T t+�n

t ( f̂ ◦ �)](x) − [ f̂ ◦ �](x)

�n
: x ∈ x̂

}
≤

[T̂ t+�n
t,x̂u

f̂ ](x̂) − f̂ (x̂)

�n
. (D.3)

Observe now that, for all n in N and x ∈ x̂,

[T t+�n
t ( f̂ ◦ �)](x) − [ f̂ ◦ �](x) =

∑
y∈X

[ f̂ ◦ �](y)
(

T t+�n
t (x, y) − T t

t (x, y)
)

,

where we have used that T t
t = I , and

[Q ( f̂ ◦ �)](x) =
∑

y∈X

[ f̂ ◦ �](y)Q (x, y) =
∑

y∈X

[ f̂ ◦ �](y)[Q T t
t ](x, y).

As the sequence {�n}n∈N converges to 0, it follows from Lemma 36 and the previous two equalities that

lim
n→+∞

[T t+�n
t ( f̂ ◦ �)](x) − [ f̂ ◦ �](x)

�n
=
∑
y∈ ŷ

[ f̂ ◦ �](y) lim
n→+∞

T t+�n
t (x, y) − T t

t (x, y)

�n

=
∑
y∈ ŷ

[ f̂ ◦ �](y)[Q T t
t ](x, y) = [Q ( f̂ ◦ �)](x).

Fix some ε in R>0. Due the previous equality, and also because �−1(x̂) is finite, there is some N in N such that

(∀n ∈ N,n ≥ N)(∀x ∈ x̂)

∣∣∣∣∣ [T t+�n
t ( f̂ ◦ �)](x) − [ f̂ ◦ �](x)

�n
− [Q ( f̂ ◦ �)](x)

∣∣∣∣∣≤ ε

We combine this inequality with Eqn. (D.3), to yield

(∀n ∈ N,n ≥ N) min
{[Q ( f̂ ◦ �)](x) : x ∈ x̂

}− ε ≤
[T̂ t+�n

t,x̂u
f̂ ](x̂) − f̂ (x̂)

�n
.

We take the limit for n going to +∞ on both sides of this inequality and use Eqn. (D.2), to yield

min
{[Q ( f̂ ◦ �)](x) : x ∈ x̂

}− ε ≤ [Q̂ � f̂ ](x̂),

which, since ε is an arbitrary positive real number, implies that min{[Q ( f̂ ◦�)](x) : x ∈ x̂} ≤ [Q̂ � f̂ ](x̂). Recall from Lemma 30
that

[Q ( f̂ ◦ �)](x) =
∑

y∈X

Q (x, y)[ f̂ ◦ �](y) =
∑

ŷ∈X̂

f̂ ( ŷ)
∑
y∈ ŷ

Q (x, y) ≥ [Q̂ f̂ ](x̂)

for any x ∈ x̂, such that [Q̂ f̂ ](x̂) ≤ [Q̂ � f̂ ](x̂). Because f̂ was an arbitrary real-valued function on X̂ , it follows from this 
inequality and Eqn. (21) that Q̂ � is contained in Q̂. �
Theorem 6. Consider a homogeneous Markov chain P and a lumping map � : X → X̂ . Then any corresponding lumped stochastic 
process P̂ is contained in PW

Q̂,M̂
.

Proof. Recall that P̂ is well-behaved by Lemma 34. Furthermore, P̂ is clearly consistent with M̂ and, by Proposition 35, 
also consistent with Q̂. The stated now follows because, by definition, PW

Q̂,M̂
contains all well-behaved stochastic processes 

that are consistent with Q̂ and M̂ . �
Appendix E. Extra material for and proofs of the results in Section 6

Our proof of Theorem 8 is split up into several intermediary results. First, we link the matrix exponential T s
t generated 

by the transition rate matrix Q with the non-linear transformation T̂ s
t generated by the lumped lower transition rate 

operator Q̂ .

Lemma 37. Consider a transition rate matrix Q and a lumping map � : X → X̂ . Then for any δ in R≥0 such that δ‖Q ‖ ≤ 2, n in 
N0 and f̂ in L (X̂ ),

[(I + δ Q̂ )n f̂ ] ◦ � ≤ (I + δQ )n( f̂ ◦ �).



A. Erreygers, J. De Bock / International Journal of Approximate Reasoning 115 (2019) 96–133 125
Proof. Observe that the stated holds trivially if n = 0. Hence, without loss of generality, we assume that n > 0. Fix some 
arbitrary ĝ in L (X̂ ). Recall from Lemma 30 that

(Q̂ ĝ) ◦ � ≤ Q (ĝ ◦ �).

From this, it follows that

[(I + δ Q̂ )ĝ] ◦ � = ĝ ◦ � + δ(Q̂ ĝ) ◦ � ≤ ĝ ◦ � + δQ (ĝ ◦ �) = (I + δQ )(ĝ ◦ �). (E.1)

As δ‖Q ‖ ≤ 2, it follows from Corollary 28 that (I + δQ ) is a transition matrix. Consequently, we find that

(I + δQ )n( f̂ ◦ �) = (I + δQ )n−1(I + δQ )( f̂ ◦ �) ≥ (I + δQ )n−1[(I + δ Q̂ ) f̂ ] ◦ �,

where the inequality follows from (T6) for the transition matrix T = (I + δQ )n−1—that (I + δQ )n−1 is a transition matrix 
follows from (T4)—and the functions f = [(I + δ Q̂ ) f̂ ] ◦ � and g = (I + δQ )( f̂ ◦ �), which satisfy f ≤ g due to Eqn. (E.1). 
Repeated application of the same trick yields

(I + δQ )n ( f̂ ◦ �) ≥ (I + δQ )n−1 [(I + δ Q̂ ) f̂ ] ◦ � ≥ (I + δQ )n−2[(I + δ Q̂ )2 f̂ ] ◦ � ≥ · · · ≥ [(I + δ Q̂ )n f̂ ] ◦ �,

as required. �
Lemma 38. Consider a transition rate matrix Q and a lumping map � : X → X̂ . Then for any t, s in R≥0 with t ≤ s and f̂ in 
L (X̂ ),

(T̂ s
t f̂ ) ◦ � ≤ T s

t ( f̂ ◦ �),

where T̂ s
t is the lower transition operator generated by Q̂ according to Eqn. (18).

Proof. For any n in N such that n ≥ (s − t)‖Q ‖/2, it follows from Lemma 37 that[(
I + s − t

n
Q̂

)n

f̂

]
◦ � ≤

(
I + s − t

n
Q

)n

( f̂ ◦ �).

The stated is obtained by taking the limit for n going to +∞ on both sides of the inequality and substituting Eqns. (7) and 
(18). �

We can easily extend Lemma 38 to functions that depend on a finite number of time points. For this result, we use the 
notational convention introduced in A.3 and C.2.

Lemma 39. Consider a transition rate matrix Q and a lumping map � : X → X̂ . Then for any u = t1, . . . , tn and v = s1, . . . , sm in 
U∅ with max u < min v and any f̂ in L (X̂u∪v ),(

T̂ s1
tn

T̂ s2
s1 · · · T̂ sm

sm−1 f̂
)

◦ � ≤ T s1
tn

T s2
s1 · · · T sm

sm−1( f̂ ◦ �).

Proof. Our proof is one by induction. If m = 1, then s1 = sm = s and v = s. Fix any xu in Xu and let x̂u := �(xu). By 
Eqn. (A.7),

[T s
tn

( f̂ ◦ �)](xu) = [T s
tn

( f̂ ◦ �)xu ](xtn ), (E.2)

where ( f̂ ◦ �)xu maps any x in X to ( f̂ ◦ �)(xu, x) = f̂ (x̂u, �(x)). It follows from Lemma 38 that

T s
tn

( f̂ ◦ �)xu ≥ (T̂ s
tn

f̂ x̂u
) ◦ �, (E.3)

where f̂ x̂u
maps any x̂ in X̂ to f̂ (x̂u, ̂x). Observe now that

[T s
tn

( f̂ ◦ �)](xu) = [T s
tn

( f̂ ◦ �)xu ](xtn ) ≥ [(T̂ s
tn

f̂ x̂u
) ◦ �](xtn ) = [T̂ s

tn
f̂ x̂u

](x̂tn )

= [T̂ s
tn

f̂ ](x̂u) = [(T̂ s
tn

f̂ ) ◦ �](xu),

where the first equality follows from Eqn. (E.2), the inequality follows from (E.3) and the third equality follows from 
Eqn. (C.1). Because xu was an arbitrary state instantiation in Xu , this inequality implies the stated for m = 1.

Next, we fix some m in N such that m ≥ 2, and assume that the stated holds for any sequence v that satisfies the 
conditions of the statement and has length m′ < m. We now show that this then implies the stated for any sequence v with 
length m. We apply the induction hypothesis with the sequences u′ := t1, . . . , tn, s1 and v ′ := s2, . . . , sm , to yield
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(
T̂ s2

s1 T̂ s3
s2 · · · T̂ sm

sm−1 f̂
)

◦ � ≤ T s2
s1 T s3

s2 · · · T sm
sm−1( f̂ ◦ �). (E.4)

Observe that both sides of this inequality are functions on Xu′ = Xu∪{s1} , and that the one on the left is clearly lumpable. 
We write this inequality as ĝ ◦ � ≤ h, where we let

ĝ := T̂ s2
s1 T̂ s3

s2 · · · T̂ sm
sm−1 f̂ and h := T s2

s1 T s3
s2 · · · T sm

sm−1( f̂ ◦ �).

Fix some xu in Xu , and let x̂u := �(xu). From ĝ ◦ � ≤ h, we infer that (ĝ ◦ �)xu ≤ hxu . Therefore,

[T s1
tn

(ĝ ◦ �)](xu) = [T s1
tn

(ĝ ◦ �)xu ](xtn ) ≤ [T s1
tn

hxu ](xtn ) = [T s1
tn

h](xu), (E.5)

where the equalities follow from Eqn. (A.7) and the inequality holds due to (T6) and (ĝ ◦ �)xu ≤ hxu . Furthermore, we 
observe that (ĝ ◦ �)xu = ĝx̂u

◦ �. Therefore, it follows from Lemma 38 that

[T s1
tn

(ĝ ◦�)](xu) = [T s1
tn

(ĝ ◦�)xu ](xtn ) = [T s1
tn

(ĝx̂u
◦�)](xtn ) ≥ [T̂ s1

tn
ĝx̂u

](x̂tn ) = [T̂ s1
tn

ĝ](x̂u) = [(T̂ s1
tn

ĝ)◦�](xu), (E.6)

where the first equality follows from Eqn. (A.7) and the third equality follows from Eqn. (C.1). We now combine Eqns. (E.5)
and (E.6) and substitute the definitions of ĝ and h, to yield

[(T̂ s1
tn

T̂ s2
s1 T̂ s3

s2 · · · T̂ sm
sm−1 f̂ ) ◦ �](xu) ≤ [T s1

tn
T s2

s1 T s3
s2 · · · T sm

sm−1( f̂ ◦ �)](xu).

The induction step now follows from this inequality because xu was an arbitrary state instantiation in Xu . �
The last intermediary result that we need is a formalisation of Eqn. (22).

Lemma 40. Consider a lumping map � : X → X̂ . Then for any u in U∅ and f in L (Xu),

f̂L ◦ � ≤ f ≤ f̂U ◦ �.

If f is furthermore lumpable with respect to �, then f̂L = f̂U = f̂ with f = f̂ ◦ �.

Everything is now set up to prove the following main result.

Theorem 8. Consider a homogeneous Markov chain P and a lumping map � : X → X̂ . Then for all u in U , v in U∅ with max u <
min v, xu in Xu and f in L (Xu∪v ),

EW
Q̂,M̂

( f̂L( X̂u, X̂v) | X̂u = x̂u) ≤ E( f (Xu, Xv) | Xu = xu) ≤ E
W
Q̂,M̂ ( f̂U( X̂u, X̂v) | X̂u = x̂u), (23)

where x̂u := �(xu).

Proof. We only need to prove the left inequality, as the right inequality is obtained by applying the left inequality to 
g := − f because E(g(Xu, Xv) | Xu = xu) = −E( f (Xu, Xv) | Xu = xu) and ĝL = − f̂U.

Observe that, as E is monotonous, it follows from Lemma 40 that

E( f (Xu, Xv) | Xu = xu) ≥ E(( f̂L ◦ �)(Xu, Xv) | Xu = xu). (E.7)

We now distinguish between two cases.
First, we assume that u = t1, . . . , tn is not equal to the empty sequence. In this case, it follows from Eqn. (A.8) that

E(( f̂L ◦ �)(Xu, Xv) | Xu = xu) = [T s1
tn

T s2
s1 · · · T sm

sm−1( f̂L ◦ �)](xu),

where v = s1, . . . , sm . We now use Lemma 39, to yield

E(( f̂L ◦ �)(Xu, Xv) | Xu = xu) = [T s1
tn

T s2
s1 · · · T sm

sm−1( f̂L ◦ �)](xu)

≥ [T̂ s1
tn

T̂ s2
s1 · · · T̂ sm

sm−1 f̂L](x̂u),

where x̂u := �(xu). Recall from Proposition 4 that Q̂ is non-empty, bounded and convex and has separately specified rows. 
Therefore, it follows from Eqn. (C.2) and the above inequality that

E(( f̂L ◦ �)(Xu, Xv) | Xu = xu) ≥ [T̂ s1
tn

T̂ s2
s1 · · · T̂ sm

sm−1 f̂L](x̂u)

= EW
Q̂,M̂

( f̂L( X̂u, X̂v) | X̂u = x̂u).

We now combine this inequality with Eqn. (E.7) to obtain the stated.
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Next, we assume that u = ∅. Then

E(( f̂L ◦ �)(Xv) | Xu = xu) = E(( f̂L ◦ �)(Xv) | X∅ = x∅) = E(( f̂L ◦ �)(Xv)),

where without loss of generality we have dropped the first argument Xu of f̂L ◦ �. Let v = s1, . . . , sm . If min v = s1 > 0, 
then we let v� := 0, s1, . . . , sm = {0} ∪ v and let f � be the extension of f to Xv� , as explained in A.3. If min v = s1 = 0, then 
we simply let v� := v and f � := f . This way, we have

E(( f̂L ◦ �)(Xv)) = E(( f̂ �
L ◦ �)(Xv� )) = Eπ0(T s1

0 · · · T sm
sm−1( f̂ �

L ◦ �)),

where the second equality follows from Eqn. (A.9). Note that in this expression, T s1
0 is interpreted differently depending on 

s1. If s1 > 0, then T s1
0 is the operator on X{0,s1} as defined by Eqn. (A.7). If s1 = 0, then T s1

0 is not needed in the expression, 
but we can leave it anyway as T s1

0 = T 0
0 = I . Observe now that

E(( f̂L ◦ �)(Xv) | Xu = xu) = Eπ0(T s1
0 · · · T sm

sm−1( f̂ �
L ◦ �))

= 〈π0, T s1
0 · · · T sm

sm−1( f̂ �
L ◦ �)〉 =

∑
x∈X

π0(x)[T s1
0 · · · T sm

sm−1( f̂ �
L ◦ �)](x)

≥
∑

x∈X

π0(x)[T̂ s1
0 · · · T̂ sm

sm−1 f̂ �
L ](�(x)) =

∑
x̂∈X̂

[T̂ s1
0 · · · T̂ sm

sm−1 f̂ �
L ](x̂)

∑
x∈x̂

π0(x)

=
∑

x̂∈X̂

[T̂ s1
0 · · · T̂ sm

sm−1 f̂ �
L ](x̂)π̂0(x̂) = 〈π̂0, T̂ s1

0 · · · T̂ sm
sm−1 f̂ �

L 〉

= Eπ̂0
(T̂ s1

0 · · · T̂ sm
sm−1 f̂ �

L ) = EM̂ (T̂ s1
0 · · · T̂ sm

sm−1 f̂ �
L )

= EW
Q̂,M̂

( f̂ �
L ( X̂v� )) = EW

Q̂,M̂
( f̂L( X̂v)) = EW

Q̂,M̂
( f̂L( X̂v) | X̂u = x̂u),

where the inequality follows from Lemma 38 and, if s1 = 0, the fact that T̂ s1
0 = T̂ 0

0 = I , and where the penultimate equality 
follows from Eqn. (C.3). The stated is now immediately obtained by combining (E.7) with the above inequality. �
Appendix F. Extra material for and proofs of the results in Section 7

F.1. Ergodicity and irreducibility

The following three results are essentially well-known, but we did not find a good reference for them.

Proposition 9. A transition rate matrix Q is ergodic if and only if

Xtop := {x ∈ X : (∀y ∈ X ) y � x} �= ∅.

Proof. First, we observe that Definition 2 is just a specialisation of Definition 7 further on—the definition of ergodicity for a 
lower transition rate operator—to transition rate matrices. Next, we observe that for the transition rate matrix Q , the upper 
reachability relation · � ·—see F.2 further on—is equivalent to our accessibility relation · � ·. This upper reachability relation 
· � · is essential to the necessary and sufficient condition for ergodicity of a lower transition rate operator established in [13, 
Theorem 19]. The condition exists of two parts: top class regularity and top class absorption. The transition rate matrix Q
satisfies top class regularity if and only if Xtop �= ∅. We now claim that in this case, Q also satisfies top class absorption. 
More specifically, the top class Xtop is lower reachable—in the sense of [13, Definition 8]—from any state x not in this top 
class. If this claim is true, then it follows from [13, Theorem 19] that Q is ergodic if and only if

Xtop = {x ∈ X : (∀y ∈ X ) y � x} �= ∅,

as we had to prove.
We now set out to verify our claim about top class absorption. By [13, Definition 8], this claim is verified if we can prove 

that X \ Xtop ⊆ An , where the non-decreasing sequence A0, A1, . . . is defined by the initial condition A0 := Xtop and, for 
all k in N0, the recursive relation

Ak+1 := Ak ∪ {z ∈ X \ Ak : [Q IAk ](z) > 0},
and where n is the first index such that An = An+1. To prove this, we fix some x in X \ Xtop and y in Xtop. Observe 
that x � y as y belongs to the top class Xtop; hence, there is a sequence x = x0, x1 . . . , xm = y in X such that, for all i in 
{1, . . . , m}, [Q Ixi ](xi−1) = Q (xi−1, xi) > 0.
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Observe that, for all k in N0, z1 in X \ Ak and z2 in Ak , Q (z1, z2) ≥ 0 because z1 �= z2 and Q is a transition rate matrix. 
Hence,

[Q IAk ](z1) =
∑

z2∈Ak

Q (z1, z2) > 0 ⇔ (∃z� ∈ Ak) Q (z1, z�) > 0. (F.1)

We now claim that xm−1 belongs to A1. This claim is trivially verified if xm−1 ∈ A0, as A0 ⊆ A1 by definition. If xm−1 /∈ A0, 
then because y belongs to A0 = Xtop and Q (xm−1, y) > 0, it follows from Eqn. (F.1)—with k = 0, z1 = x and z� = y—that 
[Q IA0 ](xm−1) > 0, which verifies our claim in this case.

Next, we verify that xm−2 belongs to A2. We again distinguish two cases. If xm−2 ∈ A1, then this claim is trivially true 
because A1 ⊆ A2 by construction. If xm−2 /∈ A1, then because xm−1 belongs to A1 and Q (xm−2, xm−1) > 0, it follows from 
Eqn. (F.1)—with k = 1, z1 = xm−2 and z� = xm−1—that [Q IA1 ](xm−2) > 0, from which we infer the veracity of our claim.

It is clear that we can repeat the same argument to verify that xm−3 belongs to A3, and so on. If we continue this 
way, we eventually obtain that x = x0 is an element of Am . This implies that x is an element of An as well because 
A0 ⊆ A1 ⊆ · · · ⊆ Am and An = An+k for all k in N . Because x was an arbitrary element of X \ Xtop, we infer from this that 
X \ Xtop ⊆ An , as required. �
Proposition 10. Let Q be an ergodic transition rate matrix. Then the matrix Q ′ on L (Xtop), defined by

Q ′(x, y) := Q (x, y) for all x, y in Xtop,

is an irreducible transition rate matrix. Furthermore, for all f in L (X ), 〈π∞, f 〉 = 〈π ′∞, f ′〉, where π ′∞ is the limit distribution of 
Q ′ and f ′ is the restriction of f to Xtop .

Proof. Our proof hinges on the following claim:

Q (x, y) = 0 for all x ∈ Xtop and y ∈ X \ Xtop (F.2)

To verify this claim, we fix any such x and y, and assume ex-absurdo that Q (x, y) �= 0. As x �= y, this is equivalent to 
Q (x, y) > 0 because Q (x, y) ≥ 0 since Q is a transition rate matrix. Fix any arbitrary z in X . As x is a state in the top 
class, we know that z � x, or equivalently, that there is a sequence z = x0, . . . , xn = x such that Q (xi−1, xi) > 0 for all i in 
{1, . . . , n}. If we let xn+1 := y, then clearly Q (xi−1, xi) > 0 for all i in {1, . . . , n + 1}; hence, z � y. As z was an arbitrary 
state, this implies that y is a state in the top class Xtop, which contradicts our initial assumption.

We now use Eqn. (F.2) to verify that Q ′ is an irreducible transition rate matrix. That Q ′ is a transition rate matrix—that 
is, that it has non-negative off-diagonal elements and rows that sum up to zero—follows almost immediately from Eqn. (F.2)
and the same properties for Q . Hence, we focus on verifying that Q ′ is irreducible. To verify this, we need to show that 
for any arbitrary x and y in Xtop, there is a sequence x = x0, . . . , xn = y in Xtop such that Q ′(xi−1, xi) > 0 for all i in 
{1, . . . , n}. To that end, we fix any arbitrary x and y in Xtop. Because y belongs to the top class Xtop, there is a sequence 
x = x0, . . . , xn = y in X such that Q (xi−1, xi) > 0 for all i in {1, . . . , n}. As x0 is in the top class and Q (x0, x1) > 0, it follows 
from Eqn. (F.2) that x1 belongs to the top class Xtop. Repeating this argument, we obtain that the entire sequence x1, . . . , xn

belongs to the top class Xtop. Consequently, Q ′(xi−1, xi) = Q (xi−1, xi) > 0 for all i in {1, . . . , n}, as required.
To prove the second part of the stated, we recall from Section 7.3 that as Q ′ is irreducible, it has a unique limit distri-

bution π ′∞ that satisfies the equilibrium condition

(∀y ∈ Xtop)
∑

x∈Xtop

π ′∞(x)Q ′(x, y) = 0.

Observe that, for all y in Xtop,

0 =
∑

x∈Xtop

π ′∞(x)Q (x, y) =
∑

x∈X

π�(x)Q (x, y), (F.3)

where we let π� be the distribution on X given for all x in X by π�(x) := π ′∞(x) if x is in Xtop and π�(x) := 0 otherwise. 
Furthermore, it now follows from Eqn. (F.2) and our definition of π� that∑

x∈X

π�(x)Q (x, y) = 0 for all y ∈ X \ Xtop.

The above equality and Eqn. (F.3) imply that π� satisfies the equilibrium condition for Q . As the only distribution that 
satisfies this equilibrium condition is the limit distribution π∞ of Q , we have proven that π� = π∞ . To obtain the second 
part of the stated, we observe that 〈π∞, f 〉 = 〈π�, f 〉 = 〈π ′, f ′〉, where the second equality holds because π�(x) = 0 for all 
x in X \ Xtop. �
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Lemma 41. Let Q be a transition rate matrix and δ in R>0 such that δ‖Q ‖ < 2. If Q is ergodic, then (I + δQ ) is ergodic in the sense 
of [27, Definition 4.7].

Proof. Fix any δ in R>0 such that δ‖Q ‖ < 2. By Lemma 28, T := (I + δQ ) is a transition matrix. That T is ergodic if Q is 
ergodic follows from several other results. It follows from [25, Theorem 8], [28, Proposition 7] and [28, Definition 2] that 
for all f in L (X ), limn→+∞〈π0, T n f 〉 exists and does not depend on the initial distribution π0 in D(X ). Because this is 
clearly equivalent to the condition in [27, Definition 4.7], we have proven the stated. �
F.2. Ergodicity and irreducibility in the imprecise case

Just like precise Markov chains, their imprecise counterparts also have some nice ergodic properties. For a detailed 
exposition of these properties, we refer the interested reader to our previous work [13,25]. We here only mention the 
definitions and results that we will need in the remainder.

Definition 7 (Definition 6 in [13]). The lower transition rate operator Q is ergodic if, for any f ∈ L (X ), limt→+∞ T t
0 f is a 

constant function.

Note the similarity between Definition 2 and Definition 7. In fact, the former is just the precise version of the latter. 
Therefore, it should not come as a surprise that the accessibility relation · � · has an imprecise counterpart. Following 
[13, Definition 7], we say that a state x is upper reachable from the state y, denoted by y � x, if there is a sequence 
y = x0, . . . , xn = x in X such that [Q Ixi ](xi−1) = −[Q (−Ixi )](xi−1) > 0 for all i in {1, . . . , n}.

Definition 8. The lower transition rate operator Q is called irreducible if

Xtop := {x ∈ X : (∀y ∈ X ) y � x} = X .

Corollary 42. If the lower transition rate operator Q is irreducible, then it is ergodic.

Proof. This is an immediate consequence of [13, Theorem 19]. �
Note that Corollary 42 resembles Proposition 9, although the latter establishes a necessary and sufficient condition for 

the ergodicity of a transition rate matrix Q while the former only establishes a sufficient condition for the ergodicity of a 
lower transition rate operator Q . Similarly, the following result resembles Proposition 11, in the sense that it establishes 
the convergence of (I + δQ )n f .

Corollary 43. If the lower transition rate operator Q is ergodic, then for any f in L (X ) and δ in R>0 with δ‖Q ‖ < 2, (I + δQ )n f
converges to a constant function in the limit for n → +∞.

Proof. Fix any δ in R>0 such that δ‖Q ‖ < 2 and let T := (I + δQ ). Then by [25, Proposition 3], T is a lower transition 
operator. Furthermore, since Q is ergodic, it follows from [25, Theorem 8] and either [28, Proposition 7] or [29, Theorem 21]
that the lower transition operator T is also ergodic, meaning that, for all f in L (X ), limn→+∞ T n f = limn→+∞(I + δQ )n f
exists and is a constant function. �
F.3. Bounding limit expectations

Lemma 44. Let Q be a transition rate matrix and � : X → X̂ a lumping map. If Q is irreducible, then Q̂ is irreducible as well.

Proof. To prove that Q̂ is irreducible, we need to verify that x̂ � ŷ for all x̂, ŷ in X̂ . Observe that, by definition, x̂ � x̂ for 
all x̂ in X̂ . Hence, we now consider any x̂, ŷ in X̂ such that x̂ �= ŷ, and verify that indeed x̂ � ŷ.

Fix any x in �−1(x̂) and y in �−1( ŷ). Then as Q is irreducible, it follows from Proposition 9 that there is a sequence 
x = x0, . . . , xn = y in X such that Q (xi−1, xi) > 0 for all i in {1, . . . , n}. If for all i in {0, . . . , n} we let x̂i := �(xi), then 
x̂0, . . . , ̂xn is obviously a sequence in X̂ such that x̂0 = x̂ and x̂n = ŷ. It may occur for several indices j in {0, . . . , n − 1} that 
there are consecutive entries x̂ j, ̂x j+1, . . . that are all equal to x̂ j . For each of those indices j we delete these consecutive 
entries x̂ j+1, . . . from the sequence; this way, we end up with the shorter sequence x̂i0 , . . . , ̂xim in X̂ , where {i0, . . . , im} is 
an increasing subsequence of {1, . . . , n}. Note that by construction x̂i0 = x̂, x̂im = ŷ and x̂i(k−1)

�= x̂ik for all k in {1, . . . , m}.
Fix now any k in {1, . . . , m}. Unfortunately, it does not necessarily hold that Q (xi(k−1)

, xik ) > 0. However, we have removed 
the consecutive entries in such a way that Q (xi −1, xi ) > 0. Because clearly xi −1 ∈ x̂i and xi ∈ x̂i , it now follows that
k k k (k−1) k k
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[Q̂ Ix̂ik
](x̂i(k−1)

) = −[Q̂ (−Ix̂ik
)](x̂i(k−1)

)

= −min

⎧⎨
⎩−

∑
ŷ∈X̂

Ix̂ik
( ŷ)
∑
y∈ ŷ

Q (x, y) : x ∈ x̂i(k−1)

⎫⎬
⎭

= max

⎧⎨
⎩
∑

ŷ∈X̂

Ix̂ik
( ŷ)
∑
y∈ ŷ

Q (x, y) : x ∈ x̂i(k−1)

⎫⎬
⎭= max

⎧⎪⎨
⎪⎩
∑
y∈x̂ik

Q (x, y) : x ∈ x̂i(k−1)

⎫⎪⎬
⎪⎭

≥
∑
y∈x̂ik

Q (xik−1, y) ≥ Q (xik−1, xik ) > 0,

where the second inequality holds because x̂i(k−1)
�= x̂ik implies that xik−1 �= y for all y in �−1(x̂ik ). Consequently, ŷ � x̂, as 

desired. �
Proposition 11. If Q is an ergodic transition rate matrix, then for all f in L (X ), δ in R>0 with δ‖Q ‖ < 2, and n in N0 ,

min(I + δQ )n f ≤ 〈π∞, f 〉 ≤ max(I + δQ )n f .

Furthermore, the lower and upper bounds in this expression become monotonously tighter with increasing n, and converge to 〈π∞, f 〉
as n approaches +∞.

Proof. Fix any δ in R>0 such that δ‖Q ‖ < 2, and let T := I + δQ . We recall from Lemma 41 that T is an ergodic transition 
matrix. For all f in L (X ),

〈π∞, T f 〉 = Eπ∞(T f ) = Eπ∞((I + δQ ) f ) = Eπ∞( f ) + δEπ∞(Q f ) = 〈π∞, f 〉 + δ〈π∞, Q f 〉 = 〈π∞, f 〉,
where the third equality follows from the linearity of the expectation Eπ∞ and the final equality holds because 〈π∞, Q f 〉 =
0 due to the equilibrium condition for Q . This equality is exactly the equilibrium condition for the ergodic transition matrix 
T . As π∞ satisfies this condition, it follows from [27, Definition 4.7 and Theorem 4.5] that limn→+∞[T n f ](x) = 〈π∞, f 〉 for 
all f in L (X ) and x in X .

Fix now any f in L (X ) and consider the sequence

{min(I + δQ )n f }n∈N0 = {min T n f }n∈N0 .

From the previous, we know that this sequence converges to 〈π∞, f 〉 in the limit for n → +∞. Since T is a transition 
matrix—that is, has non-negative elements and rows that sum up to one—min g ≤ min T g for all g in L (X ). It now 
follows from repeated application of this inequality that the sequence {min T n f }n∈N0 is non-decreasing. A similar argument 
shows that the sequence {max T n f }n∈N0 is non-increasing and converges to 〈π∞, f 〉 as well. �
Theorem 12. Consider an ergodic transition rate matrix Q and a lumping map � : X → X̂ . Then for all f in L (X ), δ in R>0 with 
δ‖Q ‖ < 2, and n in N0 ,

min(I + δ Q̂ )n f̂L ≤ 〈π∞, f 〉 ≤ max(I + δ Q̂ )n f̂U.

Moreover, for fixed δ, the lower and upper bounds in this expression become monotonously tighter with increasing n, and each converges 
to a—possibly different—limit as n approaches +∞. If Q is furthermore irreducible, (I + δ Q̂ )n f̂L and (I + δ Q̂ )n f̂U both converge to 
a—possibly different—constant function as n approaches +∞.

Proof. As we have seen multiple times before, it suffices to prove the stated for the lower bound, as the stated for the 
upper bound follows from applying the stated for the lower bound to g := − f , because 〈π∞, g〉 = −〈π∞, f 〉 and ĝL = − f̂U.

We now set out to prove the statement for the lower bound. As the expectation operator Eπ∞ defined by the limit 
distribution π∞ is monotonous, Lemma 40 implies that

〈π∞, f 〉 = Eπ∞( f ) ≥ Eπ∞( f̂L ◦ �) = 〈π∞, f̂L ◦ �〉. (F.4)

Observe now that

〈π∞, f 〉 ≥ 〈π∞, f̂L ◦ �〉 ≥ min(I + δQ )n( f̂L ◦ �) ≥ min[(I + δ Q̂ )n f̂L ◦ �] = min(I + δ Q̂ )n f̂L,

where the second inequality follows from Proposition 11 and the third inequality follows from Lemma 37.
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We end this proof by verifying the statement concerning the monotonous convergence of the lower bound. To that end, 
we first prove that

‖Q̂ ‖ ≤ ‖Q ‖. (F.5)

By [25, Proposition 4],

‖Q̂ ‖ = 2 max{−[Q̂ Ix̂](x̂) : x̂ ∈ X̂ }.
We now use some properties of the transition rate matrix Q and execute some straightforward manipulations, to yield 
Eqn. (F.5):

‖Q̂ ‖ = 2 max

⎧⎨
⎩−min

⎧⎨
⎩
∑

ŷ∈X̂

Ix̂( ŷ)
∑
y∈ ŷ

Q (x, y) : x ∈ x̂

⎫⎬
⎭ : x̂ ∈ X̂

⎫⎬
⎭

= 2 max

⎧⎨
⎩−min

⎧⎨
⎩
∑
y∈x̂

Q (x, y) : x ∈ x̂

⎫⎬
⎭ : x̂ ∈ X̂

⎫⎬
⎭

= 2 max

⎧⎨
⎩max

⎧⎨
⎩−

∑
y∈x̂

Q (x, y) : x ∈ x̂

⎫⎬
⎭ : x̂ ∈ X̂

⎫⎬
⎭

≤ 2 max
{

max
{−Q (x, x) : x ∈ x̂

} : x̂ ∈ X̂
}

= 2 max {−Q (x, x) : x ∈ X } = ‖Q ‖.
Since δ‖Q ‖ < 2, it follows from Eqn. (F.5) that δ‖Q̂ ‖ < 2. Therefore, (I +δ Q̂ ) is a lower transition operator by Lemma 26. 

Recall from (LT5) that min ĝ ≤ min(I + δ Q̂ ) ≤ max(I + δ Q̂ )ĝ ≤ max ĝ for all ĝ in L (X̂ ). By repeatedly applying these 
inequalities, we obtain for all n in N0 that

min f̂L ≤ min(I + δ Q̂ )n f̂L ≤ min(I + δ Q̂ )n+1 f̂L ≤ max(I + δ Q̂ )n+1 f̂L ≤ max(I + δ Q̂ )n f̂L ≤ max f̂L.

From this, we infer that {min(I + δ Q̂ )n f̂L}n∈N0 is a bounded, non-decreasing sequence of real numbers, and therefore this 
sequence converges to some real number by the Monotonous Convergence Theorem. If Q is furthermore irreducible, then 
it follows immediately from Lemma 44 and Corollary 43 that (I + δ Q̂ )n f̂L converges to a constant function as n approaches 
+∞. �
Theorem 13. Consider an ergodic transition rate matrix Q and a lumping map � : X → X̂ . Then for all Â ⊆ P(X̂ )6 and f in 
L (X ),

min{〈π̂ , f̂L〉 : π̂ ∈ DÂ} ≤ 〈π∞, f 〉 ≤ max{〈π̂ , f̂U 〉 : π̂ ∈ DÂ}
with

DÂ := {π̂ ∈ D(X̂ ) : (∀ Â ∈ Â) 〈π̂ , Q̂ I Â〉 ≤ 0}.

Proof. Recall from the beginning of the proof of Theorem 12 that we only need to prove the left inequality of the stated. 
Furthermore, recall from Eqn. (F.4) that

〈π∞, f 〉 ≥ 〈π∞, f̂L ◦ �〉.
Note that

〈π∞, f̂L ◦ �〉 =
∑

x∈X

f̂L(�(x))π∞(x) =
∑

x̂∈X̂

f̂L(x̂)
∑
x∈x̂

π∞(x) =
∑

x̂∈X̂

f̂L(x̂)π̂∞(x̂) = 〈π̂∞, f̂L〉,

where π̂∞ : X̂ →R : x̂ �→∑
x∈x̂ π∞(x). Combining the previously obtained inequality with the above equality yields

〈π̂∞, f̂L〉 ≤ 〈π∞, f 〉.
Hence, the stated follows if π̂∞ is contained in D̂Â .

6 Here and in the remainder, we denote the power set of the set S by P(S).
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We now set out to prove this using the equilibrium condition of Eqn. (24). To that end, we observe that it suffices to 
verify that for all Â in Â,

〈π̂∞, Q̂ I Â〉 ≤ 0.

Therefore, we fix an arbitrary Â in Â. By repeatedly applying Eqn. (24), we obtain

0 =
∑
x̂∈ Â

∑
x∈x̂

∑
y∈X

π∞(y)Q (y, x).

We now reorder the summations, to yield

0 =
∑

y∈X

π∞(y)
∑
x̂∈ Â

∑
x∈x̂

Q (y, x) =
∑

y∈X

π∞(y)
∑

x∈X

Q (y, x)[I Â ◦ �](x) =
∑

y∈X

π∞(y)[Q (I Â ◦ �)](y)

≥
∑

y∈X

π∞(y)[Q̂ I Â](�(y)) =
∑

ŷ∈X̂

[Q̂ I Â]( ŷ)
∑
y∈ ŷ

π∞(y) =
∑

ŷ∈X̂

[Q̂ I Â]( ŷ)π̂∞( ŷ)

= 〈π̂∞, Q̂ I Â〉,
where the inequality follows from Lemma 30. �
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