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Scalar linear systems

The controller is interested in the system

Xk+1 = aXk + buk +Wk, (1)

for k ∈ N = {0, 1, . . . , n}, where n ∈ N, a ∈ R and b ∈ R \ {0},
where

Xk+1 is the real-valued state,

uk is the real-valued control input,

Wk is the real-valued stochastic noise.

In general, system parameters a and b can be time dependent.
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xk of Xk (hence X0 ≡ x0).
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Scalar linear systems

The controller is interested in the system

Xk+1 = aXk + bφk(X
k) +Wk. (1)

Observation assumptions

1 Before applying uk, the controller observes the actual value
xk of Xk (hence X0 ≡ x0).

2 The controller has perfect recall.

Controller determines uk from state history xk := (x0, . . . , xk):

uk = φk(x
k).

φk : Rk+1 → R is a feedback function,

φ := (φ0, . . . , φn) is a control policy,

Φ denotes the set of all control policies.
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k) +Wk. (1)

Observation assumptions

1 Before applying uk, the controller observes the actual value
xk of Xk (hence X0 ≡ x0).

2 The controller has perfect recall.

Controller knows xk and φ→ can calculate wk−1.
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Optimality of a control policy

For any control policy φ ∈ Φ, any k ∈ N and any state history
xk ∈ Rk+1 we define the quadratic cost functional as

J [φ|xk] :=

n∑
`=k

rφ`(x
k, Xk+1:`)

2 + qX2
`+1,

where q ≥ 0 and r > 0 are real-valued coefficients.

Definition (Optimality)

A control policy φ̂ is optimal if for all x0

φ̂ ∈ arg min
φ∈Φ

E(J [φ|x0]).
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Precise noise model

Definition (Precise noise model or PNM)

The controller’s beliefs about the noise W0, . . . ,Wn are modelled
using a linear expectation operator E.

4 / 13



Optimality of a control policy

For any control policy φ ∈ Φ, any k ∈ N and any state history
xk ∈ Rk+1 we define the quadratic cost functional as

J [φ|xk] :=

n∑
`=k

rφ`(x
k, Xk+1:`)

2 + qX2
`+1,

where q ≥ 0 and r > 0 are real-valued coefficients.

Definition (Optimality)

A control policy φ̂ is optimal if for all x0

φ̂ ∈ arg min
φ∈Φ

E(J [φ|x0]).

5 / 13



Optimality of a control policy

Assume that at time k the controller knows the state history xk and
noise history wk−1.
We should only compare control policies φ ∈ Φ that could have
resulted in xk and wk−1, i.e. such that xk, wk−1 and φ are a
solution of the system dynamics.

Φ(xk, wk−1) :=
{
φ ∈ Φ: φ, xk and wk−1 are

a solution of the system dynamics.
}

Definition (Optimality)

A control policy φ̂ is optimal for the state history xk and the noise
history wk−1 if

φ̂ ∈ arg min
φ∈Φ(xk,wk−1)

E(J [φ|xk]|wk−1).
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The principle of optimality

Principle of optimality

A control policy that is “optimal” for the “current state” should also
be optimal for the “remaining states” it can end up in.

Assume that φ̂ is optimal for all x0 ∈ R.
The controller

1 observes x0,
2 applies u0 = φ0(x0),
3 observes x1 and computes w0.

Is φ̂ optimal for (x0, x1) and w0? Not necessarily!

Definition (Complete optimality)

If for all k ∈ N the control policy φ ∈ Φ is optimal for all xk and
wk−1 such that xk, wk−1 and φ are compatible, then it is
completely optimal.
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Unique optimal control policy

Theorem

The unique completely optimal control policy φ̂ is given by

φ̂k(x
k) := −r̃kb

(
mk+1axk + hk|wk−1

)
.

r̃k and mk+1 are derived from backwards recursive relations.

Feedforward hk|wk−1 is derived from hn+1|wn := 0 and

hk|wk−1 := ar̃k+1rE(hk+1|wk−1,Wk
|wk−1) +mk+1E(Wk|wk−1).

− Precise specification of noise model is necessary.
− Calculating the feedforward is intractable.
− Backwards recursive calculations

+ Almost immediately generalisable to time-dependent ak, bk,
rk and qk+1 and/or multi-dimensional systems.
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Unique optimal control policy
Disadvantages

− Calculating the feedforward is intractable.

S White noise model: W0, . . . ,Wn are mutually independent.

Feedforward hk|wk−1 is derived from hn+1|wn := 0 and

hk|wk−1 := ar̃k+1rE(hk+1|wk−1,Wk
|wk−1)+mk+1E(Wk|wk−1).

− Backwards recursive calculations
S White noise model & stationarity simplify these calculations.

If E(Wk) ≡ E(W ) for all k ∈ N , then

mk+1 −−−→
n→∞

m, r̃k −−−→
n→∞

r̃, hk −−−→
n→∞

h.
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Partially specified noise model

− Precise specification of noise model is necessary.

Definition (Partially specified noise model or PSNM)

The partially specified noise model E is the largest subset of the
set of all precise noise models such that for all E ∈ E , all k ∈ N
and all wk−1

E(Wk) ≤ E(Wk|wk−1) ≤ E(Wk).

Note: E does not assume independence!

Definition (E-admissibility)

A control policy is E-admissible if it is completely optimal for at least
one precise noise model in the partially specified noise model.
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E-admissible control policies

From the definition of E-admissibility, it follows immediately that any
E-admissible control policy has the form

φk(x
k) = −r̃kb

(
mk+1axk + hk|wk−1

)
.
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E-admissible control policies

Theorem

For any E-admissible control policy, the feedfworward term hk|wk−1

is bounded: for all k ∈ N and for all noise histories wk−1,

hk ≤ hk|wk−1 ≤ hk.

Moreover, any hk|wk−1 ∈ [hk, hk] is reached by some E ∈ E .

Strict bounds hk and hk are derived from [hn+1, hn+1] := 0 and

[hk, hk] := ar̃k+1r[hk+1, hk+1] +mk+1[E(Wk),E(Wk)].
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Theorem

For any E-admissible control policy, the feedfworward term hk|wk−1

is bounded: for all k ∈ N and for all noise histories wk−1,

hk ≤ hk|wk−1 ≤ hk.

Moreover, any hk|wk−1 ∈ [hk, hk] is reached by some E ∈ E .

+ Imprecise specification
+ Computation of hk and
hk is tractable.

+ Easily generalised to
ak, bk, rk and qk+1.

? Which control policy to apply?
− Backwards recursive

calculations
? Generalisation to

multi-dimensional systems is
not immediate.
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E-admissible control policies
Stationarity and open questions

− Backwards recursive calculations
S Stationarity of bounds on expectation simplifies these

calculations.
If E(Wk) ≡ E(W ) and E(Wk) ≡ E(W ) for all k ∈ N , then

mk+1 −−−→
n→∞

m, r̃k −−−→
n→∞

r̃, hk −−−→n→∞
h, hk −−−→

n→∞
h.

− Which control policy to apply?
? Possibility of using a secondary decision criterion.

12 / 13



E-admissible control policies
Stationarity and open questions

− Backwards recursive calculations
S Stationarity of bounds on expectation simplifies these

calculations.
If E(Wk) ≡ E(W ) and E(Wk) ≡ E(W ) for all k ∈ N , then

mk+1 −−−→
n→∞

m, r̃k −−−→
n→∞

r̃, hk −−−→n→∞
h, hk −−−→

n→∞
h.

− Which control policy to apply?
? Possibility of using a secondary decision criterion.

12 / 13



Summary

The partially specified noise model only assumes bounds on
the conditional expectation of the noise.

Every E-admissible control policy is a combination of the
same state feedback and possibly different noise feedforward.

Tight bounds on E-admissible noise feedforward can be easily
calculated.
How to choose which element in the feedforward interval to
apply remains an open question.

Unfortunately, these results are not immediately generalised
to multi-dimensional systems.
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