Optimal control of linear systems with quadratic cost and imprecise forward irrelevant input noise

Alexander Erreygers, Jasper De Bock, Gert de Cooman and Arthur Van Camp

{alexander.erreygers,jasper.debock,gert.decooman,arthur.vancamp}@UGent.be SYSTeMS research group, Ghent University, Belgium

Linear systems

We consider a finite-state, discrete-time scalar linear system with a deterministic (known) current state $X_k = x_k$. For all $\ell \in \{k, \ldots, k_1\}$, the dynamics of the system is described by

$$X_{\ell+1} = a_\ell X_\ell + b_\ell u_\ell + W_\ell.$$
 (DYN)

In this expression, a_{ℓ} and b_{ℓ} are real-valued parameters and the state X_{ℓ} and noise W_{ℓ} at time ℓ are real-valued random variables. The control input u_{ℓ} at time ℓ is also real-valued.

State feedback Usually the control input u_{ℓ} is taken to be some real-valued

The precise LQ problem

Local optimality A control policy $\hat{\psi}_{k:k_1}$ is *locally optimal* for $x_k \in \mathbb{R}$ and $w_{k_0:k-1} \in \mathbb{R}^{k-k_0}$ if

 $\hat{\psi}_{k:k_1} \in \text{loc-opt}_{k:k_1}^{\mathsf{P}} (\Psi_{k:k_1} | x_k, w_{k_0:k-1}) \coloneqq \arg\min_{\psi_{k:k_1} \in \Psi_{k:k_1}} \mathsf{P}_{k:k_1} (\eta [\psi_{k:k_1} | x_k] | w_{k_0:k-1}).$

Optimality A control policy $\hat{\psi}_{k:k_1}$ is *optimal* for $x_k \in \mathbb{R}$ and $w_{k_0:k-1} \in \mathbb{R}^{k-k_0}$ if, for all $\ell \in \{k, \dots, k_1\}$ and all $x_{k+1:\ell} \in \mathbb{R}^{\ell-k}$:

 $\hat{\psi}_{k:k_1}(x_{k+1:\ell},\cdot) \in \text{loc-opt}_{\ell:k_1}^{P}(\Psi_{\ell:k_1}|x_{\ell},w_{k_0:\ell-1}),$

where $w_{k:\ell-1}$ is derived from (DYN) and $x_{k:\ell}$. The set of all such optimal control policies is denoted by $opt_{k:k_1}^{P}(\Psi_{k:k_1} | x_k, w_{k_0:k-1})$.

function ψ_{ℓ} of the previous states $x_{k+1:\ell} := (x_{k+1}, x_{k+2}, \dots, x_{\ell})$, called a *feedback function*. As the current state x_k is known, ψ_k is a constant. We call a tuple of feedback functions $\psi_{k:k_1} := (\psi_k, \psi_{k+1}, \dots, \psi_{k_1})$ a *control policy*. We use $\Psi_{k:k_1}$ to denote the set of all control policies $\psi_{k:k_1}$.

LQ cost functional We measure the performance of a control policy $\psi_{k:k_1}$ by means of the associated cost. For all $k \in \{k_0, \ldots, k_1\}$, all $\psi_{k:k_1} \in \Psi_{k:k_1}$ and all $x_k \in \mathbb{R}$ we define the linear-quadratic (LQ) cost functional η as

$$\eta \left[\psi_{k:k_1} | x_k \right] \coloneqq \sum_{\ell=k}^{\kappa_1} r_\ell \psi_\ell (X_{k+1:\ell})^2 + q_{\ell+1} X_{\ell+1}^2,$$

where $q_{\ell} \ge 0$ and $r_{\ell} > 0$ are real coefficients.

Precise noise model P

In order to model the noise $W_{k:k_1} := (W_k, W_{k+1}, \dots, W_{k_1})$, we consider an initial time k_0 , let $k_0 \le k \le k_1$, and focus on modelling $W_{k_0:k_1}$.

Precise noise model We model our beliefs about $W_{k_0:k_1}$ using conditional probability density functions: for all $k \in \{k_0, \ldots, k_1\}$ and all $w_{k_0:k-1} \in \mathbb{R}^{k-k_0}$, we are given a conditional probability density function $f_k(\cdot | w_{k_0:k-1})$, and we use $P_k(\cdot|w_{k_0:k-1})$ to denote the corresponding *conditional linear prevision* operator (expectation operator). It then follows from the *law of iterated expectation* that for any gamble g on \mathbb{R}^{k_1-k+1} :

 $\mathbf{P}_{k:k_1}(g|w_{k_0:k-1}) = \mathbf{P}_k(\mathbf{P}_{k+1}(\cdots \mathbf{P}_{k_1}(g|w_{k_0:k-1}, W_{k:k_1-1}) \cdots |w_{k_0:k-1}, W_k)|w_{k_0:k-1}).$

Precise noise solution For any current state $x_k \in \mathbb{R}$ and noise history $w_{k_0:k-1} \in \mathbb{R}^{k-k_0}$, the set $\operatorname{opt}_{k:k_1}^{P}(\Psi_{k:k_1} | x_k, w_{k_0:k-1})$ consists of a *single* optimal control policy. For any $\ell \in \{k, \ldots, k_1\}$ and $x_{k+1:\ell} \in \mathbb{R}^{\ell-k}$, it is given by

$$\hat{\psi}_{\ell}(x_{k+1:\ell}) = -\tilde{r}_{\ell}b_{\ell}\left(m_{\ell+1}a_{\ell}x_{\ell} + h_{\ell|w_{k_0:\ell-1}}\right). \tag{OCP}$$

The parameters $m_{\ell+1}$ and \tilde{r}_{ℓ} are obtained from the initial condition $m_{k_1+1} := q_{k_1+1}$ and the recursive *Riccati* equation $m_{\ell} \coloneqq q_{\ell} + a_{\ell}^2 m_{\ell+1} - \tilde{r}_{\ell} a_{\ell}^2 b_{\ell}^2 m_{\ell+1}^2$, with $\tilde{r}_{\ell} \coloneqq (r_{\ell} + b_{\ell}^2 m_{\ell+1})^{-1}$. The noise feedforward $h_{\ell|w_{k_0:\ell-1}}$ is obtained from the initial condition $h_{k_1+1|w_{k_0:k_1}} := 0$ and the recursive expression

$$h_{\ell|w_{k_0:\ell-1}} := \mathbf{P}_{\ell}(m_{\ell+1}W_{\ell} + \tilde{r}_{\ell+1}a_{\ell+1}r_{\ell+1}h_{\ell+1|w_{k_0:\ell-1},W_{\ell}}|w_{k_0:\ell-1}).$$

Calculating this feedforward is intractable!

White noise solution For white noise, the recursive feedforward relation simplifies to

 $h_{\ell} \coloneqq m_{\ell+1} \mathbf{P}_{\ell}(W_{\ell}) + \tilde{r}_{\ell+1} a_{\ell+1} r_{\ell+1} h_{\ell+1},$

with initial condition $h_{k_1+1} \coloneqq 0$.

The imprecise LQ problem

E-admissibility A control policy $\hat{\psi}_{k:k_1}$ is *E-admissible* for $x_k \in \mathbb{R}$ and $w_{k_0:k-1} \in \mathbb{R}^{k-k_0}$ if $\hat{\psi}_{k:k_1} \in \operatorname{opt}_{k:k_1}^{\mathscr{P}}(\Psi_{k:k_1} | x_k, w_{k_0:k-1}) := \bigcup \operatorname{opt}_{k:k_1}^{\mathsf{P}}(\Psi_{k:k_1} | x_k, w_{k_0:k-1}).$

Imprecise noise solution Every $P \in \mathscr{P}$ corresponds to a single E-admissible control policy $\hat{\psi}_{k:k_1}$ —see Equation (OCP)—that is a combination of the same state feedback and a possibly different noise feedforward. *Calculating all possible feedforwards is intractable!*

We assume that our conditional probability density functions are sufficiently well-behaved in order for the previsions in this expression to exist. We denote the set of all such precise noise models P by \mathbb{P} .

White noise model In the literature, it is often assumed that the noise is *independent*. This means that all the conditional probability density functions (and associated linear previsions) are equal to marginal ones.

Imprecise noise model *P*

Imprecise noise model Our beliefs about $W_{k_0:k_1}$ are modelled by a set $\mathscr{P} \subseteq \mathbb{P}$ of precise noise models. This definition allows us to use the results obtained in the precise LQ problem.

Forward irrelevant noise model *P* is said to be a forward irrelevant product if there are sets of marginal probability density functions $\mathscr{Q}_k, k \in \{k_0, \ldots, k_1\}$, such that \mathscr{P} is the largest subset of \mathbb{P} for which it holds that

 $f_k(\cdot | w_{k_0:k-1}) \in \mathscr{Q}_k$

for all precise models P in \mathscr{P} , all k in $\{k_0, \ldots, k_1\}$ and all $w_{k_0:k-1}$ in \mathbb{R}^{k-k_0} .

Forward irrelevant noise solution If \mathscr{P} is a forward irrelevant product, then for all $\ell \in \{k_0, ..., k_1\}$ and all $w_{k_0:\ell-1} \in \mathbb{R}^{\ell-k_0}$

 $h_{\ell \mid w_{k_0:\ell-1}} \in [\underline{h}_\ell,h_\ell],$

where $\underline{h}_{k_1+1} \coloneqq 0$, $\overline{h}_{k_1+1} \coloneqq 0$ and, for $a_{\ell+1} \ge 0$: $\underline{h}_{\ell} \coloneqq m_{\ell+1} \underline{P}_{\ell}(W_{\ell}) + \tilde{r}_{\ell+1} a_{\ell+1} r_{\ell+1} \underline{h}_{\ell+1} \text{ and } \overline{h}_{\ell} \coloneqq m_{\ell+1} \overline{P}_{\ell}(W_{\ell}) + \tilde{r}_{\ell+1} a_{\ell+1} r_{\ell+1} \overline{h}_{\ell+1},$

with $\underline{P}_{\ell}(W_{\ell})$ and $\overline{P}_{\ell}(W_{\ell})$ the lower and upper prevision (expectation) of W_{ℓ} , respectively. For $a_{\ell+1} \leq 0$, $\underline{h}_{\ell+1}$ and $h_{\ell+1}$ switch places.

Convergence For stationary linear systems (constant a_{ℓ} , b_{ℓ} , r_{ℓ} , q_{ℓ} and \mathscr{Q}_{ℓ}) and large $k_1 - k$, the parameters m_k , \tilde{r}_k , \underline{h}_k and \overline{h}_k converge to easily calculable limit values.

How do we choose which element of $[\underline{h}_{\ell}, \overline{h}_{\ell}]$ to apply? We propose two possible options:

1. use the control policy that corresponds to a white noise model

2. lazily choose the $h_{\ell} \in [\underline{h}_{\ell}, \overline{h}_{\ell}]$ that minimises $|u_{\ell}|$.

Simulations

We ran two simulations to compare their performance

Small difference in cost, but the lazy control has more zero inputs \rightarrow more research is definitely necessary

