
Conservative decision-making with sets of probabilities: How to infer new
choices from previous ones

Arne Decadt, Alexander Erreygers and Jasper De Bock
Foundations Lab for imprecise probabilities, Technologiepark-Zwijnaarde 125, Zwijnaarde, 9052, Flanders, Belgium

Abstract

We study a generalized version of maximizing expected utility, called E-admissibility, to make decisions
when the decision-maker’s uncertainty is described by a set of probability mass functions. In particular,
instead of specifying this set directly, we assume that we only have partial information about the decision-
maker’s preferences or choices, in the form of which options she rejects from some finite sets of options.
We describe both the decision-making process and the available information using choice functions, and we
provide an algorithm, based on linear programming, to compute the most conservative extension of a given
choice assessment to a choice function that makes decisions based on E-admissibility. Next, we relate this
E-admissible extension to the so-called coherent extension and show how the same techniques that are used
to simplify the computation of this coherent extension can also be used to simplify that of the E-admissible
one. In our experiments, we demonstrate that decision-making with the E-admissible extension is faster
and more informative than with the coherent one, but also observe that the required computations are
challenging once the parameters of the problem scale.

Keywords: E-admissible extension, sets of probabilities, E-admissibility, choice function, decision-making,
linear programming

1. Introduction

A decision-maker’s uncertainty is typically modelled by a probability measure, and it is often argued that
her rational decisions should maximise expected utility with respect to this probability measure. However,
she may not always have sufficient knowledge to come up with a unique and completely specified probability
measure. It is then often assumed, as a work-around, that there is some set of probability measures—also
called a credal set—that describes her uncertainty. In this setting, the term E-admissibility was coined by
Levi [1, 2] for a decision criterion suggested by Good [3]. It is but one of several generalisations of the
standard criterion of maximising expected utility, where the decision-maker now only keeps those options
that maximise expected utility with respect to at least one of the probability measures in the credal set,
and rejects all the others.1

We here study decision-making with this criterion when the credal set is not specified directly, but is
instead derived from (partial information about) the decision-maker’s past choices. We start in Section 2
by introducing the mathematical framework of choice functions as a tool to model decision-making, and
then go on in Section 3 by introducing the standard criterion of maximising expected utility as well as
the E-admissibility criterion. Next, in Section 4, we explain how information about earlier decisions—an
assessment—can be seen as a partial specification of a choice function and study if it is possible to extend

⋆© 2025. This manuscript version is made available under the CC-BY-NC-ND 4.0 cbnd license. The published journal
article is available at DOI:10.1016/j.fss.2025.109612.

1Levi’s [1] original definition considered credal sets that are convex, whereas we do not require this. In fact, one of the
strengths of our approach is that an assessment can lead to non-convex credal sets; see the example in Example 6.2 further on.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fss.2025.109612

this partial specification to a choice function that chooses based on E-admissibility from any given option
set. In case this is possible, we look at what the most conservative such extension is for a given assessment,
and call this the E-admissible (natural) extension. In Section 5 we then characterise the set of probability
mass functions that agree with an assessment. Readers that are familiar with these concepts can safely
skim through these two sections, focussing mainly on the notation that we introduce. Next, in Section 6, we
show how we can use this to evaluate the E-admissible extension of an assessment, and provide an algorithm
that can compute this E-admissible extension for arbitrary finite assessments. Section 7 is concerned with
an alternative, more conservative method for extending choice assessments, called the coherent (natural)
extension2, which we briefly introduce and compare to the E-admissible extension. Section 8 exploits the
connection between both extensions to enable us to apply existing simplification methods for the coherent
extension to the E-admissible extension as well. Finally, in our experiments in Section 9, we study when it
is advantageous to use the simplifications of Section 8, and we compare the E-admissible extension to the
coherent extension for both the evaluation time and number of chosen options. In the appendix, we have
included a table of notation so that the reader can quickly look up notation that they might have missed or
forgotten.

Choice functions are also often used in economic contexts and revealed preference theory [6]. Most of
this field however focuses on getting a single preference relation from a choice function, while we work with a
set of preference relations. In particular, our model and choice functions do not necessarily satisfy the weak
axiom of revealed preference. Related to this, our assessments allow for more general statements about than
what is usually used in revealed preference theory, although our options themselves are more restrictive.
Some more recent work in this area, such as [7] investigates set-rationalisable choice functions of which our
choice functions are a special case, but from a more theoretical perspective.

We are not the first to develop algorithms for decision-making with E-admissibility. Utkin and Augustin
[8] and Kikuti et al. [9] have gone before us, but they focus on a setting where the credal set is specified
directly by means of a conjunction of inequality constraints, while we specify them indirectly using partial
information about choice functions [10, 11, 12]. Decadt et al. [4] have also studied such more general
assessments, but for the coherent (natural) extension. We compare our approach to that of Decadt et al.
[4] in Sections 7 and 9. We revisit the connection with Utkin and Augustin [8] and Kikuti et al. [9] in our
conclusions.

This paper extends an earlier conference contribution of the authors [13]. The main novelties with
respect to that contribution are the discussion of the connection with the coherent (natural) extension in
Section 7, the simplification that can be achieved by using this connection in Section 8, and the experiments
in Section 9. An important difference is that we have also added a background order to the decision-making
process (compare Eqs. (1) and (6) with [13, Eqs. (1) and (3)]), which is not only a reasonable addition but
also crucial for the connection with the coherent extension. This difference affected much of the rest of the
paper as well, but the structure of Sections 2 to 6 is still similar to those of the corresponding sections in
[13], and the results are closely related.

2. Decision-making with choice functions

We assume that we have an experiment with ℓ possible outcomes whose actual outcome is uncertain. We
order the set of all possible outcomes X as {x1, . . . , xℓ}, and refer to X as the state space. Furthermore, we
assume that we want to choose between a number of options, the utility of which depends on the outcome
of the experiment.

Mathematically, an option u is then a function that maps each outcome x in X to the real-valued
utility u(x) that we get when we choose that option and the outcome of the uncertain experiment turns out
to be x. The set V := RX , i.e. the real vector space of all real-valued maps on X , collects all options and
Q is the set of all non-empty finite subsets of V, while we reserve the notation 2V for the power set of V.

2This is often just called the natural extension, with ‘coherent’ being implicit [4, 5]. We here call it the coherent extension—
with ‘natural’ left implicit—to distinguish it from the E-admissible (natural) extension.

2

Moreover, Q∅ := Q ∪ {∅} is the set of all finite subsets of V. Furthermore, for every constant a ∈ R we use
a ∈ V to denote the option that maps every outcome to a.

As a mathematical model for decision-making with options we will use choice functions. Such a choice
function is simply a function that, for any given finite set of options A ∈ Q, selects some non-empty subset
of A. More formally, then, a choice function C is a map from Q to Q that associates a set C(A) ⊆ A with
every A ∈ Q. If C(A) is a singleton consisting of a single option u, this means that u is chosen from A.
If C(A) has more than one element, however, we don’t take this to mean that all the options in C(A) are
chosen, but rather that the options in A \ C(A) are rejected and that the model does not contain sufficient
information to warrant making a choice between the remaining options in C(A).

We illustrate this with a simple example.

Example 2.1. Let us consider a state space with 3 states: X := {1, 2, 3}. We identify options with vectors
in R3, where for any x ∈ X , the x-th component corresponds to the value of the option in x; so for example
the option w1 := (1,−3, 1) corresponds to the option that maps 1 to 1, 2 to −3 and 3 to 1.

Suppose now that we have an option set A := {w1, w2, w3, w4}, with w2 := (1, 1,−2), w3 := (0, 0, 0) and
w4 := (4,−5,−2) and that we want to choose from this set. To do this, we will first need some information
about the decision-maker’s preferences and the decision rule she wants to adopt. ♢

3. Maximizing expected utility & E-admissibility

Depending on the desired behaviour, various axioms can be imposed on choice functions, leading to
different types of choice functions; see for example [10, 11, 12]. In this contribution we focus on choice
functions under E-admissibility, as introduced in Section 3.3 further on, and compare these to so-called
coherent choice functions from Section 7 onwards. To build up towards these more complicated types of
choice functions, we start with some simple ones.

3.1. Strict dominance
A first way to define a choice function is to reject all options for which there is another option whose

utility is at least as good as that of the rejected option for all outcomes, and is strictly better for at least
one outcome. Mathematically, this can be described by the strict partial order < on V defined such that for
all v, w ∈ V we have v < w whenever v(x) ≤ w(x) for all x ∈ X , but v ̸= w. We call this strict partial order
the background order and use it to define the choice function C< as

C<(A) := {u ∈ A : (∀a ∈ A)u ̸< a}, for all A ∈ Q.

For any option set A ∈ Q, the options in C<(A) are called admissible and the others are called inadmissible
[14]. We illustrate this again with an example.

Example 3.1. In Example 2.1 we wanted to choose from the option set A := {w1, w2, w3, w4}. By comparing
these options pairwise, we find that none of them is strictly dominated by any of the other options. So based
on this criterion alone, none of the options can be rejected: C<(A) = A. ♢

As this example illustrates, the choice function C< can be very uninformative and does not take into
account additional knowledge the decision-maker might have about the uncertain experiment. If we can
model her uncertainty, we might be able to do better.

3.2. Maximizing expected utility
When working with a finite state space X , the decision-maker’s uncertainty about an experiment is often

modelled by means of a probability mass function p : X → [0, 1], which specifies the probability p(x) of each
outcome x in X ; we will use

P :=
{
p : X → [0, 1] :

∑
x∈X

p(x) = 1
}

3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q

p(1)p(
2)

p(3)

Figure 1: The probability mass function q = (3/4, 1/8, 1/8) ∈ P in a ternary diagram.

to denote the set of all such probability mass functions (pmfs) on X . The standard way—see for example
[15, Chapter 5]—to then choose between admissible options u proceeds by maximising expected utility with
respect to p, where the expected utility of an option u ∈ V is given by Ep(u) :=

∑
x∈X u(x)p(x). For every

probability mass function p ∈ P, the resulting choice function Cp is defined for all A ∈ Q by

Cp(A) :={u ∈ A : (∀a ∈ A)Ep(a) ≤ Ep(u) and u ̸< a} (1)
={u ∈ A : (∀a ∈ A)u ̸≺p a}, (2)

where for any u, v ∈ V, we define

u ≺p v ⇔ [Ep(u) < Ep(v) or u < v], (3)

Alternatively, to clarify the connection with C<, we can also consider the following alternative characteri-
sation:

Cp(A) = C<(A) ∩ Ĉp(A), (4)

where Ĉp(A) := {u ∈ A : (∀a ∈ A)Ep(a) ≤ Ep(u)} contains the options in A whose utility with respect to p
is maximal.

Example 3.2. Consider the option set A from Example 2.1 and suppose that the decision-maker has a
probability mass function q ∈ P that assigns probability 3/4 to the first outcome and probability 1/8 to
each of the other two outcomes. Similar to what we did for options, we will identify such probability mass
functions with vectors in R3. In this particular case, we have q = (3/4, 1/8, 1/8). Note that because of the
restrictions imposed by P, probability mass functions reside inside a triangle in R3 with vertices (1, 0, 0),
(0, 1, 0) and (0, 0, 1). This allows us to visualize probability mass functions as points in an equilateral
triangle, as illustrated in Fig. 1.

To find Cq(A), we look at the expected utility of the options in A: we find that Eq(w1) = 1/2, Eq(w2) = 5/8,
Eq(w3) = 0 and Eq(w4) = 17/8. Since w4 is the unique option in A that maximises expected utility with
respect to q, we have that Ĉq(A) = {w4}. On the other hand, we know from Example 3.1 that C<(A) = A.
It therefore follows from Eq. (4) that Cq(A) = {w4}. ♢

It will prove convenient to know that the relation ≺p is a preference order on V, in the following (perhaps
somewhat non-standard) sense3 [16, 11, 4, 17]: a binary relation ≺ is a preference order on V whenever for
all u, v, w ∈ V and λ > 0,

3In many works on decision theory, the term preference order is reserved for a complete and transitive order rather than the
definition we use here. We do this for two reasons. First because it aligns with the terminology used in some of our references
[4, 11, 14]. Second because writing “strict vector order that extends <” is a bit long and cumbersome to write everywhere.

4

≺0. u ̸≺ u, (irreflexivity)

≺1. if u ≺ v and v ≺ w then also u ≺ w, (transitivity)

≺2. if u ≺ v then also u+ w ≺ v + w, (translation invariance)

≺3. if u ≺ v then also λu ≺ λv, (scaling invariance)

≺4. if u < v then u ≺ v. (extends <)

Particular combinations of these properties have their own name: a binary relation on the vector space V
is called a strict partial order if it satisfies Properties ≺0 and ≺1 and a strict vector order if it satisfies
Properties ≺0 to ≺3. So, a preference order is a strict vector order that extends the strict vector order <
on V. We use O to denote the set of all preference orders on V. The background order < itself is clearly a
preference order (it is in fact the smallest—least committal—one) and, as our next result shows, ≺p is one
as well.

Lemma 3.3. For any probability mass function p ∈ P, the binary relation ≺p on V as defined by Eq. (3) is
a preference order.

Proof. Property ≺0 follows from the facts that u ̸< u and Ep(u) ̸< Ep(u) for all u ∈ V. Since Ep is a
linear expectation, it is also clearly a ‘linear (coherent lower) prevision’ in the terminology of Walley [17,
§3.2.1 and §3.2.2, p. 128–129]. Hence, by his Theorem 3.8.1 [17, p. 156, 1 and 5], we have that ≺p is
a strict ordering that is ‘coherent relative to V × V’ (in his sense, see [17, §3.7.9, p. 156]), and therefore
satisfies Property ≺1 (his R3 in §3.7.6), Property ≺2 (his R5 in §3.7.6), Property ≺3 (his R2 in §3.7.6) and
Property ≺4 (his R7 in §3.7.9).

3.3. E-admissibility
It is, however, not always possible to pin down exact probabilities for all outcomes in X [17, Chapter 5].

Nevertheless, the decision-maker might still have some knowledge about these probabilities, for example
in terms of bounds on the probabilities of some events. Such knowledge gives rise to a set of probability
mass functions P ⊆ P, called a credal set [1, Section 1.6.2]. In this context, there need no longer be
a unique expected utility and so the decision-maker cannot simply maximise it. Several other decision
criteria can then be used instead; Troffaes [14] gives an overview. One criterion that is often favoured is
E-admissibility : ‘choose’ those admissible options that maximise expected utility with respect to at least one
of the probability mass functions p in P [1]. The behaviour of choice functions under E-admissibility was
first studied for so-called horse lotteries by Seidenfeld [18], Seidenfeld et al. [10], and characterised in terms
of axioms for options by De Bock and De Cooman [11] and De Bock [12]. If the credal set P is non-empty,
the corresponding choice function CE

P is defined by

CE
P(A) :=

⋃
p∈P

Cp(A) for all A ∈ Q. (5)

It will prove useful to extend this definition to the case P = ∅ as well. Eq. (5) then yields that CE
∅ (A) = ∅

for all A ∈ Q, so CE
∅ is not a choice function.

In either case, it follows immediately from Eqs. (2) and (5) that

CE
P(A) = {u ∈ A : (∃p ∈ P)(∀a ∈ A)u ̸≺p a} for all A ∈ Q. (6)

Alternatively, similarly to what we did in Eq. (4), we can also separate the role of Ep and < in this expression:
we first determine the options that are admissible (so not strictly dominated with respect <), then determine
the undominated ones with respect to Ep for any p ∈ P, and finally take the intersection of both. For the
second part, let us define

ĈE
P : Q → Q∅ : A 7→ ĈE

P(A) :=
⋃
p∈P

Ĉp(A)

={u ∈ A : (∃p ∈ P)(∀a ∈ A)Ep(a) ≤ Ep(u)}.

5

Then by Eqs. (5) and (4), for any P ⊆ P and A ∈ Q,

CE
P(A) =

⋃
p∈P

Cp(A) =
⋃
p∈P

(
C<(A) ∩ Ĉp(A)

)
= C<(A) ∩ ĈE

P(A). (7)

4. Consistent assessments and their E-admissible extensions

In the remainder of this paper, we assume that there is some choice function C that represents the
decision-maker’s preferences, but that we may not fully know this function. Our partial information about C
comes in the form of information about some—so not necessarily all—option sets. More exactly, for some
option sets A ∈ Q, we know that the decision-maker rejects all options in W ⊆ A, meaning that C(A) ⊆
A \W ; this can also be stated as C(V ∪W) ⊆ V , with V := A \W . We will represent such information by
an assessment : a set A ⊆ Q × Q∅ of pairs (V,W) of disjoint option sets with the interpretation that, for
all (V,W) ∈ A, the decision-maker definitely rejects the options in W from V ∪W . 4 Let us illustrate this
again with our running example.

Example 4.1. To choose from the option set A from Example 2.1, we will now assume that we have some
information about previous choices. To this end, consider the options v1 := (−1, 2,−2), v2 := (−2, 2,−1),
v3 := (0, 3,−11), v4 := (0,−7,−1), v5 := (0,−2,−1) and v6 := (2, 5,−9) and suppose that we are given the
following information about the choice function C: v1 is chosen from {v1, v2, v3, v4}—so C({v1, v2, v3, v4}) ⊆
{v1}—but rejected from {v1, v5, v6}—so C({v1, v5, v6}) ⊆ {v5, v6}. This corresponds to the assessment A =
{({v1}, {v2, v3, v4}), ({v5, v6}, {v1})}. ♢

Given such an assessment A, it is natural to ask whether there is a choice function that chooses using
E-admissibility that agrees with it, in the sense of the following definition.

Definition 4.2 (Consistency). We call an assessment A consistent (with E-admissibility) if there exists a
non-empty set of probability mass functions P ⊆ P such that

CE
P(V ∪W) ⊆ V for all (V,W) ∈ A,

or equivalently, if P(A) :=
{
p ∈ P : (∀(V,W) ∈ A)Cp(V ∪W) ⊆ V

}
̸= ∅.

The equivalence follows from Eq. (5): CE
P agrees with the assessment A if and only if P ⊆ P(A).

Example 4.3. Consider the assessment A from Example 4.1. To prove that A is consistent, it suffices
to find a single probability mass function that belongs to P(A). One example is the probability mass
function q = (3/4, 1/8, 1/8) from Example 3.2. Indeed, since Eq(v1) = −6/8, Eq(v2) = −11/8, Eq(v3) = −1,
Eq(v4) = −1, Eq(v5) = −3/8 and Eq(v6) = 1, we see that Cq({v1, v2, v3, v4}) ⊆ Ĉq({v1, v2, v3, v4}) = {v1} and
Cq({v1, v5, v6}) ⊆ Ĉq({v1, v5, v6}) = {v6} ⊆ {v5, v6}, which implies that q ∈ P(A). Hence, the assessment A
is consistent.

Alternatively, as our next result shows, consistency can also be characterised in terms of CE
P(A): it suffices

to check for some option set A whether CE
P(A)(A) is empty.

Lemma 4.4. For any A ∈ Q, an assessment A is consistent if and only if CE
P(A)(A) ̸= ∅.

Our proof of this result makes use of the following lemma.

4We take V ∈ Q but W ∈ Q∅ for the following reasons: (i) we do not allow V ∪W to be empty because C is only defined
for non-empty option sets; (ii) W = ∅ can happen if we ask an expert to choose from the set V , and he says that he cannot
reject anything from it; this corresponds to an uninformative assessment that serves no purpose, but we’ll nevertheless allow
it; (iii) V = ∅ means that the expert thinks that all options should be rejected from V ∪W ; we will see in Lemma 4.4 that this
is not consistent with E-admissibility, and therefore exclude this possibility in our assessments.

6

Lemma 4.5 ([19, I.3 Theorem 3]5). Consider any binary relation≺ on some set S that satisfies Properties≺0

and ≺1. Then for any finite non-empty set A ⊆ S there is a maximal element m ∈ A with respect to ≺, i.e.
an element m such that m ̸≺ a for all a ∈ A.

Proof of Lemma 4.4 The implication to the left follows from Eq. (6). To prove the implication to the
right, we assume that P(A) ̸= ∅ and fix any p ∈ P(A). Since we know from Lemma 3.3 that ≺p is a
preference order, it follows from Lemma 4.5 that there is a maximal option m ∈ A with respect to ≺p for
which m ̸≺p a for all a ∈ A. Hence, m ∈ Cp(A) ̸= ∅, which implies that CE

P(A)(A) ̸= ∅ by Eq. (5).

If an assessment A is consistent and there is more than one E-admissible choice function that agrees with
it, the question remains which one we should use. A careful decision-maker would only want to reject options
if this is implied by the assessment. So she wants a most conservative agreeing choice function under E-
admissibility: one that rejects the fewest number of options. Since larger credal sets lead to more conservative
choice functions, there is a unique most conservative agreeing choice function under E-admissibility, and it
is equal to CE

P(A). For this reason, for any consistent assessment A, we call CE
A := CE

P(A) its E-admissible
(natural) extension.6

So we conclude that checking the consistency of an assessment A, as well as finding the E-admissible
extension of a consistent assessment A, both amount to evaluating CE

A. In practice, we will evaluate CE
A

using Eq. (7): we first check if a given option is admissible—whether it is chosen by C<—and then check
whether it has maximal expected utility for some p ∈ P(A)—whether it is chosen by ĈE

P(A). To illustrate
this, we take another look at our example.

Example 4.6. Consider again the option set A of Example 2.1 and the assessment A of Example 4.1. Since
we know from Example 4.3 that A is consistent, its E-admissible extension CE

A is well-defined, so we can
use it to choose a subset CE

A(A) from the set A. Because we know from Example 3.1 that C<(A) = A,
it follows from Eq. (7) that CE

A(A) = CE
P(A) = ĈE

P(A)(A). Since ĈE
P(A)(A) =

⋃
p∈P(A) Ĉp(A), we can now

proceed to check, for every option w ∈ A, whether there is some probability mass function p ∈ P(A) for
which w ∈ Ĉp(A). We have already found in Example 4.3 that q ∈ P(A) and for this q we have also found
in Example 4.3 that w4 belongs to Cq(A), which implies that w4 ∈ CE

A(A). But for the other options w1, w2

and w3 we would have to look for other probability mass functions in P(A) and check whether they maximise
expected utility for one of these options. If we find one, that option can be included. However, if an option
should be rejected, then we would have to check all probability mass functions in P(A) to verify that they
all reject this option. Since P(A) typically consists of infinitely many probability mass functions, this is not
straightforward. ♢

As this example demonstrates, the main difficulty in evaluating CE
A(A) lies in the fact that for every

u ∈ A, we in principle have to check for every p ∈ P(A) whether the option u has maximal expected utility
with respect to p. In the following sections we provide a method for performing these checks, using a more
practical expression for P(A).

5. A characterisation of P(A)

In this section we will simplify our expression for P(A) and rewrite it as a union of convex sets, which
will eventually allow us to effectively compute the E-admissible extension of an assessment. The following
result is a first simplification of the expression for P(A).

5Note that in this book partial orders are originally defined to be non-strict, but thanks to Lemma 1 in Section I.1 of [19],
strict partial orders ≺ are connected to non-strict partial orders ⪯ by u ≺ v ⇔ u ⪯ v and u ̸= v. Moreover, the definition of
maximal elements and the proof of this theorem use strict partial orders.

6A more correct name would be the natural (or most conservative) extension under E-admissibility of the partially specified
choice function corresponding to the assessment A, since it is actually the options that are E-admissible, and it is not exactly
the assessment that is extended. However, that would be a bit long and cumbersome for a paper about this topic, so we will
stick to the shorter name.

7

Proposition 5.1. For any assessment A,

P(A) =
{
p ∈ P : (∀(V,W) ∈ A)(∀w ∈W)(∃v ∈ V) w ≺p v

}
.

Proof. By the definition of P(A), we have to prove that for all p ∈ P and (V,W) ∈ A the following statements
are equivalent:

Cp(V ∪W) ⊆ V (8)

and
(∀w ∈W)(∃v ∈ V) w ≺p v. (9)

Take any p ∈ P and (V,W) ∈ A. First we prove that Eq. (8) implies Eq. (9). From Eq. (8) and the fact that
V and W are disjoint, it follows that w /∈ Cp(V ∪W) for all w ∈W . This means by definition of Cp that

(∀w ∈W)(∃a ∈ V ∪W) w ≺p a. (10)

We will now show that this implies Eq. (9). Take any option w ∈ W . Let R := {r ∈ W : w ≺p r}. In the
case that R is empty we have by this and Eq. (10) that there is an option a∗ ∈ V such that w ≺p a∗. In the
case that R is not empty, it is still finite because it is a subset of W and therefore, by Lemma 4.5, there is
some option w∗ ∈ R that is maximal with respect to ≺p. Since w∗ ∈ R ⊆ W , we know from Eq. (10) that
there is some a∗ ∈ V ∪W such that w∗ ≺p a∗. Since w∗ ∈ R, we also know that w ≺p w∗ and hence that
w ≺p a∗. It is therefore impossible that a∗ ∈W , because this would imply that a∗ ∈ R, which is impossible
because w∗ is maximal in R with respect to ≺p, contradicting w∗ ≺p a∗. Hence, it must be that a∗ ∈ V . So
we have found some a∗ in V such that w ≺p a∗. As this holds for any option w ∈W , we have proved Eq. (9).

Next we prove that Eq. (9) implies Eq. (8). Take any option w ∈ W . Since V ⊆ V ∪W , we have from
Eq. (9) and the definition of Cp that w /∈ Cp(V ∪W). Since this holds for any w ∈ W , it follows that
Cp(V ∪W) ⊆ V , and this is Eq. (8).

To rewrite P(A) as a union of convex sets, we use a similar thought process and notation as in [4,
Section 3.2]. First, we take a closer look at the expression for P(A) in Proposition 5.1. Since we know from
Property ≺2 that w ≺p v is equivalent to 0 ≺p v − w, this expression immediately implies that

P(A) = {p ∈ P : (∀H ∈ HA)(∃h ∈ H) 0 ≺p h},

with
HA := {{v − w : v ∈ V } : (V,W) ∈ A, w ∈W}.

We call this HA the conjunctive generator.7 So we see that P(A) is a specific instance of a set of probability
mass functions of the form

P(H) := {p ∈ P : (∀H ∈ H)(∃h ∈ H) 0 ≺p h}, (11)

with H ⊆ Q∅ a set of option sets: P(A) = P(HA). Let us illustrate this again with our running example.

Example 5.2. For the assessment A from Example 4.1, we get

HA =
{
{v1 − v2}, {v1 − v3}, {v1 − v4}, {v6 − v1, v5 − v1}

}
=

{
{(1, 0,−1)}, {(−1,−1, 9)}, {(−1, 9,−1)}, {(1,−4, 1), (3, 3,−7)}

}
. ♢

To rewrite Eq. (11) in a more convenient form, we introduce for any option h ∈ V a corresponding set of
probability mass functions Ph := {p ∈ P : 0 ≺p h} and for any option set H ∈ Q∅ the set

P[H] := {p ∈ P : (∃h ∈ H) 0 ≺p h} =
⋃
h∈H

Ph.

7This name is chosen because of similarities with the conjunctive normal form; see Eq. (12).

8

Then Eq. (11) can be rewritten as

P(H) =
⋂

H∈H

⋃
h∈H

Ph =
⋂

H∈H
P[H], (12)

where we use the convention that the intersection over the empty set is the universal set, so P(∅) = P.
Next, we transform the intersection of unions in Eq. (12) into a union of intersections. Since every

probability mass function p in the set P(H) corresponds to a preference order ≺p that prefers at least one
option h in each option set H ∈ H to zero, we will split the set P(H) in (possibly overlapping) subsets of
probability mass functions, according to which options h in each H they prefer to zero.

To formalize this, for any H ⊆ Q∅, we let Φ(H) be the set of selection functions on H: those maps
ϕ : H → V such that ϕ(H) ∈ H for every H ∈ H. Then

G(H) := {{ϕ(H) : H ∈ H} : ϕ ∈ Φ(H)} (13)

is the set of all sets that can be obtained by selecting one option from each H ∈ H. The case where
H = {H1, ...,Hm} is finite might make this more intuitive, because then

G(H) = {{h1, ..., hm} : (h1, ..., hm) ∈ ×m
j=1Hj}. (14)

Other than the finite case, a noteworthy case is G(∅) = {∅}. This follows from the fact that if there are
no sets to select from, selecting one option from ‘each’ of these sets yields the empty set. More formally, it
follows from the fact that there is a single unique function that maps ‘every’ element of ∅ to an element of
V. Another noteworthy case is G({∅}) = ∅, which follows from the fact that Φ({∅}) = ∅ because no function
can map the empty set to an element of the empty set.

Since P(H) consists of all preference orders that prefer at least one h ∈ H to zero for each H ∈ H, we
now find that

P(H) = {p ∈ P : (∃G ∈ G(H))(∀g ∈ G)0 ≺p g}

=
⋃

G∈G(H)

⋂
g∈G

Pg =
⋃

G∈G(H)

P[G], (15)

where, for every set of options G ∈ 2V ,

P[G] :=
⋂
g∈G

Pg = {p ∈ P : (∀g ∈ G) 0 ≺p g}, (16)

and here also P[∅] = P.
So we see from Eq. (15) that P(H) is a particular instance of a set of preference orders of the form

P(G) :=
⋃
G∈G

P[G] = {p ∈ P : (∃G ∈ G)(∀g ∈ G)0 ≺p g},

with G ⊆ 2V a set of option sets: P(H) = P(G(H)). Henceforth, we will refer to any set G ⊆ 2V that is to be
used for this purpose as a disjunctive generator, or simply a generator whenever it is clear from the context
what type of generator we are referring to. Moreover, we will call an option set G inside a generator G a
generator set. Of particular importance is the generator GA := G(HA) because it characterises P(A).

Lemma 5.3. For any assessment A, P(A) =
⋃

G∈GA
P[G] = P(GA), and therefore also CE

A = CE
P(A) =

CE
P(GA) and ĈE

P(A) = ĈE
P(GA).

Proof. This follows from the analysis above; in particular, the first part follows from the fact that P(A) =
P(HA), Eq. (15) for HA and the definition of P(G). The second part follows from this and the definition of
CE

A.

9

Let us illustrate this again with our running example.

Example 5.4. Applying Eq. (14) to the conjunctive generator of Example 5.2, we find that GA = G(HA) =
{G1, G2}, with

G1 :={v1 − v2, v1 − v3, v1 − v4, v6 − v1}
={(1, 0,−1), (−1,−1, 9), (−1, 9,−1), (1,−4, 1)},

and

G2 :={v1 − v2, v1 − v3, v1 − v4, v5 − v1}
={(1, 0,−1), (−1,−1, 9), (−1, 9,−1), (3, 3,−7)}.

It therefore follows from Lemma 5.3 that P(A) = P(GA) = P[G1] ∪P[G2]. ♢

Now that we have decomposed P(A) into a union of sets of the form P[G], let us take a closer look at
these sets. From the definition of P[G] in Eq. (16), we see that they are themselves intersections of sets of
the form

Pg = {p ∈ P : 0 ≺p g} = {p ∈ P : 0 < g or 0 <
∑

x∈X g(x)p(x)},

for g ∈ G. If g > 0 then we have that Pg = P, while in general Pg is the intersection of P with the open
half-space consisting of all p ∈ RX for which 0 <

∑
x∈X p(x)g(x). Since P and all of these half-spaces are

convex, it follows that Pg is convex for any g ∈ RX and that the intersections P[G] are convex for any
G ∈ 2V . Moreover, if we let V>0 := {v ∈ V : v > 0}, it follows for all G ∈ 2V that

P[G] = P[G \ V>0] =
⋂

g∈G\V>0

Pg

=
{
p ∈ P : (∀g ∈ G \ V>0) 0 <

∑
x∈X p(x)g(x)

}
.

(17)

We illustrate this visually using our running example.

Example 5.5. The credal set P(A) = P(GA) = P[G1] ∪P[G2] of Example 5.4 is depicted in Fig. 2 as the
union of the orange region P[G1] and blue region P[G2]. Note that P[G1] and P[G2] are convex and the
intersection of P with open half-spaces of the form {p ∈ R3 : 0 <

∑
x∈X p(x)g(x)} with g ∈ Gk \ V>0. The

probability mass function q from Example 4.3 belongs to both P[G1] and P[G2]. Two other probability mass
functions that will come in handy later on (in Example 6.2) are p1 := (9/20, 3/20, 8/20) and p2 := (2/5, 2/5, 1/5).
The first belongs to P[G1] (since Ep1

(v1 − v2) = 1/20 > 0, Ep1
(v1 − v3) = 3 > 0, Ep1

(v1 − v4) = 1/2 > 0 and
Ep1(v5 − v1) = 1/4 > 0), but not to P[G2] (since Ep1(v6 − v1) = −1 ≤ 0). Similarly, it is easy to verify that
p2 belongs to P[G2] but not to P[G1]. ♢

6. Computing the E-admissible extension of an assessment

In the previous section, we saw that P(A) = P(GA) is a special case of a set of preference orders of the
form P(G). For that reason, instead of focussing solely on evaluating CE

A = CE
P(A), we will also consider the

more general problem of computing the E-admissibility choice function CE
P(G) that corresponds to a general

(disjunctive) generator G. This will turn out to be convenient for evaluating CE
A as well, since we will see in

Section 8 that GA is not the only generator G for which CE
A = CE

P(G); there are often other—simpler—such
generators as well.

We start things off with the following simple theorem, which provides a convenient characterisation of
when an option is chosen by CE

P(G).

Theorem 6.1. Consider an option set A ∈ Q, an option u ∈ A and a disjunctive generator G. Then

(i) u ∈ C<(A) if and only if 0 ̸< a− u for all a ∈ A \ {u};

10

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v 6
−
v 1

v
5 −

v
1

v1
− v2

v 1
−
v 3

v
1 −

v
4

q

p1
p2

p(1)p(
2)

p(3)

Figure 2: Ternary plot where the credal set P(A) = P[G1]∪P[G2] consists of those probability mass functions p on X = {1, 2, 3}
that belong to the union of the orange region P[G1] and the blue region P[G2]. A dashed line labelled with an option v means
that Ep(v) =

∑
x∈X v(x)p(x) = 0 for all p on the line.

(ii) u ∈ ĈE
P(G)(A) if and only if there is some G ∈ G and p ∈ P[G \ V>0] such that, for all a ∈ A \ {u},

Ep(a− u) ≤ 0;

(iii) u ∈ CE
P(G)(A) if and only if 0 ̸< a− u for all a ∈ A \ {u} and there is some G ∈ G and p ∈ P[G \ V>0]

such that, for all a ∈ A \ {u}, Ep(a− u) ≤ 0.

Proof. For (i), u ∈ C<(A) is by definition and Properties ≺0 and ≺2 of < equivalent to 0 ̸< a − u for all
a ∈ A \ {u}.

Let us now look at (ii). Since P(G) =
⋃

G∈G P[G] and Ep is a linear operator, u ∈ ĈE
P(G)(A) if and only

if there is some G ∈ G and p ∈ P[G] such that, for all a ∈ A \ {u}, Ep(a − u) ≤ 0. The equivalence now
follows from Eq. (17).

Thanks to Eq. (7), (iii) is a direct consequence of (i) and (ii).

Let us illustrate the use of Theorem 6.1 by rewriting the problem we left open at the end of Example 4.6.

Example 6.2. Recall that in Example 4.6 we set out to evaluate the E-admissible extension CE
A of the

assessment A in Example 4.1 for the option set A = {w1, w2, w3, w4}, with w1 = (1,−3, 1), w2 = (1, 1,−2),
w3 = (0, 0, 0) and w4 = (4,−5,−2). We found that CE

A(A) = ĈE
P(A)(A) and that w4 ∈ ĈE

P(A)(A), but left the
problem of finding out whether w1, w2 or w3 belong to ĈE

P(A)(A) open. We now revisit this problem using
Theorem 6.1.

We know from Lemma 5.3 that ĈE
P(A)(A) = ĈE

P(GA)(A) and from Example 5.4 that

GA = {G1, G2}
= {{(1, 0,−1), (−1,−1, 9), (−1, 9,−1), (1,−4, 1)},
{(1, 0,−1), (−1,−1, 9), (−1, 9,−1), (3, 3,−7)}}.

So we only need to focus on ĈE
P(GA), which corresponds to Item (ii) in Theorem 6.1.

We have already found in Example 5.5 that the probability mass function p1 = (9/20, 3/20, 8/20) belongs
to P(G1). Since G1 \V>0 = G1 and Ep1

(w2−w1) = −3/5 ≤ 0, Ep1
(w3−w1) = −2/5 ≤ 0 and Ep1

(w4−w1) =

11

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v 6
−
v 1

v
5 −

v
1

w
3 −

w
1

w
2 −

w
1

w4 − w1

v1
− v2

v 1
−
v 3

v
1 −

v
4

p1

p(1)p(
2)

p(3)

(a) w1 is not rejected

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v 6
−
v 1

v
5 −

v
1

w
3
−
w
2

w
1 −

w
2

w
4 −

w
2

v1
− v2

v 1
−
v 3

v
1 −

v
4

p2

p(1)p(
2)

p(3)

(b) w2 is not rejected

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v 6
−
v 1

v
5 −

v
1

w
2
−
w
3

w
1 −

w
3

w
4 − w

3

v1
− v2

v 1
−
v 3

v
1 −

v
4

p(1)p(
2)

p(3)

(c) w3 is rejected

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v 6
−
v 1

v
5 −

v
1

w1 − w4

w
2 −

w
4

w
3 − w

4

v1
− v2

v 1
−
v 3

v
1 −

v
4

q

p(1)p(
2)

p(3)

(d) w4 is not rejected

Figure 3: Ternary plot where the credal set P(A) consists of those probability mass functions p on X = {1, 2, 3} that belong
to the union of the orange region P[G1] and blue region P[G2]. A dashed line labelled with an option v means that Ep(v) = 0
for all p on the line. The green region corresponds to the probability mass functions p for which the options on labelled green
lines have a nonpositive expectation.

−3/20 ≤ 0, it therefore follows from Theorem 6.1 that w1 is not rejected from A by ĈE
P(GA). We have visualized

this in Fig. 3a: the green region contains those probability mass functions for which all of Ep(w2 − w1),
Ep(w3 − w1) and Ep(w4 − w1) are non-positive; it is the set of probability mass functions for which w1

maximises expected utility in A.
That w2 is not rejected either can be inferred similarly using the probability mass function p2 =

(2/5, 2/5, 1/5) ∈ P(G1) and that w4 is not rejected can be confirmed analogously using q = (3/4, 1/8, 1/8) ∈
P(G1) ∩P(G2). This is illustrated in Figs. 3b and 3d.

For w3, we observe that the set of probability mass functions for which Ep(w1−w3) ≤ 0, Ep(w2−w3) ≤ 0
and Ep(w4−w3) ≤ 0 corresponds to the green region in Fig. 3c, which has no overlap with the orange region
P[G1] or the blue region P[G2]. This implies that w3 is rejected from A by ĈP(GA).

In conclusion, CE
A(A) = ĈE

P(GA)(A) = {w1, w2, w4}. ♢

For larger problems, when the graphical approach that we adopted in our running example is no longer
feasible, we can translate Theorem 6.1 into an algorithm. The first part of Theorem 6.1, related to the
background order <, is easy to check. For the second part, we define the function pExists : Q∅ × Q∅ →

12

{true, false} that, for F ∈ Q∅ and B ∈ Q∅, returns true if there is some p ∈ P[F] such that Ep(b) ≤ 0 for
all b ∈ B and false otherwise. Combined, this turns Theorem 6.1 into Algorithm 1. To make sure that this
algorithm halts, one should assume that the generator G is finite, as any rejected option would otherwise
correspond to an infinite for-loop over G ∈ G, and that every G ∈ G is finite, as evaluating pExists(G,V)
might otherwise take infinitely long. This is in particular always the case for the generator GA corresponding
to an assessment A that is finite: in that case HA and its elements H are clearly finite, which means that
GA = G(HA) and its elements G are finite as well because of Eq. (14). The opposite is true as well: if
an assessment is infinite, then GA and its elements G will generally be infinite as well. Therefore, in what
follows, we will focus on finite assessments and finite generators containing finite option sets.

Algorithm 1 Check for an option set A ∈ Q and a disjunctive generator G if an option u ∈ A belongs
to CE

P(G)(A).

1: B ← {a− u : a ∈ A \ {u}}
2: for all b ∈ B do
3: if 0 < b then
4: return false
5: for all G ∈ G do
6: if pExists(G \ V>0, B) then
7: return true ▷ For one of the G’s the condition is fulfilled.
8: return false ▷ When all elements of G ∈ G have been checked.

The crucial step in this algorithm is determining pExists(G \ V>0, B). In practice, doing so amounts to
solving a linear feasibility problem. In particular, as we will show in Theorem 6.3, it corresponds to a linear
feasibility problem of one of the following two types. The primal form looks as follows: for F = {f1, ..., fm} ∈
Q∅ and B = {b1, ..., bn} ∈ Q∅, and recalling that ℓ is the size of the state space X = {x1, ..., xℓ},8

find λ1, . . . , λℓ ∈ R,

such that
∑ℓ

i=1 λibk(xi) ≤ 0, k ∈ {1, ..., n},{∑ℓ
i=1 λifj(xi) ≥ 1,∑ℓ
i=1 λi ≥ 1,

j ∈ {1, ...,m}, if F ̸= ∅
if F = ∅.

λi ≥ 0, i ∈ {1, ..., ℓ},

(Primal)

Alternatively, the dual form looks as follows: for F = {f1, ..., fm} ∈ Q∅ and B = {b1, ..., bn} ∈ Q∅:

find λ1, . . . , λn+m, µ ∈ R,
such that

∑n
k=1 λm+kbk(xi)−

∑m
j=1 λjfj(xi)− µ ≥ 0, i ∈ {1, ..., ℓ},∑m

j=1 λj + µ ≥ 1,

λk ≥ 0, k ∈ {1, ..., n+m},{
µ = 0, if F ̸= ∅,
µ ≥ 0, if F = ∅.

(Dual)

In practice, these feasibility problems can be solved by linear programming.9 The solver that we’ll use in
Section 9 uses both the primal and dual form. Our next result relates these feasibility problems to evaluating
pExists(G \ V>0, B).

8We use the convention that an empty summation is equal to zero.
9They can for instance be considered as a standard linear programming problem, by adding the trivial objective function

that is zero everywhere. Feeding this into a linear programming software package, the software will announce whether the
problem is feasible. For a deeper understanding of how software solves such feasibility problems, we refer to the explanation of
initial feasible solutions in [20, Section 5.6].

13

Theorem 6.3. Consider two option sets G ∈ Q∅ and B ∈ Q∅. Then the following statements are equivalent:

(i) pExists(G \ V>0, B) = true;

(ii) (Primal) is feasible for (G \ V>0, B);

(iii) (Dual) is not feasible for (G \ V>0, B).

To prove this result, we first prove the duality of both linear programs.

Lemma 6.4. Consider two option sets F ∈ Q∅ and B ∈ Q∅. Then (Primal) is feasible for (F,B) if and
only if (Dual) is not feasible for (F,B).

Proof. We will use bold letters for vectors and matrices. Note that (Primal) is feasible for (F,B) =
({f1, ..., fm}, {b1, ..., bn}) if and only if there is some λ ∈ Rℓ such that λ ≥ 0 and Aλ ≤ b, with

A :=



b1(x1) · · · b1(xℓ)
...

...
bn(x1) · · · bn(xℓ)
−f1(x1) · · · −f1(xℓ)

...
...

−fm(x1) · · · −fm(xℓ)
−1 · · · −1


and b :=



0
...
0
−1
...
−1
−1


,

where the final row is added only in case F = ∅. Farkas’s Lemma [20, Proposition 6.4.3(ii)] tells us that
this is equivalent to the condition that all y ∈ Rm+n (or, if F = ∅, all y ∈ Rm+n+1) that satisfy y ≥ 0
and yTA ≥ 0T also satisfy yTb ≥ 0. By propositional logic, this is equivalent to the fact that there is no
y ∈ Rm+n (or, if F = ∅, no y ∈ Rm+n+1) that satisfies y ≥ 0, yTA ≥ 0T and yTb < 0. Since multiplying
y with a positive scalar has no effect on the veracity of these inequalities, this is in turn equivalent to the
fact that there is no y ∈ Rm+n (or, if F = ∅, no y ∈ Rm+n+1) such that y ≥ 0, yTA ≥ 0T and yTb ≤ −1,
which holds if and only if (Dual) is not feasible for (F,B).

Proof of Theorem 6.3 Let us enumerate G \ V>0 = {g1, ..., gm} and B = {b1, ..., bn}. First we prove that
(i) implies (ii). By (i), there is some p ∈ P[G \ V>0] such that Ep(bk) ≤ 0 for all k ∈ {1, ..., n}. Since p ∈
P[G \ V>0], it follows from Eq. (17) that 0 < Ep(gj) for all j ∈ {1, ...,m}. Let η := minj∈{1,...,m} Ep(gj) > 0
if G \ V>0 ̸= ∅ and η = 1 otherwise. For all i ∈ {1, ..., ℓ}, let λi := p(xi)/η ≥ 0. Then on the one hand∑ℓ

i=1 λibk(xi) = Ep(bk)/η ≤ 0 for all k ∈ {1, ..., n} because Ep(bk) ≤ 0 and η > 0. On the other hand,
if G \ V>0 ̸= ∅, then

∑ℓ
i=1 λigj(xi) = Ep(gj)/η ≥ 1 for all j ∈ {1, ...,m} because Ep(gj) ≥ η > 0, and if

G \ V>0 = ∅, then
∑ℓ

i=1 λi =
∑ℓ

i=1 p(xi) = 1. In other words, the real numbers λ1, . . . , λℓ satisfy the linear
feasibility problem (Primal).

Second we prove that (ii) implies (i). By (ii), there are real numbers λ1, . . . , λℓ such that (a) λi ≥ 0 for
all i ∈ {1, ..., ℓ}; (b)

∑ℓ
i=1 λibk(xi) ≤ 0 for all k ∈ {1, ..., n}; and (c)

∑ℓ
i=1 λigj(xi) ≥ 1 for all j ∈ {1, ...,m}

if G \ V>0 ̸= ∅ or
∑ℓ

i=1 λi ≥ 1 if G \ V>0 = ∅. Now let η :=
∑ℓ

i=1 λi. Then η > 0. This is obvious if
G \ V>0 = ∅. If G \ V>0 ̸= ∅ this is implied by the constraints in (c). To see why, assume ex absurdo that
η ≤ 0. Since λi ≥ 0 for all i ∈ {1, ..., ℓ}, this would imply that λi = 0 for all i ∈ {1, ..., ℓ}. But this would
imply that

∑ℓ
i=1 λigj(xi) = 0 ̸≥ 1 for all j ∈ {1, ...,m}, which is a contradiction.

Now define p(xi) := λi/η for all i ∈ {1, ..., ℓ}. Then p ∈ P, because
∑ℓ

i=1 p(xi) = 1 and p(xi) ≥ 0, and
Ep(gj) =

∑ℓ
i=1 λigj(xi)/η ≥ 1

η > 0 for all j ∈ {1, ...,m} because
∑ℓ

i=1 λigj(xi) ≥ 1 and η > 0. This means
that p ∈ P[G\V>0], due to Eq. (17). Furthermore, we also have that Ep(bk) =

∑ℓ
i=1 λibk(xi)/η ≤ 0 for all k ∈

{1, ..., n}, because
∑ℓ

i=1 λibk(xi) ≤ 0 and η > 0, whence pExists(G \ V>0, B) = true.
The equivalence of (ii) and (iii) follows from Lemma 6.4.

14

Now we are able to determine CE
A(A) for any set A ∈ Q and finite assessment A as follows. Since we know

from Lemma 5.3 that P(A) = P(GA), it suffices to check for each option u ∈ A whether u ∈ CE
A(A) = CE

P(GA)

by applying Algorithm 1 to A and the disjunctive generator GA = G(HA), which can itself be found by
applying Eq. (14) to the conjunctive generator HA. For any single u, this amounts to checking if the option
is strictly dominated and if not, solving a linear feasibility program for subsequent generator sets G ∈ GA
until we find a good one or have checked them all, using (Primal) or (Dual), as preferred.

Consistency can also be checked using Algorithm 1, because consistency is equivalent to CE
A(A) ̸= ∅ for

one (and therefore all) A ∈ Q, by Lemma 4.4. So in practice, since CE
A = CE

P(GA), consistency can easily be
verified beforehand with Algorithm 1, by checking whether 0 ∈ CE

P(GA)({0}). Using (Dual), this reduces to
the following lemma.

Lemma 6.5. A finite assessment A is consistent if and only if there is some G ∈ GA, for which the following
linear program with F = G \ V>0 = {f1, ..., fm} is not feasible:

find λ1, . . . , λm ∈ R,
such that

∑m
j=1 λjfj(xi) ≤ 0, i ∈ {1, ..., ℓ},∑m
j=1 λj ≥ 1,

λk ≥ 0, k ∈ {1, ...,m}.

(Dual′)

Proof. As explained in the main text that precedes this lemma, consistency is equivalent to the condition
that 0 ∈ CE

P(GA)({0}). It follows from Algorithm 1 that this condition is satisfied if and only if pExists(G \
V>0, ∅) = true for some G ∈ GA. By (i) and (iii) in Theorem 6.3, this is equivalent to the condition that
(Dual) is not feasible for some F = G \ V>0 with G ∈ GA and B = ∅. It remains to show that, in its turn,
this is equivalent to the condition that (Dual′) is not feasible for some F = G \ V>0 with G ∈ GA. For
F ̸= ∅, this equivalence is immediate. For F = ∅, (Dual) requires us to find some µ such that −µ ≥ 0,
µ ≥ 1 and µ ≥ 0. This is clearly impossible, just like (Dual′) is not feasible for F = ∅, as it then contains
the requirement 0 ≥ 1.

For the implementation of Algorithm 1, we use the array data structure to store the generators and the
option sets inside the generators. For that reason, it could be that a generator or an option set inside a
generator is stored multiple times in the array. This is not a problem for two reasons. First, it can be
seen immediately from Theorem 6.1 that if there are duplicates inside a generator, then we just do some
calculations multiple times, and it has no effect on the end result. Second, if there are duplicates in the
linear program then we just get a bigger linear program with the same feasibility. The reason why we allow
for duplicates is that we make the assumption that duplicates are rare and that therefore, removing them
is not worth the effort.

7. The coherent (natural) extension

The E-admissible (natural) extension is not the only extension that can be derived from an assessment.
Another extension that is sometimes considered is the coherent (natural) extension [4, 5]. We will now
briefly introduce this coherent extension, and compare it to the E-admissible extension, both theoretically
(in this section) and experimentally (in Section 9). For most of this section, Reference [4] will be our guide.

Rather than sets of preference orders derived from probability mass functions, Decadt et al. [4] consider
sets of general preference orders and the choice functions they induce. Similar to Eq. (6), given any set of
preference orders O ⊆ O on V, the choice function—at least if O is non-empty—that ‘chooses’ based on
these preference orders is defined as

CO(A) := {u ∈ A : (∃ ≺∈ O)(∀a ∈ A)u ̸≺ a}. (18)

A choice function C is then called coherent if there is some non-empty set of preference orders O such that
C = CO. In this context, an assessment A is called consistent (with coherence) if there is some coherent

15

choice function CO that is compatible with it, in the sense that CO(V ∪W) ⊆ V for every (V,W) ∈ A.
Because of [4, Proposition 3.6]—similar to Proposition 5.1—the largest set of preference orders O for which
CO is compatible with A is

O(A) := {≺∈ O : (∀(V,W) ∈ A)(∀w ∈W)(∃v ∈ V)w ≺ v}. (19)

An assessment A is therefore consistent with coherence if and only if O(A) ̸= ∅, and for a consistent
assessment, the most conservative coherent choice function that is compatible with it is given by CA := CO(A).
We call this most conservative coherent choice function the coherent (natural) extension of the assessment A.

For finite assessments, consistency with coherence is equivalent to consistency with E-admissibility.

Lemma 7.1. Consider any finite assessment A ⊆ Q×Q∅. Then O(A) ̸= ∅ if and only if P(A) ̸= ∅.

Proof. The implication to the left is the easiest to prove, so we will start by proving that. Take any
p ∈ P(A) ̸= ∅. Then ≺p is a preference order because of Lemma 3.3, and belongs to O(A) because of
Proposition 5.1. Hence, ≺p∈ O(A) ̸= ∅.

For the reverse implication, we now assume that O(A) ̸= ∅. By [4, Proposition 4.3], this means that
for some G = {g1, ..., gm} ∈ GA, we have that

∑m
j=1 λjgj ̸≤ 0 for all (λ1, ..., λm) > 0, in their nota-

tion. By the definition of [4, IsFeasible in Section 4.3], this is equivalent to the condition that, for
some G = {g1, ..., gm} ∈ GA, ‘IsFeasible(G, 0) = false’. By [4, Proposition 4.7], applied for v = 0,
‘IsFeasible(G, 0) = false’ is equivalent to the infeasibility of the following linear program:

find λ1, . . . , λm, λm+1 ∈ R,
such that

∑m
j=1 λjgj(xi) ≤ 0, i ∈ {1, ..., ℓ},∑m
j=1 λj ≥ 1,

λk ≥ 0, k ∈ {1, ...,m},
λm+1 ≥ 1.

(Dual′′)

This is exactly the linear program of (Dual′) for F = G, with the addition of one free variable λm+1 ≥ 1 that
does not appear in any other constraints and therefore does not alter the feasibility of the linear program.
Hence, (Dual′) is not feasible for some F = G ∈ GA. By Lemma 6.5, it therefore suffices to prove for any
G ∈ Q∅ that the infeasibility of (Dual′) for G implies the infeasibility of (Dual′) for G \ V>0. This can be
seen by contraposition. If (Dual′) is feasible for G \ V>0, then it is feasible for G as well as we can take the
coefficients λj of the added options G ∩ V>0 to be zero.

The coherent and E-admissible extensions of a consistent assessment need not be the same though.
However, since {≺p : p ∈ P(A)} ⊆ O(A), we do know that CE

A(A) = CP(A)(A) ⊆ CO(A)(A) = CA(A) for any
A ∈ Q. So, we see that the coherent extension CA is more conservative than the E-admissible one CE

A.
Just like with the E-admissible extension CE

A = CE
P(GA), the coherent extension CA can also be charac-

terised in terms of generators. For any generator G, the corresponding set of preference orders is defined in
[4, Eqs. (11) and (12)] as

O(G) := {≺∈ O : (∃G ∈ G)(∀g ∈ G)0 ≺ g}

and, in particular, for GA = G(HA), we have that O(A) = O(GA) by [4, Corollary 3.8]. Hence, we see that
CA = CO(A) = CO(GA) is indeed completely characterised by GA.

8. Simplifications

As mentioned at the beginning of Section 6, GA need not be the only generator G for which CE
A = CE

P(G).
This will be the case for any G such that P(G) = P(GA). If we can find such a G that is ‘simpler’ than GA,
then we can use Algorithm 1 to evaluate CE

A, but more efficiently. This is what we aim to do next.
So what does it mean for a generator to be ‘simpler’ than another generator? Since we loop over all

generator sets in the disjunctive generator G in Algorithm 1, it is beneficial for G to contain as few generator

16

sets G as possible and to also have each such G be as small as possible to make the linear feasibility problems
smaller.

Decadt et al. [4, Sections 6 and 7] have solved the problem of finding such a simpler generator, be it for
the coherent extension instead of the E-admissible one. In particular, they used simplification algorithms to
go from an assessment A to a disjunctive generator G∗A that is simpler than GA but satisfies O(G∗A) = O(GA),
whereas we require P(G∗A) = P(GA). The following result allows us to nevertheless use these methods in
our setting as well; it is based on the simple observation that

P(G) = {p ∈ P : ≺p∈ O(G)}. (20)

Proposition 8.1. Consider two disjunctive generators G,G′ ⊆ 2V . If O(G) = O(G′), then also P(G) =
P(G′).
Proof. By applying Eq. (20) twice, we have that P(G) = {p ∈ P : ≺p∈ O(G)} = {p ∈ P : ≺p∈ O(G′)} =
P(G′).

Due to Proposition 8.1, we can use [4, Algorithms 6 and 7] to go from a finite assessment A to a
generator G∗A that is simpler than GA but nevertheless satisfies P(G∗A) = P(GA). This is done in two steps:
first use [4, Algorithm 6] to obtain a conjunctive generator H∗

A for which O(G(H∗
A)) = O(G(HA)); then

use [4, Algorithm 7] to go from this conjunctive generator H∗
A to a disjunctive generator G∗A for which

O(G∗A) = O(G(H∗
A)). Since then O(G∗A) = O(G(H∗

A)) = O(G(HA)) = O(GA), it indeed follows from
Proposition 8.1 that P(G∗A) = P(GA). Because of this, if we run Algorithm 1 with the generator G∗A instead
of GA, we will obtain the same result because CE

P(GA)(A) = CE
P(G∗

A)(A). Henceforth, if we write G∗A, we take
this to denote the result of applying [4, Algorithms 6 and 7] to an assessment A.

Instead of using simplification algorithms to directly go from an assessment A to a generator G—such
as G∗A—that is equivalent to GA, a more naive approach would be to first explicitly construct the generator
GA and then simplify it to an equivalent generator G. This would however lead to a combinatorial explosion
because constructing GA involves taking the Cartesian product of all option sets in HA and is therefore not
(memory and time) efficient. For more information about how [4, Algorithms 6 and 7] avoid this explosion,
we refer to [4, Section(s 5 and) 6].

While these simplifications have been designed in the context of the coherent extension and are therefore
mainly intuitive in terms of general preference orders, some of them can also be intuitively understood
in terms of credal sets. To that end, an important observation—see [4, Sections 5 and 6]—is that the
simplification algorithms [4, Algorithms 5 and 6] only remove options or entire option sets, which means
that every option set H in the simplified conjunctive generator H∗

A will be a subset of some option set H ′ in
the original one and every option set G in the simplified disjunctive generator G∗A will be a subset of some
G′ in the original one. We will use this fact to explain some simplifications in more detail. We focus in
particular on [4, Algorithm 6] and also use the fact that P(HA) =

⋂
H∈HA

P[H] and P[H] =
⋃

h∈H Ph.
A first simplification, for example, is that option sets H in HA for which there is some h > 0 in H are

removed. This can be done because Ph = P for such h > 0 and therefore also P[H] = P, which implies
that P(HA) =

⋂
H′∈HA

P[H ′] =
⋂

H′∈HA\{H} P[H ′] = P(HA \ {H}). So the option sets H in the simplified
conjunctive generator H∗

A contain no positive options. Consequently, the disjunctive generator G(H∗
A) will

not contain any positive options, and similarly for any subset of G(H∗
A) that is smaller—both in number

of option sets and options inside each option set—such as the simplified generator G∗A. This is related to
Eq. (17) and makes it so that if we use the simplified generator G∗A, we do not have to remove the positive
options from G ∈ G∗A in line 6 of Algorithm 1, in the sense that pExists(G \ V>0, B) simply becomes
pExists(G,B).

A second simplification consists in removing, for any H ∈ HA, all h ∈ H for which h ≤ 0. This can be
done because Ph = ∅ for such h and therefore P[H] =

⋃
h∈H Ph = P[H \ {h}]. The option sets H in the

simplified conjunctive generator H∗
A will therefore not contain options h ≤ 0 and, as a direct consequence,

neither will the option sets G in the disjunctive generator G(H∗
A), or any smaller generator such as the

simplified generator G∗A.
For more details concerning [4, Algorithm 6 and 7] and the many other simplifications they implement,

we refer the interested reader to [4, Sections 5 and 6].

17

9. Experiments

This section is divided into two parts. In the first part we investigate in which cases we should use the
simplifications of Section 8 to evaluate the E-admissible extension of a given assessment: when should we
use G∗A in Algorithm 1 rather than GA. In the second part we compare the E-admissible extension CE

A to
the coherent extension CA. In particular, we study how Algorithm 1 performs compared to [4, Algorithm 2]
and how much more conservative the coherent extension is compared to the E-admissible one. For both
parts we have to start from an assessment.

Testing the algorithms is most interesting with consistent assessments because for assessments that are
not consistent, the result will always be the empty set, making them rather useless in practice. To get to
a consistent assessment, we start from an E-admissible choice function CE

P , apply that choice function to a
sequence of random option sets A1, ..., AM and use

A := {(Vi,Wi) : i ∈ {1, ...,M}} := {(CE
P(Ai), Ai \ CE

P(Ai)) : i ∈ {1, ...,M}}

as the assessment. This way, since ∅ ̸= P ⊆ P(A1:M), we obtain a finite assessment that is consistent. In all
our experiments, we used M = 10. If we want to study the effect of the size of the assessment, we not only
consider A but also consider the partial assessments

A1:J := {(Vi,Wi) : i ∈ {1, ..., J}} = {(CE
P(Ai), Ai \ CE

P(Ai)) : i ∈ {1, ..., J}} ,

for all J ∈ {1, ...,M}. For each assessment A1:J , we consider the generator GA1:J
and the simplified genera-

tor G∗A1:J
. The E-admissible extension CE

A1:J
= CE

P(G) is evaluated using Algorithm 1 for G ∈ {GA1:J
,G∗A1:J

}
and the coherent extension CA1:J

= CO(G) using [4, Algorithm 2] for G = G∗A1:J
. The evaluation of the

E-admissible extension and the coherent extension is done on 10 separate randomly generated option sets
with 8 options each, and we take the average of the results. For a given A1:J , we take the same 10 evaluation
option sets, but over the different assessments we took 10 different evaluation option sets.

Table 1 summarizes the parameters, the base point in bold and the values that we will vary around this
base point. In this table, the brackets around some of the symbols mean that we will avoid using them, but

Symbolic Symbol Parameter values

|X | (ℓ) 2,4, 6, 8
|P| (L) 1, 2,4, 8
|Ai| for all i m 2,4, 6, 8
|A1:J | (J) 1, 2, . . . , 9,10

Table 1: Parameters and their values with the base point in bold.

rather use their symbolic definition for clarity.
The experiments were run in Julia. We use Gurobi to solve the linear programs, and the experiments

were run on the ‘Gallade’ cluster of the UGent HPC infrastructure. Every evaluation was run on a single
core with 7.3 GB of memory on a 2.2 GHz AMD EPYC 7773X processor; for every ‘computation’—either
preprocessing or evaluation of the choice function—we give a maximum of 60 minutes calculation time. If
data points seem to be missing, it is because the computation time of one of the experiments exceeded these
limits. If a computation took less than 5 seconds, then we redid the experiment multiple times—up until
we had exceeded 5 seconds—and took the average run time in an attempt to get a more accurate ‘average’
result. For higher computation times, we did not do this because the results were already quite stable.

9.1. Details about the construction of the assessment and option sets
The choice functions that we will use to build our assessment are instances of CE

P , with P = {p1, ..., pL}
a finite set of probability mass functions because the choice function CE

P is then easy to evaluate. Since
u ̸≺p u, it follows from Eq. (6) that

CE
P(Ai) = {u ∈ Ai : (∃p ∈ P)(∀a ∈ Ai \ {u})u ̸≺p a} ,

18

which can be efficiently evaluated by looping over the L probability mass functions in P: for each u ∈ Ai

we reject it if there is some a ∈ Ai \ {u} for which u < a or Ep(u) < Ep(a) for some p ∈ P. To randomly
generate p1, ..., pL, we use [21, Algorithm 1].

The options inside every option set A (the Ai from which we construct the assessment as well as the
option sets A for which we evaluate CE

A1:J
(A) and CA1:J

(A)) are generated uniformly at random from the
unit cube [0, 1]|X |. This restriction to [0, 1]|X | does not imply a loss of generality though, as we will explain
now. Suppose that we start from an option set of which the elements belong to R|X |, and not necessarily to
the unit cube. We will show that for any such option set A = {a1, ..., an} we can always find an equivalent
option set A′ whose options do belong to the unit cube. To construct A′, we consider any two real numbers
t < s such that t ≤ ak ≤ s for all k ∈ {1, ..., n}. Then A′ := {a′1, ..., a′n} with a′k := ak−t

s−t for all k ∈ {1, ..., n}
only contains options in the unit cube. Also, every statement of the form a′j ≺ a′k—in particular also
for ≺=≺p—is equivalent to aj ≺ ak by Properties ≺2 and ≺3 of ≺, which, as can be seen from Eq. (19)
and Proposition 5.1, is sufficient to guarantee that every assessment A has an equivalent assessment A′

(in the sense that CE
A = CE

A′ and CA = CA′) that only contains options in [0, 1]|X | and, as can be seen
from Eqs. (6) and (18), every evaluation of CE

A(A) and CA(A) is equivalent to an evaluation of CE
A(A

′) and
CA(A

′) respectively, in the sense that the indices of the chosen options from A match the indices of the
chosen options from A′.

9.2. Effectiveness of the simplifications
In a first experiment we investigate whether the simplifications of Section 8 have merit in the context

of E-admissibility by comparing the time it takes to preprocess an assessment in order to evaluate its
E-admissible extension with and without simplifications, as well as the time it takes to evaluate this E-
admissible extension with and without simplifications (where, as explained above, we take the average over
10 evaluation option sets with each 8 options). When we evaluate the E-admissible extension without the
simplification algorithms of [4], we use a similar method as in [4, Section 7] to run Algorithm 1: we do not
construct the disjunctive generator GA in memory, but we loop over all combinations of one option from
each conjunctive generator set H ∈ HA. This is advantageous because the size of the disjunctive generator
|GA| =

∏
H∈HA

|H| increases exponentially with the number of option sets in the conjunctive generator.
The simplifications should make evaluating the E-admissible extension faster, but at the cost of more

preprocessing time. To estimate when the simplifications are worth it, we calculate the number of evaluations
nBE of the E-admissible extension at which the total time with and without simplifications break even. Let
us therefore use the notation t×pre for the time it takes to preprocess the assessment without the simplifications
and t▲pre for the time it takes to preprocess the assessment with the simplifications. Similarly, we use t×ch for
the time it takes to evaluate the E-admissible extension without the simplifications and t▲ch for the time it
takes to evaluate the E-admissible extension with the simplifications. Then the number of evaluations nBE
at which point both methods break even should satisfy t▲pre + nBEt

▲
ch = t×pre + nBEt

×
ch. The solution to this

equation is given by

n =
t▲pre − t×pre

t×ch − t▲ch
.

In Fig. 4 we plot the time it takes to preprocess and evaluate the E-admissible extension with and without
the simplifications, as a function of the length J = |A1:J | of the assessment, and then also the break-even
point nBE. We did 5 separate experiments, each consisting of an assessment and 10 evaluation option sets,
which correspond to the different colours in the plots. We furthermore do this for different sizes of the state
space |X |, which is also the dimension of the option space V. For |X | = 2, the graphs of the preprocessing
time and the graph of the choosing time are almost flat. The choosing times are very close to each other
both with and without simplifications, while the preprocessing time is further apart. Therefore, for |X | = 2,
the simplifications might not be that useful unless a very high number of evaluations must be made. For
|X | = 4 and |X | = 6, we see that the steepness of the curves increases, for both the preprocessing time and
the evaluation time. The break-even point nBE becomes lower and the simplifications are more useful. To
allow us to fit the results on a single page, we only consider three of the four choices of |X | in Table 1. We
omit the plot for |X | = 8 because the results are similar to those for |X | = 6.

19

In Fig. 5 we depict the result of an entirely similar experiment, but where we now keep |X | = 4 fixed
and instead vary m, the size of the option sets V ∪W in the assessment A. For the base point m = 4, this
yields the exact same results as for |X | = 4 in Fig. 4. We see that for option sets of size 2, the curves are
almost flat and the curves are very close to each other for the choosing time but a bit further apart for the
preprocessing time. In this case, the reason is that only binary comparisons are made in the assessment,
which implies that GA will be either empty or a singleton. The simplifications are therefore not very useful
in this case. For bigger option sets, we see that the simplifications do become more useful. We omit the plot
for m = 8 because it had even fewer points than the one for m = 6.

In Fig. 6 we display the result of yet another similar experiment, but where we have now varied |P|, the
number of pmfs to create the assessment. For |P| = 1, the simplifications do not take long regardless of the
size of the assessment, but the choosing time is also almost the same with and without the simplifications and
does not seem to increase much with the size of the assessment. For |P| = 4 and |P| = 8, the simplifications
are more useful, but the preprocessing time is also higher. For a higher number of pmfs, the simplifications
seem to be less useful, which may be because the credal set is more complex. In this case, we omit the plot
for |P| = 2 because it was the least interesting.

Overall, it seems that sometimes the simplifications are beneficial, such as is the case for the bordeaux
experiment in the base point, which can be seen in the middle subfigure of Fig. 4. In this case we were
unable to compute the E-admissible extension for a bigger assessment without the simplifications. However,
in the teal case on the same plot, we are unable to calculate the simplifications for the bigger assessment,
while we are able to evaluate the E-admissible extension without the simplifications.

9.3. E-admissible extension vs. natural extension
In this second experiment, we investigate the impact of the size of the assessment on the performance

of the E-admissible extension algorithm in comparison with the natural extension algorithm while using
the simplifications for constructing the disjunctive generators, and then also on the number of options that
are chosen by each extension. We use the simplifications for this comparison because in [4] it was shown
that evaluating the coherent extension is usually faster when we use the simplifications; to allow for a fair
comparison, we therefore adopt them here as well.

9.3.1. Performance of choosing algorithms
In Fig. 7, we show for different sizes of the state space |X | a comparison of the time it takes to choose

from an option set with 8 options using the E-admissible extension and the coherent extension. For each
assessment, the time plotted is the average over the time to choose from 10 different option sets. Note
that the time to use the simplifications is not included in this graph, as it is the same for both the natural
extension and the E-admissible extension. We see that the E-admissible extension is—averaged over 10
evaluation sets—always faster than the natural extension—averaged over the same 10 evaluation sets—in
our experiments, but for high values of |X | there are fewer data points because the simplifications take too
long to process. Similarly, in Fig. 8, we show the same comparison for different sizes m of the option sets in
the assessment. We see again that—averaged over 10 evaluation sets—the E-admissible extension is always
faster than the natural extension in our experiments and that for high m we have fewer data points as
the simplifications take too long to calculate. Then in Fig. 9 we vary the number |P| of probability mass
functions. We see again that the E-admissible extension is faster than the coherent extension.

9.3.2. Difference in number of chosen options
As an extension of the previous experiment, we look at how many options are chosen on average from

the 10 evaluation option sets by the E-admissible extension, by the natural extension and also, as a point of
reference, by the choice function CE

P that was used to build the assessments. We look at the same 5 different
assessment and for each of the assessments we take the same 10 option sets as in the previous experiment.
In Figs. 10 to 12, we look at the dependence of the number of chosen options on J for different dimensions
|X |, for different sizes m of option sets in the assessment and for various numbers |P| of probability mass
functions to construct the assessment. In general, we see in these figures that as the assessment gets bigger,

20

2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

t p
re

[s
]

|X | = 2

2 4 6 8 10

|X | = 4

2 4 6 8 10

|X | = 6

2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

t c
h

[s
]

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10
0

50

100

150

200

250

300

|A1:J |

n
B

E
,b

re
ak

-e
ve

n
po

in
t

2 4 6 8 10

|A1:J |
2 4 6 8 10

|A1:J |

Figure 4: The top and middle row are the time in seconds to preprocess a choice function CE
A1:J

and to choose from an option
set with CE

A1:J
as a function of the number J = |A1:J | of pairs (V,W) in the assessment. The vertical axes are logarithmic

and identical. × is without simplifications, ▲ is with simplifications. The bottom row shows the break-even point for the
simplifications. The five colours correspond to five separate experiments. In the columns the dimension |X | changes.

21

2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

t p
re

[s
]

m = 2

2 4 6 8 10

m = 4

2 4 6 8 10

m = 6

2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

t c
h

[s
]

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10
0

50

100

150

200

250

300

|A1:J |

n
B

E
,b

re
ak

-e
ve

n
po

in
t

2 4 6 8 10

|A1:J |
2 4 6 8 10

|A1:J |

Figure 5: The left and middle column are the time in seconds to preprocess a choice function CE
A1:J

and to choose from
an option set with CE

A1:J
as a function of the number J = |A1:J | of pairs (V,W) in the assessment. The vertical axes are

logarithmic and identical. × is without simplifications, ▲ is with simplifications. The right column shows the break-even point
for the simplifications. The five colours correspond to five separate experiments. In the rows the size of the option sets in the
assessment changes.

22

2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

t p
re

[s
]

|P| = 1

2 4 6 8 10

|P| = 4

2 4 6 8 10

|P| = 8

2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

t c
h

[s
]

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10
0

50

100

150

200

250

300

|A1:J |

n
B

E
,b

re
ak

-e
ve

n
po

in
t

2 4 6 8 10

|A1:J |
2 4 6 8 10

|A1:J |

Figure 6: The left and middle column are the time in seconds to preprocess a choice function CE
A1:J

and to choose from
an option set with CE

A1:J
as a function of the number J = |A1:J | of pairs (V,W) in the assessment. The vertical axes are

logarithmic and identical. × is without simplifications, ▲ is with simplifications. The right column shows the break-even point
for the simplifications. The five colours correspond to five separate experiments. In the rows the size of |P| changes.

23

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

t c
h

[s
]

|X | = 2

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

|X | = 4

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

t c
h

[s
]

|X | = 6

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

|X | = 8

Figure 7: Time in seconds to choose from an option set with either CA1:J
or CE

A1:J
as a function of the number J = |A1:J |

of pairs (V,W) in the assessment. The vertical axis is logarithmic, and there are 5 separate experiments each with their
own colour and every data point is the average of the time to evaluate the choice function for 10 different option sets. □ is
natural extension, ▲ is E-admissibility. Over the different plots we have varied the size of the state space |X |, which is also the
dimension of the vector space of options R|X|.

24

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

t c
h

[s
]

m = 2

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

m = 4

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

t c
h

[s
]

m = 6

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

m = 8

Figure 8: Time in seconds to choose from an option set with either CA1:J
or CE

A1:J
as a function of the number J = |A1:J |

of pairs (V,W) in the assessment. The vertical axis is logarithmic, and there are 5 separate experiments each with their own
colour and every data point is the average of the time to evaluate the choice function for 10 different option sets. □ is natural
extension, ▲ is E-admissibility. Over the different plots we have varied the size m of the option sets in the assessment.

25

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

t c
h

[s
]

|P| = 1

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

|P| = 2

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

t c
h

[s
]

|P| = 4

1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

|A1:J |

|P| = 8

Figure 9: Time in seconds to choose from an option set with either CA1:J
or CE

A1:J
as a function of the number J = |A1:J |

of pairs (V,W) in the assessment. The vertical axis is logarithmic, and there are 5 separate experiments each with their own
colour and every data point is the average of the time to evaluate the choice function for 10 different option sets. □ is natural
extension, ▲ is E-admissibility. Over the different plots we have varied the number |P| of probability mass functions to create
the assessment.

26

the number of options chosen by the natural extension and the E-admissible extension slowly gets smaller.
We also see that the E-admissible extension is more informative, in the sense that it chooses fewer options
than the natural extension. This is not surprising, as it is theoretically guaranteed: for any given assessment,
the compatible preference orders of the E-admissible extension are a subset of the compatible preference
orders of the coherent extension, whence it can be seen from Eq. (18) that the coherent extension must choose
at least as many options as the E-admissible one. What is not obvious, but shown by our experiments, is
that the difference between the number of options chosen by the natural extension and the E-admissible
extension is, on average, strictly positive and non-negligible, and that it furthermore does not vary too much
with the size of the assessment.

In Fig. 10, we see specifically that for lower dimensions we get closer to CE
P faster. In Fig. 11, we see

that for higher sizes of option sets in the assessment, we also get closer to CE
P faster. Then in Fig. 12, we

see that for lower numbers |P| of probability mass functions used to construct the assessment—that is, if
P becomes more precise—the number of options chosen by CE

P becomes lower, where for |P| = 1 it is even
always 1. The slopes for both the E-admissible extension and the coherent extension are steeper for smaller
sizes of |P|.

10. Conclusion

We have studied decision-making under uncertainty while using the E-admissibility criterion and choice
functions. In particular, by starting from a finite assessment of past choices, we formulated a method to de-
termine the most conservative choice function under E-admissibility that is compatible with this assessment,
through a set of linear feasibility checks.

Compared to earlier algorithmic work on E-admissibility by Utkin and Augustin [8] and Kikuti et al.
[9], the main difference is that these authors start from a credal set that is specified by means of linear
constraints on probability mass functions (bounds on expectations), which forces their credal sets to be
convex polyhedrons. In our approach, on the other hand, we use assessments that specify options that are
rejected from given option sets, thereby allowing for credal sets that may be non-convex. In our approach the
inequality constraints of Utkin and Augustin [8], Kikuti et al. [9] then essentially correspond to assessments
specifying rejections from option sets with two options, but with a key difference: their credal sets are
always bounded by non-strict constraints (resulting in closed sets), whereas ours are specified in terms
of strict constraints. In our approach, closed credal sets therefore typically require infinite assessments,
which our algorithms cannot cope with yet. Therefore, future work could look into which types of infinite
assessments can still be handled finitely, so that we get a practical method that can deal with both their
constraints and our assessments simultaneously.

We have also related the study of the E-admissible extension to the coherent (natural) extension and have
shown that the simplifications of Decadt et al. [4] for the coherent extension can be used for the E-admissible
extension as well. For this aspect of our work, future work could consist in developing further simplifications,
for example by covering (exactly) the set P(G) with a minimal number of credal sets of the form P[G]. This
is in general an NP-hard problem, but some efficient heuristics do exist [22]. An example where this leads
to extra simplifications for V = R2 is for the assessment A := {(V,W)} := {({(2,−1), (−1, 2)}, {(0, 0)})}.
Then P(A) = P, but the simplified generator G∗A = {{(2,−1)}, {(−1, 2)}}, while G = {∅} is sufficient for
P(G) = P. The natural extension needs this, as CO(V ∪W) = V ∪W , but CO(A)(V ∪W) = V ; while the
E-admissible extension has already CE

P (V ∪W) = V .
Another interesting avenue for future work is updating when new information becomes available. Previous

computations can be reused, both for the simplifications and for the evaluation of the E-admissible extension
and also for the coherent extension.

In our experiments, we have seen that in some cases it is faster to evaluate the E-admissible extension
of an assessment with the simplifications of [4], while in other cases it is not. We have also shown that
evaluating the E-admissible extension of an assessment is on average faster than evaluating its coherent
extension, and yields a smaller (less conservative, more precise) set of choices. The latter is not surprising
since we know from Section 7 that the E-admissible extension is always more precise than the coherent

27

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

av
er

ag
e

nu
m

be
r

of
ch

os
en

op
ti

on
s

|X | = 2

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

|X | = 4

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

av
er

ag
e

nu
m

be
r

of
ch

os
en

op
ti

on
s

|X | = 6

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

|X | = 8

Figure 10: On the horizontal axis, we put the number of pairs (V,W) in the assessment and the vertical axis depicts for the
□’s and ▲’s the number of options chosen by the natural extension and the E-admissible extension respectively. The number
of options that were chosen by the choice function that was used to construct the assessment are depicted with a dotted line
without symbol because they are constant. The 5 colours correspond to 5 separate assessments and each data point depicts
the average over 10 random option sets of 8 options to choose from.

28

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

av
er

ag
e

nu
m

be
r

of
ch

os
en

op
ti

on
s

m = 2

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

m = 4

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

av
er

ag
e

nu
m

be
r

of
ch

os
en

op
ti

on
s

m = 6

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

m = 8

Figure 11: On the horizontal axis, we put the number of pairs (V,W) in the assessment and the vertical axis depicts for the
□’s and ▲’s the number of options chosen by the natural extension and the E-admissible extension respectively. The number
of options that were chosen by the choice function that was used to construct the assessment are depicted with a dotted line
without symbol because they are constant. The 5 colours correspond to 5 separate assessments and each data point depicts the
average over 10 random option sets of 8 options to choose from. Over the different plots we have varied the number of options
in the option sets of the assessment.

29

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

av
er

ag
e

nu
m

be
r

of
ch

os
en

op
ti

on
s

|P| = 1

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

|P| = 2

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

av
er

ag
e

nu
m

be
r

of
ch

os
en

op
ti

on
s

|P| = 4

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

|A1:J |

|P| = 8

Figure 12: On the horizontal axis, we put the number of pairs (V,W) in the assessment and the vertical axis depicts for the
□’s and ▲’s the number of options chosen by the natural extension and the E-admissible extension respectively. The number
of options that were chosen by the choice function that was used to construct the assessment are depicted with a dotted line
without symbol because they are constant. The 5 colours correspond to 5 separate assessments and each data point depicts
the average over 10 random option sets of 8 options to choose from. Over the different plots we have varied the number |P| of
probability mass functions to create the assessment.

30

extension, but our experiments additionally demonstrate that the difference in how many options we reject
is non-negligible. Therefore, we conclude that whenever the assumptions of E-admissibility are justified, it
is definitely beneficial, at least from a practical point of view, to use the E-admissible extension instead of
the coherent one.

Acknowledgement

The work of all authors was supported by Jasper De Bock’s BOF Starting Grant “Rational decision
making under uncertainty: a new paradigm based on choice functions”, number 01N04819.

References

[1] I. Levi, On indeterminate probabilities, in: Foundations and Applications of Decision Theory, Springer,
1978, pp. 233–261.

[2] I. Levi, The enterprise of knowledge: An essay on knowledge, credal probability, and chance, MIT press,
1980.

[3] I. J. Good, Rational decisions, Journal of the Royal Statistical Society: Series B (Methodological) 14
(1952) 107–114.

[4] A. Decadt, A. Erreygers, J. De Bock, Extending choice assessments to choice functions: An algorithm
for computing the natural extension, International Journal of Approximate Reasoning 178 (2025)
109331.

[5] J. De Bock, G. De Cooman, A desirability-based axiomatisation for coherent choice functions, in:
Proceedings of SMPS 2018, Springer, 2018, pp. 46–53.

[6] A. K. Sen, Choice functions and revealed preference, The Review of Economic Studies 38 (1971)
307–317.

[7] F. Brandt, P. Harrenstein, Set-rationalizable choice and self-stability, Journal of Economic Theory 146
(2011) 1721–1731.

[8] L. Utkin, T. Augustin, Powerful algorithms for decision making under partial prior information and
general ambiguity attitudes., in: Proceedings of the Fourth International Symposium on Imprecise
Probabilities and Their Applications, 2005, pp. 349–358.

[9] D. Kikuti, F. G. Cozman, C. P. de Campos, Partially ordered preferences in decision trees: computing
strategies with imprecision in probabilities, in: IJCAI workshop on advances in preference handling,
2005, pp. 118–123.

[10] T. Seidenfeld, M. J. Schervish, J. B. Kadane, Coherent choice functions under uncertainty, Synthese
172 (2010) 157–176.

[11] J. De Bock, G. De Cooman, Interpreting, axiomatising and representing coherent choice functions in
terms of desirability, in: Proceedings of the Eleventh International Symposium on Imprecise Probabil-
ities: Theories and Applications, PMLR, 2019, pp. 125–134.

[12] J. De Bock, Archimedean choice functions: an axiomatic foundation for imprecise decision making, in:
Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based Systems
18th International Conference, Springer, 2020, pp. 195–209.

[13] A. Decadt, A. Erreygers, J. De Bock, G. De Cooman, Decision-making with E-admissibility given a
finite assessment of choices, in: Building Bridges between Soft and Statistical Methodologies for Data
Science, Springer, 2022, pp. 96–103.

31

[14] M. C. Troffaes, Decision making under uncertainty using imprecise probabilities, International Journal
of Approximate Reasoning 45 (2007) 17–29.

[15] L. J. Savage, The Foundations of Statistics, Courier Corporation, 1972.

[16] R. Frisch, Sur un problème d’économie pure, Grøndahl & søns boktrykkeri, 1926.

[17] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, 1991.

[18] T. Seidenfeld, Decision theory without “independence” or without “ordering”: What is the difference?,
Economics & Philosophy 4 (1988) 267–290.

[19] G. Birkhoff, Lattice theory, third ed., American Mathematical Society, 1940.

[20] J. Matoušek, B. Gärtner, Understanding and Using Linear Programming, Universitext, Springer, 2006.

[21] N. Nakharutai, M. C. M. Troffaes, C. C. Caiado, Improved linear programming methods for checking
avoiding sure loss, International Journal of Approximate Reasoning 101 (2018) 293–310.

[22] S. J. Eidenbenz, P. Widmayer, An approximation algorithm for minimum convex cover with logarithmic
performance guarantee, SIAM Journal on Computing 32 (2003) 654–670.

Appendix: Table of Notation

Symbol Page Meaning

X 2 State space: finite set of all outcomes of an experiment
R 2 The real numbers
V 2 RX , the vector space containing all options
Q 2 The set of all non-empty finite subsets of V
Q∅ 3 Q ∪ {∅}
< 3 background order on V: u < v ⇔ ((∀x ∈ X)u(x) ≤ v(x) and (∃x ∈ X)u(x) <

v(x))
P 3 Contains all probability mass functions on X
Ep 4 Expectation operator induced by the probability mass function p
Cp 4 Choice function that chooses based on maximising expected utility for a probability

mass function p
≺ 4 Preference order; strict vector order on V that extends <

O; O(A) 5; 16 Contains all preference orders on V; maps an assessment A to a set of all preference
orders that agree with A

A 6 An assessment, subset of Q×Q∅
CE

A 6 E-admissible extension of an assessment A
H 8 Conjunctive generator, subset of 2V
HA 8 Conjunctive generator corresponding to a given assessment A

P(A); P(H) 6;8 maps an assessment A or a conjunctive generator H to the largest credal set that
agrees with them

P[H] 8 maps a conjunctive generator set H to the largest credal set that agrees with H
Ph 8 The credal set of all probability mass functions for which h has positive expectation
G 9 Disjunctive generator
GA 9 Disjunctive generator corresponding to a given assessment A

P(G); P[G] 9 Maps a disjunctive generator G or a disjunctive generator set G to the largest
credal set that agrees with them

32

pExists(A,B) 13 Returns true if a probability p exists whose expectation operator maps all options
in A to positive real numbers and all option in B all nonpositive real numbers,
and false otherwise

O(G) 16 Maps a disjunctive generator G to set of preference orders that agree with G
G∗A 17 Simplified disjunctive generator for a given assessment A
L 18 Number of probability mass functions in the experiments
× 19 Cartesian product of sets, in experiments used to mean ‘without simplifications’
▲ 19 in experiments used to mean ‘with simplifications’

33

	Introduction
	Decision-making with choice functions
	Maximizing expected utility & E-admissibility
	Strict dominance
	Maximizing expected utility
	E-admissibility

	Consistent assessments and their E-admissible extensions
	A characterisation of P(A)
	Computing the E-admissible extension of an assessment
	The coherent (natural) extension
	Simplifications
	Experiments
	Details about the construction of the assessment and option sets
	Effectiveness of the simplifications
	E-admissible extension vs. natural extension
	Performance of choosing algorithms
	Difference in number of chosen options

	Conclusion

