Robustness quantification: a new method for assessing the reliability of the
predictions of a classifierAdrián.Detavernier@ugent.bepredictions of a classifier

 $\mathcal{F} \to C$ that map each feature vector $\mathbf{f} = (f_1, \dots, f_N) \in \mathcal{F} := X_{i=1}^N \mathcal{F}_i$ to a class $h(\mathbf{f}) \in C$ based on a joint probability distribution P on $C \times \mathcal{F}$. Since for us \mathcal{F} and C are discrete, P is uniquely defined by its mass function p. The predicted class \hat{c} is chosen to be (one of) the class(es) with maximum conditional probability:

 $h_P(\mathbf{f}) \in \arg \max_{c \in C} p(c|\mathbf{f}) = \arg \max_{c \in C} p(c, \mathbf{f}).$

Naive Bayes Classifier (NBC)

An **NBC** assumes the features to be conditionally independent given the class. This implies that the joint probability mass function can be factorized as

$$p(c, \mathbf{f}) = p(c) \prod_{i=1}^{N} p(f_i | c).$$

Uncertainty Quantification (UQ)

UQ aims to quantify the uncertainty associated with individual predictions, the idea being that uncertainty negatively influences reliability.

bility information for the predictions of a generative classifier. Our approach consists in accompanying each prediction with its own robustness metrics. We focus on the Naive Bayes Classifier and compare our metrics with uncertainty metrics in a series of experiments.

(P_{train} . **P**_{test} distribution shift Aleatoric uncertainty (AU) has to do with the intrinsic variability of the test sampling data as captured by P_{test} . sampling Epistemic uncertainty (EU) has to do with the fact that we typically do not know P_{test} . ed data · ++ ($D_{
m train}$) D_{test} 69

mass functions need to be learned from D_{train} :

$$p(c) = \frac{n(c) + \alpha}{n + \alpha |C|} \text{ and } p(f_i|c) = \frac{n(c, f_i) + \alpha}{n(c) + \alpha |\mathcal{F}_i|},$$

where n, n(c) and $n(c, f_i)$ are the number of instances in total, of class c and of class c with feature value f_i in D_{train} , and where α is a smoothing parameter.

Robustness Quantification (RQ)

RQ aims to quantify how much **EU** the classifier *could* cope with before changing its prediction (how different P_{test} *can be* from $P_{D_{\text{train}}}$), and this regardless of how much **EU** there actually is (how different P_{test} *is* from $P_{D_{\text{train}}}$). To quantify this, we artificially perturb $P_{D_{\text{train}}}$ until the prediction changes.

Consider a distribution P on $C \times \mathcal{F}$. Let \mathcal{P} be a compact set of distributions on $C \times \mathcal{F}$ with $P \in \mathcal{P}$. Then we call \mathcal{P} a perturbation of P.

We say that a prediction is **robust** w.r.t. a perturbation \mathcal{P} , if all distributions P in \mathcal{P} yield the same prediction as $P_{D_{\text{train}}}$. A prediction is then deemed **reliable** if it is **robust**, meaning that it would remain true even in the face of severe **EU**.

The uncertainty metrics we consider are the following:

- $u_{\rm m}({f f})$ the probability of being wrong according to $P_{D_{\rm train}}$ $u_H({f f})$ the Shannon entropy of $P_{D_{\rm train}}(\cdot |{f f})$
- $u_a(\mathbf{f})$ the average Shannon entropy of all $P_{i,D_{\text{train}}}(\cdot|\mathbf{f})$ learned by an ensemble
- $u_t(\mathbf{f})$ the Shannon entropy of $P_{av,D_{train}}(\cdot|\mathbf{f})$, the average of all $P_{i,D_{train}}(\cdot|\mathbf{f})$ learned by an ensemble
- $u_e(\mathbf{f}) = u_a(\mathbf{f}) u_t(\mathbf{f})$

Usually, a perturbation \mathcal{P} of $P_{D_{\text{train}}}$ will be a 'neighborhood' around $P_{D_{\text{train}}}$, consisting of distributions of a particular type whose distance from $P_{D_{\text{train}}}$ is in some sense bounded. We increase the size of these perturbations using parametrized perturbations.

Consider a distribution *P* and, for all $\varepsilon \in [0, 1]$, a perturbation $\mathcal{P}_{\varepsilon}$ of *P*. Then the family $\mathcal{P}_{\bullet} := (\mathcal{P}_{\varepsilon})_{\varepsilon \in [0,1]}$ is called a **parametrized perturbation** of *P* if $\mathcal{P}_0 = \{P\}$ and $\mathcal{P}_{\varepsilon_1} \subset \mathcal{P}_{\varepsilon_2}$ if $\varepsilon_1 < \varepsilon_2$.

For each parametrized perturbation of $P_{D_{\text{train}}}$ the corresponding robustness metric is the minimal perturbation size ε for which the prediction is no longer robust.

If $\mathcal{P}_{\varepsilon}$ is the set of distributions we get by applying ε contamination to the joint mass function of $P_{D_{\text{train}}}$, we obtain the global robustness metric

Applying ε -contamination to a mass function p yields the set of all mass functions of the type $(1 - \varepsilon)p + \varepsilon p^*$, where p^* ranges over all possible mass functions whose domain is equal to that of p.

In our experiments we studied the effect of **distribution shift** and **limited data**. To control this, we generated our own data sets. The test set D_{test} is sampled from the test distribution $P_{\text{test}} = 0.7P_{\text{fix}} + 0.3P_{\text{rand}}$, with P_{fix} an NBC and P_{rand} a randomly generated distribution. The training set D_{train} is sampled from the training distribution $P_{\text{train}} = (1-\gamma)P_{\text{test}} + \gamma P_{\text{shift}}$, with P_{shift} also random. The size *n* of D_{train} is 100 or 25 and the amount of distribution shift γ is 0 or 0.4. For each combination of *n* and γ we generate 10 different training distributions P_{train} (with 10 different P_{shift}) and use each of these to sample 10 different training sets D_{train} of size *n*. The graphs depict the average accuracy and its standard deviation for the resulting 100 training sets.

$$\boldsymbol{\varepsilon}_{\text{glob}}(\mathbf{f}) = \frac{p(\hat{c}, \mathbf{f}) - \max_{c \in C \setminus \hat{c}} p(c, \mathbf{f})}{1 + p(\hat{c}, \mathbf{f}) - \max_{c \in C \setminus \hat{c}} p(c, \mathbf{f})}.$$

This metric requires no structural assumptions and **can** therefore **be applied to any generative classifier**.

Alternatively, we also consider an approach that is **specific for NBCs**. Here, $\mathcal{P}_{\varepsilon}$ is obtained by applying ε **contamination** to the local mass functions for c and for f_i given c separately. The resulting **local robustness metric** $\varepsilon_{\text{loc}}(\mathbf{f})$ is the unique value of ε for which:

$$p(\hat{c}, \mathbf{f}) = \max_{c \in C \setminus \{\hat{c}\}} \left(p(c) + \frac{\varepsilon}{1 - \varepsilon} \right) \prod_{i=1}^{N} \left(p(f_i | c) + \frac{\varepsilon}{1 - \varepsilon} \right),$$

where the right-hand side is an increasing function in ε .