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Let’s say that you have a You decide to take him This classifier (accuracy 95%) Based on the features it How reliable is this particular
beloved bird called Flip to the vet, who started is given a set of features: now predicts the follow- prediction? Would you trust it
who is feeling sick. using an ML classifier. weight, blood results, etc. ing class: severe illness. and start up arisky treatment?
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Generative classifiers Learning local models

, , o . Our main goal is to provide instance-based
Generative classifiers are deterministic functions hp information for the predictions of a gener- Since the joint of the NBC P, __ factorizes, only the local

F — C];chat map each feature vector f = .(].‘“1, ooy IN) € ative classifier. Our approach consists in accom- mass functions need to be Iearned from Dy,
7 = X;., f: toaclass h(f) € C based on a joint probabil- panying each prediction with its own n(c. f) +a

ity distribution P on C x . Since for us ¥ and C are dis- . We focus on the Naive Bayes Classifier p(c) = ,
< uni - - e e n(c) +al 7
crete, P is uniquely defined by its mass function p. The and compare our metrics with

predicted class ¢ is chosen to be (one of) the class(es) in a series of experiments. where n, n(c) and n(c, f;) are the number of instances
with maximum conditional probability: in total, of class ¢ and of class ¢ with feature value f; in
D..in, and where « is a smoothing parameter.

n(c) +a
n+ «a|C|

and p(filc) =

hp(f) € argmax p(c|f) = argmax p(c, f).
ceC ceC

distribution shift

Naive Bayes Classifier (NBC)
An NBC assumes the features to be conditionally inde-

has to do
with the intrinsic variability of the test

aims to quantify how much EU the classifier could
cope with before changing its prediction (how different

) . . ”) \ v :
pendent given the class. This implies that the joint prob- QBJ \ data as captured by Prest. 939 P can be from Pp_ ), and this regardless of how much
ability mass function can be factorized as S Epist.e?ichuncertari]nty (EV) has |TO S EU there actually is (how different Py is from Pp__). To
N 0% \ jg mtt kaoewfﬁ;:. at we typically 0% q.ua.ntify this, we artificially Pp,_ . until the pre-
p(c,f) = p(c) Hp(ﬁ|c)° Z\ diction changes.
i=1 ?6 \

\J"\‘@ Consider a distribution P on C x . Let £ be a compact

set of distributions on C x F with P € . Then we call P

C a of P.

aims to quantify the uncertainty associated with
individual predictions, the idea being that uncertainty

Cepatively influences We say that a prediction is w.r.t. a perturbation
5 y P if all distributions P in P yield the same prediction as
The uncertainty metrics we consider are the following: Pp. . Aprediction is then deemed ifitis ,
the probability of being wrong according to Pp, meaning that it would remain true even in the face of
severe EU.

the Shannon entropy of Pp__ (:|f)
the average Shannon entropy of all P;p . (:|f) Usually, a P of Pp,_ . will be a ‘neighbor-
learned by an ensemble \\‘\“ hood’ around Pp,__, consisting of distributions of a par-

ticular type whose distance from Pp__ isin some sense
bounded. We increase the size of these perturbations
using

the Shannon entropy of P, p. . (+|f), the average of
all P, . (:|f) learned by an ensemble

ue(£) = ua(f) — u,(f)

Consider a distribution P and, for all
e [0, 1], a perturbation $. of P. Then

Experiments w U : .
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20 size € for which the prediction is no longer :

If . is the set of distributions we get by applying

Um UH -1, Eglob == &l 0 50 100 0 of Dot to the joint mass function of Pp__, we
30| n =100, y =0 n =100, y = 0.4 s ; obtain the
E 20 | L u u ~ p(é,f) —maxeee\e p(c, 1)
§ 10, -~ T+ (e D) = maxeec p(e, D)
é 0 o Ap?clly“?cﬁ f of all ]EO at.mass fcu?ctlc?cn P This metric requires no structural assumptions and can
< YIEIEs the et ot all mass TUhctions ot the Ype therefore be applied to any generative classifier.
%é 20 (1 —e)p + ep*, where p* ranges over all possible
& 10 t\ mass functions whose domain is equal to that of p. Alternatively, we also consider an approach that is spe-
5 o - 100 0 = 100 cific for NBCs. Here, £. is obtained by applying

to the local mass functions for ¢ and
In our experiments we studied the effect of distribution shift and limited data. To control this, we generated ¥

. Ca , for f; given c separately. The resulting local robustness

our own data sets. The test set D;. is sampled from the test distribution P;.« = 0.7Pg. + 0.3P..nq, With Pg an : : : _—
o, . : U Lo metric g,,.(f) is the unique value of ¢ for which:

NBC and P,.,q a randomly generated distribution. The training set D...;, Is sampled from the training distribution

Piram = (1=9) Piest +Y Paire, With Py, also random. The size n of D, 1S 100 or 25 and the amount of distribution = 5

shift v is O or 0.4. For each combination of n and y we generate 10 different training distributions P,.;, (with p(c.f) = Cégé\lfi} (P(C) T | 8) 1—[ (P(fi _ 8),

10 different P,;;) and use each of these to sample 10 different training sets D, of size n. The graphs depict =1

the average accuracy and its standard deviation for the resulting 100 training sets. where the right-hand side is an increasing function in .




