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Let’s say that you have a
beloved bird called Flip
who is feeling sick.

You decide to take him
to the vet, who started
using an ML classifier.

This classifier (accuracy 95%)
is given a set of features:
weight, blood results, etc.

95% ✔

Based on the features it
now predicts the follow-
ing class: severe illness.

Mild illness

Severe illness

Healthy

How reliable is this particular
prediction? Would you trust it
and start up a risky treatment?

Reliability
Quantification

Uncertainty
Quantification

Robustness
Quantification

Our main goal is to provide instance-based relia-
bility information for the predictions of a gener-
ative classifier. Our approach consists in accom-
panying each prediction with its own robustness
metrics. We focus on the Naive Bayes Classifier
and compare our metrics with uncertainty met-
rics in a series of experiments.

A general overview
Generative classifiers

Generative classifiers are deterministic functions ℎ𝑃 :
F → C that map each feature vector f = ( 𝑓1, . . . , 𝑓𝑁) ∈
F ≔

>𝑁
𝑖=1 F𝑖 to a class ℎ(f ) ∈ C based on a joint probabil-

ity distribution 𝑃 on C ×F . Since for us F and C are dis-
crete, 𝑃 is uniquely defined by its mass function 𝑝. The
predicted class 𝑐 is chosen to be (one of) the class(es)
with maximum conditional probability:

ℎ𝑃(f ) ∈ argmax
𝑐∈C

𝑝(𝑐 |f ) = argmax
𝑐∈C

𝑝(𝑐, f ).

Naive Bayes Classifier (NBC)
An NBC assumes the features to be conditionally inde-
pendent given the class. This implies that the joint prob-
ability mass function can be factorized as

𝑝(𝑐, f ) = 𝑝(𝑐)
𝑁∏
𝑖=1

𝑝( 𝑓𝑖 |𝑐).

Learning local models
Since the joint of theNBC 𝑃𝐷train

factorizes, only the local
mass functions need to be learned from 𝐷train:

𝑝(𝑐) = 𝑛(𝑐) + 𝛼

𝑛 + 𝛼 |C| and 𝑝( 𝑓𝑖 |𝑐) =
𝑛(𝑐, 𝑓𝑖) + 𝛼

𝑛(𝑐) + 𝛼 |F𝑖 |
,

where 𝑛, 𝑛(𝑐) and 𝑛(𝑐, 𝑓𝑖) are the number of instances
in total, of class 𝑐 and of class 𝑐 with feature value 𝑓𝑖 in
𝐷train, and where 𝛼 is a smoothing parameter.

Uncertainty Quantification (UQ)
UQ aims to quantify the uncertainty associated with
individual predictions, the idea being that uncertainty
negatively influences reliability.
The uncertainty metrics we consider are the following:

𝑢m(f ) the probability of being wrong according to 𝑃𝐷train

𝑢𝐻 (f ) the Shannon entropy of 𝑃𝐷train
(·|f )

𝑢𝑎(f ) the average Shannon entropy of all 𝑃𝑖,𝐷train
(·|f )

learned by an ensemble
𝑢𝑡 (f ) the Shannon entropy of 𝑃av,𝐷train

(·|f ), the average of
all 𝑃𝑖,𝐷train

(·|f ) learned by an ensemble
𝑢𝑒(f ) = 𝑢𝑎(f ) − 𝑢𝑡 (f )

Robustness Quantification (RQ)
RQ aims to quantify how much EU the classifier could
cope with before changing its prediction (how different
𝑃test can be from 𝑃𝐷train

), and this regardless of how much
EU there actually is (how different 𝑃test is from 𝑃𝐷train

). To
quantify this, we artificially perturb 𝑃𝐷train

until the pre-
diction changes.

Consider a distribution 𝑃 on C × F . Let P be a compact
set of distributions on C × F with 𝑃 ∈ P. Then we call P
a perturbation of 𝑃.

We say that a prediction is robust w.r.t. a perturbation
P, if all distributions 𝑃 in P yield the same prediction as
𝑃𝐷train

. A prediction is then deemed reliable if it is robust,
meaning that it would remain true even in the face of
severe EU.

Usually, a perturbation P of 𝑃𝐷train
will be a ‘neighbor-

hood’ around 𝑃𝐷train
, consisting of distributions of a par-

ticular type whose distance from 𝑃𝐷train
is in some sense

bounded. We increase the size of these perturbations
using parametrized perturbations.

Consider a distribution 𝑃 and, for all
𝜀 ∈ [0, 1], a perturbation P𝜀 of 𝑃. Then
the family P• ≔ (P𝜀)𝜀∈[0,1] is called a
parametrized perturbation of 𝑃 if
P0 = {𝑃} and P𝜀1 ⊂ P𝜀2 if 𝜀1 < 𝜀2. 𝜀2
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𝑃
0

<

<

For each parametrized perturbation of 𝑃𝐷train
the corre-

sponding robustnessmetric is theminimal perturbation
size 𝜀 for which the prediction is no longer robust.

If P𝜀 is the set of distributions we get by applying 𝜀-
contamination to the joint mass function of 𝑃𝐷train

, we
obtain the global robustness metric

𝜀glob(f ) =
𝑝(𝑐, f ) −max𝑐∈C\𝑐 𝑝(𝑐, f )

1 + 𝑝(𝑐, f ) −max𝑐∈C\𝑐 𝑝(𝑐, f )
.

This metric requires no structural assumptions and can
therefore be applied to any generative classifier.

Alternatively, we also consider an approach that is spe-
cific for NBCs. Here, P𝜀 is obtained by applying 𝜀-
contamination to the local mass functions for 𝑐 and
for 𝑓𝑖 given 𝑐 separately. The resulting local robustness
metric 𝜀loc(f ) is the unique value of 𝜀 for which:

𝑝(𝑐, f ) = max
𝑐∈C\{𝑐}

(
𝑝(𝑐) + 𝜀

1 − 𝜀

) 𝑁∏
𝑖=1

(
𝑝( 𝑓𝑖 |𝑐) +

𝜀

1 − 𝜀

)
,

where the right-hand side is an increasing function in 𝜀.
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Aleatoric uncertainty (AU) has to do
with the intrinsic variability of the test
data as captured by 𝑃test.

Epistemic uncertainty (EU) has to
do with the fact that we typically
do not know 𝑃test.
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Applying 𝜀-contamination to a mass function 𝑝

yields the set of all mass functions of the type
(1 − 𝜀)𝑝 + 𝜀𝑝∗, where 𝑝∗ ranges over all possible
mass functions whose domain is equal to that of 𝑝.

Experiments
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In our experiments we studied the effect of distribution shift and limited data. To control this, we generated
our own data sets. The test set 𝐷test is sampled from the test distribution 𝑃test = 0.7𝑃fix + 0.3𝑃rand, with 𝑃fix an
NBC and 𝑃rand a randomly generated distribution. The training set 𝐷train is sampled from the training distribution
𝑃train = (1−𝛾)𝑃test+𝛾𝑃shift,with 𝑃shift also random. The size 𝑛 of 𝐷train is 100 or 25 and the amount of distribution
shift 𝛾 is 0 or 0.4. For each combination of 𝑛 and 𝛾 we generate 10 different training distributions 𝑃train (with
10 different 𝑃shift) and use each of these to sample 10 different training sets 𝐷train of size 𝑛. The graphs depict
the average accuracy and its standard deviation for the resulting 100 training sets.


