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Abstract

We consider two conceptually different approaches for assessing the reliability
of the individual predictions of a classifier: Robustness Quantification (RQ) and
Uncertainty Quantification (UQ). We compare both approaches on a number of
benchmark datasets and show that there is no clear winner between the two, but
that they are complementary and can be combined to obtain a hybrid approach that
outperforms both RQ and UQ. As a byproduct of our approach, for each dataset, we
also obtain an assessment of the relative importance of uncertainty and robustness
as sources of unreliability.

1 Introduction

Due to its vast capabilities, AI has become ubiquitous, its use cases ranging from automating simple
tasks to making decisions in high-risk settings. In some cases, especially the ones where the stakes
are high, we are not only interested in the overall performance of the model, but also in the quality or,
to be more precise, the reliability of each single prediction. If your own health is at stake for instance,
you care less about how well the model performs on average; you only want to know whether you can
rely on the model’s prediction in your particular case. So, in an ideal world, we’d want to know for
each prediction of an AI model how reliable it is. For the least reliable predictions, a second opinion
of an expert could then be asked, more data could be collected, etc.

One of the more popular applications of AI models, and the one we focus on in this paper, is
classification. In that case, the goal of the model is to predict the correct class c of a given instance
out of a set of possible classes C. An instance is usually described using a number of features (N in
total). The value fi of the i-th feature takes values in a set Fi, which we take to be finite because we’ll
restrict ourselves to discrete features. We’ll call the vector f := (f1, . . . , fN ) the (set of) features
of said instance, which takes values in F := Fi × · · · × FN . In practice a classifier then, given
an instance (e.g. a patient), uses its features f (e.g. the patient’s medical data) to try to predict the
correct class c (e.g. the sickness of the patient). We’ll denote the class predicted by the classifier as ĉ.

For each such prediction ĉ of a classifier, we can now try to assess how reliable it is. In this work, we
consider two methods for doing so, namely uncertainty quantification [10; 11; 15] and robustness
quantification [5; 6; 7; 13]. What both approaches have in common is that they are based on the
core idea that there is a lot of uncertainty involved when learning a model from data. Uncertainty
quantification tries to quantify this uncertainty, for the prediction associated with a given instance.
Robustness quantification, on the other hand, tries to quantify the amount of (epistemic) uncertainty
the model could handle, while still issuing the same prediction for the given instance, regardless of
how much uncertainty there actually is. In a side by side comparison, we’ve recently demonstrated
that robustness quantification does a better job at assessing the reliability of the predictions of a
classifier than uncertainty quantification, at least for artificial data and in the presence of distribution
shift or when there was a limited amount of data [7]. We now opt for a different point of view: instead
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of only comparing the two and studying which one is better, why not combine them? Since, on a
conceptual level, robustness and uncertainty cover different aspects of reliability, it seems plausible
that such a combination should lead to even better reliability assessments. In our experiments on
benchmark datasets, we demonstrate that this is indeed the case.

2 Uncertainty and robustness for probabilistic generative classifiers

Formally, a classifier h : F → C is a function from the set of all possible sets of features to the set of
possible classes. The uncertainty and robustness metrics we consider in this work, are designed for
probabilistic classifiers and, in the case of the robustness metrics, generative ones. Since our features
are discrete, such a probabilistic generative classifier is completely determined by a probability mass
function Pclassif on C × F . For a given set of features f , the predicted class ĉ is then the one with the
highest probability given the features:

ĉ := h(f) = argmax
c∈C

Pclassif(c|f),

where Pclassif(·|f) is obtained from Pclassif through Bayes’ rule. In our experiments further on, we
make use of Naive Bayes Classifiers (NBC) [8], which are probabilistic generative classifiers that
assume the features to be independent given the class.

In practice, (the probability mass function of) a generative classifier Pclassif is learned using a training
set Dtrain of correctly labeled instances, and its performance is then evaluated on a different set of
instances, called the test set Dtest. It is often assumed that these datasets are sampled from a common
underlying distribution, whose probability mass function we will denote by Pdata

1.

The ideal classifier is the one for which Pclassif = Pdata. However, even in this ideal case, the
accuracy of the predictions issued by this classifier will typically not be 100%, meaning that even
then there still is uncertainty present in the prediction. This has to do with the intrinsic variability
present in the task at hand: two instances with the same features could in practice have a different
class, either due to inherent randomness or because not enough information is captured in the set of
features to distinguish these cases. This remaining uncertainty is completely captured by Pdata(·|f),
and we will refer to it as aleatoric uncertainty.

Unfortunately, the case where the classifier perfectly learns Pdata is unrealistic. The more realistic
scenario is that the learned classifier differs from the ideal one, that is, Pclassif ̸= Pdata. The fact that
Pclassif and Pdata need not be the same, is a completely different type of uncertainty associated with
classification, which we call epistemic uncertainty. Possible sources of this uncertainty are structural
modelling assumptions (such as the independence assumption of an NBC) or the fact that Pclassif is
based on a finite (and hence possibly too small or unrepresentative) training set.

2.1 Uncertainty quantification

Uncertainty quantification tries to quantify either of these two sources of uncertainty, or both, in
the form of a numerical uncertainty metric. This task is extremely challenging, though, since we’ll
never know the distribution Pdata, nor whether Dtrain or Dtest are representative for Pdata. Any
estimate of the amount of aleatoric uncertainty therefore has to be based on the—most likely wrong—
distribution Pclassif . Similarly, estimating the epistemic uncertainty or, in other words, the extent to
which Pclassif differs from Pdata, is obviously very hard since we don’t know Pdata.

Nevertheless, many uncertainty metrics have been developed. In our experiments, we consider 5
of them. A first intuitive uncertainty metric is one minus the probability of the predicted class
according to Pclassif(·|f), which we denote by um. In the ideal case where Pclassif = Pdata, this
would be equivalent to the probability of making a wrong decision. It thus can be seen as an estimate
of the aleatoric uncertainty for the prediction associated with f . A different attempt at estimating
the aleatoric uncertainty of an instance with features f makes use of the (Shannon) entropy. This
metric, denoted by uH , is the entropy of Pclassif(·|f). The remaining uncertainty metrics combine

1Note that we assume that both Dtrain and Dtest are sampled from the same distribution. This need not
be always the case though. The phenomenon of the training and test distribution not being equal is called
distribution shift. For a study of how uncertainty and robustness quantification perform (and compare) in the
presence of distribution shift, we refer the interested reader to our recent work [7].
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entropy with ensemble techniques [16]. These metrics try to estimate the total, aleatoric and epistemic
uncertainty, and are denoted by ut, ua and ue, respectively; the exact formulas are available in our
previous work [7]. For a more in-depth overview of these and other uncertainty metrics, we refer to
the work of Hüllermeier and Waegeman [10].

2.2 Robustness quantification

Robustness quantification takes a different approach by instead trying to numerically quantify how
much epistemic uncertainty a model could handle before its prediction changes. The idea of robustness
quantification has its origin in the field of imprecise probability theory [1]. Instead of only looking
at what class is predicted by Pclassif , this approach considers neighborhoods of distributions around
Pclassif . If all distributions in such a neighborhood predict the same class as the one predicted by
Pclassif , we call this prediction robust w.r.t. said neighborhood. If the prediction is robust, then the
size of the neighborhood can be seen as a lower bound on the amount of epistemic uncertainty we can
allow without changing the prediction. By controlling the size of the neighborhood in a parametrized
manner, we can increase this size until the prediction of the model is no longer robust, or thus until at
least one distribution in the neighborhood predicts a different class. The parameter value at which
this happens can then be used as a robustness metric, indicating the amount of epistemic uncertainty
the model could handle without changing this particular prediction. Quantifying robustness this way
has been successfully tried several times already in the literature, for different types of classifiers
[5; 6; 7; 13].

There are of course numerous types of neighborhoods that can be considered, and therefore many
different robustness metrics. We restrict ourselves to two such families, and thus to two robustness
metrics. The first robustness metric, which we denote by εglob, can be applied to any probabilistic
generative classifier; it considers neighborhoods of the learned (global) joint distribution Pclassif

obtained by ϵ-contaminating [9] the latter. The second robustness metric on the other hand, which we
denote by εloc, is tailor-made for Naive Bayes models. This metric considers global neighborhoods of
the Naive Bayes model Pclassif that consist of Naive Bayes models only, obtained by ϵ-contaminating
the local models of Pclassif . For more details about these two robustness metrics, including how to
efficiently compute them, we refer to our recent work on this topic [7].

Finally, since ‘robustness’ refers to many different concepts within ML, we’d like to stress the fact
that robustness quantification is instance-based, meaning that it assesses the robustness of individual
predictions. This sets it apart from the plethora of approaches that consider the robustness of a
classifier as a whole, such as adversarial robustness [2; 4], robustness against distribution shift [17],
or robust optimization [3].

3 Evaluating reliability metrics

Since uncertainty and robustness metrics both share the goal of trying to assess the reliability of the
individual predictions of a classifier, it makes sense to refer to both of them as reliability metrics.
Depending on the task at hand, such a metric can be used to either select the most reliable instances
(for example to automate the decisions for those instances) or to select the least reliable ones, and
hence the hardest ones to classify (for example to classify these manually, or collect more data for
them). A perfect reliability metric would thus be able to order all instances in such a way that if we’d
start rejecting instances in that order, we would first reject all wrongly classified ones, and then the
correct ones. A straightforward way of evaluating the performance of a reliability metric is therefore
to look at how well it is capable of ordering a set of instances such that the misclassified instances are
rejected first.

Accuracy rejection curves (ARC) offer a visual way to evaluate this [14]. For a given reliability
metric, an ARC is made by first ordering all instances in order of increasing reliability; so from high
to low uncertainty for uncertainty metrics, or from low to high robustness for robustness metrics.
Once the order is determined, we start rejecting instances in that order, such that the ones with the
lowest reliability get rejected first, and at every step we calculate the accuracy of the remaining
instances. So, in essence, ARCs plot the accuracy as a function of the rejection rate. Figure 1 (left
side) displays an example of such an ARC for both an uncertainty metric (yellow) and a robustness
metric (blue). Note that the higher the overall curve is for a given metric, the better, with the ideal
case being a strictly increasing curve (black).
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Figure 1: ARC (left) and point cloud (right) for the Breast Cancer Wisconsin dataset for uH (yellow) and
εglob (blue). The green ARC corresponds to the combination of uH and εglob with γ = 0.53. The point cloud
(logarithmic scale) depicts for each instance if its predicted class was correct (green) or wrong (red).

As can be seen from Figure 1, comparing the ARCs of different reliability metrics is not always
straightforward. In this example, which of the two (yellow or blue) performs best depends on the
rejection rate. This makes assigning a winner a subjective matter. To address this issue, we try to
summarize the quality of such a curve in a single value. Following the approach suggested in the
conclusion of the work of Nadeem et al. [14], we use the area under the ARC, which we’ll refer to
as AU-ARC. Since an ARC consists of a discrete number of points, the AU-ARC can simply be
calculated by taking the average of the accuracies that correspond to all possible rejection rates. For
the ARCs in Figure 1 of the uncertainty and robustness metric, the AU-ARCS are 0.9968 and 0.9961,
respectively, with uncertainty slightly outperforming robustness here.

To assess the performance of the different uncertainty and robustness metrics we consider, we
conducted experiments on the following datasets from the UCI Machine Learning Repository [12]:
Adult, Australian Credit Approval, Bank Marketing, Breast Cancer Wisconsin, German Credit Data,
Lymphography, National Poll on Healthy Aging (NPHA), Nursery, Solar Flare, SPECT Heart and
Student Performance. Since we restrict ourselves to discrete features, we decided to remove the
continuous ones from the datasets where these were present. We also chose to remove instances
with missing values. For two particular datasets we adapted the task to one that leans more toward
standard classification. The Solar Flare dataset has originally three possible target variables that can
be predicted, being the number of flares that occur, and this for three types of flares; we turned this
into a binary classification task whose aim it is to predict if at least one solar flare occurs (of any
type). Similarly, for the Student Performance dataset we predict whether the student passes or fails,
instead of predicting the exact grade. Unless the dataset provides a test set itself, we randomly split
the datasets into Dtrain and Dtest, containing 60% and 40% respectively. We used the Naive Bayes
Classifier throughout all of our experiments. To learn this model, we first optimize a smoothing
parameter with 5-fold cross validation on Dtrain. Once the optimal smoothing parameter is found,
we train the classifier on the entire training set for said parameter.

Figure 1 was made for the Breast Cancer Wisconsin dataset, and with uH as uncertainty metric and
εglob as robustness metric. The AU-ARCs we mentioned earlier for their ARCs can also be found in
Table 1 in the row of ‘Breast Cancer’, in the second and third column. This table furthermore contains
AU-ARCs for all the other datasets. The yellow column shows the AU-ARC for the considered
uncertainty metric, in this case uH ; the blue columns show the AU-ARC of the robustness metrics
εglob and εloc. Comparing the AU-ARC of the uncertainty and robustness metrics, we see that there
is no clear winner throughout all the datasets. Similar tables for ua, ue, um and ut are available in
the Appendix, with similar conclusions.

4 Combining uncertainty and robustness

As has become clear in the previous section, it seems that both uncertainty and robustness metrics
are capable of assessing the reliability of predictions. Furthermore, which of them is better seems
to depend on the particular dataset. We now proceed to investigate whether we can combine both
metrics to arrive at an even better reliability assessment. To understand why this might indeed be
possible, we take a look at the point cloud on Figure 1 (right side). This point cloud represents each
instance of Dtest with a colored dot, where green means that the instance was classified correctly,
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Dataset uH εglob hybrid γ εloc hybrid γ

Adult 0.9295 0.7690 0.9295 1.00 0.9066 0.9295 1.00
Australian Credit 0.9236 0.8872 0.9246 0.86 0.9139 0.9265 0.75
Bank Marketing 0.9485 0.9299 0.9481 0.88 0.9452 0.9485 0.55
Breast Cancer 0.9968 0.9961 0.9978 0.53 0.9962 0.9974 0.52
German Credit 0.8338 0.7972 0.8376 0.85 0.8380 0.8378 0.53
Heart disease 0.7602 0.6761 0.7600 0.95 0.7540 0.7602 0.95
Lymphography 0.9440 0.8981 0.9425 0.88 0.9419 0.9428 0.77
NPHA 0.4962 0.5159 0.4913 0.96 0.5021 0.4917 0.77
Nursery 0.9813 0.9730 0.9814 0.91 0.9822 0.9824 0.28
Solar Flare (big) 0.8603 0.8693 0.8836 0.71 0.8926 0.8874 0.23
Solar Flare (small) 0.8709 0.7990 0.8797 0.78 0.8597 0.8666 0.19
SPECT Heart 0.9458 0.5738 0.9457 0.99 0.8915 0.9458 0.99
Student Math 0.9434 0.9205 0.9445 0.60 0.9465 0.9468 0.31
Student Port 0.8898 0.8952 0.9067 0.79 0.9276 0.9093 0.77

Table 1: The AU-ARC of uH (yellow), εglob (blue), εloc (blue) and of the combinations of the robustness
metrics with the uncertainty one (green). The white columns show the γ used to combine the uncertainty and
robustness metrics.

and red otherwise. The x- and y-coordinate of a dot respectively represent the values for εglob and
uH on a logarithmic scale. Since the points are spread over the plane, it means that for a given value
of one of the metrics, the other metric could be used to further distinguish the more and less reliable
instances. We also clearly see that misclassified instances tend to have both high uncertainty and
low robustness (the red dots on are in the bottom left region). This indicates that combining the two
metrics could lead to an even better reliability assessment.

Given the complementary behavior of uncertainty and robustness metrics, it seems logical to construct
a hybrid reliability metric as a function that maps two numerical values, being the metrics we’d
like to combine, to a new numerical reliability value that performs even better at ordering instances
than either of the two on their own. It is not obvious, however, how to meaningfully combine two
numerical values that capture different concepts of reliability into a single value. Since we only want
to order the instances, we therefore omit the step of constructing a hybrid metric, but instead directly
aim to obtain a hybrid order of the instances.

To obtain an order that combines uncertainty and robustness, we take a weighted average of the
two orders. First, we order all instances with both metrics separately to obtain for each instance
two numbers that correspond to its position in each of the orders. If for the i-th instance the
position according to an uncertainty metric u is nu,i, and according to a robustness metric ε is nε,i,
we determine the hybrid position of this instance using the weighted average of the two separate
positions. In particular, we let

hi := γnu,i + (1− γ)nε,i,

where the weighting coefficient γ ∈ [0, 1] determines the relative importance of uncertainty and
robustness, and then order all instances in order of increasing hi, where ties are decided by the
uncertainty metric. In particular, γ = 1 leads to the same order as induced by uncertainty alone, and
γ = 0 to the one for robustness.

Since we’ve already observed that the relative performance of robustness and uncertainty depends on
the dataset, it is clear that the weighting coefficient γ should depend on the dataset. We therefore
choose to optimize γ on the training set. To do so, we compute the AU-ARC for a grid of possible
values for γ and choose the γ that yields the highest AU-ARC for the training set.

For the Breast Cancer Wisconsin dataset, and with uH as uncertainty metric and εglob as robustness
metric, the result of the hybrid order can be seen in Figure 1 (left) as the green ARC. Here, it is
visually clear that the order that combines both metrics clearly outperforms the individual ones, as
the hybrid ARC lies above the other two. The AU-ARC of the three ARCs shown on this figure are
0.9968 for uH , 0.9961 for εglob and 0.9978 for the combination. Since γ = 0.53, robustness and
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uncertainty contributed more or less equally for this dataset. The results for the other datasets, and
with uH as uncertainty metric, are given in Table 1. The green columns contain the AU-ARC of
the hybrid order obtained by combing the robustness metric (blue) of the column to the left of it
with the uncertainty metric of the yellow column. The white columns provide the trained weighting
coefficient γ used for combining the two metrics. To make the results more easily interpretable, we
highlighted the AU-ARC of the hybrid order in bold whenever it was the highest. In most cases, the
combination of uncertainty and robustness wins (indicated in bold) or is a close second; the only
exception seems to be the NPHA dataset. Similar results for (combinations with) ua, ue, um and ut

are available in the Appendix; the conclusions are mostly similar, except for ue, where there is no
clear winner between the hybrid approach and uncertainty. We conclude from these experiments that
uncertainty quantification and robustness quantification are not only different on a conceptual level,
but that also in practice they have their own way of contributing to assessing the reliability of the
predictions of a classifier.

In addition to better reliability assessments, our approach of combining uncertainty and robustness
furthermore provides us with information about the relative importance of uncertainty and robustness
for each dataset, in the form of the trained weighting coefficient γ. As can be seen from Table 1
and the additional tables in the Appendix, this relative importance varies substantially between the
datasets, and furthermore depends on the type of uncertainty and robustness that is considered.

5 Discussion

The take-away message of this contribution, in our view, is that robustness quantification provides
a valuable tool for assessing the reliability of the predictions of a classifier, especially so, if it is
combined with uncertainty quantification. There is, however, still much to explore.

A first straightforward extension to our work would be to combine more than two reliability metrics,
instead of combining a single uncertainty metric with a single robustness metric. This could not only
lead to even better results, but it could also give more insight in what metrics are useful and which
ones are not, for example by studying the learned weighting coefficients. Another obvious line of
future research would be to try to construct a hybrid reliability metric, instead of focussing solely on
constructing a hybrid order.

As for how to evaluate our approach, there are also some alternatives we would like to explore. We
now used AU-ARC, which is a simple and intuitive way of evaluating the overall performance of a
reliability metric; however it does not say it all. Looking back at Figure 1, the hybrid approach clearly
outperforms uncertainty for small rejection rates: the difference in accuracy gets up to more than
1% (e.g. for rejection rate 0.1), reducing the percentage of misclassified instances by more than half.
Nevertheless, the difference between the AU-ARCs (0.9978 for the hybrid approach and 0.9968 for
uncertainty) is almost negligible because the performance of both approaches is identical for higher
rejection rates. An AU-ARC thus not entirely captures the performance, at least not if we have a
particular rejection rate in mind. For that reason, in our future work, we’d like to extend our approach
to the situation where (information about) the rejection rate is known beforehand, and learn γ such as
to optimize for that setting rather than simply optimize the average accuracy with AU-ARCs.

Finally, we’ve shown in earlier work that, for synthetic data, robustness quantification outperforms
uncertainty quantification in the presence of distribution shift and limited data [7]. It would therefore
be interesting to study the performance of our hybrid approach in such settings as well, for example
by considering real datasets where distribution shift is present, or by artificially reducing the size of
our datasets to study its effect on performance.
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Appendix

To adhere to the page limit constraint, the results in the paper focussed on the uncertainty metric uH ,
comparing it to and combining it with both εglob and εloc. In this appendix, we present similar results
for the uncertainty metrics ua, ue, um and ut. The relevant AU-ARCs are available in Tables 2, 3, 4
and 5, respectively, similarly to Table 1. For each uncertainty metric, we also display the ARC of
uncertainty, robustness and the hybrid approach, for a handpicked choice of dataset and robustness
metric. These ARCs are available in Figures 2, 3, 4 and 5, respectively, similarly to the left-hand side
of Figure 1.

Results for ua

Dataset ua εglob hybrid γ εloc hybrid γ

Adult 0.9298 0.7690 0.9298 1.00 0.9066 0.9298 1.00
Australian Credit 0.9214 0.8872 0.9218 0.84 0.9139 0.9230 0.79
Bank Marketing 0.9483 0.9299 0.9481 0.91 0.9452 0.9487 0.66
Breast Cancer 0.9967 0.9961 0.9978 0.55 0.9962 0.9973 0.50
German Credit 0.8335 0.7972 0.8388 0.78 0.8380 0.8386 0.27
Heart disease 0.7608 0.6761 0.7592 0.94 0.7540 0.7608 0.99
Lymphography 0.9464 0.8981 0.9448 0.68 0.9419 0.9476 0.32
NPHA 0.4900 0.5159 0.4843 0.95 0.5021 0.4849 0.69
Nursery 0.9813 0.9730 0.9813 0.93 0.9822 0.9824 0.17
Solar Flare (big) 0.8640 0.8693 0.8887 0.66 0.8926 0.8883 0.18
Solar Flare (small) 0.8811 0.7990 0.8812 0.70 0.8597 0.8801 0.47
SPECT Heart 0.9512 0.5738 0.9512 1.00 0.8915 0.9511 0.99
Student Math 0.9501 0.9205 0.9470 0.60 0.9465 0.9492 0.51
Student Port 0.8878 0.8952 0.9039 0.78 0.9276 0.8995 0.86

Table 2: The AU-ARC of ua (yellow), εglob (blue), εloc (blue) and of the combinations of the robustness
metrics with the uncertainty one (green). The white columns show the γ used to combine the uncertainty and
robustness metrics.
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Figure 2: ARCs for the Solar Flare (big) dataset for ua (yellow), εglob (blue), the hybrid order (green, γ = 0.66)
and the optimal curve (black).
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Results for ue

Dataset ue εglob hybrid γ εloc hybrid γ

Adult 0.9158 0.7690 0.9158 1.00 0.9066 0.9158 1.00
Australian Credit 0.9075 0.8872 0.8981 0.89 0.9139 0.9069 0.87
Bank Marketing 0.9403 0.9299 0.9399 0.95 0.9452 0.9428 0.63
Breast Cancer 0.9967 0.9961 0.9977 0.53 0.9962 0.9973 0.43
German Credit 0.8126 0.7972 0.8172 0.85 0.8380 0.8375 0.06
Heart disease 0.7663 0.6761 0.7631 0.93 0.7540 0.7634 0.62
Lymphography 0.9318 0.8981 0.9294 0.82 0.9419 0.9425 0.07
NPHA 0.4657 0.5159 0.4657 1.00 0.5021 0.4989 0.03
Nursery 0.9732 0.9730 0.9788 0.49 0.9822 0.9828 0.19
Solar Flare (big) 0.8353 0.8693 0.8721 0.60 0.8926 0.8926 0.00
Solar Flare (small) 0.8755 0.7990 0.8631 0.76 0.8597 0.8697 0.51
SPECT Heart 0.9384 0.5738 0.9384 1.00 0.8915 0.9384 1.00
Student Math 0.9526 0.9205 0.9505 0.79 0.9465 0.9522 0.93
Student Port 0.8835 0.8952 0.8858 0.96 0.9276 0.8879 0.95

Table 3: The AU-ARC of ue (yellow), εglob (blue), εloc (blue) and of the combinations of the robustness
metrics with the uncertainty one (green). The white columns show the γ used to combine the uncertainty and
robustness metrics.
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Figure 3: ARCs for the Nursery dataset for ue (yellow), εglob (blue), the hybrid order (green, γ = 0.49) and
the optimal curve (black).
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Results for um

Dataset um εglob hybrid γ εloc hybrid γ

Adult 0.9295 0.7690 0.9295 1.00 0.9066 0.9295 1.00
Australian Credit 0.9236 0.8872 0.9246 0.86 0.9139 0.9265 0.75
Bank Marketing 0.9485 0.9299 0.9481 0.88 0.9452 0.9485 0.55
Breast Cancer 0.9968 0.9961 0.9978 0.53 0.9962 0.9974 0.52
German Credit 0.8338 0.7972 0.8376 0.85 0.8380 0.8378 0.53
Heart disease 0.7617 0.6761 0.7617 1.00 0.7540 0.7617 0.99
Lymphography 0.9432 0.8981 0.9435 0.88 0.9419 0.9427 0.77
NPHA 0.4986 0.5159 0.4976 0.99 0.5021 0.4986 1.00
Nursery 0.9803 0.9730 0.9803 1.00 0.9822 0.9822 0.00
Solar Flare (big) 0.8603 0.8693 0.8836 0.71 0.8926 0.8874 0.23
Solar Flare (small) 0.8709 0.7990 0.8797 0.78 0.8597 0.8666 0.19
SPECT Heart 0.9458 0.5738 0.9457 0.99 0.8915 0.9458 0.99
Student Math 0.9434 0.9205 0.9445 0.60 0.9465 0.9468 0.31
Student Port 0.8898 0.8952 0.9067 0.79 0.9276 0.9093 0.77

Table 4: The AU-ARC of um (yellow), εglob (blue), εloc (blue) and of the combinations of the robustness
metrics with the uncertainty one (green). The white columns show the γ used to combine the uncertainty and
robustness metrics.
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Figure 4: ARCs for the Australian Credit dataset for um (yellow), εloc (blue), the hybrid order (green, γ = 0.75)
and the optimal curve (black).
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Results for ut

Dataset ut εglob hybrid γ εloc hybrid γ

Adult 0.9297 0.7690 0.9297 1.00 0.9066 0.9297 1.00
Australian Credit 0.9222 0.8872 0.9230 0.86 0.9139 0.9246 0.72
Bank Marketing 0.9488 0.9299 0.9487 0.91 0.9452 0.9490 0.65
Breast Cancer 0.9966 0.9961 0.9978 0.55 0.9962 0.9972 0.43
German Credit 0.8330 0.7972 0.8376 0.82 0.8380 0.8367 0.63
Heart disease 0.7651 0.6761 0.7618 0.92 0.7540 0.7651 0.99
Lymphography 0.9433 0.8981 0.9448 0.84 0.9419 0.9456 0.47
NPHA 0.4875 0.5159 0.4794 0.97 0.5021 0.4688 0.80
Nursery 0.9814 0.9730 0.9814 0.92 0.9822 0.9824 0.22
Solar Flare (big) 0.8624 0.8693 0.8827 0.75 0.8926 0.8798 0.52
Solar Flare (small) 0.8790 0.7990 0.8683 0.69 0.8597 0.8793 0.56
SPECT Heart 0.9489 0.5738 0.9489 1.00 0.8915 0.9489 1.00
Student Math 0.9512 0.9205 0.9482 0.67 0.9465 0.9511 0.91
Student Port 0.8874 0.8952 0.8917 0.91 0.9276 0.8874 1.00

Table 5: The AU-ARC of ut (yellow), εglob (blue), εloc (blue) and of the combinations of the robustness metrics
with the uncertainty one (green). The white columns show the γ used to combine the uncertainty and robustness
metrics.
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Figure 5: ARCs for the German Credit dataset for ut (yellow), εglob (blue), the hybrid order (green, γ = 0.82)
and the optimal curve (black).
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