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Setting

Monte Carlo

1

n

nX
k=1

f (XP
k ) ≈ EP (f )

Imprecise Probability

P = {Pt : t ∈ T}

EP(f ) = inf
t
EPt(f )
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Estimators for lower expectations

EP1 (f )

EP2 (f )
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Estimators for lower expectations

Infinite set of probability measures

test
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Estimators for lower expectations

1. Fix sampling P

2. Find ft such that EP (ft) = EPt (f )

→ Importance Sampling

EP(f )
?≈ inf

t

nX
k=1

ft
“
XP

k

”
= Ê
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Bias

negative unbiased positive

E(Ê)

E(f )
E(Ê) = E(f ) E(f )

E(Ê)

can only get closer constant it depends

E

n

E

n

E
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E(Ê)

can only get closer constant it depends

E

n

E

n

E

n

6



Bias

negative unbiased positive

E(Ê)
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consistency

1. In probability

lim
n→∞P∞

„˛̨̨̨
Ên − E(f )

˛̨̨̨
> ›

«
= 0

2. Almost surely

P∞
„
lim
n→∞ Ên = E(f )

«
= 0
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Consistency

inf
t

nX
k=0

ft
“
XP

k

” ?→ inf
t
EPt (f ) = EP(f ) as n → ∞

⇑

sup
t

˛̨̨̨
˛̨ nX
k=0

ft
“
XP

k

”
− EPt (f )

˛̨̨̨
˛̨ ?→ 0 as n → ∞
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Consistency

When is this the case?

• restrictions on size of T
• continuity conditions for ft

finite T

Rn ⊃ T compact
pt(x) cont. diff. in (x; t)

EP (supt∈T pt) < +∞

Rn ⊃ T bounded
‖∇tpt(x)‖ < F (x)

for all › > 0 : T has a finite ›-cover
|pt(x)− ps(x)| 6 d(s; t)F (x)

easier but more restrictive more general but more complex
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Practical Example

q

X

L

P (g(X) 6 0) = 1− EP
“
I{g(X)>0}

”

Fetz, T., & Oberguggenberger, M. (2016). Imprecise random variables, random sets, and
Monte Carlo simulation.
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See you at my poster.
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