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Monte Carlo

LS f(xP) ~ EP()
nyg—1

Imprecise Probability
P ={P:.teT}

E”(f) = inf E(f)
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Infinite set of probability measures
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Estimators for lower expectations
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— Importance Sampling

EZ(F) & inf Y. £ (X) = E

k=1



negative unbiased positive
E(f) A E(E)
E(E) E(E) = E(f) E(f)



unbiased positive

A ()
E(E) — E(f) }{ E(f) I



unbiased positive
A ()
E(E) = E(F) E(f)
can only get closer constant it depends
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sup S A(XD)—ER() B0 asn— oo
k=0
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Consistency

When is this the case?
e restrictions on size of T
e continuity conditions for f;

R" D T compact
finite T pi(x) cont. diff |F:1 (x.1) R"” D T bounded foralle > 0: T has a finite e-cover
t . . f
P o) < 100 || IVl < F ) = P < s )F (4
€
—l] [
easier but more restrictive more general but more complex



Practical Example

% ~ P(g(X) <0)=1—E” (Iigx)s0p)
7 % X 7
7,
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Fetz, T., & Oberguggenberger, M. (2016). Imprecise random variables, random sets, and
Monte Carlo simulation.



See you at my poster.



