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We estimate lower expectations E”(f) = inf;,c7 E”(f) for some set of probability measures # = {F: t € T} and
do this using the technique of Monte Carlo. In the classical case, Monte Carlo says that for large sample sizes n
we have E”(f) =~ YI_, f(XF) = EF(f). We consider imprecise extensions of such estimators. In this poster we will
use an example where fx os(2x), T = [—2,2], P~ N(t,1). For this example it can be calculated exactly that
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A straightforward attempt at an We consider estimators of the form
estimator is to take a repre-
sentative finite subset 77 of T
and do independent classical
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Thomas Fetz and Michael Oberguggen-
berger used importance sampling to es-
timate the upper failure probability of a
beam on a spring of unknown stiffness X.
They assume X distributed normally with
with mean and standard deviation (u, o)

ery one of them and take their
minimum.

E7(f) = minE"(f)

teT’

Let m be the number of ele-
ments in 7. For m > 1, we can
choose T’ equidistant from —2
to 2.

in [p, ] x [0,0].

The objective can be rephrased in our
context of lower expectations as

P(3(X) <0) = 1 —E” (Ix)-).

We give two examples of such functions:

1. Inverse transform sampling: P is the uniform distribution on (0,1). Con-
sider the quantile function FP‘; (the pseudo-inverse of the cdf). Now if

fi = foF, on (0,1), then we have the desired property.

2. Importance sampling: Suppose the probability measures P and P, have
densities p and p;, respectively foreveryr € T, and forevery ¢t € T: suppp D

e . Our method proves that their estima-
supp p;. If f; = f+-2 on suppp, then we have the desired property.

tor is consistent.

Example Simulations

For the importance sampling P ~ N(0,1).
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1. The bias is negative and the absolute bias

decreases with n:

E(E7,(f)) <E(E(f) <E”(f),

Intuitively, consistency can be guaranteed when T is ‘small’ enough and if f; is ‘smooth’ enough. In
the paper we have conditions for the general setting, but here we will — for brevity and simplicity — only
discuss the case of importance sampling. In the following we assume that EX(F) < 4+ and for some theo-
rems p, are required to have an extension to values of r outside of 7. For the exact theorems, we refer to the paper.

2. Observation: the absolute bias increases

with the size of T. T s finite
In the paper we prove slightly more gen-
eral results for estimators that are not —

R" © T compact
p:(x) cont. diff. in (x,)
E”(sup,er [pi]) < oo

| R" 5 T bounded \
[Vipi(x)|| < F(x)

IR" O T has a finite e-cover for all € > 0
pi(x) — ps(x)| < d(s,2)F (x)

—

measurable.

easier but more restrictive

more general but more complex

Example of No Consistency

We will look at an importance sampling estimator with central density p =

k °k

density is zero on the sampled values.

II[O 1] @and a countable set of densities

{Z ael V—l q : ke IN and (ay,...,ax) is a binary sequence with the same number of zeros and ones}.

For a sample of size n it is always possible to choose a binary sequence of at most size 2n, such that the corresponding




