Group Theory and Symmetry

Group theory is the abstract study of symmetry. By defining a "symmetry group" axiomatically, we can study what possible kinds of symmetries an object can have.

Relation to exceptional groups:

- Lie algebras as tangent spaces
- The octonion algebra
- with automorphism group G_2 .

Non-associative algebras

Examples include:

- Lie algebras
 Malcev algebras
- Jordan algebras Structurable algebras

Non-associative algebras for exceptional groups

 $\operatorname{Aut}(A(G))$

Non-associative algebra A(G)

Tangent space of G

Algebraic group

Algebraic Groups

• Algebraic groups: matrix groups defined by polynomial equations.

• Geometric structure: defined on group by "continuity" of polynomials.

Spn

Five families of exceptional groups: G_2, F_4, E_6, E_7 and E_8 .

Representation theory

 Representation theory: study of linear actions of a group on objects.

Characters and irreducible representations: powerful tools to look at groups as linear symmetries.

