Non-associative Frobenius algebras for simple algebraic groups

July 19, 2022

NAART II - Univ. Coimbra

A quick reminder on linear algebraic groups

Linear algebraic groups \approx matrix groups defined by polynomial equations over a field k.

$$char(k) \gg 0 \text{ (i.p., } char(k) \neq 2,3).$$

A quick reminder on linear algebraic groups

Algebraic groups as automorphism groups

SO(n): stabiliser of non-degenerate symmetric bilinear form

Algebraic groups as automorphism groups

Analogous:

Type G_2 : Automorphism group of octonion algebra $(\mathbb{O},\cdot,\langle\cdot,\cdot\rangle)$

Type F_4 : Automorphism group of Albert algebra $(\mathcal{H}_3(\mathbb{O}), \bullet, \langle \cdot, \cdot \rangle)$

The hunt for E_8 begins...

Proposition ([GG15]).

On the second smallest representation V of type E_8 (with dimension 3785) there exists a unique equivariant algebra product \diamond together with a unique invariant Frobenius form τ , i.e.

$$\tau(a \diamond b, c) = \tau(a, b \diamond c) \quad \forall a, b, c \in V.$$

The idea

V: 2nd smallest representation of E_8

Construction starts from the associated Lie algebra \mathfrak{g} .

$$A := k \oplus V \longrightarrow S^2 \mathfrak{g} = \mathfrak{g}^{\otimes 2} / (a \otimes b - b \otimes a \mid \forall a, b \in \mathfrak{g})$$

The idea

V: 2nd smallest representation of E_8

Construction starts from the associated Lie algebra \mathfrak{g} .

$$A := k \oplus V \longrightarrow S^2 \mathfrak{g} = \mathfrak{g}^{\otimes 2} / (a \otimes b - b \otimes a \mid \forall a, b \in \mathfrak{g})$$

Two different constructions

De Medts-Van Couwenberghe [DMVC21]

Chayet-Garibaldi [CG21]

The idea

V: 2nd smallest representation of E_8

Construction starts from the associated Lie algebra \mathfrak{g} .

$$A := k \oplus V \longrightarrow S^2 \mathfrak{g} = \mathfrak{g}^{\otimes 2} / (a \otimes b - b \otimes a \mid \forall a, b \in \mathfrak{g})$$

Two different constructions

De Medts-Van Couwenberghe [DMVC21]

 \rightarrow Chayet-Garibaldi [CG21]

The Chayet-Garibaldi construction

$$\begin{array}{ccc} \mathrm{S}^2\mathfrak{g} \otimes \mathrm{S}^2\mathfrak{g} & \stackrel{\bullet}{\longrightarrow} & \mathrm{S}^2\mathfrak{g} \\ & & & \downarrow P \\ & A \otimes A & \longrightarrow & A \end{array}$$

- \rightarrow Explicit formulas for P, \diamond in terms of Killing form and Lie bracket
- ightarrow Frobenius form au is just the trace map!

Structural results

Theorem ([CG21]).

Given an (almost) simple algebraic group G, one can construct algebra A(G) s.t.

- ightharpoonup A(G) is simple,
- $\tau(a \diamond b, c) = \tau(a, b \diamond c) \text{ for all } a, b, c \in A(G),$
- For types F_4 and E_8 , Aut(A(G)) is adjoint group of type F_4 and E_8 (resp.)

Issue: construction starts from Lie algebra

Types G_2 and F_4

A natural embedding

For types G_2 , F_4 , E_6 , E_7 , Chayet-Garibaldi described embedding $\sigma: A(G) \hookrightarrow \operatorname{End}(W)$, with W the smallest representation.

$$W = \left\{ egin{array}{l} \mbox{traceless octonions, for type G_2,} \ \mbox{traceless albert elements, for type F_4,} \end{array}
ight.$$

$$A(G) \stackrel{\sigma}{\longleftarrow} End(W) \qquad \qquad A(G) \otimes A(G) \stackrel{\diamond}{\longrightarrow} A(G)$$

$$\cup \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sigma(A(G)) \otimes \sigma(A(G)) \stackrel{\star}{\longrightarrow} \sigma(A(G))$$

Types G_2 and F_4

Theorem (D., 2022+).

For G_2 , F_4 , there are explicit formulas for \star , $\sigma(A(G))$ in terms of the algebra product and the bilinear form on \mathbb{O} , $\mathcal{H}_3(\mathbb{O})$.

Corollary (D., 2022+).

For type G_2 , Aut(A(G)) is adjoint group of type G_2 .

- [CG21] Maurice Chayet and Skip Garibaldi. A class of continuous non-associative algebras arising from algebraic groups including e8. Forum Math. Sigma, 9:Paper No. e6, 2021.
- [DMVC21] Tom De Medts and Michiel Van Couwenberghe. Non-associative frobenius algebras for simply laced chevalley groups. Trans. Amer. Math. Soc., 374:8715–8774, 2021.
- [GG15] Skip Garibaldi and Robert M. Guralnick. Simple groups stabilizing polynomials. Forum of Mathematics, Pi, 3:e3, 2015.