A characterization of Jordan algebras using solid lines

Jari Desmet

March 26, 2024

Axial algebras and groups related to them

000

...

000

.

••••

Primitive axial algebras of Jordan type η were introduced in 2015 by Hall, Rehren and Shpectorov [HRS15].

*	1	0	η
1	1		$\overline{\eta}$
0		0	η
η	η	η	0,1

Primitive axial algebras of Jordan type $\eta \neq \frac{1}{2}$ are Matsuo algebras [HRS15].

$\eta eq \frac{1}{2}$	$\eta = \frac{1}{2}$	
Matsuo algebras	Matsuo algebras	->
	Jordan algebras•	
	?	

2022: Talk by Shpectorov on solid lines.

2024: Paper on arXiv by Gorshkov, Shpectorov, Staroletov [GSS24].

Today: Solid lines and Jordan algebras.

Assumptions

- ▶ \mathbb{F} is an algebraically closed field with char $\mathbb{F} \neq 2$.
- ▶ (A, X) is a primitive axial algebra of Jordan type $\frac{1}{2}$.
- ▶ A admits a unique Frobenius form (,) such that (a, a) = 1 for every primitive axis $a \in A$ [HSS18].

Definition.

line

We call a 2-generated subalgebra $\langle \langle a,b \rangle \rangle$ of (A,X) solid if every primitive idempotent in $\langle \langle a,b \rangle \rangle$ is an axis of A.

Theorem ([GSS24]).

If char $\mathbb{F}=0$ and $(\underline{a},\underline{b})\neq \frac{1}{4}$, then $\langle\langle a,\underline{b}\rangle\rangle$ is solid.

Definition.

We call a 2-generated subalgebra $\langle \langle a,b \rangle \rangle$ of (A,X) solid if every primitive idempotent in $\langle \langle a,b \rangle \rangle$ is an axis of A.

Theorem ([GSS24]).

If $(a,b) \neq \frac{1}{4} 0,1$ then $\langle \langle a,b \rangle \rangle$ is solid.

→ What is the link with Jordan and Matsuo algebras?

.

Let $J(\phi)$, $\phi \in \mathbb{F}$, be the algebra over \mathbb{F} with basis x, y, σ and multiplication given by:

$$\begin{pmatrix} x & y & \sigma \\ x & x & \frac{1}{2}(x+y) + \sigma & \frac{1}{2}(\phi-1)x \\ y & \frac{1}{2}(x+y) + \sigma & y & \frac{1}{2}(\phi-1)y \\ \sigma & \frac{1}{2}(\phi-1)x & \frac{1}{2}(\phi-1)y & \frac{1}{2}(\phi-1)\sigma \end{pmatrix}$$

Then $J(\phi)$ is a <u>Jordan algebra</u> and \underline{x} and \underline{y} are primitive axes.

Theorem ([HRS15]).

Let $A=\langle\langle a,b\rangle\rangle$ be a primitive axial algebra of Jordan type half, where a and b are primitive axes. Let $\phi=(a,b)$. Then there is a unique epimorphism from $J(\phi)$ onto A sending x and y onto a and b, respectively.

Theorem ([HRS15]).

 $J(\phi)$ is simple except in the following two cases:

- 1. J(0) has a unique minimal ideal, with quotient $2B = \mathbb{F} \oplus \mathbb{F}$;
- 2. $\underline{J(1)}$ has two quotients, the 1-dimensional point and a 2-dimensional algebra $\overline{J(1)}$.

Toric lines

Subalgebras $\langle\langle a,b\rangle\rangle$ with $(a,b)\neq 0,1$. These are spanned by elements e,u,f with $\underline{a}=\underline{e}+\frac{1}{2}u+f$ and $b=\mu e+\frac{1}{2}u+\mu^{-1}f$ for some $\mu\in\mathbb{F}^{\times}$. Let \underline{V} be the variety of primitive idempotents in $\langle\langle a,b\rangle\rangle$.

In [GSS24], the following was shown:

$$V = \left\{ a_{\lambda} := \lambda e + \frac{1}{2}u + \lambda^{-1}f \mid \lambda \in \mathbb{F}^{\times} \right\}$$
$$a_{\lambda}^{\tau_{a\mu}} = a_{\lambda^{-1}\mu^{2}}$$

Flat lines

Subalgebras $\langle\langle a,b\rangle\rangle$ with $(\underline{a},\underline{b})=0$. These are spanned by elements $\underline{a},\underline{b},\underline{v}=ab$. Let V be the variety of primitive idempotents in $\langle\langle a,b\rangle\rangle$.

In [GSS24], the following was shown:

$$V = \{ \underline{a_{\lambda}} := a + \lambda v, b_{\lambda} := b + \lambda v \mid \lambda \in \mathbb{F} \}$$
$$a_{\lambda}^{\tau_{a_{\mu}}} = a_{2\mu - \lambda}, b_{\lambda}^{\tau_{a_{\mu}}} = b_{-2-2\mu - \lambda} \}$$

Baric lines

Subalgebras $\langle \langle a,b \rangle \rangle$ with $(\underline{a},\underline{b})=1$. These are spanned by elements $a,v=2(ab-a),v^2$. Let V be the variety of idempotents in $\langle \langle a,b \rangle \rangle$. In [GSS24], the following was shown:

$$V = \left\{ a_{\lambda} := \underline{a + \lambda v + \lambda^2 v^2} \mid \lambda \in \mathbb{F} \right\}$$

$$a_{\lambda}^{ au_{a_{\mu}}}=a_{2\mu-\lambda}$$

Two important polynomials

Two important polynomials

Lemma.

Let (A, X) be a primitive axial algebra of Jordan type half over a field \mathbb{F} , and $a, b \in X$. the subalgebra $\langle \langle a, b \rangle \rangle$ is solid if and only if

$$Q_{x}(c) = c(cx) - \frac{1}{2}(cx + (c,x)c)$$

and

$$P_{x,y}(c) = 4(cx)(cy) - (c,y)cx - (c,x)cy - (cy)x - (cx)y - (c,xy)c + c(xy)$$

are zero for all primitive idempotents $c \in \langle \langle a, b \rangle \rangle$ and $x, y \in A$.

Two important polynomials

Write
$$x^{\tau_c} = x + 4(c, x)c - 4cx$$
. Then
$$x^{\tau_c}y^{\tau_c} - (xy)^{\tau_c} = 4P_{x,y}(c) - 16Q_x(c) - 16Q_y(c).$$

If c is an axis, then for all $x, y \in A$, we have $Q_x(c) = 0$ so $P_{x,y}(c) = 0$.

Conversely, if $P_{x,y}(c) = Q_x(c) = 0$ for all $x, y \in A$, then is an automorphism of A, and $\{a,b\}^{\langle \tau_c|c\rangle} = V$.

The <u>unipotent</u> case

Note that $P_{x,y}^u(\lambda) = P_{x,y}(a_{\lambda})$ and $Q_x^u(\lambda) = P_{x,y}(a_{\lambda})$ are always polynomial maps, for all $x, y \in A$. Suppose that $\langle \langle a, b \rangle \rangle \not\cong J(1), \mathbb{F} \oplus \mathbb{F}$.

degrax1=1

The unipotent case

Note that $P_{x,y}^u(\lambda) = P_{x,y}(a_\lambda)$ and $Q_x^u(\lambda) = P_{x,y}(a_\lambda)$ are always polynomial maps, for all $x, y \in A$. Suppose that $\langle \langle a, b \rangle \rangle \not\cong J(1), \mathbb{F} \oplus \mathbb{F}$.

▶ $\deg_{\lambda}(a_{\lambda}) = 1$, so $\deg_{\lambda}(P_{x,y}^u), \deg_{\lambda}(Q_x^u) \leq 2$.

The unipotent case

Note that $P_{x,y}^u(\lambda) = P_{x,y}(a_\lambda)$ and $Q_x^u(\lambda) = P_{x,y}(a_\lambda)$ are always polynomial maps, for all $x, y \in A$. Suppose that $\langle \langle a, b \rangle \rangle \not\cong J(1), \mathbb{F} \oplus \mathbb{F}$.

- $ightharpoonup \deg_{\lambda}(a_{\lambda}) = 1$, so $\deg_{\lambda}(P_{x,y}^u), \deg_{\lambda}(Q_x^u) \leq 2$.
- $\langle \langle a,b \rangle \rangle$ contains $a, a^{\tau_b}, a^{\tau_b \tau_a}$, so $P_{x,y}^u(\lambda), Q_x^u(\lambda)$ have at least 3 roots.

The unipotent case

Note that $P_{x,y}^u(\lambda) = P_{x,y}(a_\lambda)$ and $Q_x^u(\lambda) = P_{x,y}(a_\lambda)$ are always polynomial maps, for all $x, y \in A$. Suppose that $\langle \langle a, b \rangle \rangle \not\cong J(1), \mathbb{F} \oplus \mathbb{F}$.

- $ightharpoonup \deg_{\lambda}(a_{\lambda}) = 1$, so $\deg_{\lambda}(P_{x,y}^u), \deg_{\lambda}(Q_x^u) \leq 2$.
- $\langle \langle a,b \rangle \rangle$ contains $a, a^{\tau_b}, a^{\tau_b \tau_a}$, so $P^u_{x,y}(\lambda), Q^u_x(\lambda)$ have at least 3 roots.
- ▶ $\deg P_{x,y}^u, \deg Q_x^u \le 2$, so $P_{x,y}^u = Q_x^u = 0$.

The unipotent case

Note that $P_{x,y}^u(\lambda) = P_{x,y}(a_\lambda)$ and $Q_x^u(\lambda) = P_{x,y}(a_\lambda)$ are always polynomial maps, for all $x, y \in A$. Suppose that $\langle \langle a, b \rangle \rangle \not\cong U(1)$ $\mathbb{F} \oplus \mathbb{F}$.

- $lackbox{deg}_{\lambda}(a_{\lambda}) = \mathbf{1}$, so $\deg_{\lambda}(P_{x,y}^u), \deg_{\lambda}(Q_x^u) \leq \mathbf{1}$
- $\langle \langle a, b \rangle \rangle$ contains $a, a^{\tau_b}, a^{\tau_b \tau_a}$, so $P^u_{x,y}(\lambda), Q^u_x(\lambda)$ have at least \Im roots.
- $ightharpoonup \deg P_{x,y}^u, \deg Q_x^u \le 2$, so $P_{x,y}^u = Q_x^u = 0$.
- For flat lines, we also have that $P_{x,y}(b_{\lambda}) = Q_x(b_{\lambda}) = 0$.

The unipotent case

Note that $P_{x,y}^u(\lambda) = P_{x,y}(a_\lambda)$ and $Q_x^u(\lambda) = P_{x,y}(a_\lambda)$ are always polynomial maps, for all $x, y \in A$. Suppose that $\langle \langle a, b \rangle \rangle \not\cong J(1), \mathbb{F} \oplus \mathbb{F}$.

- ▶ $\deg_{\lambda}(a_{\lambda}) = 1$, so $\deg_{\lambda}(P_{x,y}^u), \deg_{\lambda}(Q_x^u) \leq 2$.
- $\langle \langle a,b \rangle \rangle$ contains $a, a^{\tau_b}, a^{\tau_b \tau_a}$, so $P^u_{x,y}(\lambda), Q^u_x(\lambda)$ have at least 3 roots.
- $ightharpoonup \deg P_{x,y}^u, \deg Q_x^u \le 2$, so $P_{x,y}^u = Q_x^u = 0$.
- ▶ For flat lines, we also have that $P_{x,y}(b_{\lambda}) = Q_x(b_{\lambda}) = 0$.

If $\langle \langle a, b \rangle \rangle \cong J(1)$ and char $\mathbb{F} \neq 3$, then $\langle \langle a, b \rangle \rangle$ is also solid.

Theorem.

Let (A,X) be a primitive axial algebra of Jordan type $\eta=\frac{1}{2}$ over a field $\mathbb F$ with char $\mathbb F\neq 2$. Denote by (\cdot,\cdot) the unique Frobenius form on A. Given $a,b\in X$, the subalgebra $\langle\langle a,b\rangle\rangle$ is solid whenever $(a,b)\neq \frac{1}{4}$ or $\langle\langle a,b\rangle\rangle$ is not 3-dimensional.

The unipotent case

Let R be a commutative associative \mathbb{F} -algebra. If $Q^u_x, P^u_{x,y} \in A[\lambda]$ are zero polynomials, then this is still true over $A_R := A \otimes_{\mathbb{F}} R$.

The unipotent case

Let R be a commutative associative \mathbb{F} -algebra. If $Q^u_x, P^u_{x,y} \in A[\lambda]$ are zero polynomials, then this is still true over $A_R := A \otimes_{\mathbb{F}} R$.

Dual numbers

The algebra of the dual numbers is $\mathbb{F}[\varepsilon] := \{a + \varepsilon b \mid a, b \in \mathbb{F}\}$ with $\varepsilon^2 = 0$.

If $Q_x^u(\varepsilon) = P_{x,y}^u(\varepsilon) = 0$ for all $x, y \in A$, then $\tau_{a_{\varepsilon}}$ is automorphism of $A_{\mathbb{F}[\varepsilon]}$.

Associators/Inner derivations

Given $a, b, x \in A$, define

$$D_{a,b}(x) = a(bx) - b(ax).$$

$$x^{\tau_a \tau_{a_s}} = x + \mu \varepsilon D_{a,b}(x)$$
 for a $\mu \in \mathbb{F}$, for all $x \in A$.

Corollary.

If $\langle \langle a, b \rangle \rangle$ is solid, then $D_{a,b}$ is a derivation.

Proposition.

If $D_{a,b}$ is a derivation, then $\langle \langle a,b \rangle \rangle$ is solid.

Proposition.

If $D_{a,b}$ is a derivation, then $\langle \langle a,b \rangle \rangle$ is solid.

Assume char $\mathbb{F} = 3$, $\langle \langle a, b \rangle \rangle$ baric.

- $\chi = \tau_a \tau_{a_{\varepsilon}}$ is automorphism of $A_{\mathbb{F}_{\varepsilon}}$
- $lacksymbol{a}_{\lambda}^{\chi} = a_{\lambda-4arepsilon}$ is an axis for $\lambda \in \mathbb{F}_3$
- ▶ $P_{x,y}^u(\lambda 4\varepsilon) = Q_x^u(\lambda 4\varepsilon) = 0$ implies that λ is a root of multiplicity 2.
- lacksquare deg $P_{x,y}^u$, deg $Q_x^u \leq 4$, so $P_{x,y}^u = Q_x^u = 0$.

Jordan algebras

...

....

Jordan algebras

Definition.

A non-associative commutative ring A with $2 \in A^{\times}$ is almost Jordan if $D_{x,y}$ is a derivation for all $x,y \in A$

Marshall Osborn studied almost Jordan algebras in [Osb65].

Theorem ([Osb65]).

Let A be an almost Jordan ring and e a primitive idempotent. Then A is Jordan if and only if $A_0(e)$ is.

Jordan algebras

Definition.

A non-associative commutative ring A with $2 \in A^{\times}$ is almost Jordan if $D_{x,y}$ is a derivation for all $x, y \in A$.

Marshall Osborn studied almost Jordan algebras in [Osb65].

Theorem.

Let A be an almost Jordan ring linearly spanned by idempotents. Then A is Jordan.

Main result

Theorem.

T

A primitive axial algebra of Jordan type half (A, X) of Jordan type half over a field $\mathbb F$ with char $\mathbb F \neq 2$ such that for all $a,b\in X$ the line $\langle\langle a,b\rangle\rangle$ is solid, is Jordan.

Further work

Further work

- More structure theory of Jordan type half axial algebras (joint with Sergey Shpectorov)
- Non-Jordan, non-Matsuo Jordan type half axial algebras.

Thank you for listening!

- [GSS24] I. Gorshkov, S. Shpectorov, and A. Staroletov. Solid subalgebras in algebras of jordan type half, 2024.
- [HRS15] J. I. Hall, F. Rehren, and S. Shpectorov. Primitive axial algebras of Jordan type. J. Algebra, 437:79–115, 2015.
- [HSS18] J. I. Hall, Y. Segev, and S. Shpectorov. On primitive axial algebras of Jordan type. Bull. Inst. Math. Acad. Sin. (N.S.), 13(4):397–409, 2018.
- [Osb65] J. Marshall Osborn. Commutative algebras satisfying an identity of degree four. Proc. Amer. Math. Soc., 16:1114–1120, 1965.