Solid lines in axial algebras of Jordan type $\frac{1}{2}$ and derivations

Jari Desmet

October 22, 2024 Linköping, Sweden

Background

Primitive axial algebras of Jordan type η : introduced in 2015 by Hall, Rehren and Shpectorov [HRS15].

Definition ([HRS15]).

Let $0,1 \neq \eta \in \mathbb{F}$. We consider commutative \mathbb{F} -algebras generated by idempotents $a \in A$ (called *axes*) such that

- 1. $A = A_1(a) \oplus A_0(a) \oplus A_\eta(a)$.
- 2. $A_0(a)$ is a subalgebra of A and $A_1(a) = \langle a \rangle$.
- 3. For all $\delta, \epsilon \in \{\pm\}$,

$$A_{\delta}(a)A_{\epsilon}(a)\subseteq A_{\delta\epsilon}(a),$$

where
$$A_+(a)=A_1(a)\oplus A_0(a)$$
 and $A_-(a)=A_\eta(a)$.

Background

Primitive axial algebras of Jordan type η : introduced in 2015 by Hall, Rehren and Shpectorov [HRS15].

Definition ([HRS15]).

Let $0,1 \neq \eta \in \mathbb{F}$. We consider commutative \mathbb{F} -algebras generated by idempotents $a \in A$ (called *axes*) such that

- 1. $A = A_1(a) \oplus A_0(a) \oplus A_\eta(a)$.
- 2. $A_0(a)$ is a subalgebra of A and $A_1(a) = \langle a \rangle$.
- 3. For all $\delta, \epsilon \in \{\pm\}$,

$$A_{\delta}(a)A_{\epsilon}(a)\subseteq A_{\delta\epsilon}(a),$$

where
$$A_{+}(a) = A_{1}(a) \oplus A_{0}(a)$$
 and $A_{-}(a) = A_{\eta}(a)$.

Jordan algebras are of Jordan type $\frac{1}{2}$ by Peirce decomposition!

Another example

Matsuo algebras: algebras constructed combinatorially from 3-transposition groups in the context of vertex operator algebras

Definition (Matsuo algebra).

G a group with $D\subseteq G$ a G-stable, generating subset of elements of order 2. Then $M_{\eta}(G,D)=\mathbb{F}D$ with for $a,b\in D$

$$a \cdot b := \begin{cases} a & \text{if } a = b, \\ 0 & \text{if } o(ab) = 2, \\ \frac{\eta}{2}(a + b - b^{a}) & \text{if } o(ab) = 3. \end{cases}$$

Primitive axial algebras of Jordan type $\eta \neq \frac{1}{2}$ are quotients of Matsuo algebras [HRS15].

Background

When $\eta = \frac{1}{2}$: Dichotomy between continuous and discrete setting!

000

Assumptions

- ▶ \mathbb{F} is an algebraically closed field with char $\mathbb{F} \neq 2$.
- ► A is a primitive axial algebra of Jordan type $\frac{1}{2}$.
- ▶ A admits a unique associative bilinear form (,) such that (a, a) = 1 for every primitive axis $a \in A$ [HSS18].

In this case, we have a formula

$$x^{\tau_a} = x + 4(a, x)a - 4ax$$
 for all $x \in A$.

2) **Solid lines**

In Jordan algebras, every primitive idempotent is an axis. This is not true in Matsuo algebras.

Solid lines

In Jordan algebras, every primitive idempotent is an axis. This is not true in Matsuo algebras.

Definition ([GSS24]).

We call a 2-generated subalgebra $\langle\langle a,b\rangle\rangle$ of (A,X) solid if every primitive idempotent in $\langle\langle a,b\rangle\rangle$ is an axis of A.

Theorem ([GSS24]).

If $(a, b) \neq \frac{1}{4}$,0,1, then $\langle \langle a, b \rangle \rangle$ is solid.

Solid lines

In Jordan algebras, every primitive idempotent is an axis. This is not true in Matsuo algebras.

Definition ([GSS24]).

We call a 2-generated subalgebra $\langle \langle a,b \rangle \rangle$ of (A,X) solid if every primitive idempotent in $\langle \langle a,b \rangle \rangle$ is an axis of A.

Theorem ([GSS24]).

If $(a, b) \neq \frac{1}{4}$, 0,1, then $\langle \langle a, b \rangle \rangle$ is solid.

What is the link with Jordan and Matsuo algebras?

Solid lines

Lemma.

The order of $\tau_a \tau_b$ is 3 if and only if $(a, b) = \frac{1}{4}$.

Two important polynomials

Lemma.

Let (A, X) be a primitive axial algebra of Jordan type half over a field \mathbb{F} , and $a, b \in X$. the subalgebra $\langle \langle a, b \rangle \rangle$ is solid if and only if

$$Q_x(c) = c(cx) - \frac{1}{2}(cx + (c, x)c)$$
 (Eigenvalues)

and

$$P_{x,y} = 4(cx)(cy) - (c, y)cx - (c, x)cy - (cy)x - (cx)y - (c, xy)c + c(xy)$$
(Fusion)

are zero for all primitive idempotents $c \in \langle \langle a, b \rangle \rangle$ and $x, y \in A$.

(Recall
$$x^{\tau_a} = x + 4(a, x)a - 4ax$$
 for all $x \in A$.)

Most lines are solid

Theorem.

Let (A,X) be a primitive axial algebra of Jordan type $\eta=\frac{1}{2}$ over a field $\mathbb F$ with char $\mathbb F\neq 2$. Denote by (\cdot,\cdot) the unique Frobenius form on A. Given $a,b\in X$, the subalgebra $\langle\langle a,b\rangle\rangle$ is solid whenever $(a,b)\neq \frac{1}{4}$ or $\langle\langle a,b\rangle\rangle$ is not 3-dimensional.

Proof idea

- For most 2-generated subalgebras: there is a (vector-valued) rational map $f: \mathbb{F} \to \langle \langle a, b \rangle \rangle$ that surjects onto a connected component of idempotents, with numerator of low degree.
- ▶ $(Q_x \circ f), (P_{x,y} \circ f)$ are rational maps of low degree, and axes are zeroes for these maps.
- Whenever $(a, b) \neq \frac{1}{4}$ there are more axes than the degree of the numerator.

Solid lines and derivations

Associators/Inner derivations

Given $a, b, x \in A$, define

$$D_{a,b}(x)=a(bx)-b(ax).$$

over
$$\mathbb{F}[t]/(t^2) = \mathbb{F}[\varepsilon]$$
, there exists $a_{\varepsilon} \in \langle \langle a, b \rangle \rangle \otimes_{\mathbb{F}} \mathbb{F}[\varepsilon]$ with $x^{\tau_a \tau_{a_{\varepsilon}}} = x + \mu \varepsilon D_{a,b}(x)$ for a $\mu \in \mathbb{F} \setminus \{0\}$, for all $x \in A$.

Solid lines and derivations

Associators/Inner derivations

Given $a, b, x \in A$, define

$$D_{a,b}(x) = a(bx) - b(ax).$$

over
$$\mathbb{F}[t]/(t^2) = \mathbb{F}[\varepsilon]$$
, there exists $a_{\varepsilon} \in \langle \langle a,b \rangle \rangle \otimes_{\mathbb{F}} \mathbb{F}[\varepsilon]$ with $x^{\tau_a \tau_{a_{\varepsilon}}} = x + \mu \varepsilon D_{a,b}(x)$ for a $\mu \in \mathbb{F} \setminus \{0\}$, for all $x \in A$.

Corollary.

 $\langle\langle a,b\rangle\rangle$ is solid if and only if $D_{a,b}$ is a derivation.

Jordan algebras

Definition.

A non-associative commutative ring A with $2 \in A^{\times}$ is almost Jordan if $D_{x,y}$ is a derivation for all $x, y \in A$.

Marshall Osborn studied almost Jordan algebras in [Osb65].

Jordan algebras

Definition.

A non-associative commutative ring A with $2 \in A^{\times}$ is almost Jordan if $D_{x,y}$ is a derivation for all $x, y \in A$.

Marshall Osborn studied almost Jordan algebras in [Osb65]. Equivalently, A is almost Jordan if

$$2((yx)x)x + yx^3 = 3(yx^2)x$$
 for all $x, y \in A$.

Theorem.

Let A be an almost Jordan ring generated by idempotents. Then A is Jordan.

Theorem.

Let A be an almost Jordan ring generated by idempotents. Then A is Jordan.

Sketch of proof if char $\mathbb{F} \neq 3$ and A simple [CG21].

Idempotents in almost Jordan algebras are axes, so A is primitive axial algebra of Jordan type with associative non-degenerate form (,). Then

$$3L_{x}L_{x^{2}} = (3L_{x^{2}}L_{x})^{\top} = (2(L_{x})^{3} + L_{x^{3}})^{\top} = 2(L_{x})^{3} + L_{x^{3}} = 3L_{x^{2}}L_{x}$$

for $x \in A$, so

$$3x(x^2y) = 3x^2(xy)$$
 for all $x, y \in A$.

Main result

Theorem.

A primitive axial algebra of Jordan type half (A,X) of Jordan type half over a field $\mathbb F$ with char $\mathbb F\neq 2,3$ such that for all $a,b\in X$ the line $\langle\langle a,b\rangle\rangle$ is solid, is Jordan.

References I

0000

Thank you for listening!

- [CG21] Maurice Chayet and Skip Garibaldi. A class of continuous non-associative algebras arising from algebraic groups including E₈. Forum Math. Sigma, 9:Paper No. e6, 22, 2021.
- [GSS24] I. Gorshkov, S. Shpectorov, and A. Staroletov. Solid subalgebras in algebras of Jordan type half, 2024.
- [HRS15] J. I. Hall, F. Rehren, and S. Shpectorov. Primitive axial algebras of Jordan type. *J. Algebra*, 437:79–115, 2015.
- [HSS18] J. I. Hall, Y. Segev, and S. Shpectorov. On primitive axial algebras of Jordan type. Bull. Inst. Math. Acad. Sin. (N.S.), 13(4):397–409, 2018.

[Osb65] **J. Marshall Osborn.** Commutative algebras satisfying an identity of degree four. *Proc. Amer. Math. Soc.*, 16:1114–1120, 1965.