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Abstract 

 

Two experiments were conducted to investigate the role of phonological and executive 

working memory components in the carry operation in mental arithmetic. We manipulated 

the number of carry operations, as previous research had done, but also the value that had 

to be carried. Results of these experiments show that in addition to the number of carry 

operations, also the value of the carry is an important variable determining the difficulty of 

arithmetical sums. Furthermore, both variables (number and value) interacted with each 

other in such a way that the combination of multiple carries and values of carries larger than 

one resulted in more difficult problems irrespective of the presence of a working memory 

load. The findings with respect to working memory load suggest that mainly the central 

executive is important in handling the number of carry operations as well as the value that 

has to be carried. The implications of the present findings for our views on mental arithmetic 

and its reliance on working memory are discussed. 
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The role of working memory in the carry operation of mental arithmetic: 

Number and value of the carry 

 

The present article focuses on the role of working memory in handling carries in multi-

digit mental addition problems. This builds on previous research concerning the role of 

working memory in mental arithmetic both with respect to solving multi-digit sums and to 

handling the presence of carries. A recent literature review by DeStefano and LeFevre 

(2004) summarizes the evidence on the role of working memory in mental arithmetic. This 

review shows that the working memory model of Baddeley and Hitch (1974) is the 

dominantly used model in this type of research. The model has no doubt the advantage that 

a dissociation can be made between effects due to controlled processing (the central 

executive) and effects due to maintenance of modality specific information in the capacity-

limited slave systems, the phonological loop and the visuo-spatial sketch pad. Therefore and 

also for reasons of continuity with previous research, the present study also used this model 

to frame the research question. 

A clear finding of the research so far is that for operations on single-digit numbers 

(e.g., De Rammelaere, Stuyven, & Vandierendonck, 1999, 2001; De Rammelaere & 

Vandierendonck, 2001; Lemaire, Abdi, & Fayol, 1996; Seitz & Schumann-Hengsteler, 2002) 

and for operations on multi-digit numbers (e.g., Fürst & Hitch, 2000; Logie, Gilhooly, & Wynn, 

1994; Seitz & Schumann-Hengsteler, 2002), the central executive seems indispensable. 

The role of the other working memory components is far less clear. In one-digit 

arithmetic, for instance, most studies did not find a role for the phonological loop (De 

Rammelaere et al., 1999, 2001; De Rammelaere & Vandierendonck, 2001) whereas in multi-

digit arithmetic, several studies have found evidence for a role of the phonological loop in 

maintaining interim results (e.g., Ashcraft & Kirk, 2001; Heathcote, 1994; Logie et al., 1994; 

Seitz & Schumann-Hengsteler, 2002; Trbovich & LeFevre, 2003) at least for addition, while 

for the other operations the situation remains unclear. The visuo-spatial sketch pad may be 

involved in the maintenance of interim results when the participants are encouraged to use a 

visual problem representation (Logie et al., 1994). 
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The presence of carries, as in 457 + 268, is commonly considered as a factor 

increasing problem difficulty. To the extent that working memory is required to handle carries 

in dual-task experiments, an interaction between working memory load and problem difficulty 

is expected. Fürst and Hitch (2000, Exp. 2) confirmed this for 0, 1 or 2 carries in the addition 

of two three-digit numbers by showing that under an executive load (a variant of the Trails 

task) much more errors were committed on 2-carry problems (45%) than on the same 

problems in the articulatory suppression (15%) or control (12%) conditions. Similarly, Seitz 

and Schumann-Hengsteler (2002) used two-digit plus two-digit sums with or without carry 

and showed that the amount of interference was larger with an executive load (random 

generation) than with articulatory suppression such that solution of carry-problems was 

slowed more than that of no-carry problems. In contrast, a study in which participants were 

required to perform a sequence of 2-digit additions (Logie et al., 1994), did not observe an 

interaction of working memory with the presence of carry operations. As pointed out by the 

authors, this observation may be the result of a lack of statistical sensitivity of the 

experiment, but it may also suggest that working memory does not mediate carrying. 

Ashcraft and Kirk (2001) required their participants to retain a two-letter or a six-letter 

load while solving arithmetic sums of one- or two-digit numbers. They found slower solutions 

of the carry problems than the no-carry problems and also slower solution of the large versus 

the small letter load. In accuracy more errors were committed in the carry than in the no-

carry problems and this effect was increased under larger loads. As pointed out by 

DeStefano and LeFevre (2004), this finding may indicate that the phonological loop is 

required to maintain the carry information, but it may also "reflect the demands for central 

executive resources of the difficult six-letter load" (p. 371). 

Other researchers addressed the role of the slave systems, and in particular, the 

phonological loop in carrying. Logie et al. (1994) did not observe differential effects of load 

on carry versus no-carry problems for either a phonological or a visuo-spatial load. In 

contrast, Noël, Désert, Aubrun, and Seron (2001) provided evidence for a mediation of the 

phonological loop in solving carry-problems. They manipulated visual and phonological 

similarity of the digits to be added in additions of two three-digit numbers. They found an 

interaction of phonological similarity by problem difficulty (0 versus 2 carries) in the reaction 



                                                                                  Working Memory and Carrying 5            

times. However, due to the design of the experiment with brief sequential presentation of the 

operands, it is not clear whether this effect was due to the higher demands placed by the 

carries on the phonological loop or to a combination of carry manipulation and maintenance 

of operands and of interim results (see also DeStefano & LeFevre, 2004). 

In summary, it may be said that although there is some convincing evidence that carry 

manipulation is mediated by the central executive, it remains unclear whether the 

phonological loop plays a role in handling carry information, since some studies did while 

others did not find an effect of parameters related to phonological storage. A few exceptions 

notwithstanding (Fürst & Hitch, 2000; Noël et al., 2001), most studies compared no-carry 

versus one-carry problems, so that there is no clear evidence whether the number of carries 

in a problem is of importance. Furthermore, all studies were restricted to sums of two 

numbers so that the value of the carry never exceeded one (an exception must be made for 

Logie et al., 1994). 

In order to improve our knowledge about the role of working memory in the 

manipulation of carries, the present study manipulated working memory load, the number of 

carries in a problem and the value of the carries. In the context of a task as used by Fürst 

and Hitch (2000), where the problem remains visible until it is solved and where the answer 

is given in the order units, tens, etc., the need to maintain interim results is limited. If there 

are no carries, the problem is just a concatenation of simpler mental arithmetic problems. For 

example, the sum 36 + 23 can be solved by decomposing this problem into simple arithmetic 

problems, namely 6 + 3 for the units and 3 + 2 for the tens. Each outcome can be produced 

immediately and hence no interim results must be retained. However, when there is a carry, 

an extra operation is required. For example in the sum 38 + 24, the problem part of the units, 

8 + 4 has 12 as the result. This result must be subdivided in the part of the tens (1) that must 

be retained (and carried) and the part of the units (2) that can be emitted immediately. Next, 

the part retained (the carry) can be used to perform the calculation on the tens: 1 (carry) +3 

+ 2. It is transparent from this example that the carry is maintained in memory for a very brief 

period of time. For sure, another strategy can be followed, where the value of the carry is 

maintained in memory while the sum of the present column is calculated and at the end of 

this calculation the maintained value is also added. In our example that would imply that the 
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carry is maintained in memory while the addition of 3 + 2 is made and that afterwards, the 

carry is added (5 + 1). The latter strategy obviously requires the maintenance of an interim 

result. We assume that, because it unnecessarily increases the memory load, this strategy is 

not used, so that we can focus on the simpler situation where the time during which the 

value of the carry must be maintained is rather limited, namely only during the response 

preparation interval for the answer part being emitted. 

Manipulation of the number of carries thus increases the number of times this extra 

operation and transfer of the carry must be executed. Consequently, it is expected that with 

every carry the solution duration of the complete sum will be increased. With the increase in 

the number of operations performed, also the probability of an error will increase. Both these 

predictions are consistent with the data available in the literature (Ashcraft & Kirk, 2001; 

Fürst & Hitch, 2000; Seitz & Schumann-Hengsteler, 2002). 

The value of the carry depends on how many numbers are being added. With two 

numbers, the value of the carry is either 0 (no carry) or 1. With three numbers, the maximum 

value of the carry is 2. Hence, manipulation of the value of the carries goes hand in hand 

with an increase in the number of column-wise additions. However, within the n numbers to 

be added, the value of the carry can vary from 0 (e.g., 2 + 3 + 3) to n − 1 (e.g., 8 + 7 + 9). 

Therefore, not the number of operations (which is the same in both examples), but the total 

amount of the outcome varies with the value of the carry. From the literature on simple 

mental arithmetic it is known that solution time and accuracy depend on the size of the 

outcome (the so-called problem-size effect, Ashcraft, 1992, 1995; Ashcraft & Battaglia, 1978; 

Butterworth, Zorzi, Girelli, & Jonckheere, 2001; Campbell, 1995; Geary, 1996; Groen & 

Parkman, 1972). Consequently, it may be predicted that the larger the value of the carry or 

carries, the slower the solution and the less accurate on average. 

When both the number of carries and the value of the carries are varied orthogonally, 

the answer time will slow down because with more carries more operations have to be 

executed and with increasing value of the carries, each of the partial outcomes will take 

more time. This results in a multiplicative combination of the two effects so that an interaction 

of these two manipulations is expected. As regards accuracy, however, with more carries 

there are more chances of committing an error and likewise with an increase in the value of 
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the carries. The presence of more carries will not increase the probability of committing an 

error because of the value and vice versa, so that no interaction is expected. 

In the present study, the contribution of two aspects of working memory is targeted. 

On the one hand, it is well known from studies with simple mental additions (De Rammelaere 

et al., 1999, 2001; De Rammelaere & Vandierendonck, 2001; Lemaire et al., 1996; Seitz & 

Schumann-Hengsteler, 2002) that an executive load slows down solution time and increases 

the proportion of errors. As explained above, the problems studied may be considered as a 

concatenation of simple arithmetic problems, and therefore it is expected that an executive 

load will affect both solution time and accuracy. Since an executive load will interfere with 

each calculation step done, this leads also to the prediction of an interaction with number of 

carries: since every carry increases the number of steps and since each step may be 

affected by the executive load, it is expected that the load effects will be larger when there 

are more carries. As far as value of the carries is concerned, an interaction with an executive 

load may be expected if the effects of such a load are augmented with problem difficulty. The 

evidence in favour of a load by problem difficulty interaction is rather scanty: some studies 

did not find such an interaction (e.g., De Rammelaere et al., 1999, 2001; De Rammelaere & 

Vandierendonck, 2001), while others did (e.g., Ashcraft & Kirk, 2001). For that reason, as 

higher values of the carry go hand in hand with larger outcomes, an interaction with load 

may be expected if the problem size is sufficiently variable. 

Another aspect of working memory load concerns phonological memory which can be 

impaired by means of articulatory suppression. Thus far, the evidence indicates that in 

simple mental arithmetic this manipulation does not affect performance (see review by 

DeStefano & LeFevre, 2004). By consequence, an effect of articulatory suppression is only 

expected if the problem requires the participant to maintain interim information. As already 

pointed out, the amount of load on this aspect of working memory (the maintenance of the 

value of the carry for brief periods of time) is rather limited, so that a small amount of 

interference due to such a phonological load may expected. Since this load is present for 

short periods that do not overlap in time, the number of carries will not increase this amount 

of load and hence no interaction with number of carries is expected. Similarly, there is no 

reason to assume that the amount of phonological load varies with the value of the carry to 
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be maintained and no interaction of value of the carry with a phonological working memory 

load is expected. 

A further characteristic of the problems considered here is that participants produce 

their answers incrementally on-line so that besides global solution times and accuracy also 

the solution times and accuracy of each step in the production of the answer can be 

subjected to an analysis. In general, it may be expected that each step in the production of 

the answer, will take longer the more operations and the larger the outcome of the 

operations will be. In particular, this means that a calculation that does not result in a carry to 

the next problem part, will be faster than a calculation that includes such a carry. Similarly, 

when the problem part considered receives a value carried from the previous part, the 

number of operations is increased, and this will also result in a slower response. 

Furthermore, if the outcome of an answer part is larger, this will also slow down responding. 

In all these cases, the situations that lead to slower responding also increase the probability 

of an error, so that basically all the variations that slow down solution, on average, also result 

in decreased accuracy. 

Pursuing this issue further, the number of operations performed on the units will on 

average be smaller than the number of operations performed on the tens. For the units, the n 

numbers have to be added and occasionally, the outcome will require a carry. The same 

may happen for the tens, but additionally a value may be carried from the units, so that on 

average more operations are required. If the numbers to be added are 4-digit numbers, then 

no difference is expected between tens and hundreds, because on average the same 

number of operations will have to be executed. There will be a difference, however, between 

the last and last-but-one problem part (i.e., between hundreds and thousands in 4-digit 

number and between tens and hundreds in 3-digit numbers). This is because the sums we 

are considering here are constructed in such a way that the last part itself never results in a 

carry, so that the outcome will always be rather small (smaller than 10) as only the digits 

have to be added together with the occasional carry from the previous part. In sum, it is 

expected that answers to the unit part will be faster and more accurate than the answers to 

the other parts and that the answer to the last part will be faster and more accurate than the 

problem parts in-between. 
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Given the findings regarding executive load in simple arithmetic, it is expected that 

under executive load, each of the problem parts will be slower and if the range of problem 

variation is large enough an interaction of executive load with outcome size of the problem 

parts may occur. With respect to a phonological load, the evidence suggests that such a load 

does not affect simple arithmetic and consequently, no effect of a phonological load is 

expected and such a load is also not expected to interact with the size of the partial 

problems. 

 

Experiment 1 

 

 In order to test all these predictions, in the first experiment, we orthogonally 

manipulated the number of carry operations (one or two) and the value of the carry (1 or 2) 

and combined this with four different memory loads. The experiment was designed to mirror 

as closely as possible the design used by Fürst and Hitch (2000). For that reason, the same 

three memory load conditions were included, namely control (arithmetic only), phonological 

load (articulatory suppression) and executive load (Trails task). However, because the load 

imposed by the Trails task was considered to be very large and because this task also 

seems to load in an important way on phonological working memory, another executive load 

condition was included, namely a condition with a continuous choice reaction time task with 

randomly spaced interstimulus intervals (CRT-R). In this task, a random sequence of low 

and high tones is presented at a random rate and the participants are required to respond 

quickly by a corresponding keypress to each tone. Szmalec, Vandierendonck, and Kemps 

(2005) report a series of experiments showing that this task creates a moderate executive 

load while the effects of this load are dissociated from the effects of operations known to 

affect the slave systems in the model of Baddeley and Hitch (1974). The usefulness of the 

task has meanwhile been confirmed in several studies with mental arithmetic (e.g., 

Deschuyteneer & Vandierendonck, 2005, in press; Deschuyteneer, Vandierendonck, & 

Muyllaert, in press; Imbo, Vandierendonck, & Vergauwe, in press). 
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Participants were required to add three 3-digit problems that resulted in a 3-digit 

answer by typing their answer in the order units-tens-hundreds. This way a fourth 

independent variable, problem component, was included. 

Method. 

Participants and design. Twenty first-year psychology students (nineteen women and 

one man) of Ghent University (Belgium) participated for course requirements and credits. 

They were assigned to four counterbalancing conditions which determined the order in which 

they performed the four (working memory load) conditions of the experiment. 

Materials. A set of 60 addition problems was constructed: 40 experimental stimuli and 

20 fillers. Each problem consisted of three 3-digit numbers that summed to another 3-digit 

number. For the experimental stimuli, there were four categories: (a) one carry operation of 

value 1, e.g., 175 + 311 + 307 = 793; (b) one carry operation of value 2, e.g., 164 + 281 + 

260 = 705; (c) two carry operations both of value 1, e.g., 153 + 286 + 341 = 780; and (d) two 

carry operations both of value 2, e.g., 145 + 187 + 378 = 710. 

There were two types of filler items. The first category had no carry (number = 0 and 

value = 0). In the second category, problems had two carries, one with value 1 and one with 

value 2. 

The digit 9 was excluded in all three problem digits in order to avoid ambiguous errors 

(see Fürst & Hitch, 2000). All categories were matched for problem size. Independent t-tests 

revealed no differences between the problem sizes of all categories (all p > .20). For the 

categories (a) and (b), half of the problems had a carry from the units to the tens and half 

had a carry from the tens to the hundreds. The problems were arranged in four blocks (i.e., 

the four memory load conditions), so that in each condition 15 problems (3 practice, 4 fillers 

and 8 experimental problems) were presented. The different problem types were 

represented proportionally in each condition. 

Procedure. We followed the procedure of Fürst and Hitch (2000) as closely as 

possible so that potential differences cannot be explained by procedural discrepancies. All 

participants were tested individually in a quiet room. The same experimenter was present 

during the experimental session. Each problem was shown at the centre of a computer 
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screen in column-wise Arabic notation. The problem remained visible until the participant 

responded. 

The participants were told that on each trial, they would see three 3-digit numbers of 

which the correct sum was another 3-digit number. Participants were asked to type in the 

correct answer by first typing the units, then the tens and finally the hundreds. In this way, 

strategy variability due to the use of different strategies was eliminated (e.g., Hitch, 1978). 

Participants saw the digits appear on the screen as they typed and they were to complete 

their answer by pressing the enter-key. Response time was measured in milliseconds as the 

time between the start of problem presentation and the completion of the answer (enter-key). 

The intertrial interval was 1000 ms. 

A dual-task selective interference methodology was used with one single-task control 

condition and three conditions in which participants performed the arithmetic task 

concurrently with a secondary task taxing a particular component of working memory. In a 

first dual-task condition, participants solved the arithmetical problems while continuously 

saying "de" (Dutch for "the"), at a rate of about 2 words per second (articulatory 

suppression). This task was meant to interfere with the rehearsal mechanism of the 

phonological loop. The second dual-task condition combined the arithmetic task with the 

Trails task. Participants were given a random letter and a random day of the week (e.g., "D-

Friday"). The participants were requested to continue this series by alternating between the 

letters and the days of the week. When the end of the series was reached, the sequence had 

to be continued from the beginning (from Sunday to Monday and from Z to A). Baddeley 

(1996) has shown that this task interferes with executive functioning because switching 

between familiar streams probably requires the inhibition of prepotent responses. In the third 

dual-task condition, participants performed the arithmetic task concurrently with a continuous 

two-choice reaction time task with random spacing of the inter-stimulus interval (CRT-R). 

The inter-stimulus intervals were either 900 or 1500 ms and the stimuli were randomly 

selected from two tones: a low tone (262 Hz) and a high tone (524 Hz). The participants had 

to say "hoog" ("high") when they heard a high tone and "laag" ("low") when a low tone was 

presented. The duration of each tone was 200 ms. In a series of experiments, Szmalec et al. 
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(2005) have shown that this task taxes executive functioning, while the load on the 

subordinate working memory systems is negligible. 

In order to familiarize the participants with the apparatus and the procedure, the 

experiment started with a few practice problems. After the explanation of the secondary task, 

the execution of the primary task in combination with the secondary task was practiced too. 

After these practice problems, the blocks with the experimental items were presented. The 

four load conditions were presented in the order determined by a randomized Latin square 

and within each block the problems were presented in a random order. In the dual-task 

conditions, the participants first started execution of the secondary task and after 5 seconds, 

the first arithmetical problem appeared and the participants had to solve this problem while 

continuing with the secondary task. In the control condition, the first arithmetical problem was 

presented as soon as the participant was ready. 

Performance on all secondary tasks was measured. The spoken responses of the 

participants in the articulatory suppression condition and in the Trails condition were tape-

recorded and analyzed afterwards. For the CRT-R task, the experimenter checked on-line 

whether the responses of the participants were correct. The participants also performed the 

secondary tasks alone for 2 minutes ("single secondary task control condition"). 

Performance in these conditions was also measured. 

 

Results. All repeated measures analyses in this and in the next experiment were performed 

by means of a multivariate analysis based on the multivariate linear model. The analyses of 

the primary task data—reaction time (RT) and accuracy—were further refined by means of 

regression analyses, and analyses of secondary task performance are reported as a check 

on possible dual-task trade-offs. For the statistical tests an ff-level of .05 is assumed, unless 

otherwise mentioned. 

Solution time. The complete factorial design was a 4 (load: control, articulatory 

suppression, CRT-R and Trails) × 2 (number: 1 or 2 carries) × 2 (value: 1 or 2) × 3 

(components: unit, ten, hundred response component) with repeated measures on all the 

effects. Table 1 presents the average solution time as a function of load, number, value and 

component. Only the correctly solved sums were included in these analyses¹. 
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Insert Table 1 about here 

 

 The first issue addressed in this analysis concerns only the effects of number and 

value. In order to ascertain that the effects were not due to the dual-task conditions, two 

analyses were carried out: (a) restricted to the control condition and (b) averaged over all 

four conditions. Including only the control condition, the effects of number and value as well 

as their interaction were significant, respectively F(1,19) = 18.35, F(1,19) = 26.65, and 

F(1,19) = 5.55. In the analysis of the complete data-set the pattern of findings was similar. 

Problem solving was slower with two carries (5.29 s) than with one carry (4.25 s): F(1,19) = 

56.07. Similarly, problems with a carry of value two were solved slower (5.14 s) than 

problems with a carry of value one (4.40 s): F(1,19) = 10.06. The interaction of both effects 

was significant as well, F(1,19) = 11.68 in such a way that problems with two carries of value 

two (5.99 s) were solved slower than the other ones (4.21–4.59 s). 

The second part of the analysis showed that load also affected arithmetic 

performance, as expected, F(3,17) = 44.95. Reaction times per component were slower 

under an executive load (CRT and Trails; 6.34 s) than under articulatory suppression (3.34 

s), F(1,19) = 140.73, and in the latter condition performance was slower than in the control 

condition (3.07 s), F(1,19) = 7.16. Consequently, reaction time in the control condition was 

also faster than in the conditions with an executive load, F(1,19) = 143.01. For 

completeness, performance also differed between the CRT-R (5.05 s) and the Trails task 

(7.62 s), F(1,19) = 19.48. 

Next, we addressed the interactions of load with number and value. Although the 

effect of number was larger in the conditions with a memory load (a difference of 1.19 s) than 

in the control condition (difference 0.58 s), the overall interaction was only marginally 

significant, F(3,17) = 2.96, p = .06. The interaction between load and value turned out not be 

significant, F(3,17) = 1.54, p = .24.  

A further decomposition of the interaction of load and number was performed to clarify 

the roles of the phonological and the executive loads. This analysis showed that the 

interaction of number with the contrast between control and articulatory suppression was not 
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significant, F < 1, whereas number interacted with the contrast between control and 

executive loads, F(1,19) = 6.83. The contrast between the two executive conditions did not 

interact with number, F(1,19) = 1.49, p = .24. It thus seems that the marginal overall 

interaction is completely due to the presence of an executive load. 

Finally, the effects related to the problem components are reported. The main effect of 

components fell short from significance, F(2,18) = 2.97, p = .08. Neither of the interactions 

between components and the other effects attained significance (smallest p = .14 for the 

quadruple interaction of load, number, value and components). 

Thus far, the results with respect to the solution time data seem to indicate that 

solution time depends on problem characteristics such as number of carries and value of the 

carry, on the one hand, and working memory limitations, on the other hand. Working memory 

load, however, seems to interact only with the number of carries. Because the problems 

used were randomly selected from a number of predefined categories, additional regression 

analyses were performed as suggested in method 3 of Lorch and Myers (1990). It is well 

known that solution times depend on problem size. Since the outcomes of the problems 

were balanced over the number by value conditions the variable of overall problem size 

(outcome) does not reflect the problem difficulties due to the carries. A better variable is 

obtained by taking the column-wise sums. With the addition 172 + 235 + 284, the outcomes 

of the units, tens and hundreds are respectively 11, 19 (18+carry) and 6 (5+carry). The sum 

of these outcomes is a better indicator of problem difficulty as this sum will be greater the 

more carries are present, the larger the value of the carries and the larger the column-wise 

sums are. This measure of "problem size" was entered as a predictor into regression 

analyses per participant. Because this measure of problem size correlates .96 with the 

interaction of number and value, an inclusion of all effects of the model in the regression 

analyses would lead to singularities. Moreover, in the present experiment, the number of 

useful observations per participant was rather low. Therefore, it was decided to include only 

load and value as the other predictors. Because load is a categorical variable it was coded 

by means of three dummy variables. The reaction times averaged over the three 

components were regressed on these predictors per participant and the regression 

coefficients were entered in a multivariate analysis of variance. This analysis showed that 
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the regression coefficients associated with these predictors were not significant, F < 1 for 

problem size and F(3,17) = 1.42, p = .27 for load and F(1,19) = 2.37, p = .14 for value. A 

similar analysis with load, number and size as predictors yielded similar results, respectively 

F(3,17) = 2.58, p = .09, F < 1 and F < 1. 

 

Accuracy. The same factorial design was used for the analysis of the accuracy data. 

Mean accuracy is shown in Table 2 as a function of load, number, value and component. 

The results are reported in the same order as for the reaction times. 

 

Insert Table 2 about here 

 

The effects of number, value and their interaction are first considered within the 

control condition only. Both main effects were significant, F(1,19) = 5.59 for number, and 

t(19) = 1.81, one-tailed for value. Their interaction was not significant, F < 1. In the overall 

analysis, the pattern was completely similar, but the effects were slightly stronger: both main 

effects were significant, F(1,19) = 7.44 for number and F(1,19) = 10.83 for value, but their 

interaction was not, F < 1. Accuracy was higher in problems with one (0.90) than in problems 

with two carries (0.85). Accuracy was also higher when the value of the carries was one 

(0.91) than when it was two (0.84). 

The second part of the analysis again focused on the main effect of memory load. As 

expected, this effect was reliable, F(3,17) = 11.10. Planned comparisons on this effect 

showed that the control (0.93) and the articulatory suppression condition (0.93) did not differ 

from each other, F < 1, but the contrast between articulatory suppression and executive load 

(0.82) was significant, F(1,19) = 27.20. Compared to the control condition, the effect of an 

executive load was also significant, F(1,19) = 28.29. Again the effect of the Trails task was 

larger (0.78) than that of the CRT-R task (0.86), F(1,19) = 9.32. 

Next we considered the interactions of load with number and value. Only the 

interaction of load by value was reliable, F(3,17) = 5.14, while the interaction of Load × 

Number and the triple interaction of load, number and value were not, both F < 1. 

Decomposition of the interaction of load and value showed that the contrast between control 
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and articulatory suppression did not attain significance, F(1,19) = 1.15, while the contrast 

between control and executive load did, F(1,19) = 4.26. 

The last aspect concerns the response components. The main effect of component 

was significant, F(2,18) = 31.29. Accuracy was largest for the units (0.95), smallest for the 

tens (0.83) and in between for the hundreds (0.85). The contrast between unit and the other 

components was significant, F(1,19) = 51.75, but the difference between the ten and 

hundred response was not, F(1,19) = 1.67, p = .21. The effect of component interacted with 

number, F(2,18) = 7.96. This was essentially based on the interaction of the contrast 

between units and the other components with number, F(1,19) = 10.31. The interaction of 

component with value failed to attain significance, F(2,18) = 3.11, p = .07, but here also the 

contrast between units and the other components interacted with value, F(1,19) = 5.25. 

Component interacted also with load, F(6,14) = 8.28. The contrast between units on the one 

hand and tens and hundreds on the other, interacted with the presence of an executive load 

(control vs. executive load), F(1,19) = 18.54, but not with the contrast between control and 

phonological load, F(1,19) = 1.74, p = .20. This seems to indicate that the difference in 

accuracy between units and the other answer components is augmented under an executive 

load: a difference of 0.02 in the control condition versus a difference of 0.05 in the condition 

with a phonological load and a difference of 0.19 in the conditions with an executive load. 

Moreover, the interaction with the contrast between the two executive load conditions was 

also significant, F(1,19) = 24.02, with differences of respectively 0.11 and 0.26 in the CRT-R 

and Trails conditions. If it can be assumed that the executive load is larger in the Trails than 

in the CRT-R task, then this would indicate that how stronger the load, the larger the 

difference in accuracy between the response components. 

The results of the analysis of the accuracy data suggest that accuracy to some extent 

depends on the value of the carries and on the available memory capacity. Therefore, 

regression analyses were performed as suggested in method 3 by Lorch and Myers (1990). 

Problem size was measured in the same way as for the analysis of the solution time data 

and was entered as a predictor in the regression analyses together with load and value. As 

before, load was coded by means of orthogonal 3 dummies. The participant's average 

accuracy over the three response components was regressed on these predictors, and the 
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regression coefficients were entered in a multivariate analysis of variance to estimate the 

contribution of these predictors. Size and value were not significant, respectively F(1,19) = 

3.53, p = .08 and F(1,19) = 2.50, p = .13 but load was, F(3,17) = 11.05. A similar analysis 

with load, number and size as predictors showed significant effects of load, F(3,17) = 11.21, 

and size, F(1,19) = 5.46, but not of number, F < 1. 

 

Secondary task performance. In the articulatory suppression condition, participants did 

not slow down their speech rate during calculation as compared to the secondary task-only 

control condition, respectively 107 and 103 words per minute, t(19) = 1.21, p > .20. 

Performance on the Trails task was measured by the number of responses produced per 

minute and by the proportion of errors. Response production was lower in the dual-task (27) 

than in the single-task (52) condition, t(19) = 12.56. Participants also committed 

proportionally more errors (3.3%) in the dual-task than in the single-task condition (1.6%), 

t(19) = 2.85. For the CRT-R task, the same pattern of results was observed: participants 

committed more errors during calculation (14%) than in the CRT-R-only condition (4%), t(19) 

= 4.18. All these findings show that not only performance of the primary task, but also 

performance of the secondary tasks was impaired in the dual-task conditions. 

 

Discussion. Both, the number of carries and the value of the carries affected arithmetic 

performance such that more carries and higher values of the carry resulted in poorer 

performance. As predicted, the two factors interacted in the solution times, but not in 

accuracy. Problems with 2 carries of value 2 were solved much slower than the other 

problems. In fact this pattern of results might be due to the presence of memory load 

conditions. Therefore, we also investigated these effects restricted to the control condition. 

Basically, the same pattern was found. 

The presence of memory loads impaired performance and this effect was larger under 

an executive load than under articulatory suppression. Within the executive load, it can be 

seen that the Trails task had a more devastating effect than the CRT-R task. Load interacted 

with number and value, although the pattern was not completely as expected. In the solution 

times, load interacted with number but not value. Response times were longer with more 
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carries in all the load conditions, but the difference was larger in the conditions with an 

executive load, while the difference was smaller and approximately the same in the control 

and the articulatory suppression condition. The interaction of memory load and value was 

significant in the accuracy data only and it appeared that the effect of value was very strong 

in the executive load conditions while absent in the other conditions (articulatory suppression 

and control). 

The responses for each of the answer components were about equally fast and these 

partial solution times were not moderated by any of the effects. However, accuracy was very 

different over the answer components. As expected, the accuracy of the units was greater 

than that of the other components. This difference was augmented by an executive load and 

by the presence of more carries in the problem. 

Additional regression analyses were performed. These analyses showed that solution 

times depended on memory load when problem size (the sum of all elementary outcomes), 

was also included as a predictor. The number of data points available was too small, 

however, for a powerful test of these effects. 

In sum, the findings of the first experiment confirm the expectation that besides 

number of carries also value of the carry plays an important role in arithmetic performance. 

While the present experiment confirmed the interaction of memory load with number of 

carries only for solution times, it was found that the effect of value of the carries seems to be 

augmented by the presence of an executive load and not by a phonological load, but this 

only in the accuracy data. Taken together, this experiment confirms an important role for the 

value of the carries but leaves some room for doubts about the mechanism underlying this 

effect. In particular, the present findings do not clarify whether the effect of value of the 

carries stands on its own or rather follows from the interaction with number of carries. 

Furthermore, more data would be useful to clarify how number and value of the carry interact 

with memory load. These issues were further pursued in Experiment 2. 

 

Experiment 2 
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In the second experiment, the value of the carry was varied in the range 1 to 3. To achieve 

this, it was necessary to increase the number of elements to be added from 3 to 4. In order 

not to restrict the problem composition too much, it was also decided to increase the number 

of digits in each number from 3 to 4. This way, it was possible also to extend the range of the 

number of carries, such that problems could be presented with 1 to 3 carries. Finally, 

because the load due to the Trails task was already at its limits in Experiment 1, it was 

decided not to include the Trails condition in Experiment 2 in order to avoid a complete break 

down of calculation. Only the CRT-R task was used to create an executive load condition. 

 

Method. 

 

Participants and design. Twenty first-year psychology students of Ghent University 

(Belgium) participated for course requirements and credit: three men and seventeen women; 

their mean age was 18.3 years. None of them participated in the first experiment. 

 

Materials and Procedure. A set of 90 addition problems was constructed: 72 

experimental stimuli and 18 fillers. The experimental items consisted of four 4-digit numbers 

that summed to obtain another 4-digit number. The number of carry operations was one, 

two, or three; the value of the carry was 1, 2, or 3. This resulted in nine categories: (a) One 

carry operation of value 1, e.g.: 2536 + 1621+ 2320 + 1121 = 7598; (b) One carry operation 

of value 2, e.g.: 5112 + 1225 + 2418 + 1207 = 9962; (c) One carry operation of value 3, e.g.: 

1831 + 1804 + 2721 + 1812 = 8168; (d) Two carry operations of value 1, e.g.: 1162 + 2872 + 

2101 + 2321 = 8456; (e) Two carry operations of value 2, e.g.: 1138 + 4086 + 3346 + 1173 = 

9743; (f) Two carry operations of value 3, e.g.: 4088 + 1177 + 1477 + 1068 = 7810; (g) Three 

carry operations of value 1, e.g.: 1623 + 2526 + 4127 + 1143 = 9464; (h) Three carry 

operations of value 2, e.g.: 1457 + 2306 + 1584 + 1854 = 7201; (i) Three carry operations of 

value 3, e.g.: 2588 + 1788 + 1778 + 1878 = 8032. For each category, eight problems were 

constructed, distributed over sums in the seven thousands, in the eight thousands, and in the 

nine thousands. This way, all types were matched for problem size. Independent t-tests 

revealed no differences between the problem sizes of all types. As in Experiment 1, we 
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controlled for the place of the carry operation. The digit 9 was excluded in all four problem 

digits to avoid ambiguous errors (see Fürst & Hitch, 2000). The 18 filler items consisted of 

problems with two or three carry operations, with mixed values for the carries (for example 

one carry with a value of 1, one carry with a value of 2, and one carry with a value of 3), and 

were not included in the analyses. 

Apparatus and procedure were identical to those of the first experiment, with only two 

differences. As already mentioned, we skipped the Trails condition. Thus, only three 

conditions, of which the order was counterbalanced, were included: Control, Articulatory 

suppression, and CRT-R task. The second difference is that the participants did not have to 

press the enter key any more; the problems succeeded each other automatically. 

 

Results. The same data-analytic strategy was applied as in Experiment 1. Unless otherwise 

stated, results are significant at α= 0.05. 

 

Solution time. The solution times were analyzed on the basis of a 3 (load: control, 

articulatory suppression, CRT-R) × 3 (number: 1, 2 or 3 carries) × 3 (value: 1, 2 or 3) × 4 

(component: unit, ten, hundred, thousand response) factorial design with repeated measures 

on all effects. The average solution times as a function of these effects are displayed in 

Table 3. 

 

Insert Table 3 about here 

 

The same scheme for presentation of the results is followed as in Experiment 1. First, 

confined to the control condition, the effects of number, value and their interaction were all 

significant, respectively F(2,18) = 7.83, F(2,18) = 8.45 and F(4,16) = 3.53. The same pattern 

occurred in the overall analysis, with respectively F(2,18) = 19.88, F(2,18) = 12.08, and 

F(4,16) = 6.46. The main effects were further decomposed by means of contrasts. For 

number, solution time was shorter for one carry (2.59 s) than for multiple carries (3.56 s), 

F(1,19) = 40.81, but the difference between problems with 2 (3.44 s) and 3 carries (3.52 s) 

was not significant, F < 1. Similarly, problems with carries of value 1 (2.73 s) were answered 
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faster than problems with larger values (3.41 s), F(1,19) = 22.21, and there was no 

difference when the value was 2 (3.44 s) or 3 (3.38 s), F < 1. The interaction of number and 

value is shown in Figure 1. The figure shows that when both number and value are larger 

than 1, the problems are solved slower. This is confirmed in the interaction of the contrast 1 

vs. more on both effects, F(1,19) = 7.97. Furthermore, value 2 vs. 3 interacted with number 2 

vs. 3, F(1,19) = 4.94. This is seen in the figure in the cross-over of the lines for values 2 and 

3. 

 

Insert Figure 1 about here 

 

The second aspect of our data-analysis concerns the effect of load, F(2,18) = 15.74. 

Responses were faster in the control (2.43 s) than in the articulatory suppression condition 

(2.86 s), F(1,19) = 6.41 and than in the CRT-R condition (4.25 s), F(1,19) = 33.22. The 

difference between the articulatory suppression and the CRT-R conditions was also 

significant, F(1,19) = 24.30. Load did not interact with either number or value, all F < 1. 

In contrast to Experiment 1, the effect of component was significant, F(3,17) = 32.78. 

Responses for the units were faster (2.84 s) than the other responses (3.30 s), F(1,19) = 

12.89. Responses for the tens (3.36 s) were not different from the other responses, F < 1, 

but responses to the hundreds were slower (3.85 s) than the responses to the thousands 

(2.68 s), F(1,19) = 88.41. Component interacted with number, with value and with their 

interaction, respectively F(6,14) = 12.92, F(6,14) = 20.24 and F(12,8) = 3.63. Component did 

not interact with load in any way. Further exploration of the interaction with number showed 

that number interacted with the contrast between hundreds and thousands, F(2,18) = 21.43. 

The difference in RT for hundreds versus thousands was only .01 s if number was 1, but it 

amounted to 1.74 s when number of carries was more than 1. The interaction of component 

with value was decomposed also on the basis of the three orthogonal contrasts on 

component. The unit RT differed more from the other RTs when the value was larger, 

F(2,18) = 7.72. Similarly, the RT difference between hundred and thousand was larger with 

larger carry values, F(2,18) = 15.85. 
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Similar regression analyses were performed as in Experiment 1 according to the 

methodology described in method 3 of Lorch and Myers (1990). Problem size was defined in 

the same way as the sum of the outcomes of the four columns. Because more data points 

per participant were available than in the previous experiment, it was possible to test the 

effect of problem size together with the other predictors based on the factorial design. 

However, the predictor Number × Value was not included because it correlates .98 with 

problem size. With problem size, load, number, value, Load × Number and Load × Value as 

predictors, problem size, load and value were significant, F(1,19) = 23.73, F(2,18) = 15.37 

and F(1,19) = 4.86 respectively, as was the interaction of load by value, F(2,18) = 4.24. The 

effects of number and load by number were not significant, both F < 1. 

 

Accuracy. The accuracy data were analysed by means of the same design. The 

average proportions correct and their standard errors as a function of load, number, value 

and component are shown in Table 4. 

 

Insert Table 4 about here 

 

Number of carries and value of the carry had again reliable effects, F(2,18) = 11.19 

and F(2,18) = 6.56, respectively. With 2 or more carries accuracy was smaller (0.87) than 

when only one carry was present (0.92), F(1,19) = 17.90, and the difference between 2 

(0.89) and 3 carries (0.85) was also reliable, F(1,19) = 9.79. Problems with carries of value 1 

were more often correct (0.92) than problems with carries of value 2 or more (0.87), F(1,19) 

= 11.70, and the difference between problems with carries of value 2 (0.89) and 3 (0.85) was 

also reliable, F(1,19) = 6.67. These two main effects did not interact, F(4,16) = 1.93, p = .16. 

Confined to the control condition, neither of the effects of number and value, nor their 

interaction attained significance. Nevertheless, for the effect of number, the pattern of 

findings was similar as in the complete experiment as shown by the significant linear trend 

on number of carries, F(1,19) = 5.16. For value, the averages showed the same trend, but 

this was not significant, F < 1. 
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Overall, load affected accuracy, F(2,18) = 16.90. Accuracy was higher in the control 

condition (0.94), than in the articulatory suppression condition (0.88), F(1,19) = 18.22 and 

than in the CRT-R condition (0.84), F(1,19) = 32.00. The two dual-task conditions also 

differed from each other, F(1,19) = 5.14. Furthermore, load interacted with number and with 

value, respectively, F(4,16) = 4.41 and F(4,16) = 3.04. The interaction of load by number is 

displayed in Panel A of Figure 2. The figure clearly shows that both load conditions impair 

accuracy but only when multiple carries are present. This was tested by taking the 

interaction of control versus load by one versus multiple carries, F(1,19) = 8.00. In order to 

disentangle the effects of phonological and executive loads, the interaction of the contrast of 

control versus articulatory suppression by number and the contrast of control versus CRT-R 

were tested. The latter was significant, F(2,18) = 5.40, but the former was not F(2,18) = 2.23, 

p = .14. 

Panel B of Figure 2 shows the interaction of load by value. This interaction was 

studied in a similar way as the previous one. The contrast of control versus load interacted 

with the contrast of value 1 versus larger, F(1,19) = 7.30. Value did interact with the contrast 

of control versus CRT-R, F(2,18) = 5.04, but did not interact with the contrast of control 

versus articulatory suppression, F(2,18) = 2.25, p = .14. 

 

Insert Figure 2 about here 

 

The main effect of component was also significant, F(3,17) = 40.45. Responses for the 

unit sum (0.95) were more often correct than the other responses (0.87), F(1,19) = 95.43. 

Responses for tens (0.86) and hundreds (0.85) were equally accurate, F(1,19) = 1.01, p = 

.33 and responses for thousands (0.89) were more accurate than those of hundreds, F(1,19) 

= 26.30. Component interacted marginally with value, F(6,14) = 2.72, p = .06. Further 

decomposition of the latter interaction showed that the contrast of thousands versus 

hundreds interacted with value, F(2,18) = 7.94. 

Finally, regression analyses conform to method 3 of Lorch and Myers (1990) with 

problem size as defined before, load, number, value, load by number and load by value as 

predictors revealed significant effects of size, Load × Number and Load × Value, respectively 
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F(1,19) = 5.48, F(2,18) = 5.31 and F(2,18) = 4.67. The other predictors failed to attain 

significance, largest F(2,18) = 2.29, p = .13 for load. 

 

Error analysis. Because a sufficient amount of errors were committed spread over the 

different conditions in the experiment, it was possible to perform an analysis of the errors to 

clarify the role of carrying. Error rate was largest in the tens and the hundreds (14% and 15% 

respectively); it was lower in the thousands (11%) because of the more restricted 

possibilities (all sums were in the seven, eight and nine thousands); and it was lowest in the 

units (6%). 

We tested whether errors were due to a mistake in the carry procedure. Errors were 

indeed more frequent when carrying was needed: as well for the units, the tens, the 

hundreds and the thousands, 66% of the errors occurred when carry operations were 

needed. In most of the cases, erroneous tens, hundreds, and thousands were lower than the 

correct tens, hundreds and thousands, which suggests forgetting to carry or carrying too 

small a number. In this respect, carrying a number too small by 1 (a −1 error) was highly 

frequent, independent of the value that had to be carried (28% for value 1, 28% for value 2 

and 44% for value 3). The −2 errors occurred especially in sums where a 2 or a 3 had to be 

carried (33% and 56%, respectively). The −3 errors almost only occurred when a 3 had to be 

carried (76%). 

In summary, these analyses show that very often participants forgot to execute the 

carry operation and that when they did not forget, the errors were in the direction of carrying 

too small a number. 

 

Secondary task performance. In the articulatory suppression condition, participants did 

not slow down their rate of saying "the" while calculating as compared to a single secondary 

task control condition (respectively 90.6 and 85.3 words per minute, t(19) = 1.00. However, 

performance on the CRT-R task declined under dual task conditions, t(19) = 6.44, with 97.4 

correct responses when the task was performed in isolation, compared to 71.5 correct 

responses when performed in combination with the mental arithmetic task. The pattern of 
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these results is quite similar to that of Experiment 1, and again under an executive load, both 

the primary and the secondary task are impaired. 

 

Discussion. The findings of this experiment can be summarized as follows. First, the pattern 

of results for number of carries, value of the carries and their interaction replicated that of 

Experiment 1 and are consistent with the predictions formulated in the introduction. More 

specifically, problems with one carry were more correct and faster than problems with 

multiple carries. Within the latter, problems with two carries were more correct but not faster 

than problems with three carries. In a similar pattern, problems with carries of value 1 were 

more correct and faster than problems with higher values of the carry, and problems with 

carries of value 2 were more correct but not faster than problems with carries of value 3. The 

interaction of these two factors boils down to slower performance when there are multiple 

carries of higher value. Or stated otherwise: if the number of carries is 1, the value does not 

matter much and when the value of the carries is 1, the number of carries does not matter 

much (Figure 1). Taken all together, this subset of the findings shows that besides number of 

carries, also the value is an important determinant of calculation performance. At the same 

time, the effect of both factors must be qualified, because the effect of number becomes only 

important with higher values of the carry and the effect of value of the carry is similarly 

amplified by the number of carries, at least when solution time is considered. 

A second subset of findings concerns memory load and its interactions with number 

and value of carries. Calculation performance was impaired by concurrent articulatory 

suppression and was even more impaired by an executive load, which consisted of 

concurrently and continuously performing the CRT-R task. In the accuracy data, but not in 

the solution times, memory load interacted with number of carries and with the value of the 

carries. Figure 2 shows that these two interactions are very similar to each other. Indeed, for 

the interaction of memory load by number, the accuracy data show that performance is worst 

when there is a memory load combined with multiple carries. This figure also shows that 

under articulatory suppression the effect is smaller than under executive load, which was 

confirmed by the absence of a significant effect of articulatory load in the data analysis. 

Similarly, proportions correct was adversely affected by load when the value of the carries 



                                                                                  Working Memory and Carrying 26            

was larger than 1. The overall pattern was almost identical to that found for memory load by 

number which was also confirmed by a significant effect in the executive load and no reliable 

effect in the articulatory suppression condition. 

Solution time and accuracy per answer component differed. Performance was best for 

the unit outcome and worst for the ten and hundred outcome. Accuracy per component was 

only moderated by value in such a way that more errors occurred on the outcome of the 

hundreds than of the thousands when the value of the carry was larger than one. Solution 

times per component depended on both number and value of the carries. For both number 

and value, the outcomes of the hundreds took more time with more carries or with larger 

carry values. With respect to value, the accuracy of tens, hundreds and thousands was lower 

than of the units when the value was larger. This again shows that apart from number of 

carries, also the value of carry plays a prominent role in complex additions. It also appears 

that the effects of carries and their value increases as the calculation progresses with the 

largest effects on the last position where a carry can occur, in the present problems, the 

hundreds. 

 

General Discussion 

 

The problem addressed in the present article may be rephrased in four more elementary 

questions, namely (a) whether besides the number of carries also the value of the carry is an 

important determinant of calculation performance, (b) whether memory load, and an 

executive load in particular, augmented the effects of number and value of carries, (c) 

whether the two working memory components studied, the phonological loop and the central 

executive, are differentially involved in performance variations due to number of carries and 

to value of the carries, and (d) whether specific effects occur in the different parts of the 

calculation problem. On the basis of an analysis of multi-digit multi-sum arithmetic tasks in a 

vertical presentation format with incremental production of the answer, it was argued that 

participants would follow a step-by-step procedure to solve the problems. In other words, 

these problems may be viewed as a string of more simple arithmetic problems which are not 

completely independent because occasionally a value of one component has to be carried to 
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the next component. We argued that basically three factors would affect the difficulty of such 

problems. First, the difficulty goes hand in hand with the size of the outcome of each problem 

component. The larger this outcome, the more difficult this component would be. This 

derives from earlier findings and theorizing about the problem size effect in mental 

calculation (e.g., Ashcraft, 1992, 1995; Ashcraft & Battaglia, 1978; Butterworth et al., 2001; 

Campbell, 1995; Geary, 1996; Groen & Parkman, 1972). Second, difficulty also depends on 

the number of operations to be performed. When more digits have to be added, the size of 

the outcome being held constant, the problem will be more difficult, simply because there are 

more steps to be executed. If the outcome results in a value to be carried, this requires the 

execution of extra steps. Third, working memory mediates these operations. In producing the 

sum of a problem component, each step yields a result that must be maintained in working 

memory until the next step is complete and the result should not be confused with the 

outcome of a previous sum. In other words, working memory must intervene to temporarily 

maintain a result (a storage aspect for which the phonological loop in the model of Baddeley 

and Hitch (1974) might be thought responsible) and to prevent interference from previously 

encountered and maintained outcomes (blocking proactive interference for which the central 

executive would be the designated actor). The operation of these three factors was used to 

formulated predictions for the present experiments. 

In the following paragraphs, we shall first summarize the findings and confront these 

with the predictions we have formulated in the introduction. The general discussion will then 

be concluded by elaborating on a number of issues that seem to play a crucial role in more 

complex arithmetic. In particular, we will address the role of component problem size, interim 

results and the role of working memory. 

 

Summary of findings. In this paragraph, the present findings are summarized and confronted 

with the predictions. This will be organized around four themes: number and value of carries, 

their interaction with working memory load, the role of phonological and executive working 

memory and the problem components. 
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Number and value of the carry. First, the present study showed that value of the carry 

plays a role together with the number of carries. For one thing, the present study confirmed 

earlier findings by Fürst and Hitch (2000) and Noël et al. (2001) about the role of the number 

of carries in complex additions. The present study confirmed this by showing in Experiment 1 

that problems with two carries were more difficult than problems with one carry in three-sum 

problems. Experiment 2 extended this finding to four-sum problems for a broader range of 

variation in the number of carries (1, 2 or 3). This effect can easily be explained on the basis 

of the augmented number of calculation steps in carry problems. With more carries, the 

number of additional calculation steps increases and this results in slower performance. 

Assuming that each processing step is associated with a fixed probability of the occurrence 

of a calculation or a retrieval error, it also follows that when there are more processing steps, 

the probability of an error increases. 

Interestingly, the present study also varied the value of the carry (values 1 and 2 in 

Experiment 1 and values 1, 2 or 3 in Experiment 2) and found that this variable also affects 

problem difficulty. Problems with carries of value 1 were faster and more correct than 

problems with carries of value 2. Problems with carries of value 2 were more accurate than 

problems with carries of value 3. Two elements may contribute to these effects. First, since 

in problems with carries one or more of the problem components will result in a larger 

outcome, problem size will, at least locally, increase with the value of the carry. As already 

stressed, problem solving is slower and more error-prone when the outcome is larger. 

Second, when there is a carry, the value to be added to the next problem component must 

be kept in temporary storage and then one should not forget to use this retained value in the 

calculation of the sum of the next component. Once again, a larger number of steps results 

in slower overall execution and each step increases the overall probability of an error. In 

sum, larger values of the carry are on average related to a larger problem size and a greater 

number of processing steps. Both of these increase solution time and decrease accuracy. 

Apart from main effects of number and value of the carries, the present findings also 

showed that with respect to solution time, the two effects interacted, while no such 

interaction was evident in accuracy. As was already argued in the introduction, solution time 

increases with each additional carry and since the execution time of each individual carry 
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increases with the value of the carry, the combination yields a multiplicative effect (n* the 

individual time increment) of number and value of the carries. For accuracy, number of 

carries and value of the carries each increase the probability of an error to occur and this 

results in an additive relationship. 

Summarizing this part of the results, the present study shows that solution time of 

complex arithmetic sums depends on the number of carries, the value of the carries and their 

interaction. Proportion of correct answers, in contrast, only depends on the number and the 

value of the carries. Two problem features seem to contribute to these effects, namely the 

number of processing steps and the size of the interim outcomes. The question remains, 

however, which mechanisms underlie these effects. Regarding the effect of number of 

carries, it is clear that working memory mediates these effects. In particular, it seems 

plausible that the central executive is involved in controlling the sequence of steps to be 

performed and to keep track of the progress. When there are carries, the procedure 

becomes more complex. This additional step must not only be planned, care must also be 

taken to execute it, possibly several times. In fact, the role of the central executive entails 

additional control of the procedural sequence and monitoring of conflicts that may arise 

between the tendency to execute the no-carry sequence and the planned sequence 

containing carries.For the value of the carry, several mechanisms may come into play. On 

the one hand, when there is a carry, irrespective of its value, the number of processing steps 

increases and this involves the mechanism described in the previous paragraph. On the 

other hand, the value of the carry must be maintained in temporary storage for later 

processing in the next part of the problem. Difficulties in maintaining this trace may result in 

slower as well as more error-prone processing and these difficulties be larger for larger 

values. Indeed, the error analysis suggests that more errors are made when the value is 

larger, but it also shows that the size of the error becomes larger with larger values of the 

carry, which seems to be due to either forgetting to add the carry or to adding too small a 

value, which suggests forgetting of the exact value of the carry. Trace decay would yield a 

simple, but probably untenable, explanation since there is no a priori reason why values of 

three would decay more easily than values of 2. A second possibility concerns interference 

from previous events. It may be easier to avoid interference or to recover from interference 
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with values of one than with higher values. In fact, this may be coupled to effects of practice. 

We are more used to perform additions which require only a one to be carried. Practice 

effects have already been cited to explain the difficulty caused by the number of carry 

operations (Fürst & Hitch, 2000), but we believe it is possible that practice does not only 

account for the number, but also for the value to be carried. People are more used to 

perform additions with smaller carry values than with larger carry values. Moreover, when 

confronted with a series of calculations as in the present experimental sessions, the value 

carried in a previous problem may interfere with the value to be processed in the present 

one. Again, there is no a priori reason why larger values should be more interference-prone 

than smaller ones, but because the operations tend to be more difficult when the value is 

larger, it is possible that the temporary memory trace of a larger value is less resistant to 

interference. This may be due to a poorer maintenance of the trace in the competition with 

the calculation of the sum, as this competition is larger for larger outcomes which are 

associated with larger values of the carry. 

 

Load and number of carries. In some previously published research, it has been 

shown that the effect of the number of carries in an addition problem is augmented under a 

working memory load and in particular under an executive load (e.g., Ashcraft & Kirk, 2001; 

Fürst & Hitch, 2000), whereas other studies failed to find a clear interaction of an executive 

load and number of carries (e.g., Logie et al., 1994). Together with the study of Fürst and 

Hitch (2000), both experiments of the present study, show that a working memory load 

adversely affected performance and that this effect was augmented in problems with multiple 

carries. While the data of the first experiment were not completely clear about this 

interaction, in the second experiment, the accuracy data were sensitive enough to detect it. 

Decomposition of this interaction showed that this interaction completely bears on the 

presence of an executive load. These findings are consistent with previous research that 

also found that the central executive contributes to handling carries (e.g., Fürst & Hitch, 

2000; Seitz & Schumann-Hengsteler, 2002), but they do not confirm previous findings that 

found a role for phonological effects in carrying (e.g., Ashcraft & Kirk, 2001; Noël et al., 2001; 
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Seitz & Schumann-Hengsteler, 2002), and research that found no role for working memory in 

carrying (Logie et al., 1994). 

 

The interaction between number of carries and executive load can be explained by 

referring to a competition between two task sequences, one without and one with an 

execution of a carry. When there is a carry, the value is temporarily maintained and it must 

be remembered (a) to perform the carry and (b) to clear the memory after performing the 

carry. The working memory load incurred by these processes is rather small. However, in the 

context of a sequence of carries interference may arise because a previously stored value is 

added again (which is rather rare) or because a to be stored value is not maintained 

because one forgets to maintain this value (which is a rather frequent mistake in the present 

data). The interference arising in these contexts will affect accuracy of performance rather 

than the speed of performance and this could also explain why the interaction of load and 

number was only reliable in the accuracy data. 

 

Load and value of the carries. As already stipulated, the present findings show that the 

value of the carry contributes to the difficulty of multi-sum problems. In the accuracy data, 

but not in the solution times, of both Experiments, this effect was augmented by the 

presence of a memory load. Decomposition of the interactions has shown that this 

interaction was only present with an executive load. Although it seems obvious that the value 

to be carried is maintained in the phonological loop, the load imposed by this storage does 

not seem to be big, as the trace is not disturbed by the presence of articulatory suppression. 

An executive load, on the contrary, seems to impair calculation with carries and the more so 

when the value of the carry is larger. Once more, this can be explained in terms of control for 

proactive interference due to intrusion of previously used values of the carry. In view of the 

fact that thus far the value of the carries in (complex) mental arithmetic have not received 

much attention, the conclusion that maintenance of the value of the carries seems to rely on 

executive control, more specifically, interference control, is an important one that deserves 

follow-up in future research. 
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Differentiating the role of working memory components. The present results show that 

both the executive memory component and the phonological loop play a role in carrying in 

complex additions. The effect due to the phonological load was however only present as a 

general effect; it did not interact with either number of carries or value of the carry. We 

believe that the phonological loop plays a role in solving these problems, but the sensitivity 

of these kinds of experiments is probably not strong enough to detect the effect imposed by 

a phonological load or alternatively the involvement of the phonological loop is too restricted 

to be detected in a selective interference study. In particular, in the present design, the role 

of the phonological loop may have been minimized by the requirement to type each outcome 

part as it became available. This obviated the need for storing interim results. A 

consequence of this may be that the present findings about the effects of a phonological load 

are not comparable to the effects reported in other studies. 

The effect of the executive loads, on the contrary, was clearly present in the solution 

time and the accuracy data of both experiments as a general effect and in the accuracy data 

of Experiment 2 in the interaction with number of carries and value of the carry. As we 

already extensively discussed in the previous paragraphs, all these findings clearly point to 

the involvement of the central executive to control the calculation process and especially to 

control the execution of the calculation in the face of possible intrusions or proactive 

interference. There is little doubt that these control processes must act in interplay with the 

contents of the phonological loop, but as already mentioned, the present study does not 

provide any direct support for this hypothesis. Nevertheless, a cooperation of the central 

executive with the phonological loop would seem more plausible (see e.g., Emerson & 

Miyake, 2003; Liefooghe, Vandierendonck, Muyllaert, & Van Neste, 2005; Miyake, Emerson, 

Padilla, & Ahn, 2004), but has to wait for more direct supporting data. 

 

Problem components. A further novel feature of the present study concerned the focus 

on the answer components as they were registered on-line in an incremental response. On 

the basis of an analysis of the operations involved in the different components, it was 

predicted that the solution time and accuracy of the components would depend on their 

position in the sequence as this position is related to the amount and the extent of 
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processing involved at each position. In this vein, it was predicted that the answer for the 

units part would be faster and more accurate than for the other parts and that the final 

position (hundreds in Experiment 1; thousands in Experiment 2) would also tend to be easier 

than the middle positions. These predictions were confirmed both for solution time (where 

the main effect was only marginally significant in Experiment 1) and for accuracy. 

No predictions were formulated about the interaction of the components with the other 

effects in the design. The main reason for this restraint is that so many variations may be 

taking place at each individual calculation that this only would make sense in a much larger 

study based on a completely controlled set of additions. Indeed, the present data are quite 

variable in this respect over the two dependent measures in the two experiments. 

Nevertheless, the level of detail achieved with this on-line registration and analysis 

procedure seems to be very promising in the collection of more detailed data about mental 

arithmetic performance. 

 

Implications for models of mental arithmetic. The main findings of the present study seem to 

be that (a) it confirms previous results which show that number of carries determines 

problem difficulty and that this is quite likely mediated by working memory's executive 

subsystem. (b) The present study shows furthermore, that also the value of the carries 

makes an important contribution to problem difficulty and this also relies on control 

processes of the central executive. (c) With respect to solution time, the effect of number of 

carries augments the effect of value of the carries. (d) Even though general effects of both 

phonological and executive loads were observed, only the executive loads modulates the 

effects of number and value of the carries. (e) The different steps in the production of the 

answer are not equivalent and are dependent on the number of operations and the difficulty 

of the operations performed in each part of the problem. 

The theoretical analysis for the present study was based on the hypothesis that 

participants solve these complex additions by partitioning the calculations into a sequence of 

smaller one-digit sums in such a way that the load on working memory is kept minimal. This 

analysis resulted in a set of predictions that were corroborated in the two experiments of this 

study. A key notion in this theoretical analysis was that the difficulty of each subproblem 
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depends on two elements, namely (sub)problem size and number of operations in the 

subproblem. 

 

Number and value of the carries seems to be strongly correlated to a measure of 

problem size based on the sums of all subproblems. The question may be raised whether it 

would not be simpler to consider all the effects in terms of problem size rather than in terms 

of number and value of the carries. First, although the effects are related to problem size, 

this factor covers only part of the effects. Apart from problem size, our analysis also included 

the number of operations performed and the working memory basis of these operations. The 

findings indicate that all three elements should be taken into account. Considering only 

problem size as the explanatory factor will undoubtedly result in a deficient explanation. 

Second, problem size is merely a characteristic of the problems that does not clarify for 

which reason problems with a larger size would be more difficult. Specification of the effects 

in terms of the number of carries and the value of the carries does seem to be more helpful 

in that these notions are directly linked to operations performed in calculation. That there is a 

relationship between number and value of the carries on the one hand and summed problem 

size on the other hand is nevertheless useful as it clarifies that one of the factors that makes 

an addition more difficult is the size of the subproblems. 

In explanations referring to working memory mediation of complex mental arithmetic 

performance, the role of the maintenance of interim results is often stressed. The theoretical 

analysis on which the present study was based deviates from such a view in important ways. 

First, by looking at incremental solutions of additions, there is no need to maintain the interim 

results until the complete answer can be emitted. By relaxing this artificial memory 

requirement, it becomes possible to look at how working memory is necessarily involved in 

these additions. If people indeed decompose the problem in a series of successively solved 

subproblems-−and the present findings are consistent with such a view−-then the need for 

maintenance of interim results becomes quite small. Indeed, the theoretical analysis 

developed in the introduction suggests that carries have to be maintained for a very brief 

period, while the response for the current subproblem is being prepared. Immediately 

thereafter, calculation can continue and the value carried can be taken as the first value to 
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be added in the next subproblem. This way, at any one time only one value must be kept in 

memory namely the last obtained sum. In addition to that, working memory is needed to 

keep track of progress in order to make sure that every digit is entered in the calculation 

once and not more than once. 

Implicit in this description of processes is the notion of sequential processing. More 

specifically, it is suggested that calculation stops while the response is being prepared. This 

is a possible reading of the description. Our basic assumption is that only one calculation 

step is performed at one time. Having obtained the result for one column in the addition 

problem, if the outcome exceeds 10, the value of the tens must be carried and the value of 

the units must be produced as the answer. Minimally, during this operation, the value of the 

carry must be maintained. Presently, it is not clear how much effort is needed to prepare the 

answer to be emitted. To the extent that this entails a selection of the appropriate response, 

it may also be expected that further calculation is interrupted during this period (cf. PRP 

effect Pashler, 1984). 

Working memory involvement in complex additions goes beyond keeping track of 

interim results and sequencing of the solution steps. Every operation performed may call on 

working memory resources. When the addition problem is decomposed in simpler problems, 

a sequence of simple additions must be performed. Each simple addition consists either of a 

retrieval of the outcome from long-term memory or of a transformation of the problem to a 

problem to which the outcome is known. In both cases, retrieval of an outcome from long-

term memory is required. Although some theorists seem to assume that retrieval is an 

automatic process, it is more likely that memory retrieval requires cognitive control 

(Barrouillet, Bernardin, & Camos, 2004; Deschuyteneer & Vandierendonck, 2005; Szmalec 

et al., 2005). Therefore, in addition to the maintenance of the interim results, the sequencing 

and control of the successive calculation steps, working memory is also involved in retrieval 

of the outcome. Of all these operations, only the latter one is also at the basis of working 

memory engagement in simple mental arithmetic. 

The results of the present study are completely based on complex additions. The idea 

that such problems are partitioned into smaller ones could also be valid for other complex 

arithmetic operations such as multiplications, subtractions and divisions. Further research 
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with these operations is needed, though, to test the generality of the present view of working 

memory mediation in complex arithmetic. 
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Footnotes 

 

1 The inclusion of only the solution times of the correct sums resulted in a number of 

empty cells (i.e., where no problem of that type was solved correctly). We replaced these 

empty cells (126 or 13% in Experiment 1; 264 or 12% in Experiment 2) with the mean of the 

Load × Number × Value × Component cell (see e.g., Roth, 1994).
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Table 1: Mean Solution Times (in Seconds) and Standard Errors (between Parentheses) as 

a Function of Load, Number of Carry Operations, Value of the Carry and Response 

Components in Experiment 1. 

 Number of carry operations 

 One 

Value of the carry 

Two 

Value of the carry  

Load Component 1 2 1 2 

Control 

 

Unit 

Ten 

Hundred  

2.86 (0.30)  

2.74 (0.28) 

2.14 (0.15) 

2.85 (0.21) 

3.34 (0.28) 

2.77 (0.41) 

2.82 (0.29) 

2.99 (0.22) 

2.93 (0.27) 

4.64 (0.43) 

3.89 (0.28) 

2.89 (0.20) 

Phonological 

 

Unit 

Ten 

Hundred  

2.57 (0.27) 

2.45 (0.23) 

2.65 (0.33) 

3.13 (0.24) 

4.20 (0.39) 

2.71 (0.31) 

3.04 (0.25) 

3.40 (0.31) 

2.80 (0.18) 

4.61 (0.45) 

4.53 (0.41) 

3.92 (0.35) 

Executive (CRT-R) 

 

Unit  

Ten 

Hundred  

4.39 (0.54) 

4.17 (1.11) 

4.32 (0.62)  

4.33 (0.84) 

4.17 (0.45) 

3.38 (0.41) 

4.53 (0.57) 

6.83 (1.62) 

4.86 (0.83) 

6.33 (0.78) 

6.85 (1.03) 

6.45 (1.08) 

Executive (Trails) 

 

Unit 

Ten 

Hundred  

8.09 (1.31) 

7.14 (1.28) 

6.97 (1.12) 

6.85 (0.52) 

7.02 (0.96) 

6.74 (0.96) 

6.96 (0.96) 

6.94 (0.76) 

7.02 (1.13) 

8.46 (0.81) 

10.42 (1.17) 

8.84 (1.55) 
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Table 2: Mean Proportions Correctly Solved Sums and Standard Errors (in Parentheses) as 

a Function of Load, Number, Value and Component in Experiment 1. 

 

 Number of carry operations 

One 

Value of the carry 

Two 

Value of the carry 

Load Component 1 2 1 2 

Control 

Unit 1.00 (.00) 0.93 (.04) 0.95 (.03) 0.90 (.04) 

Ten 0.98 (.02) 0.93 (.04) 0.90 (.04) 0.88 (.05) 

Hundred 0.98 (.02) 0.93 (.04) 0.93 (.04) 0.93 (.04) 

Phonological 

Unit 0.95 (.03) 0.95 (.03) 0.95 (.03) 1.00 (.00) 

Ten 1.00 (.00) 0.93 (.06) 0.85 (.06) 0.88 (.06) 

Hundred 0.93 (.04) 0.90 (.06) 0.93 (.05) 0.88 (.05) 

Executive (CRT-R) 

Unit 1.00 (.00) 0.90 (.04) 0.95 (.03) 0.90 (.04) 

Ten 0.93 (.04) 0.75 (.09) 0.88 (.05) 0.75 (.08) 

Hundred 0.93 (.04) 0.75 (.07) 0.88 (.05) 0.78 (.05) 

Executive (Trails) 

Unit 0.95 (.03) 0.93 (.05) 0.95 (.03) 0.98 (.02) 

Ten 0.80 (.07) 0.73 (.07) 0.65 (.07) 0.48 (.08) 

Hundred 0.83 (.07) 0.70 (.07) 0.78 (.07) 0.55 (.09) 
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Table 3: Mean Solution Times (in Seconds) and Standard Errors as a Function of Load, 

Number of Carry Operations, Value of the Carries and Response Components in Experiment 

2. 

  Number of carry operations 

  One 

Value of the carry 

Two 

Value of the carry 

Three 

Value of the carry 

Load Component 1 2 3 1 2 3 1 2 3 

Control condition 

 1 Mean 

1 SE 

2 Mean 

2 SE 

3 Mean 

3 SE 

4 Mean 

4 SE 

1.74 

0.22 

1.92 

0.16 

1.89 

0.17 

1.77 

0.19 

1.95 

0.24 

2.22 

0.32 

2.71 

0.36 

2.02 

0.23 

2.07 

0.29 

1.94 

0.30 

1.88 

0.26 

1.80 

0.19 

2.07 

0.31 

2.47 

0.37 

2.08 

0.19 

1.86 

0.15 

3.11 

0.48 

2.93 

0.40 

3.48 

0.46 

2.00 

0.21 

2.13 

0.26 

2.98 

0.44 

2.77 

0.37 

2.11 

0.23 

1.85 

0.20 

2.04 

0.19 

2.49 

0.28 

1.95 

0.25 

3.05 

0.53 

3.23 

0.32 

2.99 

0.34 

2.00 

0.17 

2.80 

0.36 

3.85 

0.45 

5.27 

0.49 

2.10 

0.15 

Articulatory suppression condition 

 1 Mean 

1 SE 

2 Mean 

2 SE 

3 Mean 

3 SE 

4 Mean 

4 SE 

2.88 

0.63 

2.57 

0.45 

2.46 

0.24 

2.45 

0.35 

2.27 

0.42 

3.11 

0.46 

2.72 

0.37 

1.92 

0.26 

2.05 

0.21 

1.87 

0.19 

2.01 

0.36 

2.23 

0.18 

1.92 

0.16 

2.08 

0.30 

2.78 

0.42 

2.16 

0.34 

3.46 

0.42 

3.87 

0.61 

3.67  

0.59 

3.96 

1.11 

2.80 

0.54 

3.10 

0.45 

4.07 

0.84 

2.38 

0.38 

2.03 

0.17 

2.80 

0.36 

3.25 

0.37 

2.31 

0.18 

3.24 

0.51 

3.25 

0.35 

3.55 

0.76 

2.27 

0.23 

2.91 

0.30 

4.94 

0.51 

5.43 

0.54 

2.32 

0.24 

CRT-R condition: executive load 

 1 Mean 

1 SE 

2 Mean 

2 SE 

3 Mean 

3 SE 

4 Mean 

4 SE 

2.79 

0.42 

3.40 

0.63 

3.04 

0.36 

3.75 

1.26 

2.38 

0.36 

4.79 

1.39 

3.34 

0.43 

4.06 

0.72 

3.78 

0.80 

3.65 

0.64 

2.93 

0.40 

2.95 

0.39 

3.55 

0.41 

4.05 

0.82 

4.37 

0.62 

3.66 

0.47 

5.10 

0.76 

4.46 

0.70 

9.54 

2.62 

3.05 

0.31 

3.67 

0.57 

4.76 

0.84 

7.51 

1.68 

3.83 

0.49 

4.38 

0.71 

3.16 

0.39 

3.92 

0.60 

4.34 

0.98 

4.48 

0.62 

4.74 

0.77 

5.19 

0.88 

3.71 

0.37 

2.28 

0.24 

6.51 

0.84 

8.52 

1.30 

3.46 

0.63 

Note. The row labels 1, 2, 3, and 4 refer to the response components unit, ten, hundred and 

thousand, respectively. The abbreviation SE refers to standard errors. 
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Table 4: Mean Proportions Correct Responses and Standard Errors as a Function of Load, 

Number of Carry Operations, Value of the Carry and Response Component in Experiment 2. 

  Number of carry operations 

  One 

Value of the carry 

Two 

Value of the carry 

Three 

Value of the carry 

Load Component 1 2 3 1 2 3 1 2 3 

Control condition 

 1 Mean 

1 SE 

2 Mean 

2 SE 

3 Mean 

3 SE 

4 Mean 

4 SE 

0.98 

0.02 

0.93 

0.04 

0.93 

0.04 

0.96 

0.03 

0.95 

0.03 

0.93 

0.03 

0.96 

0.03 

0.93 

0.04 

1.00 

0.00 

0.98 

0.02 

0.96 

0.03 

0.94 

0.04 

0.98 

0.02 

0.89 

0.04 

0.93 

0.04 

0.94 

0.03 

0.93 

0.04 

0.95 

0.03 

0.92 

0.04 

0.98 

0.02 

0.97 

0.02 

0.88 

0.05 

0.90 

0.05 

0.98 

0.02 

0.98 

0.02 

0.91 

0.05 

0.96 

0.03 

0.95 

0.03 

0.92 

0.04 

0.92 

0.04 

0.90 

0.04 

0.90 

0.04 

0.93 

0.04 

0.83 

0.05 

0.84 

0.06 

0.96 

0.03 

Articulatory suppression condition 

 1 Mean 

1 SE 

2 Mean 

2 SE 

3 Mean 

3 SE 

4 Mean 

4 SE 

0.98 

0.02 

0.90 

0.04 

0.90 

0.05 

0.88 

0.04 

0.96 

0.03 

0.87 

0.05 

0.93 

0.04 

0.93 

0.03 

0.98 

0.02 

0.86 

0.05 

0.83 

0.06 

0.93 

0.03 

0.96 

0.03 

0.93 

0.04 

0.93 

0.04 

0.93 

0.04 

0.95 

0.03 

0.88 

0.05 

0.87 

0.05 

0.86 

0.06 

0.96 

0.03 

0.78 

0.05 

0.81 

0.06 

0.95 

0.03 

0.95 

0.03 

0.83 

0.07 

0.82 

0.06 

0.88 

0.05 

0.88 

0.05 

0.91 

0.04 

0.83 

0.05 

0.93 

0.04 

0.88 

0.06 

0.67 

0.07 

0.63 

0.07 

0.68 

0.07 

CRT-R condition: executive load 

 1 Mean 

1 SE 

2 Mean 

2 SE 

3 Mean 

3 SE 

4 Mean 

4 SE 

1.00 

0.00 

0.90 

0.04 

0.93 

0.04 

0.93 

0.03 

0.96 

0.03 

0.93 

0.04 

0.91 

0.04 

0.92 

0.04 

0.88 

0.06 

0.85 

0.05 

0.83 

0.05 

0.83 

0.05 

0.94 

0.03 

0.87 

0.05 

0.85 

0.05 

0.79 

0.06 

0.90 

0.04 

0.77 

0.06 

0.84 

0.05 

0.81 

0.05 

0.94 

0.03 

0.78 

0.07 

0.55 

0.08 

0.84 

0.05 

0.93 

0.05 

0.86 

0.06 

0.86 

0.04 

0.95 

0.04 

0.95 

0.03 

0.72 

0.08 

0.69 

0.08 

0.66 

0.09 

0.89 

0.04 

0.65 

0.06 

0.57 

0.07 

0.86 

0.06 

Note. The row labels 1, 2, 3, and 4 refer to the response components unit, ten, hundred and 

thousand, respectively. The abbreviation SE refers to standard errors. 
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Figure Captions 

 

Figure 1. Interaction of Number by Value in the reaction time data of Experiment 2. 

 

Figure 2. Interactions of Load in the accuracy data of Experiment 2. Panel A: Load by 

Number. Panel B: Load by Value. The labels C, AS, and CRT-R refer to respectively the 

control, articulatory suppression and CRT-R condition.
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Figure 1: Interaction of Number by Value in the reaction time data of Experiment 2.
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Figure 2: Interactions of Load in the accuracy data of 

Experiment 2. Panel A: Load by Number. Panel B: Load by Value. The 

labels C, AS, and CRT-R refer to respectively the control, 

articulatory suppression and CRT-R condition. 


