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Abstract 

 

The present study analyzed the role of phonological and executive components of working 

memory in the borrow operation in complex subtractions (Experiments 1 and 2) and in the 

carry operation in complex multiplications (Experiments 3 and 4). The number of carry and 

borrow operations as well as the value of the carry were manipulated. Results indicated that 

both the number of carry/borrow operations and the value of the carry increased problem dif-

ficulty, resulting in higher reliance on phonological and executive working-memory compo-

nents. Present results are compared with those obtained for the carry operation in complex 

addition; and are further discussed in the broader framework of working-memory functions.  
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The role of working memory in carrying and borrowing 

 

Suppose that you have to buy some presents for family and friends. If you buy two 

presents at €38 each and two presents at €29 each, you have to execute two multiplications 

(i.e., 2 x 38 = 76 and 2 x 29 = 58) and an addition (i.e., 76 + 58 = 134) to know the total sum 

to pay. When you pay with €140, the cashier will give you back €6, after having executed the 

subtraction 140 – 134. This example nicely illustrates the frequency with which we need to 

solve complex arithmetic tasks in daily life. While solutions to simple forms of mental arith-

metic (e.g., 7 + 5 or 4 x 8) often can be retrieved from long-term memory (e.g., Cooney, 

Swanson, & Ladd, 1988; Siegler, 1988), complex forms of mental arithmetic (e.g., 28 + 43 or 

12 x 17) also require other processes. Two of these extra processes are carrying and bor-

rowing. Turning back to our example, carry operations were needed in both multiplications. 

Since 2 x 8 gives 16 and 2 x 9 gives 18, a 1 had to be carried from the units to the tens. As 

the sum of 6 and 8 is 14, the addition required a carry operation from the units to the tens as 

well. The borrow operation, on the other hand, can be seen as the ‘reverse’ of the carry op-

eration. In borrowing, we do not have a surplus, but a shortfall. Indeed, when subtracting 134 

from 140, a 1 has to be borrowed from the tens in order to subtract 4 from 0. 

The frequent use of carrying and borrowing notwithstanding, little is known about the 

functional mechanisms that are at the heart of these cognitive processes. Furthermore, most 

studies concerning complex arithmetic were executed on the carry operation in complex ad-

dition. These studies showed that the presence of carry operations increases problem diffi-

culty. That is to say, the time that is needed to mentally calculate the solution of complex 

arithmetic problems strongly correlates with the number of carry operations (e.g., Ashcraft & 

Faust, 1994; Ashcraft & Kirk, 2001; Ashcraft & Stazyk, 1981; Dansereau & Gregg, 1966; 

Faust, Ashcraft, & Fleck, 1996; Imbo, Vandierendonck, & De Rammelaere, 2006a; Widaman, 

Geary, Cormier, & Little, 1989). After a step in which a digit has to be carried, there has to be 

an extra step wherein this information is put into working memory (WM). In a later step, this 

information has to be retrieved from WM. When this information is lost, errors emerge. Ineffi-
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cient carry procedures indeed have been shown to be one of the most frequent causes of 

errors in mental arithmetic (e.g., Fürst & Hitch, 2000; Hitch, 1978; Noël, Désert, Aubrun, & 

Seron, 2001). Although very interesting, these studies leave questions concerning less inves-

tigated operations unanswered. For this reason, the present study investigated the carry op-

eration in complex multiplications and the borrow operation in complex subtractions. For ex-

ample, one might question whether the number of carry/borrow operations will influence 

problem difficulty of multiplications and subtractions in the same way. Due to methodological 

difficulties and lower ecological validity, the present study does not consider complex division 

problems. 

Although the borrow operation in subtractions can be seen as the inverse of the carry 

operation in additions, no study investigated similarities and differences across both opera-

tions. However, there is evidence that the borrow operation increases problem difficulty as 

well. In a developmental study executed by Brown and Burton (1978), errors in subtraction 

problems were frequently caused by bugs in the procedural knowledge of borrow rules. For 

example, some children answered 41 to the problem 42 – 3, reflecting a misunderstanding in 

the borrow rule “subtract the smaller from the larger value”. An even more subtle bug is ap-

parent in the next example: 801 – 158 = 553. Here, the bug avoids borrowing from zero, by 

taking both borrows from the leftmost column, the 8 in 801. Apparently, children’s mistakes 

are related to the procedural aspects of calculating, such as borrow rules, rather than to the 

simple arithmetic facts. In a more recent study with a brain-damaged patient, Sandrini, Mioz-

zo, Cotelli, and Cappa (2003) also demonstrated the importance of borrow procedures. 

These researchers investigated number processing of an aphasic patient with relatively pre-

served numerical abilities (i.e., the patient had a good numerical comprehension). The pa-

tient’s performance on multi-digit problems however, was characterized by “a selective im-

pairment of the borrowing procedure” (p. 85). More specifically, the type of errors she made 

was consistent across all complex subtractions and was called the “smaller-from-larger bug”. 

This bug appeared in problems where the digit-to-subtract-from was smaller than the digit-to-

be-subtracted (e.g., 2 and 8, respectively, in the problem 132 – 18). In such a case, the pa-



WORKING MEMORY IN CARRYING AND BORROWING 5 

  

tient preferred to invert the operation and subtract the 2 from the 8, which resulted in the in-

correct response 116. As noted above, this bug is also typically observed in children learning 

to calculate. This case study further provides evidence for the dissociation between concep-

tual knowledge and procedural knowledge, showing that either one can be impaired while the 

other is preserved. A final study that highlights the importance of the borrow operation is the 

one conducted by Geary, Frensch, and Wiley (1993). They investigated simple and complex 

subtraction performance in younger and older adults. Complex subtractions requiring a bor-

row operation were observed to be solved much slower than those not requiring a borrow 

operation. The presence of a borrow operation interacted with age, however. Younger and 

older adults did not differ for no-borrow latencies, but the older adults were faster at execut-

ing the borrow operation than the younger adults. Geary et al. (1993) explain this unexpected 

result by arguing that the older adults have practiced complex subtractions more than the 

younger ones. 

Another operation resembling addition is multiplication, since multiplication can be 

seen as repeated addition (e.g., 4 x 8 = 8 + 8 + 8 + 8). Moreover, carry operations in multipli-

cations resemble those in addition problems. Consider the example provided earlier in this 

paper (2 x 38). As it has been shown that both complex additions and complex multiplica-

tions are processed columnwise (Geary, Widaman, & Little, 1986), most people will first mul-

tiply 2 x 8 = 16. This yields a value of 6 for the units and a 1 which must be held in WM dur-

ing the multiplication 2 x 3. Then, this remembered value has to be carried and added to the 

temporary product (6) to complete the problem. Even though it has been suggested that 

complex additions and complex multiplications include similar carrying processes (e.g., re-

taining intermediary results in WM), not much research has been carried out to investigate 

the carry operation in complex multiplication. 

In order to better understand these arithmetic operations, the aim of the present study 

was to investigate carry operations (in multiplications) and borrow operations (in subtrac-

tions) more thoroughly. As both carry and borrow operations comprise processes that might 

rely on WM, we focused on the role of different WM components in solving complex subtrac-



WORKING MEMORY IN CARRYING AND BORROWING 6 

  

tions and complex multiplications. Before presenting the study we conducted, a short over-

view of WM and its functions in mental arithmetic is provided. 

 

The role of working memory 

 

An efficient implementation of carry and borrow operations requests (among other 

things) the temporary storage of intermediary results, the use of problem-solving skills, and 

the use of rule-based procedures (e.g., Geary, 1994; Geary & Widaman, 1987; Hope & She-

rill, 1987); which all rely on WM resources. WM is a capacity-limited system that is responsi-

ble for storing and processing information in a variety of cognitive tasks. Although there exist 

many WM models (see Miyake & Shah, 1999, for an overview), the present study uses the 

multi-componential WM model of Baddeley and Hitch (1974; Baddeley, 1986, 1992; Badde-

ley & Logie, 1999) as conceptual framework, as this model is dominantly used in mental-

arithmetic research (DeStefano & LeFevre, 2004). This WM model comprises three compo-

nents: a central-executive and two subordinate slave systems. The executive WM compo-

nent is responsible for the supervision and coordination of the two slave systems, namely the 

phonological loop and the visuo-spatial sketchpad (Baddeley, 1986; Gilhooly, Logie, Wethe-

rick, & Wynn, 1993; Logie, 1993). The phonological loop is able to store and manipulate 

phonologically coded verbal information (Baddeley & Logie, 1992; Baddeley, Thomson, & 

Buchanan, 1975; Salamé & Baddeley, 1982), whereas the visuo-spatial sketchpad is able to 

store and manipulate information in visual and spatial codes (Baddeley & Lieberman, 1980; 

Farmer, Berman, & Fletcher, 1986; Logie, 1986, 1989, 1991). The executive WM component 

is also responsible for control and decision processes, reasoning and language comprehen-

sion and production, on-line cognitive processing (e.g., problem solving and calculating) and 

task switching. 

Many empirical studies demonstrated the role of WM in mental arithmetic. The execu-

tive WM component has been shown to play an important role in simple additions and multip-

lications (Ashcraft, Donley, Halas, & Vakali, 1992; De Rammelaere, Stuyven, & Vandieren-
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donck, 1999, 2001; De Rammelaere & Vandierendonck, 2001; Hecht, 2002; Lemaire, Abdi, & 

Fayol, 1996). Logie, Gilhooly, and Wynn (1994) were the first to show that the executive WM 

component is also crucial to perform complex forms of mental arithmetic. More recently, the 

crucial role of this WM component in complex arithmetic has been confirmed, both for addi-

tions (Fürst & Hitch, 2000) and multiplications (Seitz & Schumann-Hengsteler, 2000, 2002). 

The phonological loop, in contrast, would only be indispensable in complex additions and 

multiplications (e.g., Fürst & Hitch, 2000; Noël et al, 2001; Seitz & Schumann-Hengsteler, 

2000, 2002; Trbovich & LeFevre, 2003), but not in simple additions and multiplications (e.g., 

De Rammelaere et al., 1999, 2001; Seitz & Schumann-Hengsteler, 2000, 2002). Finally, the 

role of the visuo-spatial sketch pad in mental arithmetic remains unclear up until now. In most 

studies, no evidence was found for a role of this WM component in mental arithmetic (e.g., 

Logie et al., 1994; Noël et al., 2001; Seitz & Schumann-Hengsteler, 2000; but see Lee & 

Kang, 2002, for an exception).  

Despite the allegedly important role of WM in many processes required in carry and 

borrow operations, only a few studies explicitly investigated which WM components play a 

role in these operations. As noted before, the presence of carry operations decreased laten-

cy and accuracy performance in complex additions. Several studies demonstrated the impor-

tant role of the executive WM component in executing the carry operation (but see Logie et 

al., 1994, for an exception). Fürst and Hitch (2000) for example, did not only observe that the 

number of carry operations increased problem difficulty, they also observed an interaction 

between the number of carry operations and executive WM load , indicating that executive 

processes contribute to carrying. Comparable observations (i.e., a main effect of number of 

carry operations and an interaction with executive WM load) were made by Ashcraft and Kirk 

(2001). Furthermore, Seitz and Schumann-Hengsteler (2002) observed that error rates of 

additions that involved carry operations increased under executive WM load. Finally, a more 

recent study confirmed the role of the executive WM component in carry operations using 

two distinct manipulations of problem difficulty (Imbo et al., 2006a). The first one was by in-

creasing the number of carry operations, as previous research had done. The second one 
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was by increasing the value to be carried, a variable that never had been manipulated in pre-

vious research. The value to be carried can be augmented by constructing additions where 

more than two numbers have to be added. In 175 + 261 + 182 = 618, for example, a 2 has to 

be carried from the tens to the hundreds. Results showed that both number and value in-

creased the difficulty of addition problems. Moreover, executive WM load was shown to dis-

rupt the calculation performance strongly, and especially when more carry operations had to 

be executed or when the value of the carry was larger. 

 

Overview of the Present Study 

 

The aim of the present study was to collect evidence regarding the contribution of ex-

ecutive and phonological components of WM to the carry operation in complex multiplica-

tions and the borrow operation in complex subtractions. The contribution of the visuo-spatial 

sketch pad was not investigated though, since the evidence for a role of this WM component 

is very sparse, as outlined in the introduction section. To pursue our line of research, we also 

tried to manipulate both the number of carry/borrow operations and the value of the car-

ry/borrow. Pilot studies showed however, that it is fairly difficult to manipulate the value of the 

borrow in subtraction problems. Therefore, we decided only to manipulate the number of bor-

row operations in the subtraction experiments (Experiment 1 & 2). Although the role of WM in 

complex subtractions has never been investigated before, we expected an important role of 

the executive WM component. This assumption can be extrapolated from the observation 

that the executive WM component is needed in both complex additions (as noted above) and 

simple subtractions (e.g., Seyler, Kirk, & Ashcraft, 2003). In analogy with the carry operation 

in complex additions, we further expected that the role of the executive WM component 

would grow larger as more borrow operations had to be executed. Since borrow operations 

also require temporary storage of information, the phonological loop was expected to play a 

role in complex subtractions as well.  
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In the second part of the study, the role of WM was investigated in two multiplication 

experiments. In the first one (Experiment 3), only the value of the carry was manipulated, and 

in the second one (Experiment 4) both number of carry operations and the value of the carry 

were manipulated. Based on previous research (e.g., Seitz & Schumann-Hengsteler, 2000, 

2002), we expected that executive WM load would influence multiplication performance ne-

gatively. Moreover, we hypothesized this influence to grow larger with the difficulty of the car-

ry operations; the difficulty being determined by the value of the carry (Experiments 3 and 4) 

and the number of carry operations (Experiment 4). Whether phonological WM resources are 

needed in complex multiplication problems is difficult to predict: Seitz and Schumann-

Hengsteler (2000) did observe a negative influence of phonological load on complex multipli-

cations, whereas Seitz and Schumann-Hengsteler (2002) did not. 

 

Experiment 1 

Method 

 

 Participants. Twenty first-year psychology students – sixteen women and four men – 

with a mean age of 19.5 years old participated at the present experiment for course require-

ments and credits. 

 

 Stimuli. All stimuli had the same format, and consisted of two 2-digit numbers. When 

the second number was subtracted from the first number, another 2-digit number was ob-

tained. One hundred sixty experimental and twelve practice subtractions were designed, 

which were divided in two types of stimuli: (a) no borrow operation, and (b) one borrow oper-

ation with value 1 (examples can be found in Table 1a). For each type, correct answers were 

distributed evenly between 11 and 30, between 31 and 50, between 51 and 70 and between 

71 and 89. This approach avoided that the size of the correct answer would be an interfering 

variable. T-tests indeed confirmed that the size did not differ significantly across both types of 

stimuli. 
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Instruments and procedure. All participants were tested individually. Each problem 

was shown at the centre of a computer screen in column-wise Arabic notation. The problem 

remained visible until the participant responded. Participants were asked to type in the cor-

rect answer by first typing the units and then the tens. In this way, variability in strategy use 

was eliminated (e.g., Hitch, 1978). When participants typed in a number, they saw it appear 

on the screen. The measurement of response times (RTs) was accurate up to one millise-

cond and started as soon as the subtraction appeared on the screen and stopped when the 

participant typed in the last digit of his/her answer. Accuracy and speed were emphasized 

equally strongly, although no time limit was set, nor feedback was provided. The intertrial in-

terval was 1000 ms. 

All participants participated in three conditions of which the order was counterba-

lanced: (a) Control: Participants had to solve the arithmetical problems without a secondary 

task. (b) Articulatory suppression: Participants solved the arithmetical problems while saying 

“de” (“the” in Dutch) continuously. This task was meant to load the phonological loop. (c) 

Random Two-Choice Reaction Time task (CRT-R task): a task interfering with executive 

functioning, without putting an important load on the subordinate systems (Szmalec, Vandie-

rendonck, & Kemps, 2005). In this task, a series of low (262 Hz) and high (524 Hz) tones 

was presented at randomized intervals. The interval between two subsequent tones was ei-

ther 900 or 1500 ms. Participants had to say “hoog” (“high” in Dutch) when they heard a high 

tone and “laag” (“low” in Dutch) when a low tone was presented. The duration of each tone 

was 200 ms. 

The experiment started with four practice problems, to get used to the apparatus and 

the procedure. The experiment further consisted of three blocks, one for each condition. 

These blocks each comprised an explanation of the secondary task, practicing the execution 

of the primary task in combination with the secondary task (two items), and solving 40 ran-

domly presented experimental problems (consisting of 20 items of each problem type, with 5 

of each size interval). Performance of the secondary tasks was measured as well. The spo-
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ken responses of the participants in the articulatory suppression condition were recorded and 

analyzed afterwards. For the CRT-R task, the experimenter checked online whether the res-

ponses of the participants were right or wrong. The participants also performed the second-

ary task alone for 2 minutes (“single secondary task control condition”). Performance in these 

conditions was also measured. 

 

Results & Discussion 

 

ANOVAs were performed to investigate the role of WM load and the number of bor-

row operations. Stepwise regression analyses were carried out to determine the best predic-

tors of arithmetic performance. Finally, the secondary task performance was analyzed. In all 

results, unless otherwise stated, an ⍺ level of .05 was used. This holds for the subsequent 

experiments as well. 

 

ANOVA on solution latency. A 3 (WM load: none, phonological, executive) x 2 (Bor-

row operations: zero or one) ANOVA on times of correct responses was used, with repeated 

measures on both factors (see Figure 1). The main effect of WM load was significant, F(2,18) 

= 14.1. Planned comparisons showed that, under executive WM load, subtractions were 

solved slower than in the control condition [F(1,19) = 22.4], and than under phonological load 

[F(1,19) = 29.6]. Subtractions were also solved slower under phonological load than in the 

control condition [t(19) = 1.7, one-tailed]. The main effect of Borrow operations [F(1,19) = 

92.1] showed that RTs were significantly larger when a borrow operation had to be per-

formed than when no such operation had to be performed. The interaction between WM load 

and Borrow operations also reached significance [F(2,18) = 3.8] and showed that the rise in  

RT between subtractions without and with borrow operations was especially larger when WM 

was under executive load than when it was not loaded [F(1,19) = 7.2] and than when it was 

under phonological load [F(1,19) = 5.7]. 
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ANOVA on accuracy. The same 3 x 2 ANOVA design was applied to percentages of 

correctly solved subtractions (see Figure 2). As with the RTs, the main effect of WM load was 

significant [F(2,18) = 19.1], with lower accuracy under executive load than in the control con-

dition [F(1,19) = 38.4], and than under phonological load [F(1,19) = 14.5]. A further planned 

comparison also showed lower accuracy under phonological WM load than in the control 

condition [t(19) = 2.0; one-tailed]. The main effect of Borrow operations showed that accura-

cies decreased significantly when borrow operations had to be performed [F(1,19) = 19.9]. 

The interaction between WM load and Borrow operations just failed to reach significance 

[F(2,18) = 3.2, p = .06]. Although the effect of Borrow operations was significant in all condi-

tions, it was significantly larger when WM was under executive load than when it was not 

loaded [F(1,19) = 6.8].  

 

Regression analyses. In order to find the most meaningful predictors of subtraction 

performance, stepwise regression analyses were performed on the mean times of correct 

responses and the mean accuracy per item (in the control condition only; see Table 2). The 

predictors were: (1) The number of borrow operations, (2) The correct solution of the subtrac-

tion problem, (3) Correct unit, and (4) Correct ten. The number of borrow operations was the 

only significant predictor of both RT data (R² = .61) and accuracy data (R² = .10). RTs and 

error rates were higher when a borrow operation had to be performed than when no borrow 

operation had to be performed.  

 

Analyses of secondary task performance. In the articulatory suppression condition, 

participants did significantly slow down their rate of saying “the” while calculating as com-

pared to a single secondary task control condition (respectively 87.9 and 94.0 words per 

minute, t(19) = 2.6). For the CRT-R task, one participant’s data were lost due to a computer 

bug. The participants made more errors while calculating in comparison to CRT-R-only [re-

spectively 42.9% correct responses versus 67.8%, t(18) = 6.7]. These results show that, 
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when few WM resources were left, performance tended to be impaired not only on the prima-

ry task but also on the secondary task (see also Hegarty, Shah, & Miyake, 2000). This indi-

cates that there was no trade-off between both tasks. More specifically, a bad performance 

on the primary task was not compensated by a better performance on the secondary task. 

Therefore, secondary-task effects could be taken for real. 

 

Discussion. Results showed that solving complex subtractions relied heavily on ex-

ecutive WM resources, as predicted. Moreover, the phonological WM component was shown 

to play a role in solving complex subtractions as well: when this WM component was loaded, 

people calculated slower and less accurately. Furthermore, borrow operations were shown to 

increase problem difficulty: calculation was slower and less accurate when a borrow operati-

on had to be performed than when no such operation had to be performed. The executive 

WM component was needed to perform these borrow operations fast and correctly, as ob-

served in the significant executive load x borrow interactions. The importance of borrow op-

erations was also confirmed in the regression analyses: the number of borrow operations 

was the only significant predictor of calculation performance. In the next experiment, the 

complex subtractions were made even more difficult (i.e., containing zero, one, two, or three 

borrow operations) in order to investigate the role of executive and phonological WM compo-

nents more thoroughly.  

 

Experiment 2 

Method 

 

Participants. Twenty volunteers – four men and sixteen women – with a mean age of 

22.4 years old – participated in the present experiment. None of them had participated in Ex-

periment 1. 
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Stimuli. All stimuli had the same format, and consisted of two 4-digit numbers. When 

the second number was subtracted from the first number, another 4-digit number was ob-

tained. Seventy-two subtractions were designed, which were divided into four types of stimu-

li: (a) no borrow operation, (b) one borrow operation, (c) two borrow operations, and (d) three 

borrow operations (examples can be found in Table 1a). The value that had to be borrowed 

was always 1. For each type, 18 stimuli were constructed. Within these 18 stimuli, three had 

a correct answer in the one-thousands, three in the two-thousands, three in the three-

thousands, three in the four-thousands, three in the five-thousands, and three in the six-

thousands. This approach avoided that the size of the correct answer would be an interfering 

variable. T-tests indeed confirmed that the size of the correct answer did not differ significant-

ly across the four types of stimuli. For the subtractions with one or two borrow operations, the 

place of the operation was controlled, with as many borrows from the tens, hundreds, and 

thousands.  

 

Instruments and procedure. Instruments and procedure of the second experiment 

were almost identical to those in Experiment 1. However, since stimuli and responses con-

sisted of 4-digit numbers, participants had to type in the correct answer by first typing the 

units, then the tens, then the hundreds, and finally the thousands (UTHT). There were three 

conditions of which the order was counterbalanced: (a) Control, (b) Articulatory suppression, 

and (c) CRT-R task. The experiment started with three practice problems, and three more 

practice problems were offered in each condition. There were three blocks, one for each 

condition. In each block, 20 items (5 of each problem type) were presented in randomized 

order. 

 

Results & Discussion 

 

ANOVA on solution latency. A 3 (WM load: none, phonological, executive) x 4 (Bor-

row operations: zero, one, two, three) ANOVA on times of correct responses was used, with 
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repeated measures on both factors (see Figure 3). The main effect of WM load was signifi-

cant [F(2,18) = 19.2]. Further planned comparisons showed that, under executive WM load, 

subtractions were solved slower than in the control condition [F(1,19) = 33.6] and than under 

phonological load [F(1,19) = 39.3]. There was no significant difference in RTs between the 

control condition and the condition with phonological load [F(1,19) < 1]. The main effect of 

Borrow operation shows that RTs increased with the number of borrow operations [F(3,17) = 

109.5]. However, both the linear component [F(1,19) = 321.4] and the quadratic component 

[F(1,19) = 13.0] appeared to be significant. The linear component clearly shows the rising 

trend: higher RTs for more borrow operations, whereas the quadratic component shows that 

this rise became less steep at the end. Finally, the interaction was significant as well [F(6,14) 

= 5.2]. Although the rise in RTs between subtractions without and with borrow operations 

was significant in all conditions, this effect was significantly larger when WM was under ex-

ecutive load than when it was not loaded [F(1,19) = 20.2]. 

 

ANOVA on accuracy. The same 3 x 4 ANOVA design was applied to percentages of 

correctly solved subtractions (see Figure 4). As with the RTs, the main effect of WM load was 

significant [F(2,18) = 17.1]. Planned comparisons showed lower accuracies under executive 

load than in the control condition [F(1,19) = 35.9] and than under phonological load [F(1,19) 

= 16.0]. In the latter condition, accuracies were lower than in the control condition [F(1,19) = 

6.7]. There was also a main effect of Borrow operation [F(3,17) = 13.3]. This effect corres-

ponded to a linear effect [F(1,19) = 43.7], showing that accuracy decreased with the number 

of borrow operations. The interaction between WM load and Borrow operations was also sig-

nificant [F(6,14) = 4.3], showing that the decrease in accuracy from subtractions without bor-

row operations to subtractions with borrow operations was higher in the conditions with a 

phonological or executive load than in the control condition [F(1,19) = 6.3 and F(1,19)= 13.2, 

respectively]. The linear decrease in accuracy with the number of borrow operations was al-

so steeper when WM was under phonological or executive load than when it was not loaded 

[t(19) = 1.8 and t(19) = 4.4, respectively]. 
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Regression analyses. In order to find the most important predictors of the subtraction 

performance, stepwise regression analyses were performed on the mean times of correct 

responses and the mean accuracy per item (in control condition only; see Table 2). The pre-

dictors were: (1) The number of borrow operations, (2) The correct solution of the subtraction 

problem, (3) Correct unit, (4) Correct ten, (5) Correct hundred, and (6) Correct thousand. The 

number of borrow operations and the Correct unit were the most important predictors of RT 

(R² = .74). The number of borrow operations predicted 69%, and the Correct unit added 5%. 

For the accuracy data, the number of borrow operations was the only significant predictor (R² 

= .14). 

 

Error analyses. Since the number of borrow operations was more extensively manipu-

lated than in Experiment 1, the present data allowed us to investigate the relationship be-

tween the committed errors, the WM load, and the borrow procedure. We first checked 

whether the errors were evenly distributed over the units, tens, hundreds and thousands. For 

the units, there was an error in 2.9% of the cases, for the tens in 7.3% of the cases, for the 

hundreds in 9.1% of the cases, and for the thousands in 8.7% of the cases. Since partici-

pants were instructed to calculate from right to left (UTHT), WM load was the lowest for the 

units and grew as the calculation continued, which may explain the low error percentage for 

the units. We also tested the numerical distance between the erroneous and the expected 

digits (e.g., in 4561 – 1218 = 3353 instead of 3343, there is a distance of 1 in the tens). This 

distance was 1.9 for the units, 1.3 for the tens and the hundreds, and 1.2 for the thousands. 

The decrease in the numerical distance as we move toward the leftmost position can be ex-

plained by global estimation strategies: a distance error is less detrimental if it appears in the 

units, rather than in the tens, hundreds, or thousands (Noël et al., 2001). Finally, errors were 

observed especially when borrow operations had to be performed. Of all errors on the units, 

tens, hundreds, and thousands, respectively 94.3%, 82.8%, 70.2%, and 82.7% was made 

when borrowing was required from or to that specific unit, ten, hundred, or thousand. 
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Analyses of secondary task performance. In the articulatory suppression condition, 

participants did not slow down their rate of saying “the” while calculating as compared to a 

single secondary task control condition (respectively 75.8 and 76.9 words per minute, t(19) < 

1). These data (i.e., a bad primary-task performance under phonological WM load and an 

equal articulatory-suppression performance with and without primary task) indicate that there 

was no trade-off between primary and secondary task. For the CRT-R task, participants 

made more errors while calculating in comparison to CRT-R-only [respectively 90.0% correct 

responses versus 99.1%, t(19) = 3.9], and were thus impaired on both the primary and sec-

ondary task. 

 

Discussion. The present results confirm (a) that complex subtractions need executive 

WM resources to be solved fast and accurately and (b) that phonological WM resources are 

indispensable to solve complex subtractions accurately. As in the previous experiment, cal-

culation performance was affected by the number of borrow operations, as shown in the 

ANOVAs, the regression analyses, and the error analyses. The executive WM component 

was further shown to guarantee correct and fast performance of the borrow operation: The 

disturbance caused by loading this WM component grew larger as the number of borrow op-

erations increased. Moreover, the phonological loop did interact with the number of borrow 

operations as well, although only for accuracy data. 

 Thus far, results showed that the executive WM component is indispensable to solve 

carry operations in complex additions (e.g., Imbo et al., 2006a) and borrow operations in 

complex subtractions (Experiments 1 and 2 of the present paper) fast and accurately. The 

phonological WM component appeared to be important in carry and borrow operations as 

well, although its contribution seemed to be more associated to accuracy. So far, the role of 

these WM components in the carry operation in complex multiplications has not been tested. 

The next two experiments aimed to investigate this unexplored domain. In Experiment 3, we 



WORKING MEMORY IN CARRYING AND BORROWING 18 

  

only manipulated the value of the carry, whereas in Experiment 4, both the value of the carry 

and the number of carry operations was manipulated. 

 

Experiment 3 

Method 

 

Participants. Twenty-four volunteers – nine men and fifteen women – with a mean 

age of 23.5 year old participated at the present experiment. None of them had participated in 

Experiments 1 or 2. 

 

Stimuli. All stimuli had the same format, and comprised a two-digit number that had to 

be multiplied with a one-digit number. The correct product of both numbers always was a 3-

digit number. There always was one digit that had to be carried from the units to the tens, 

and the value of that digit was 1, 2, 3 or 4 (examples can be found in Table 1b). Strong re-

strictions were imposed on the construction of the multiplications, so as to avoid that they 

could be resolved with a short-cut rule (e.g., “everything multiplied with a zero is zero”). The 

one-digit number never was 0, 1, 2, 5 or 9, and the two-digit number never ended in 0, 1, 5 or 

9. All possible stimuli that met these restrictions were used in the present experiment – a to-

tal of 73. This problem pool was divided into four types: (a) value 1, (b) value 2, (c) value 3, 

and (d) value 4, with respectively 20, 23, 10 and 20 multiplications each. T-tests confirmed 

that the size did not differ significantly across the four types of stimuli.  

 

Instruments and procedure. As in the previous experiments, all participants were re-

quired to use the same procedure. They first had to calculate the product of the units of the 

two-digit number with the one-digit number. Next, they had to calculate the product of the 

tens of the two-digit number with the one-digit number. There were three conditions of which 

the order was counterbalanced: (a) Control, (b) Articulatory suppression, and (c) CRT-R task. 

The experiment started with one practice problem, to get used to the apparatus and the pro-
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cedure. After the explanation of the secondary task, the execution of the primary task in 

combination with the secondary task was practiced too (two problems per secondary task). 

After these practice problems, the three blocks (with 22 multiplication problems each) were 

presented. Each participant thus solved a total of 73 problems, 7 practice trials and 66 expe-

rimental trials. Instruments and procedure were equal to those used in the previous experi-

ment. 

 

Results & Discussion 

 

ANOVA on solution latency. A 3 (WM load: none, phonological, executive) x 4 (Value 

of the carry: 1, 2, 3, 4) ANOVA on times of correct responses was used, with repeated 

measures on both factors (see Figure 5). The main effect of WM load was significant [F(2,22) 

= 17.4]. Further planed comparisons showed that calculation was slower under executive 

WM load than under phonological WM load [F(1,23) = 31.9] or than in the control condition 

[F(1,23) = 35.6]. There was no significant difference between RTs in the control condition 

and the condition with phonological WM load [F(1,23) < 1]. The main effect of Value showed 

that RTs increased linearly with the value of the carry [F(1,23) = 14.4]. The interaction be-

tween both factors was not significant [F(6,18) = 1.4].  

 

ANOVA on accuracy. The same 3 x 4 ANOVA was run on percentages of correctly 

solved multiplications (see Figure 6). The main effect of WM load was significant [F(2,22) = 

3.3]. Further planned comparisons showed that more errors were made under executive WM 

load than under phonological load [F(1,23) = 3.2, with p = .09)] and than in the control condi-

tion [F(1,23) = 6.7]. Accuracy did not differ between the control condition and the condition 

with phonological WM load. The main effect of Value was significant as well [F(3,21) = 15.5], 

and was composed of a significant linear component [F(1,23) = 22.1] and a significant qua-

dratic component [F(1,23) = 7.7]. Accuracy decreased as the value of the carry grew larger, 
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but this decreasing pattern became less steep at the end. The interaction between WM load 

and Value was not significant [F(6,18) < 1]. 

  

Regression analyses. Stepwise regression analyses were performed on the mean 

time of correct response and the mean accuracy per item (in the control condition only), in 

order to find the most important predictors of the multiplication performance (see Table 2). 

The predictors used were: (1) The value of the carry, (2) The correct solution of the multipli-

cation problem, (3) Correct unit, (4) Correct ten, and (5) Correct hundred. In the RT data, 

Value and Correct solution turned out to be the most important predictors (R² = .41). Value 

predicted 29%, and Correct solution added 12%. Value and Correct unit were the most im-

portant predictors for accuracy (R² = .28). Value predicted 13%, and Correct unit added 15%. 

 

Error analyses. Most errors were made on the tens: they were incorrect in 17.7% of 

the cases. For the units, there was an error in 5.7% of the cases, and for the hundreds in 

8.5% of the cases. The low error percentages in the units can be explained by the lower WM 

load (due to the UTH order of calculation), whereas the low error percentage in the hundreds 

can be explained by the small variation in possible answers (the correct product always was 

a one-, two-, or three-hundred number). Furthermore, the carry operation always occurred 

from the units to the tens, which explains the high error percentage for the tens. The numeri-

cal distance between the erroneous and expected digits decreased from the left to the right: 

it was largest for the units (3.5), smaller for the tens (2.2), and the smallest for the hundreds 

(1.7). According to Noël et al. (2001), this pattern can be explained by global estimation 

strategies: errors are worse on hundreds than they are on units. 

 

Analyses of the secondary task performance. In the articulatory suppression condi-

tion, participants did not slow down their rate of saying “the” while calculating as compared to 

a single secondary task control condition (respectively 76.2 and 72.3 words per minute, t(23) 

= 1.4), indicating no trade-off between primary and secondary task. For the CRT-R task 
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however, participants made more errors while calculating in comparison to CRT-R-only [re-

spectively 76.4% correct responses versus 98.6%, t(23) = 6.8], indicating impairment on both 

the primary and secondary task. 

 

Discussion. The results of the present experiment show the important role of the ex-

ecutive WM component in complex multiplication problems (see also Seitz & Schumann-

Hengsteler, 2000, 2002). Multiplications were solved more slowly and less accurately when 

less executive WM resources were available. Phonological WM load however, did not affect 

multiplication performance. This result contradicts the results of Seitz and Schumann-

Hengsteler (2000), where these researchers did observe slower performance on complex 

multiplications under phonological WM load; but agrees with their results of 2002, where they 

did not observe slower performance on complex multiplications under phonological WM load 

(although the error rates were slightly higher under phonological WM load). In the general 

discussion, we elaborate on the null result of present experiment, and review some explana-

tions. 

Results also showed the importance of value of the carry: as this value grew larger, 

calculation was slower and less accurate. Regression analyses confirmed the importance of 

this variable, since Value always was one of the most important predictors of multiplication 

latencies and accuracies. Surprisingly, there was no interaction between WM load and value 

of the carry, indicating that WM did not play a specific role in the carry operation. As we as-

sumed that the multiplication problems used in the present experiment might have been too 

simple, an additional experiment was run. In this fourth and final experiment of the present 

study, the role of WM in complex multiplications was studied by extending the scope of num-

ber of carry operations. Problem difficulty was thus determined by the number of carry opera-

tions and the value of the carry. 
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Experiment 4 

Method 

 

Participants. Twenty-three volunteers – nine men and fourteen women – with an av-

erage age of 23.9 years old participated at the present experiment. None of them had parti-

cipated in Experiments 1, 2, or 3. 

 

Stimuli. All stimuli had the same format, and consisted of one 3-digit number that had 

to be multiplied by a 1-digit number. The number of carry operations was one or two, and the 

value that had to be carried was 1, 2, or 3. This resulted in six problem types: (a) one carry 

with value 1, (b) one carry with value 2, (c) one carry with value 3, (d) two carries with value 

1, (e) two carries with value 2, and (f) two carries with value 3 (examples can be found in Ta-

ble 1b). The 1-digit number never was a 0, 1, or 9, so as to avoid the use of short-cut rules. 

For each problem type, 13 multiplications were designed, except for types (e) and (f), for 

which (due to the constraints) respectively 12 and 10 multiplications were designed. This re-

sulted in a total of 74 problems. In the multiplications with one carry operation, the place of 

this operation was controlled for: carries were equally frequent from the units to the tens and 

from the tens to the hundreds. T-tests confirmed that the size did not differ significantly 

across the six types of stimuli.  

 

Instruments and procedure. Instruments and procedure were equal to those used in 

the previous experiment. There were three conditions of which the order was counterba-

lanced: (a) Control, (b) Articulatory suppression, and (c) CRT-R task. The present experi-

ment started with two practice problems, to get used to the apparatus and the procedure. Af-

ter the explanation of the secondary task, the execution of the primary task in combination 

with the secondary task was practiced too (one problem per secondary task). After these 

practice problems, the three blocks (with 23 multiplication problems each) were presented. 
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Each participant thus solved a total of 74 problems: 5 practice trials and 69 experimental tri-

als.  

 

Results & Discussion 

 
ANOVA on solution latency. A 3 (WM load: none, phonological, executive) x 2 (Num-

ber of carry operations: one or two) x 3 (Value to be carried: 1, 2, 3) ANOVA was run on RTs 

of correctly solved multiplications, with repeated measures on all factors (see Figure 7). The 

main effect of WM load was significant [F(2,21) = 9.4]. Further planned comparisons showed 

that multiplications under an executive WM load were solved more slowly than those solved 

in the control condition [F(1,22) = 18.6] and than those solved under phonological load 

[F(1,22) = 19.1]. Performance did not differ between the control condition and the condition 

with phonological WM load [F(1,22) < 1]. The significant main effect of Number of carry oper-

ations [F(1,22) = 57.7] shows that multiplications with one carry operation were solved faster 

than multiplications with two carry operations. Finally, the main effect of Value was significant 

[F(2,21) = 4.5] and comprised both a linear component [F(1,22) = 4.2] and a quadratic com-

ponent [F(1,22) = 6.7], showing that RTs rose when the value to be carried was larger, but 

that this rising trend became less steep. No significant interaction effects were observed. 

 

ANOVA on accuracy. The same 3 x 2 x 3 ANOVA was run on percentages of correct-

ly solved multiplications (see Figure 8). The main effect of WM load was significant [F(2,21) = 

11.4] and showed significantly lower accuracies under executive load than in the control 

condition [F(1,22) = 16.5] and than under phonological load [F(1,22) = 18.8]. Accuracies did 

not differ between the control condition and the condition with phonological WM load [F(1,22) 

< 1]. The main effect of Number of carry operations [F(1,22) = 5.2] showed that multiplica-

tions with two carry operations were solved less accurately than multiplications with only one 

carry operation. Finally, the main effect of Value was linearly significant [F(1,22) = 6.0], with 

lower accuracies as the value of the carry grew larger. The interaction between WM load and 



WORKING MEMORY IN CARRYING AND BORROWING 24 

  

number did not reach significance, although one planned comparison showed that the effect 

of Number of carry operations tended to be worse under executive load than in the control 

condition [t(22) = 1.3, p = .10; one-tailed]. The interaction between WM load and Value how-

ever, was significant [F(4,19) = 2.6] and showed that - under executive WM load - accuracies 

decreased especially when a 3 had to be carried, in comparison with the carrying of a 2 

[F(1,22) = 4.6] or a 1 [F(1,22) = 8.6].  

 

Regression analyses. As in previous experiments, stepwise regression analyses were 

performed on the mean time of correct response and the mean accuracy per item (in the 

control condition only), in order to find the most important predictors of the subtraction per-

formance (see Table 2). The predictors were: (1) The number of carry operations, (2) The 

value of the carry, (3) Number x Value: the product of the number of carry operations with the 

value to be carried (for example, when two carry operations of value 3 had to be performed, 

this predictor had value 6), (4) The correct solution of the multiplication problem, (5) Correct 

unit, (6) Correct ten, and (7) Correct hundred. In the RT data, the number of carry operations 

turned out to be the most important predictor (R² = .15), whereas Number x Value was the 

only significant predictor for accuracy (R² = .06). 

 

Error analyses. Percentages of errors varied across the position, with 2.6% of the 

units being wrong, 7.5% of the tens, and 7.7% of the hundreds. The low error percentage in 

the units can again be explained from the lower WM load in this processing stage, since the 

order in which participants had to calculate was UTH. The numerical distance between the 

erroneous and expected digits decreased from left to right: it was largest for the units (3.2), 

smaller for the tens (2.2), and the smallest for the hundreds (1.9). Global estimation strate-

gies may be responsible for this pattern (Noël et al., 2001). Next, we analyzed whether the 

errors were due to a malfunctioning carry procedure. The difficulties inherent to the carry op-

eration were indeed expressed in the committed errors. The units, tens, and hundreds were 

mainly wrong when a carry operation had to be performed from or to the units, tens, and 
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hundreds, with 90.2%, 80.7%, and 83.6%, respectively. Moreover, the value that had to be 

carried was reflected in the committed errors. The minus-1-errors (i.e., when the produced 

unit, ten, or hundred was 1 beneath the correct unit, ten, or hundred, e.g. when 236 was pro-

duced when the correct answer had to be 246) occurred equally frequently when a 1, 2, or 3 

had to be carried. The minus-2-errors and minus-3-errors however, mirrored the value that 

had to be carried: the majority of all minus-2-errors (66.4%) occurred when a 2 had to be car-

ried, and the majority of all minus-3-errors (85.7%) occurred when a 3 had to be carried. Mi-

nus-2-errors occurred less frequently when a 1 or a 3 had to be carried, whereas minus-3-

errors were very rare when a 1 or a 2 had to be carried. 

 

Analyses of the secondary task performance. In the articulatory suppression condi-

tion, participants did not slow down their rate of saying “the” while calculating as compared to 

a single secondary task control condition (respectively 81.1 and 78.8 words per minute, t(22) 

< 1), indicating no trade-off between primary and secondary task. For the CRT-R task how-

ever, participants made more errors while calculating in comparison to CRT-R-only [respec-

tively 74.1% correct responses versus 97.5%, t(19) = 5.8], indicating impairment on both the 

primary and secondary task. 

 

Discussion. As in Experiment 3, the present results confirmed the important role of 

the executive WM component in complex multiplication. Moreover, there was some evidence 

that the executive WM component was especially important when more carry operations or 

carry operations with higher values had to be executed. No influence of phonological WM 

load was observed, an issue that is further elaborated in the general discussion. Both the 

number of carry operations and the value of the carry determined the difficulty of the calcula-

tion process. The regression analyses showed that a combination of both variables (i.e., the 

predictor ‘Number x Value’) could explain most variance of the accuracy performance. Fur-

thermore, error analyses showed that many errors were due to malfunctioning carry proce-

dures. Indeed, most errors were committed when carry operations were needed. Forgetting 
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to perform a carry operation was a very frequent error, which was reflected in the high per-

centages of -1, -2, and -3 errors where respectively a 1, 2, or 3 had to be carried. Other fre-

quently committed errors were the carrying of a wrong digit, which was reflected in the per-

centage of -1 errors where a 2 or a 3 had to be carried. 

 

General Discussion 

 

Results of the present study showed that executive WM resources are needed to per-

form carry and borrow operations fast and correctly. Phonological WM resources however, 

were only needed in borrow operations but not in carry operations. These results and addi-

tional considerations are further discussed below. 

 

The executive WM component 

 

The results confirmed the important role of the executive WM component in complex 

arithmetic. It is true that many of the functions ensured by the executive WM component are 

necessary in complex arithmetic, such as estimation processes (Logie et al., 1994), the se-

quencing of calculation steps (Fürst & Hitch, 2000), counting-based procedures (Hecht, 

2002), maintaining order information and keeping track in multistep problems (Ashcraft & 

Kirk, 2001), and arithmetic strategy selection and strategy execution (Imbo, Duverne, & Le-

maire, 2006b). More importantly however, is that the present research corroborated the sig-

nificant role of the executive WM component in carry and borrow operations. In Experiments 

1 and 2, a larger negative influence of executive WM load was observed as the number of 

borrow operations grew larger. In Experiment 4, executive WM resources were especially 

needed as the value to be carried grew larger, although there was also some preliminary 

evidence that the role of the executive WM component grew larger as more carry operations 

were needed. These results provide new insights in the role of the executive WM component, 
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since its role in such operations was – until now – only shown in the carry operation in com-

plex additions (Ashcraft & Kirk, 2001; Fürst & Hitch, 2000; Imbo et al., 2006a). 

One may first question the role of the executive WM component in executing more 

carry/borrow operations (as observed in Experiments 1, 2, and 4). As previously suggested 

(Fürst & Hitch, 2000; Imbo et al., 2006a), executive control might be needed in carry and bor-

row operations to inhibit the ‘normal’ order of operations during calculating. As we are more 

used to calculate without carry operations, the ‘no-carry task set’ will get automatically acti-

vated. When a carry operation is needed however, the strongly activated ‘no-carry task set’ 

has to be suppressed, and the ‘carry task set’ must be activated, which takes much effort. As 

both task sets are competing with each other, this conflict has to be resolved under control of 

executive WM resources. When more carry operations have to be executed, conflicts be-

tween the ‘no-carry task set’ and the ‘carry task set’ occur even more often, and the resolu-

tion of these conflicts requires extra executive control. Obviously, this line of reasoning can 

also explain why so much executive control is needed to perform subtractions with more bor-

row operations fast and accurately. As noted above, the executive WM component also 

guarantees that succeeding steps (e.g., calculation procedures whether or not including re-

trieval) run in an ordered way. Since more carry/borrow operations imply more calculation 

steps, more executive WM resources will be needed to sequence these steps. A final expla-

nation goes back to the very ‘basic’ conception of WM as a system devoted to the coordina-

tion of processing and storage (Baddeley & Hitch, 1974; Barrouillet, Bernardin, & Camos, 

2004). As executive WM resources have limited capacity, trade-offs between processing and 

storage may occur. Carry/borrow operations probably increase both the storage load (i.e., 

the number of units of information that have to be retained in WM) and the processing load 

(i.e., the extra addition/subtraction operations that have to be executed). Consequently, re-

sources that are devoted to storage are no longer available for processing (and the other 

way round), resulting in poorer performance.  

A second question is why more executive WM resources were needed to carry higher 

values, as observed in Experiment 4. The task-set explanation described above may account 
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for this observation as well: Since we are more used to carry small values, these task sets 

will get more readily activated compared to task sets for carry operations with higher values. 

A second explanation is based on interference effects. As the value of the carry differed 

across trials, it was possible that in the previous trial a 2 had to be carried while in the current 

trial a 3 has to be carried. Consequently, participants might suffer from interfering effects 

caused by the carry operation of the previous trial when executing the carry operation in the 

current trial. Executive control would be needed to restrain such interference effects. Thirdly, 

problem-size effects may also explain why executive WM resources are needed to carry 

higher values. Since mental arithmetic gets harder as the numbers get larger (e.g., Ashcraft, 

1992, 1995; Ashcraft & Battaglia, 1978; Butterworth, Zorzi, Girelli, & Jonckheere, 2001; 

Geary, 1996), one may assume that carrying high values requires more executive WM re-

sources than carrying small values. However, these and alternative explanations about the 

role of the executive WM component in carrying are not mutually exclusive and should be put 

to further investigation. 

 

The phonological WM component 

 

A phonological WM load caused slower (Experiment 1) and less accurate (Experi-

ments 1 and 2) performance on complex subtractions. Since the phonological WM compo-

nent assures the temporary storage of intermediary results, it may guarantee accuracy dur-

ing calculation processes (e.g., Fürst & Hitch, 2000; Hitch, 1978; Logie et al., 1994; Logie & 

Baddeley, 1987; Seitz & Schumann-Hengsteler, 2000, 2002). The effect of phonological load 

was indeed observed more clearly in accuracy analyses than in latency analyses (see also 

Hecht, 2002). In both multiplication experiments however, no effect of phonological load was 

observed. As noted before, these results are in contradiction with those of Seitz and Schu-

mann-Hengsteler (2000), who did observe a negative influence of phonological load on com-

plex multiplication performance. Two points concerning their methodology should be men-

tioned, however. First, the correct product had to be produced orally, while the phonological 
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loop was loaded by an articulatory suppression task. As participants had to switch between 

the suppression task and pronouncing their solution to the multiplication problem, the phono-

logical load condition was not purely phonological. Second, since participants had to produce 

their solution orally at once, they were free to choose a strategy. They could have used 

short-cut rules and algorithms with additions or subtractions as sub-operations. For example, 

9 x 28 can be solved doing (9 x 30) – (9 x 2) = 270 – 18 = 252, which not only includes mul-

tiplications, but also a complex subtraction. Therefore, it is impossible to conclude whether 

the phonological loop was needed in this subtraction and/or in the multiplications. Seitz and 

Schumann-Hengsteler (2000) admit that it is not clear whether their suppression task dis-

rupted the multiplication process or a sub-process. In a follow-up study however, Seitz and 

Schumann-Hengsteler (2002) did not observe any influence of phonological load on multipli-

cation latencies (although error rates were slightly higher under phonological load). This is in 

agreement with our results, since we did not find an effect of phonological load on multiplica-

tion performance either. Moreover, in all experiments of the present study, participants were 

required to use the same procedure, which decreased the use of other strategies and thus 

excluded the use of complex additions and/or subtractions in the multiplication process.  

But why was solving complex multiplications not affected by a phonological WM load? 

First, it is possible that the multiplication tasks used in the present study were not hard 

enough to require phonological WM resources. A two- or three-digit number had to be multip-

lied with a one-digit number; a task that can be decomposed in easier ones. For example, 

the multiplication 32 x 8 can be broken up into 8 x 2 and 8 x 3. Since the phonological loop is 

not used in simple multiplications (De Rammelaere et al., 2001; Seitz & Schumann-

Hengsteler, 2000, 2002), the problems used in the present multiplication experiments may 

have been rather simple than complex. Second, the experimental methodology might also 

have reduced the phonological WM load. As participants were asked to type in their calcula-

tions in the UTH order, they had to maintain only one digit at time. Future experiments in 

which participants have to produce the product once their calculation is completely finished, 

would probably observe effects of phonological WM load1. Finally, since multiplication 
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processes are strongly trained skills in West Europe (Seitz & Schumann-Hengsteler, 2000, 

2002), people use retrieval far more often in multiplication problems than in addition, subtrac-

tion or division problems (Campbell & Xue, 2001), which might also have decreased the 

need to rely on WM resources. It is, of course, still possible that no influence of phonological 

load was observed because the phonological loop is simply not used in complex multiplica-

tion processes; although future research is needed to confirm this null effect. 

Finally, one of the goals of the present research was to further investigate the role of 

the phonological loop in carrying and borrowing. Evidence for a role of this WM component in 

the carry operation in additions was sparse (but see Imbo et al., 2006a; Fürst & Hitch, 2000; 

Noël et al., 2001); and its role in the carry operation in multiplications or in the borrow opera-

tion in subtractions was never studied yet. The results of Experiment 2 showed that a phono-

logical load reduced accuracy of the borrow operation in subtraction problems. Thus, the 

phonological WM component became more important as the number of borrow operations 

grew. This can easily be explained as follows: as more borrow operations have to be per-

formed, more results have to be kept temporary in WM, which is a role of the phonological 

loop. In Experiment 1, no interaction between phonological WM load and the number of bor-

row operations was observed, which was probably due to the less extended scope in Expe-

riment 1 (zero or one borrow operations) as compared to the wide range in Experiment 2 (ze-

ro, one, two or three borrow operations).  

 

The number of carry/borrow operations and the value to be carried 

 

In the experiments where the number of carry/borrow operations was manipulated 

(Experiments 1, 2 and 4), a main effect of this variable was observed: calculation was slower 

and less accurate as more such operations had to be performed. Several studies showed the 

importance of this variable in additions (e.g., Ashcraft & Kirk, 2001; Faust et al., 1996; Fürst 

& Hitch, 2000; Logie et al., 1994; Noël et al., 2001) and in multiplications (e.g., Seitz & 

Schumann-Hengsteler, 2000), whereas the present study extended the importance of this 
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variable to subtractions. The large influence of the number of carry/borrow operations on cal-

culation performance was not only shown by ANOVAs. In the regression analyses, this vari-

able always turned out to be one of the best predictors of both latency and accuracy data; 

and error analyses showed that most errors were conducted when a carry or borrow opera-

tion had to be performed. 

The careful manipulation in Experiment 2 with zero, one, two or three borrow opera-

tions permitted us to investigate whether problem difficulty increased linearly with the number 

of borrow operations. Results showed that this was not the case: problem difficulty did not 

increase linearly as it increased more steeply between one and two borrow operations than 

between two and three borrow operations. This non-linear increase in problem difficulty can 

be explained by task set activation (see also Imbo et al., 2006a). As we are more used to 

calculate without carry operations, the ‘no-carry task set’ will get automatically activated. 

When the first carry operation occurs, the strongly activated ‘no-carry task set’ appears to be 

inappropriate, and the ‘carry task set’ has to be activated, which takes much effort. When 

there is another carry operation within the same problem, the ‘carry task set’ has the advan-

tage of some rest activation and is more readily accessible. When successive carry opera-

tions within one problem are encountered, the rest activation stays reasonably high, which 

enhances the accessibility of the task set and reduces the effort to execute the carry opera-

tions. This augmenting rest activation explains the non-linear rise of problem difficulty with 

the number of carries: it becomes easier to access the ‘carry task set’. 

In both multiplication experiments, the value to be carried was manipulated; and a 

main effect of this variable was observed. Calculation performance was slower and more er-

roneous when larger digits had to be carried. Moreover, regression analyses showed that 

calculation performance was significantly predicted by the value of the carry; and error ana-

lyses confirmed that forgetting of the correct value to carry reduced accuracy. The extensive 

manipulation of the value to be carried (1, 2, 3, or 4 in Experiment 3, and 1, 2, or 3 in Expe-

riment 4) allowed to investigate linearity effects, and showed that especially values larger 

than 1 caused the greatest difficulties. An explanation for this observation can be inferred 
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from Hitch (1978), who states that a binary marker with value 0 (no carry operation) or 1 (car-

ry operation) is stored in WM. The binary nature of the marker precludes any extra informa-

tion about the carry (e.g., its value). It can be supposed that the default value is 1, which ex-

plains why carrying values higher than 1 is so difficult: Suppressing the default value of 1 

takes more effort than connecting another value (2, 3, or 4) to the marker. Problem-size ef-

fects however, could have played a role as well. Given that mental arithmetic gets harder as 

numbers get larger (Ashcraft, 1992, 1995; Ashcraft & Battaglia, 1978; Butterworth, Zorzi, Gi-

relli, & Jonckheere, 2001; Geary, 1996), one may assume that executing carry operations 

with high values is harder than executing carry operations with small values. Further re-

search, however, will have to elaborate on these topics, so as to refine the preliminary con-

clusions provided in this paper. 
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Foot note 

 

1. Recently, a first attempt in this direction was made in an unpublished study in our lab. 

Complex multiplications (e.g., 16 x 8) were presented visually on which participants 

had to provide an oral response as soon as they had calculated the product. Phono-

logical WM was loaded by presenting a 5-letter string which participants had to repeat 

subvocally while calculating. An effect of phonological WM load was observed on ac-

curacies but not on latencies. More specifically, accuracies tended to be lower under 

phonological WM load than in the control condition [t(19) = 1.56; p = .07; one-tailed]. 

Future research may elaborate on this issue. 
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Table 1a 

 

 Number of borrow operations 

 Zero One Two Three 

Experiment 1  

(Subtraction) 

68 

25 

43 

64 

18 

46 

 

(no stimuli) 

 

(no stimuli) 

Experiment 2  

(Subtraction) 

8437 

2124 

6313 

5856 
1638 
4218 

6542 
3714 
2828 

4123 
2745 
1378 

 

 

Table 1b 

 

 Number of carry operations 

 One Two 

 Value of the carry Value of the carry 

 1 2 3 4 1 2 3 4 

Experiment 3  

(Multiplication) 

 32 
   8 
256 

 38 
   3 
114 

  46 

__6 

276 

  17 

__6 

102 

 

(no stimuli) 

Experiment 4  

(Multiplication) 

314 

    3 

942 

114 

    6 

684 

117 

    5 

585 

 

(no  

stimuli) 

132 

    6 

792 

144 

    6 

864 

188 

    4 

752 

 

(no sti-

muli) 
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Table 2 

 

Summary of the Regression Analyses for Experiments 1, 2, 3, and 4: 

The Successive Significant Predictors, the Corresponding R² values, and the standardized 

Beta values (for the additional predictor only). 

 

 Response time R² Beta 

Experiment 1 Number of borrow operations .612 .782 

Experiment 2 Number of borrow operations .693 .671 

 Correct unit .735 .262 

Experiment 3 Value of the carry .292 .479 

 Problem size .411 .351 

Experiment 4 Number of carry operations .150 .387 

 Accuracy   

Experiment 1 Number of borrow operations .097 -.312 

Experiment 2 Number of borrow operations .138 -.372 

Experiment 3 Value of the carry .125 -.398 

 Correct unit .275 -.391 

Experiment 4 Number x Value .061 -.246 
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Figure captions  

 

1. Response times (seconds) in Experiment 1 (subtraction) as a function of working-

memory load and Number of borrow operations. Standard errors are denoted in the 

error bars. 

2. Accuracies (% correct) in Experiment 1 (subtraction) as a function of working-memory 

load and Number of borrow operations. Standard errors are denoted in the error bars. 

3. Response times (seconds) in Experiment 2 (subtraction) as a function of working-

memory load and Number of borrow operations. Standard errors are denoted in the 

error bars. 

4. Accuracies (% correct) in Experiment 2 (subtraction) as a function of working-memory 

load and Number of borrow operations. Standard errors are denoted in the error bars. 

5. Response times (seconds) in Experiment 3 (multiplication) as a function of working-

memory load and Value to be carried. Standard errors are denoted in the error bars. 

6. Accuracies (% correct) in Experiment 3 (multiplication) as a function of working-

memory load and Value to be carried. Standard errors are denoted in the error bars. 

7. Response times (seconds) in Experiment 4 (multiplication) as a function of working-

memory load and Number of carry operations (panel a) and as a function of working-

memory load and Value to be carried (panel b). Standard errors are denoted in the 

error bars. 

8. Accuracies (% correct) Experiment 4 (multiplication) as a function of working-memory 

load and Number of carry operations (panel a) and as a function of working-memory 

load and Value to be carried (panel b). Standard errors are denoted in the error bars. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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