
SVG-based Spatial Information Representation and Analysis

Haosheng Huang1,1, Yan Li
2
 and Georg Gartner

1

1 Institute of Geoinformation and Cartography, Vienna University of Technology, Austria

2 School of Computer, South China Normal University, China

huanghaosheng@gmail.com, yanli@scnu.edu.cn, georg.gartner@tuwien.ac.at

Abstract. This paper tries to make some spatial extensions to W3C’s Scalable Vector Graphics

(SVG) Specification to support SVG-based spatial information representation and analysis in the

Web environment. Based on the theory of spatial data modeling, this paper attempts to find a

theoretical foundation for SVG-based spatial information representation. And then, based on this

theoretical foundation, we propose an SVG-based spatial information representation model for

spatial data publishing. Furthermore, this paper designs and implements some spatial operators,

and integrates them into an SVG-based Spatial Extended SQL to support spatial analysis on the

browser side, which improves the functions of current WebGIS applications, most of which have

been only employed for visualization. Finally, this paper designs some case studies. The results of

the case studies prove that the suggested methods are feasible and operable for spatial information

publishing and analysis in the Web environment.

Keywords: Spatial data modeling, SVG-based spatial information representation, Web-based

spatial analysis, SVG-based Spatial Extended SQL (SSESQL), SVG-based WebGIS

1 Introduction

Technological advance in Internet/Web triggers a move towards WebGIS. More and more researchers

pay attentions to the problems of spatial information integration and sharing in WebGIS.

XML/GML/SVG-based solution is viewed as a feasible solution for solving these problems. In general,

Geography Markup Language (GML) [1] is used as a coding, storing and transmitting standard of

multiple spatial data on the server side; while Scalable Vector Graphics (SVG) [2] is used as the

representing tool for displaying and interacting with vector data on the browser side.

Since SVG was introduced by W3C in 2001 [2], SVG has become an active area of research in

WebGIS. Some of the researchers use SVG’s shape elements (such as line, polygon, path, etc.) and

graphic styles (such as fill, stroke, etc.) for spatial information visualization and developed some

prototype systems [3], [4] and [5]. Furthermore, there are also some researches focusing on GML to

SVG transformation [6] and [7]. As SVG is developed primarily as a XML-based publishing tool of 2D

graphics, and also spatial information has its own characteristics in representing and organizing spatial

objects and their relationships (such as hierarchical structure of map - layer - spatial object, spatial

attributes vs. non-spatial attributes), in order to use SVG for spatial information publishing, an

SVG-based spatial representation model which takes the characteristics of spatial information into

account has to be developed. Unfortunately, little work has been done on this topic.

1 corresponding author

hao
文本框
Huang, H., Li, Y. & Gartner, G., 2008. SVG-Based Spatial Information Representation and Analysis. In M. Bertolotto, C. Ray, & X. Li, eds. Web and Wireless Geographical Information Systems. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp 17-26.

At the same time, currently, lots of SVG-based spatial information applications have been designed

for visualization only, but avoid the access to spatial analysis functions such as spatial topological

query, map overlay, and buffer that are vital for spatial applications [8]. This is mainly due to the fact

that there are no effective functions to support spatial query and analysis directly on SVG.

This paper attempts to solve the two problems mentioned above. First, based on the theory of spatial

data modeling, this paper tries to find a theoretical foundation for SVG-based spatial information

representation. And then, based on this theoretical foundation, we propose an SVG-based spatial

information representation model for publishing spatial data in the web environment. In order to

support SVG-based spatial analysis, we design and implement some spatial operators, and integrate

them into an SVG-based Spatial Extended SQL (SSESQL). With this suggested model and SSESQL,

users can easily carry out spatial information publishing and analysis tasks in the web environment.

The paper is arranged as follows. In section 2, based on the theory of spatial data modeling, we

develop an SVG-based spatial information representation model for publishing spatial data. Section 3

designs and implements some spatial operators, and integrates them into SSESQL language, and then

discusses how to use SSESQL for spatial analysis. In section 4, some case studies are implemented to

evaluate our suggested methods. Finally, the conclusion and future work will be described in section 5.

2 Spatial Data Modeling for SVG-Based Spatial Information Representation

2.1 Theory of Spatial Data Modeling

Spatial data modeling is the process of abstracting the real world (identifying the relevant objects and

phenomena in the real world) and representing the relevant objects or phenomena in an appropriate

form which can be recognized by computers [9]. As SVG is one of the forms which computers use to

represent relevant objects or phenomena of the real world, thus we can utilize the theory of spatial data

modeling, to discuss SVG-based spatial information representation model which attempts to describe

and represent the relevant objects and phenomena in the real world.

There are three models during spatial data modeling (Fig. 1): conceptual model, logical model,

physical model. According to the contents and requirements of these models, spatial data modeling

includes three steps [9]: 1) choosing a conceptual model which can abstract the real world most

appropriately, 2) choosing an appropriate data structure to represent the conceptual model, 3) designing

a file format, or the appropriate method of record or storage for the data structure in step 2.

Fig. 1. Three models in data modeling

In these following sections, we use the above steps to develop an SVG-based spatial data

representation model. First, we make some extensions to the Open Geospatial Consortium (OGC)’s

Geometry Object Model [10], and take the extended model as our conceptual model. And then we

design a spatial data structure for the above conceptual model based on object-oriented design. Finally,

we use SVG standard to represent the above spatial data structure, and propose our SVG-based spatial

information representation model.

2.2 Spatial Conceptual Data Model

Spatial conceptual data models can be categorized into field-based models and object-based models.

Field-based models (raster data model) see the world as continuous surface over which features (e.g.

elevation) vary. Object-based model (vector data model) treat the world as surface littered with

recognizable spatial objects (e.g. cities, rivers), which exist independently of their locations [11]. As

SVG is developed to represent vector graphic, we will focus on vector data models.

In vector data models, spatial data which describe the real world are organized as a hierarchical

structure: spatial entity (object), layer and map. Spatial entity refers to the thing or phenomenon which

has geometrical shape. It has two types of attributes: spatial attributes that describe the geometry and

topology of the spatial entity, and non-spatial attributes which define the semantics (name, theme, etc.)

of the spatial entity. Spatial entities belonging to the same theme always have similar non-spatial

attributes or geometrical type, and thus are grouped into a layer. A map is always constituted by

different layers which describe the same region of the real world.

OGC’s Geometry Object Model (GOM) [10] is one of the most popular vector models. It abstracts

spatial entities as Point, Linestring, Polygon, Multipoint, Multiline and Multipolygon according to their

geometries. As GOM only defines spatial attributes of spatial entities, we extend it by adding some

concepts like map, layer and non-spatial attributes. Fig. 2 shows our conceptual model.

Fig. 2. The conceptual model (using UML notations) which is extended from Geometry Object Model (after [10])

2.3 Spatial Data Structure

In this section, we design a spatial data structure for the above conceptual model based on

object-oriented design. Fig. 3 depicts our spatial data structure. In this data structure, spatial entity is

designed as class Feature which is an abstract class. The non-spatial attributes of spatial entity are

designed as data members of class Feature. Point, Line, Polygon, Multipoint, Multiline, Multipolygon

and Multigeometry are inherited from class Feature. Map is described as class Map, which includes x1,

y1, width, height (the bounding region of the map) and SRS (Spatial Reference System) attributes.

Fig. 3. The class hierarchy of spatial data structure which represents the conceptual model

2.4 SVG-Based Spatial Information Representation Model (File Format)

In this section, we discuss how to use SVG standard to represent (store) the above spatial data

structure. The basic principles are as follows:

1) Use <svg> element to represent class Map, and use viewBox attribute to represent data members

x1, y1, width, height.

2) The abstract class (Feature) doesn’t need to be represented; its data members are represented in

its derived classes.

3) Data members (spatial attributes and non-spatial attributes) in a class are represented as

corresponding SVG element’s attributes.

4) If class B is PART-OF class A (composition relationship in the spatial data structure), use <g>

element to represent class A and group members (e.g., class B.) of class A together. For example, class

Feature is PART-OF class Layer, so we use <g> element to represent class Layer and group class

Feature (spatial entity) together. According to the above principles, <g> element is used to represent

class Layer, class Multipoint, Multiline, Multipolygon and Multigeometry.

Fig. 4 depicts the SVG-based spatial information representation model. In this model, if B is

PART-OF A, B will be represented as child element of B. For example, Layer is PART-OF Map, so

<g> element which represents Layer is a child element of <svg> element which represents the Map.

Fig. 4. SVG-based spatial information representation model

With this SVG-based spatial information representation model, users can easily use SVG to publish

spatial information in the Web environment. Please refer to section 3 for some examples.

3 SVG-Based Spatial Analysis

The ability of spatial analysis is viewed as one of the key characters which distinguish GIS from CAD

systems or other information systems. Currently, SVG-based WebGIS has been employed for

visualization; but avoided the access to spatial analysis functions. This is mainly due to the fact that

there are no effective web-based functions to support spatial query, and analysis on SVG.

Since the need for spatial query languages has been identified in 1982 [12], many authors have

designed their spatial extended database language [8], [13] and [14]. These SQL like languages

introduce spatial data types (e.g., point, line and polygon) and spatial operators, allow users to inquire

spatial features, primarily in terms of spatial relationships and metric constraints [8]. It is widely

acknowledged that these spatial operators and SQL like languages can be used for spatial analysis.

According to section 2, spatial information is organized as a hierarchical structure: map - layer -

spatial object. A map represented by SVG can be viewed as a database, the layers as tables of the

database, the attributes (spatial attributes and non-spatial attributes) of spatial entities in the layer as

columns of corresponding table, spatial entities as the records of corresponding table. As a result, SQL

like languages can be used to support spatial analysis on SVG.

In this section, we design some spatial operators and integrate them into a spatial extended SQL,

which we define as SVG-based Spatial Extended SQL (SSESQL). This SSESQL uses the basic spatial

data types discussed in section 2: Point, Linestring, Polygon, Multipoint, Multiline, Multipolygon and

Multigeometry. The proposed SSESQL can be used on server side or browser side for spatial query and

analysis on SVG.

3.1 Spatial Operators

In order to carry out a spatial analysis task, we always need to query the spatial object in terms of

attributes, spatial topological relationships and metric constraints, and then maybe use some

geometrical operations or feature fusion to handle these spatial data.

Spatial analysis basically includes buffer analysis, overlay analysis and network analysis. After

analyzing their requirements, we design the following spatial operators:

1) Attribute access operators

This kind of operators is mainly used to calculate length, area and centroid of the spatial object.

Those are GeometryType, Centroid, Length , Area, Envelope.

2) Spatial topological operators

Spatial topological relationship is very important to spatial query and spatial analysis. There are two

different models describing the spatial topological relationship: DE-9IM [15] and RCC-8 [16].

According to Renz et al. [17], these two completely different approaches to topological relationships

lead to exactly the same set of topological relations. This paper uses the smallest complete set of

topological relationship based on DE-9IM: Disjoint, Touch, Crosses, Within and Overlap. As a result,

spatial topological operators include Disjoint, Touch, Crosses, Within and Overlap. For convenience,

Contain operator is also included as the opposition of Within operator.

3) Spatial order operators

People always use spatial order relationship to describe the position of the spatial object, e.g., the

university is in the north of the river. In order to perform spatial order relationship query, spatial order

operators include: East, East_South, South, West_South, West, West_North, North and East_North.

4) Spatial metric operators

Spatial distance is the most important relation of metric relationship. Spatial metric operators

include: Max_Distance, Min_Distance and Average_Distance.

5) Geometrical operators

Sometimes, spatial analysis needs to create new spatial features with some geometrical operation. As

proved in mathematics, {Intersection, Union, Difference} is a complete set for 2D geometrical

operation. So we define Intersection, Union, Difference as geometrical operators. In order to support

Buffer analysis, Buffer operator is also designed for this kind of operators.

The above five kinds of operators can meet the basic requirements of spatial analysis. For network

analysis, we can use Touch operator and Length operator to find out the touched spatial object (e.g.,

road) and the distance. We can use Buffer operator and topological operators to carry out buffer

analysis. Also, we can use Intersection, Union and Difference operators to carry out overlay analysis.

3.2 SSESQL and Some Query Examples

As SSESQL is designed for spatial query, there is no need to consider data insert, update and delete.

All we should do is integrating the above spatial operators to the original SELECT clause of SQL. The

following EBNF (Extended Backus-Naur Form) is the grammar of SELECT clause of SSESQL.

<select_state>:=SELECT <selectexpression> FROM <fro mexpression>

WHERE <whereexpression> GROUP BY<groupbyexpression>

<selectexpression>:=<select_list>[,<Derivated_att>] |<Derivated_att>

<Derivated_att>:=<spatial_operator> AS <Att_name>[, <Derivated_att>]*

<spatial_operator>:=<att_operator>|<topo_operator>| <order_operator>

|<dist_operator>|<geometical_operator>

<att_operator>:=<att_operator_v>|<att_operator_g>

<att_operator_v>:=<Att_function1>(<att_geom>)

<Att_function1>:=GeometryType|Length|Area

<att_geom>:=expression|<analysis_operator>|<att_ope rator_g>

<att_operator_g>:=<Att_function2>(<att_geom>)

<Att_function2>:=Centroid|Envelope

<topo_operator>:=<topo_function>(<att_geom>,<att_ge om>)

<topo_function>:=Disjoint|Touch|Crosses|Within|Over lap|Contain

<order_operator>:=<order_function>(<att_geom>,<att_ geom>)

<order_function>:=East|West|North|South|West_South| East_North

|West_North|East_South

<dist_operator>:=<dist_function>(<att_geom>,<att_ge om>)

<dist_function>:= Max_Distance| Min_Distance| Avera ge_Distance

<geometrical_operator>:=<geometricaloperator>|<Buff eroperator>

<geometricaloperator>:=<analysis_function>(<att_geo m>,<att_geom>)

<analysis_function>:=Intersection|Union|Difference

<Bufferoperator>:=Buffer(<att_geom>,<d_value>)

<d_value>:=expression|<att_operator_v>

<fromexpression>:=<table_source>[,<table_source>]*

<whereexpression>:=<select_condition>[AND<op_exp>|O R<op_exp>]*

|<op_exp>[AND<op_exp>|OR <op_exp>]*

<op_exp>:=<spatial_operator><condition>expression

<condition>:=>|<|>=|<=|=

The following SVG codes show a map of Guangdong province in China which is based on our

suggested SVG-based spatial information representation model (section 2). This map includes two

layers: city and river. We will carry out some spatial queries on this SVG map.

<svg viewBox=”94928 2172873 790615 595213” SRS=”EPS G:4326”>

<g transform=”translate(0,4940959),scale(1,-1)”>

<g id=”city”>

<path id=”C1” population=”7.5” d=”…”/>

…

</g>

<g id=”river”>

<path id=”R1” length=”100” d=”…”/>

…

</g>

</g>

</svg>

The above SVG map includes two layers (city and river), which can be viewed as the following

tables: city (id, population, d) and river (id, length, d). In the following there are some query examples.

1) Query example 1: List the cities which are the neighbors of city “C1”.

SELECT A.id AS “Neighbors_of_C1”

FROM city A, city B

WHERE Touch (A.d, B.d) =True AND B.id=”C1”

2) Query example 2: List the cities which are crossed by the river “R1”.

SELECT c.id AS cid

FROM river r, city c

WHERE r.id=”R1” AND Crosses(r.d, c.d)=True

3) Query example 3: River “R1” can supply water for the cities, which are 40KM around the river,

List this kind of cities.

SELECT cy.id

FROM city cy, river r

WHERE Overlap(cy.d, Buffer(r.d, 40))=True AND r.id= ”R1”

3.3 SSESQL-Based Spatial Analysis in the Web Environment

In this section, we concentrate on using SSESQL for spatial analysis. First, we will introduce the

workflow of spatial analysis, and then consider how to use SVG-based spatial information

representation model (section 2) and SSESQL to support spatial analysis.

The workflow of spatial analysis includes four steps [18]: 1) defining the goal and evaluation

criteria; 2) preparing and representing the needed spatial data; 3) carrying out spatial query and analysis

with GIS tools; 4) result appraisal and explanation. Step1 and step 4 need domain knowledge and are

mainly carried out by experts. Step 2 and step 3 need GIS tools to support human-computer interaction.

For step 2, we can use SVG to represent the needed spatial data based on the SVG-based spatial data

representation model (section 2); while for step 3, SSESQL can be utilized to carry out spatial query.

Fig. 5 shows the workflow of SVG-based spatial analysis.

Fig. 5. Workflow of SVG-based spatial analysis

Here is an example that utilizes the SSESQL for site selection. Suppose city “Z” wants to choose a

site for a theme park. According to the above workflow, we carry out this task based on SSESQL:

Step 1, define the goal and evaluation criteria. The selection criteria are: 1) Site must lie in unused

land; 2) Site must be beyond 250 meters of the road; 3) Site must be within 1200 meters of rivers.

Step 2, analyze these selection criteria and use the methods discussed in section 2 to represent the

needed spatial data (for this task, including road, river, and landuse).

The following is the needed spatial data represented by SVG.

<svg viewBox=”…” SRS=”…”>

<g transform=”…”>

<g id=”landuse”>

<path id=”A” type=”unused” d=”…”/>

…

</g>

<g id=”road”>

<path id=”C1” d=”…”/>

…

</g>

<g id=”river”>

<path id=”R1” d=”…”/>

…

</g>

</g>

</svg>

Step 3, utilize SSESQL to carry out spatial analysis. First, we utilize “Buffer” operator to create

buffer of road and river, then use “Intersection” and “Disjoint” operators to carry out overlay operation

of landuse, buffer of road and buffer of river. The query sentences are as follows:

CREATE VIEW ribuf AS SELECT id,Buffer(d,1200)AS buf FROM river;

CREATE VIEW robuf AS SELECT id, Buffer(d,250) AS bu f FROM road;

CREATE VIEW landriver AS

SELECT Intersection(landuse.d,ribuf.buf) AS temp1

FROM ribuf, landuse

WHERE landuse.type=”unused” AND

Disjoint(landuse.d,ribuf.buf)=False;

SELECT Intersection(landriver.temp1,robuf.buf) AS site

FROM landriver, robuf

WHERE Disjoint(landriver.temp1,robuf.buf)=False;

Step 4, result appraisal and explanation. After executing the above sentences, the appropriate site

will be highlighted on the SVG map. If users are not satisfied with the result, they can return to step 1.

4 Implementation and Case Studies

4.1 Implementation of Spatial Operators and SSESQL

It is widely acknowledged that load-balancing between server side and browser side is a feasible

technology for Web-based spatial analysis [19]. WebGIS will carry out spatial operation on server side

or browser side based on the communication cost versus the computational cost. As a result, we need to

develop the spatial operators and SSESQL for both server side and browser side.

Algorithms of computational geometry can be utilized to develop our spatial operators. As Java has

provided some basic computational geometry APIs (Java 2D API), we implement the spatial operators

with algorithms of computational geometry and Java 2D API. For the SSESQL, we develop a compiler

to carry out syntax, sentence, and semantic analysis for SSESQL sentences. For the server side

implementation, spatial operators and SSESQL compiler are designed as Java servlets. For browser

side implementation, spatial operators and SSESQL compiler are developed as Java applets, and

embedded in HTML; DOM APIs of HTML and SVG are used to access SVG document and invoke the

Java applets; a user interface is embedded in HTML for inputting SSESQL query sentences (Fig. 6).

In the following section, we design two case studies to evaluate the suggested methods on

SVG-based spatial information representation and analysis. As load-balancing between server side and

browser side is not our research focus in this paper, we carry out spatial analysis based on the browser

side implementation (Java applets).

4.2 Case Studies

The cultivated lands are very sensitive in a highly populated country like China, especially, in the most

quickly developing province of Guangdong. People may consider whether the cultivated lands change

with the growth of transportation network. We choose two issues to analyze and discuss.

The first issue is how the cultivated lands along the railway and highway change. Let’s take 15km

extent and analyze the cultivated land change between 1987 and 1999. We carry out this analysis based

on the method described in section 3.3. First, based on the suggested model in Fig. 4, we use SVG to

represent the needed spatial data (railway, highway, district map, and different years’ statistics on land

use). And then use SSESQL to carry out spatial queries on this SVG. Fig. 6 shows the user interface

and result of this case study. Functions of zoom in/out, roam, layer control, query, and statistics are

also added to this interface. This task uses the “Buffer”, “Union”, “Within” operators and SSESQL in

the analyzing procedure. The right low box lists the names of cities involved in the calculation. At last,

we use the statistics function to generate the bar graphs for every relevant city.

Fig. 6. The cultivated lands change along the railway and main highway in 15km extent (Legend for bar graphs:

dark orange for cultivated lands increasing; dark green for cultivated lands decreasing; middle orange for unused

land increasing; middle green for unused land decreasing; light orange for residential area increasing; dark grey for

residential area decreasing)

Another issue is what has happened to cultivated lands with the increasing of the road density

(railway, highway, and province-level road). We use the “Interaction”, “length’, “area” operators and

SSESQL to carry out this task step by step. First, we utilize the “intersection” and “length” operators

to calculate the total road length for every city, and use “area” operator to calculate every city’s area,

and then calculate every city’s road density. Fig. 7 depicts the result of this issue. The result lists the

name of cities and their road density at the right low box. Every city is marked with different color

according to its road density, and with a statistic bar graph on it.

Fig. 7. The cultivated land changes with the increasing of road density. (The Legend is the same as that in Fig. 6)

The implementations of the above case studies show that our suggested methods for SVG-based

publishing and analysis is feasible and operable, it can greatly support the publishing and analysis of

spatial information in the Web environment. The suggested SSESQL supports the user to carry out

spatial analysis task on the browser side.

5 Conclusions and Future Work

This paper tries to make some spatial extensions to W3C’s SVG Specification to support SVG-based

spatial information representation and analysis in the Web environment. Based on the theory of spatial

data modeling, this paper sets up a theoretical foundation for SVG-based spatial information

representation, and develops an SVG-based spatial data representation model based on this theoretical

foundation. Furthermore, we design and implement some spatial operators, and integrate them into

SSESQL language, and then discuss how to use SSESQL for spatial analysis in Web environment. In

order to evaluate our suggested methods, this paper designs and implements two case studies. The

results of the case studies show that our proposed methods are feasible and operable to support spatial

information publishing and analysis in Web environment.

Our next step is to consider the load-balancing technology between server side and browser side for

SVG-based spatial analysis. We are also interested in the problem of completeness of the spatial

operators for spatial analysis task.

References

1 Geography Markup Language, http://www.opengeospatial.org/standards/gml

2 Scalable Vector Graphics (SVG), http://www.w3.org/Graphics/SVG/

3 Cartographers on the net, http://ww.carto.net

4 Peng, Z-R., and Zhang, C.: The roles of geography markup language (GML), scalable vector graphics (SVG),

and Web feature service (WFS) specifications in the development of Internet geographic information systems

(GIS). Journal of Geographical Systems, 6(2), pp. 95-116 (2004)

5 Li, Q., Xie, Z., Zuo, X., and Wang, C.: The spatial information description and visualization based on SVG (in

Chinese). Acta geodaetica et cartographica sinica, 34(1), pp. 58-63 (2005)

6 Guo, Z., Zhou, S., Xu, Z., and Zhou, A.: G2ST: A novel method to transform GML to SVG. in Proceedings of

the 11th ACM international symposium on advances in geographic information systems, pp.161-168 (2003)

7 Tennakoon, W.T.M.S.B.: Visualization of GML data using XSLT. Diploma Thesis, International Institute for

Geo-Information Science and Earth Observation (2003)

8 Lin, H. and Huang, B.: SQL/SDA: A query language for supporting spatial data analysis and its Web-based

Implementation. IEEE transactions on knowledge and data engineering, 13(4), pp.671-682 (2001)

9 Chen, S., Lu, X., and Zhou, C.: Introduction of GIS (in Chinese). Beijing: Science publish, pp.28-30 (2001)

10 Open GIS simple feature specification for SQL, http://www.opengeospatial.org/standards/sfs

11 Shekhar, S., Coyle, M., Goyal, B., Liu, D., and Sarkar, S.: Data models in geographic information systems.

Communications of the ACM, 40(4), pp.103-111 (1997)

12 Frank, A.: Mapquery-database query languages for retrieval of geometric data and its fraphical representation.

ACM Computer Graphics, 16(3), pp.199-207 (1982)

13 Egenhofer, M.: Spatial SQL: A Query and Presentation Language. IEEE Transactions on Knowledge and Data

Engineering, 6(1), pp.86-95 (1994)

14 Ingram, K.J., and Phillips, W.W.: Geographic Information Processing using a SQL Based Query Language,

Proc. AutoCarto8, pp.326-335 (1987)

15 Egenhofer, M.: Reasoning about binary topological relations. In Gunther, O. and Schek, H.-J. (Eds.): SSD’91,

LNCS 525, pp. 43–160 (1991)

16 Randell, D., Cui, Z., and Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B. et al. (Eds.):

Proc. of the Knowledge Representation and Reasoning, pp. 165~176 (1992)

17 Renz, J., Rauh, R., and Knauff, M.: Towards Cognitive Adequacy of Topological Spatial Relations, in Freksa,

C. et al. (Eds.): Spatial Cognition II, LNCS 1849, pp. 184-197 (2002)

18 Wu, X.: Principle and methods of GIS (in Chinese), Beijing: Publishing House of Electronics industry,

pp.156-157 (2002)

19 Vatsavai, R., Shekhar, S.m Burk, T., Lime, S.: UMN-MapServer: A High-Performance, Interoperable, and

Open Source Web Mapping and Geo-spatial Analysis System. In Raubal, M. et al. (Eds.): GIScience 2006,

LNCS 4197, pp. 400–417 (2006)

