
1 | P a g e

A Technical Survey on Decluttering of Icons in Online
Map-based Mashups

Haosheng Huang and Georg Gartner

Institute of Geoinformation and Cartography, Vienna University of Technology, Austria

{haosheng.huang, georg.gartner}@tuwien.ac.at

Abstract

Recent years have witnessed rapid advances in online map-based mashups with Application Programming

Interfaces (APIs) and web services. Map-based mashups often display different kinds of information (e.g.,

POIs, represented as icons) on base maps, such as Google Maps and Bing Maps. The visualization of large

number of icons in a map on web browsers or mobile devices often results in the icon cluttering problem

with icons touching and overlapping each other. This problem decreases map legibility, and thus prevents

users from effectively processing the information presented in the map. It also leads to a dramatic

degradation of performance, and high transmission load. All these problems will greatly decrease the

usability of a mashup application.

This paper surveys and assesses approaches from different disciplines (i.e., computer science and

cartography) for avoiding icon cluttering in online map-based mashups. We focus on two issues: filtering

of irrelevant POIs, and icon placement and aggregation. Different techniques from information filtering

research are analyzed and compared for reducing the number of icons to be displayed in a map. For the

latter issue, approaches of aggregating and placing icons from map generalization research are discussed

and assessed for their applicability in online mashups. Some related APIs and typical mashup examples

are also discussed and compared. This paper concludes that in order to provide more cartographically

pleasing map in mashups, techniques from computer science and cartography should be seamlessly

integrated.

Key words: icon cluttering, map-based mashups, information filtering, icon aggregation, API

hao
Sticky Note
Huang, H. & Gartner, G.,2012. A Technical Survey on Decluttering of Icons in Online Map-based Mashups. In M.P. Peterson, eds., Online Maps with APIs and WebServices, Springer, pp. 157-175, doi:10.1007/978-3-642-27485-5_11.This is a pre-print version. For the published version, please visit Springer.com

2 | P a g e

1. Introduction

Compared to Web 1.0, Web 2.0 provides users with more user-friendly interface and software. Users can

also contribute their own data (user-generated content) and control the data (Wikipedia, 2011a). Some

well-known Web 2.0 sites are Facebook, Twitter, Wikipedia, and OpenStreetMap. Mashup is a new web

development method in the era of Web 2.0. The term mashup implies easy, fast integration, frequently

using open Application Programming Interfaces (APIs) to combine data, presentation or functionality from

two or more sources to create new services (Wikipedia, 2011b). According to the survey made by

ProgrammableWeb (2011), mapping is the most popular category in mashup applications.

Map-based mashups often overlap different information (such as Points of Interest (POIs), represented as

icons) on base maps, e.g., Google Maps, Bing Maps, and OpenStreetMap. The visualization of a great

many icons in a map often results in dramatic degradation of performance, and high transmission load.

More importantly, it may lead to the icon cluttering problem with many icons touching and overlapping

each other (Burigat and Chittaro, 2008). This problem decreases map legibility, and thus prevents users

from effectively processing the information presented in a map.

The goal of this paper is to survey and assess approaches from different disciplines for avoiding icon

cluttering in online map-based mashups. After carefully analyzing the problems in Section 2, we focus on

two key issues: filtering of irrelevant POIs, and icon placement and aggregation. Related filtering methods

from the field of computer science are then analyzed and compared for reducing the number of icons to

be displayed in a map (Section 3). Section 4 surveys and analyzes approaches for aggregating and placing

icons from research in cartographic generalization. In Section 5, we discuss the implementation (existing

APIs) of the described methods and some typical mashup websites. Finally, we summarize the work in

Section 6.

2. Icon cluttering in online map-based mashups

A mashup can be simply understood as a new service, which combines functionality or content from

different existing sources. In recent years, many APIs and web services have been made available to not

only programmers but also to end users. Users with some basic programming knowledge can easily create

their own mashups. There are also some tools and editors, such as Yahoo! Pipes, providing graphical

interface for building mashups. All users have to do is to drag and drop content from one source to

another. They are very useful to end users and require little technical understanding. As a result, more

and more mashups are created and published on the web.

Map-based mashup is the most popular type of mashup. This is because about most of information is

spatially-related, and map is a logical interface for visualization. Most importantly, mapping APIs, for

3 | P a g e

example, Google Maps API, provide completed base maps, and can be easily integrated with some other

data APIs. Map-based mashups often display different kinds of information (e.g., POIs) on base maps.

These POIs are usually visualized as icons (e.g., push pins, markers in Google Maps) in a base map, with

some multimedia information – mostly text, images, and videos – attached to the icons (Haklay et al.,

2008).

Showing a small number of icons or markers in a map (e.g., a Google map) is fairly easy. With the impetus

of Web 2.0 applications, such as Facebook, Flickr, and Foursquare, huge amounts of user-generated

content (UGC) or Volunteered Geographic Information (VGI) are being continually created. More and

more mashups display a large number of icons (POIs) in a single map.

Therefore, some key challenges and problems appear. The performance of the mashup will be

dramatically decreased. Users’ browsers may freeze or become unresponsive for a period of time. The

memory occupied will also be sharply increased. For example, GMarker is used in Google Maps APIs v2 for

showing icons. A test by Gabriel Svennerberg on a PC with a 3.60 GHz Pentium 4 HT processor and 2 Gb

RAM running Windows XP shows that when visualizing 500 markers in a map on Internet Explorer 8.0

takes 3329 ms (Svennerberg, 2009). Additionally, visualizing a great many of icons in a map also brings a

high transmission load, which may be impractical for mobile applications with slower connection speeds.

Furthermore, visualizing large number of icons in a map often results in cluttering problems, especially at

a small map scale (Burigat and Chittaro, 2008). Icons will touch and overlap each other. They may also

mask other important map features such as roads and place names. It becomes worse when the map

changes from a larger scale to a smaller scale. This cluttering problem decreases map legibility, and thus

prevents users effectively processing the amount of information presented in the map. For example,

Figure 1 shows restaurants near the first district of Vienna as icons in a Google map. In this map, icons

overlap each other and mask most of the other map features. End users cannot really get some useful

information from it.

4 | P a g e

Figure 1. An example of icon cluttering in a map-based mashup. Restaurants near the first district of

Vienna are displayed.

Generally, the above problems can be alleviated by two approaches: filtering of irrelevant POIs, and icon

placement and aggregation (Burigat and Chittaro, 2008). Filtering of irrelevant POIs is used to reduce the

number of icons to be displayed in a map. The later issue displaces and aggregates icons, and shows them

in a cartographically pleasing way (Kovanen and Sarjakoski, 2010).

In the literature, many papers have addressed the cluttering problems from a cartographic perspective,

and focused on icon placement and aggregation. Different map generalization methods were designed to

displace and aggregate icons (Burigat and Chittaro, 2008; Kovanen and Sarjakoski, 2010). However, the

cluttering problems can also be tackled from a computer science perspective. For example, by applying

information filtering methods, irrelevant POIs can be filtered, and thus the number of icons to be

displayed in a map is reduced.

In order to provide uncluttered maps, both filtering of irrelevant POIs, and icon placement and

aggregation should be seamlessly combined. In the following, we survey and assess techniques from the

fields of computer science and cartography to address the above problems.

3. Filtering of irrelevant POIs

Information filtering (IF) is a useful technique for delivery of relevant information. An IF system removes

redundant or unwanted information from a source using (semi)automated or computerized methods

prior to presentation to a human (Wikipedia, 2011c). It can help alleviate the problem of “information

overload” (Wikipedia, 2011d), and thus improve users’ decision-making. Recommender systems (RSs) are

5 | P a g e

active IF systems that attempt to provide the user with relevant information (for example, relevant to

his/her interests, needs and context). For map-based mashups, IF/RSs techniques can help to filter

irrelevant POIs, and therefore reduce the number of icons to be displayed in a map.

Varieties of techniques have been proposed for RSs/IF. Previous work proposed different classification of

RSs (Hanani et al., 2001; Burke, 2007; Ricci et al., 2010). Among them, Ricci et al. (2010) provided an up-

to-date classification of RSs: content-based, collaborative filtering, demographic, knowledge-based,

community-based, and hybrid RSs. In the following, we analyze and assess these six techniques for

reducing the number of icons to be displayed in a map.

A mashup providing users with relevant restaurants (POIs) in maps will be used as the illustrated example.

It obtains POI data by using Qype API, and visualizes these POIs in Google Maps with Google Maps API (v2).

3.1 Content-based filtering

Content-based RSs recommend items (e.g., POIs, restaurants) similar to those the user has liked in the

past. These systems build a model or profile of user’s preferences based on the features (description) of

the objects rated/chosen/liked by that user (Lops et al., 2010). The profile is a structured representation

of user’s preferences. The recommendation process matches up the attributes of the user profile with the

attributes of an object (object profile). The result is a relevant judgment that represents the user’s level of

interest in that object. Objects with higher relevant judgment values are often recommended to the end

user. The performance of content-based RSs mainly depends on how accurate the profile reflects the

user’s preferences. For a state-of-the-art survey, please refer to Lops et al. (2010).

In a simple form, the user himself can also explicitly provide a user profile. For example, in our restaurant

finder mashup, a user can explicitly choose some types of restaurants (e.g., Japanese restaurants) to be

displayed in a map. In Qype.com, every restaurant (POI) has been labeled with different tags, which can

be viewed as attributes (description) of the restaurant. Therefore, irrelevant POIs (restaurants) can be

filtered according to the user’s choices. Figure 2 illustrates an example that only shows Japanese

restaurants.

6 | P a g e

Figure 2. An example of content-based filtering. Only Japanese restaurants are displayed.

As the increasing popularity of social networking websites, such as Facebook and MySpace, more and

more users store (explicitly or implicitly) their personal preferences and interests on these social websites.

Therefore, a user profile can also be obtained from his/her social networking accounts, which may

exempt the user from active involvement (i.e., explicitly choosing from a list). There are some open APIs

available for this purpose, such as OpenSocial API by Google, and Facebook Platform by Facebook.

Morandell (2010) provided an example. He used the OpenSocial API to inquire user’s preferences that are

stored in her/his MySpace account, and then used the preferences to filter irrelevant POIs.

Content-based RSs have several limitations (Adomavicius and Tuzhilin, 2005; Lops et al., 2010), such as

limited content analysis in building profiles (both users and objects), and overspecialization. Sometimes,

as little description about objects is available, it is hard to build profiles that accurately reflect the

characteristics of objects and preferences of users. Overspecialization means content-based RSs have no

inherent method for finding something unexpected (Lops et al., 2010). For example, a person with no

experience with Thai cuisine would never receive a recommendation for Thai restaurants even if the best

restaurant in town is a Thai restaurant.

3.2 Collaborative filtering

Collaborative filtering (CF) recommends a user the items (POIs) that other users with similar tastes liked in

the past. It is the most popular and widely implemented technique in RSs. Amazon-like recommendation

(“people who bought … also bought …”) is a well-known CF application.

Algorithms for CF can be grouped into two general classes: model-based and memory-based (or heuristic-

based). Model-based CF uses the collection of ratings to learn a model, which is then used to make rating

7 | P a g e

predictions. Some probabilistic models (such as Bayesian network and cluster model) are often employed

for model learning. Heuristic-based CF can be divided into user-based approach and item-based approach.

Given an unknown rating (of an item by the current user) to be estimated, heuristic-based CF first

measures similarities between the current user and other users (user-based), or, between the item and

other items (item-based). Then the unknown rating is predicted by averaging (weighted) the known

ratings of the item by similar users (user-based), or the known ratings of similar items by the current user

(item-based). User-based CF can be viewed as a heuristic implementation of the “Word of Mouth”

phenomenon (Wang et al., 2006). For an up-to-date survey, please refer to Desrosiers and Karypis (2010).

Popularity-based recommendation (e.g., “the most viewed” at YouTube, “the most popular tags” at Flickr)

is a non-personalized CF. These “most popular (viewed, discussed)…” like recommendations have been

proved to be very useful for end users. Figure 3 depicts our restaurant finder mashup implementing the

popularity-based technique to reduce the icons.

Figure 3. An example of popularity-based recommendation in the restaurant finder mashup. Only the 30

top rated restaurants are displayed.

The biggest advantage of CF is that it requires no previous knowledge about the content of the data, and

thus can be applied to any type of data, regardless of content. However, pure CF has some disadvantages

(Desrosiers and Karypis, 2010). Two of them are cold-start problem (new user problem and new item

problem), and data sparsity (too few common ratings). In order to make accurate recommendations, the

system must first learn the user’s preferences from the ratings that the user gave. For a new user, as

he/she has few or no ratings available in the system, it is hard to make recommendations to him/her. It is

also impossible to recommend a new item to users when using pure CF. The problem of data sparsity is

caused by the fact that users typically rate only a small proportion of the available items. When the rating

8 | P a g e

data are sparse, two users or items are unlikely to have common ratings, and consequently, heuristic-

based CF will predict ratings using a very limited number of neighbors (Desrosiers and Karypis, 2010).

Therefore, the recommendation performance may suffer from data sparsity.

3.3 Demographic recommendation

This type of system recommends items based on the demographic profile of a user. The assumption is

that different recommendations should be made for users with different demographics. Many websites

adopt simple and effective personalization solutions based on demographics. For example, users are

dispatched to particular websites based on their language or country (Ricci et al., 2010).

Figure 4 shows an example of using demographic information to filter irrelevant POIs in map: making

recommendations for a disabled person. Only restaurants tagged with “disabled access” are shown.

Figure 4. An example of demographic recommendation in the restaurant finder mashup. Only restaurants

tagged with “disabled access” are shown.

3.4 Knowledge-based recommendation

Knowledge-based RSs recommend items based on predefined knowledge bases that contain explicit rules

about how certain item features meet user needs and preferences and, ultimately, how the item is useful

for the user (Felfernig et al., 2010). Compared to CF and content-based filtering, knowledge-based RSs

have no cold-start problems since the user’s requirements are directly elicited within a recommendation

session through a series of dialogs. However, they suffer from “the knowledge acquisition bottleneck in

the sense that knowledge engineers must work hard to convert the knowledge possessed by domain

experts into formal, executable representations” (Felfernig et al., 2010, p187-188).

9 | P a g e

A knowledge base is typically defined by two sets of variables (VC, VPROD) and three different sets of

constraints (CR, CF, CPROD) (Felfernig et al., 2010). Customer Properties VC describe possible requirements

of customers (users), i.e., requirements are instantiations of customer properties, which may be explicitly

provided by users via a series of dialogs. Product Properties VPROD describe the properties of a given

product assortment. Constraints CR are systematically restricting the possible instantiations of customer

properties. Filter Conditions CF define the relationship (rule) between potential customer requirements

and the given product assortment. Products CPROD store all the products, and represent them by using the

properties defined by VPROD. Among them, Filter Conditions CF plays a key role. An example of CF rule can

be

CF = {CF1: With_cash = not Credit_cards_accepted = Yes}

It can be explained as “users without cash should receive recommendations (restaurants) which accept

credit cards”. Figure 5 shows an example using this rule.

Figure 5. An example of knowledge-based recommendation in the restaurant finder mashup.

3.5 Community-based recommendation

Community-based RSs recommend items based on the preferences of the user’s friends (Ricci et al., 2010).

Evidence suggests that people tend to rely more on recommendations from their friends than on

recommendations from similar but anonymous individuals (Sinha and Swearingen, 2001). These types of

RSs acquire information about the social relations of the user and the preferences of his/her friends.

Community-based recommendation can be viewed as a special CF, which only uses the ratings provided

by the user’s friends. These RSs follow the rise of social networking applications. Research in this area is

still in its early phase.

10 | P a g e

3.6 Hybrid recommendation

The above techniques have some advantages and disadvantages. Table 1 compares them according to

their information sources (input), advantages, and disadvantages.

Table 1. Comparison of different techniques (adapted from Bruke (2002)).

Technique Information sources (input) Advantages Disadvantages

Content-based
filtering (CBF)

1. the features associated with
items
2. the ratings a user has given
to items

a. domain knowledge not
needed
b. implicit feedback
sufficient

A. quality dependent on
large historical dataset
B. overspecialization
C. new user problem

explicit_CBF:
Explicitly providing
profile

1. the features associated with
items
2. the profile explicitly provided
by user

a,
c. no historical dataset
required

B,
D. user must input their
profile

Collaborative filtering 1. ratings for items from
different users

a, b,
d. can identify cross-genre
niches

A, C,
E. new item problem
F. data sparsity

CF: Popularity-based 1. ratings for items from
different users

a, b, d E,
G. non-personalized

Demographic
recommendation

1. demographic information
about a user
2. the features associated with
items
3. knowledge about features of
item and demographic
information

a, c H. must gather
demographic information
I. knowledge engineering
required

Knowledge-based 1. user’s need provided by the
user via a series of dialogs
2. the features associated with
items
3. Knowledge about how these
items meet a user’s need

c,
e. can explain the reason
for recommending a
specific item

I,
J. must gather user’s need

Community-based 1. ratings for items from the
user’s friends

a, d K. privacy concerns

As mentioned above, each RS technique has advantages and disadvantages. Hybrid RSs combine two or

more of the above techniques. A hybrid system combining techniques A and B tries to use the advantages

A to fix the disadvantages of B (Ricci et al., 2010). For instances, pure CF suffers from the cold-start

problem (new item and new user), i.e., they cannot recommend items that have no ratings, and they

cannot make recommendations to users who have not given ratings. These can be solved by applying a

knowledge-based technique at the beginning. Burke (2007), and Adomavicius and Tuzhilin (2005)

provided some surveys on hybrid RSs.

To summarize, different techniques lead to results with different qualities, and require different inputs

(i.e., information sources). When choosing a suitable filtering method for a mashup application, it is

important to consider each of the aspects in Table 1.

11 | P a g e

4. Icon placement and aggregation

The techniques described in section 3 can be used to filter irrelevant POIs, and thus reduce the number of

icons to be displayed in a map. Reducing the number of POIs can greatly alleviate the problems of

performance degradation, high transmission load, and “information overload”. However, it may not solve

all the overlapping problems (refer to Figure 2 for an example).

There is some research from cartographic generalization focusing on automatic symbol placement. The

aim is to place symbols on maps while avoiding the overlap with other symbols and underlying map

features. Many techniques have been developed for automatic symbol placement (Mackaness and Fisher,

1987; Harrie et al., 2004; Burigat and Chittaro, 2008; Kovanen and Sarjakoski, 2010). In the following, we

focus on displacement and aggregation.

Displacement: In order to solve the problem of competition of limited map space between symbols or

map features that overlap or lie too close to each other, the displacement operation is often applied. It

shifts symbols or map features to other places to prevent coalescence. According to Foerster and Stoter

(2008), displacement is the most important operation when considering how often the operation is

applied and how dominant a role it plays. However, the displacement problem is Non-deterministic

Polynomial-time hard (NP-hard) (Marks and Shieber, 1991). Many methods have been proposed for the

displacement problem, e.g., Ruas (1998), Harrie (1999), Mackaness and Purves (2001), and Lonergan and

Jones (2001). Most of them work in an iterative manner. Each iteration is composed of three phases:

detection of conflict (overlap), calculation of a new location, and evaluation of the result (Mackaness and

Purves, 2001). Multiple iterations are needed when new conflicts are created due to the previous

iteration or when some constraint is still violated (Kovanen and Sarjakoski, 2010). In worst cases, the

conflict problem cannot be solved at all.

In general, these displacement techniques proposed in the literature are also suitable for map-based

mashups. However, two important issues have to be kept in mind. Firstly, the purpose of placing icons in a

map is to show the existence of specific POIs at specific places. A POI icon usually has a predefined fixed

location. As a result, the displacement movement of POI icons should be as small as possible. Secondly, as

the map features of the underlying map such as roads and street cannot be detected or changed,

displacement operation sometimes cannot solve the problem of poor legibility.

Aggregation (cartographic): The basic idea of aggregation operation is to identify clusters of mutually

overlapping icons, and replace them with special aggregator icons (Burigat and Chittaro, 2008). The

purpose of aggregator icons includes pointing out the presence of these icons as well as providing users

with a means to access information about each of them. Burigat and Chittaro (2008) first created a

conflict graph to store overlap relationship between icons, and then developed a maximum aggregation

12 | P a g e

algorithm and a fast aggregation algorithm to identify a set of aggregator icons without conflicts. They

added some mouse events to the aggregator icons. With the events, clicking an aggregator icon opens a

pop-up window that lists the aggregated POIs and allows the user to obtain more information about each

of them.

In addition to the visual overlapping aspect, aggregation can also be based on some semantic aspects, for

example, categories and features of POIs. Therefore, more meaningful and semantic-enhanced

cartographic aggregation can be provided.

5. Implementation, APIs and mashup examples

In this section, we discuss and analyze the implementation through existing APIs of the described

methods in the previous sections. Two typical mashups that address the problem of icon cluttering are

also introduced.

5.1 Implementation of irrelevant POIs filtering

As discussed in section 3, different filtering techniques can be used to reduce the number of POIs to be

displayed in a map. All of them have some advantages and disadvantages, and may lead to results with

different qualities. In terms of implementation, the needed technical skills are also different.

Technical speaking, explicit_CBF and simple demographic recommendation can be viewed as filtering by

some querying parameters (such as category, location and language). There are some data APIs enabling

developers to specify querying parameters. For example, Qype API can be used to query POIs near a

certain position, search POIs in a category, and find POIs by their name or a keyword. YouTube data API

defines different query parameters that can be used for filtering and ordering results, such as category,

format, caption, language, and location. Yahoo! Local Search Web Service allows users to search the

Internet for POIs near a specific location, as well as search by categories. These APIs and web services can

be easily used to implement explicit_CBF and demographic recommendations. For knowledge-based

filtering, the Filter Conditions CF (i.e., rules) plays a key role. When these rules are identified, the above

APIs and web services can also be employed to implement simple knowledge-based recommendation.

There are also some APIs and web services implementing popularity-based CF. For example, Qype API

provides “order” to sort results by “distance” or “rating.” YouTube data API enables developers to order

results by specifying an “orderby” parameter, such as relevance, published (chronological), viewCount,

and rating. For Yahoo! Local Search Web Service, the “sort” parameter is used to order the results by the

chosen criteria (e.g., relevance, title, distance, or rating).

Compared to the above four kinds of filtering methods, standard content-based filtering and standard

collaborative filtering require more advanced programming skill to implement. Currently, there are few

13 | P a g e

open APIs available on the web. To implement them, developers need to code the algorithms. To get

implementation ideas, please have a look at some state-of-the-art surveys, such as Lops et al. (2010), and

Desrosiers and Karypis (2010).

The community-based recommendation is a special collaborative filtering. As discussed in section 3.1,

there are some open APIs for obtaining information from user’s social networking accounts (Facebook,

MySpace), such as OpenSocial API by Google, and Facebook Platform by Facebook. These APIs provide a

basis for community-based recommendations by obtaining preferences from friends. Simple community-

based recommendations may just display all the friends’ favorite POIs, while complex community-based

recommendations may also have to adopt the method of standard collaborative filtering. As a result,

different programming skills may be needed.

To summarize, different methods lead to a different qualities of filtering, and require different technical

skills to implement. When choosing a suitable filtering method for your application, it is critical to

consider what you can get from the data sources. Candidate methods can be identified by checking

whether the required inputs are available. When different filtering methods are feasible with the current

data sources, the best method can be determined by analyzing the ease of implementation, advantages,

and disadvantages of each method.

5.2 Existing APIs on icon displacement and aggregation

There are few open APIs available for icon displacement. To implement, developers should design their

own algorithms. Implementation can be focused on the three components of icon displacement

(detection of conflict, calculation of a new location and evaluation of the result).

For icon aggreagation in map-based mashups, there are some open APIs available. In the following, we

discuss and compare some existing APIs designed for Google Maps API (v2 and v3).

MarkerManager: A utility library provided by Google for addressing the problem of slow rendering of the

map and visual cluttering when adding a large number of markers to a Google map (GMaps Utility Library,

2011). When using MarkerManager, you have to define at which zoom-levels the marker will be visible.

MarkerManager keeps tracking of all added markers, and shows them according to the defined zoom-

levels. Recently, an updated version of the MarkerManager API is developed to support managing

markers in Google Maps API v3 (MarkerManager v3, 2011).

Clusterer: Designed by Jef Poskanzer from ACME labs (ACME, 2011). Two techniques are implemented in

Clusterer: only the markers currently visible actually are created; if too many markers would be visible,

then they are grouped together into cluster markers. With these, adding thousands of markers to a map

can also maintain decent performance.

14 | P a g e

ClusterMarker: Developed by Pearman (2011). It detects any group(s) of two or more markers whose

icons visually overlap when displayed. Each group of overlapping markers is then replaced with a single

cluster marker. The cluster marker, when clicked, simply centers and zooms the map in on the markers

whose icons overlap. Currently, it only works for Google Maps API v2.

MarkerClusterer: Developed by Xiaoxi Wu and is part of the Google Maps Open Source Utility Library (Wu,

2011). It groups markers into different clusters and displays the number of markers in each cluster with a

label, creating new clusters as the zoom level of the map changes. The clustering algorithm is simple: for

each new marker it sees, it either puts it inside a pre-existing cluster, or creates a new cluster if the

marker does not lie within the bounds of any current cluster.

Gabriel Svennerberg compared the above APIs on major browsers (Internet Explorer, Firefox, Google

Chrome, Safari and Opera), and concluded that Clusterer was the fastest technique of them when only

considering how long it takes before the markers are passed to the map (Svennerberg, 2009). However,

when considering the actual time until all markers are visible on the map, MarkerClusterer is the fastest

technique closely followed by ClusterMarker.

In the following, we analyze the functions provided by the above APIs, and their applicability in map-

based mashups from the perspective of cartography. The MarkerManager only implements a Level of

Detail (LoD) method of showing large number of icons. It can be easily incorporated with some techniques

from cartographic generalization to provide comprehensive solutions for avoiding icon cluttering in map-

based mashups. The last three APIs implement the cartographic aggregation function (section 4) which

groups markers into different clusters to avoid icon cluttering. However, the clustering algorithms in them

are simply based on the visual overlapping of icons. In order to provide meaningful and semantic-

enhanced clustering, some other features of the icons (POIs) can also be considered, such as clustering

overlapping icons according to their semantic categories.

5.3 Mashup examples

The following two map examples show, how uncluttered maps are provided in mashups. The example in

Figure 6 combines information filtering techniques and icon aggregation techniques. POIs can be filtered

by categories and keywords. It develops its own aggregation algorithm. Overlapping icons are aggregated

into a translucent rectangle. When moving the mouse to the top of a rectangle, the number of icons in

the rectangle is showed. Clicking the rectangle will show and zoom the map to the area of the rectangle.

15 | P a g e

Figure 6. An example of decluttering icons in mashup taken from http://www.maptheq.com.

The mashup in Figure 7 also combines information filtering and icon aggregation. POIs can be filtered by

categories. The MarkerClusterer API (see Section 5.1) is employed to aggregate icons in maps. The

number of markers in a cluster is displayed on the cluster marker. Clicking the cluster marker shows the

markers in this cluster.

Figure 7. An example of decluttering icons in mashup taken from http://www.norwegen-reise.com. The

MarkerClusterer API is employed to aggregate icons in maps.

16 | P a g e

It is important to note that, the above two examples only implement some very simple information

filtering techniques. More information filtering techniques can also be implemented to filter irrelevant

POIs, which will greatly alleviate the problems of information overload, and high transmission load. In

addition, the clustering/aggregating algorithms in them are simply based on the visual aspect. More

advanced techniques (e.g., semantic-enhanced aggregation and displacement) from cartographic

generalization should be employed to address the icon cluttering problem.

6. Conclusions

Recent years have seen an increased interest in online map-based mashups. Visualizing large number of

icons in a map often results in dramatic degradation of performance, high transmission load, information

overload, and icon cluttering problems. In order to alleviate the above problems and provide a

cartographically pleasing map, improving the methods of visualizing many icons in a map is becoming

more and more crucial.

In this paper, we surveyed and assessed different techniques from computer science and cartography.

Related techniques from information filtering were analyzed and compared for reducing the number of

icons to be displayed in a map. Additionally, approaches for aggregating and placing icons from map

generalization research were surveyed and analyzed for providing uncluttered maps.

Implementation using existing APIs of the described methods and some typical mashup examples were

discussed and analyzed. The analysis showed that decluttering icons in map-based mashups is still in the

early stage of development. Expertise from computer science and cartography should be seamlessly

integrated to provide more cartographically pleasing maps in online map-based mashups.

References

ACME (2011): JavaScript Utilities. http://www.acme.com/javascript/#Clusterer. Accessed on June 2011.
Adomavicius, G. and Tuzhilin, A. (2005): Towards the next generation of recommender systems: A survey of the state-

of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.
Burigat, S., and Chitttaro, L. (2008): Decluttering of icons based on aggregation in mobile maps. In: Meng, L., Zipf, A.

and Winter, S. (eds), Map-based Mobile Services – Design, Interaction and Usability, Springer, 13-32.
Burke, R. (2002): Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted

Interaction, 12(4), 331-370
Burke, R. (2007): Hybrid web recommender systems. In: The AdaptiveWeb, Springer Berlin / Heidelberg, 377-408.
Desrosiers, C. and Karypis, G. (2010): A comprehensive survey of neighborhood-based recommendation methods. In:

Ricci, F., Rokach, L., Shapira, B. and Kantor, P. (eds), Recommender Systems Handbook. Springer, 107-144.
Felfernig, A., Friedrich, G., Jannach, D. and Zanker, M. (2010): Developing constraint-based recommenders. In: Ricci, F.,

Rokach, L., Shapira, B. and Kantor, P. (eds), Recommender Systems Handbook. Springer, 187-215.
Foerster, T. and Stoter, J.E. (2008): Generalisation operators for practice: A survey at national mapping agencies. In:

Proceedings of the 11th ICA workshop on generalisation and multiple representation, 20-21 June,
Montpellier.

17 | P a g e

GMaps Utility Library (2011): http://code.google.com/apis/maps/documentation/javascript/v2/overlays.html
#Marker_Manager. Accessed on June 2011.

Haklay, M., Singleton, A. and Parker, C. (2008): Web mapping 2.0: The neogeography of the geoweb. Geography
Compass, 2(6), 2011-2039.

Hanani, U., Shapira, B. and Shoval, P. (2001): Information filtering: Overview of issues, research and systems. User
Modeling and User-Adapted Interaction, 11(3), 203-259.

Harrie, L. (1999): The constraint method for solving spatial conflicts in cartographic generalisation. Cartography and
Geographic Information System, 26(1), 55-69.

Harrie, L., Stigmar, H., Koivula, T. and Lehto, L. (2004): An algorithm for icon placement on a real-time map. In: Fisher,
P. (ed), Developments in Spatial Data Handling, Proceedings of the 11

th
 International Symposium on Spatial

Data Handling, Springer, Leicester, 493-507.
Kovanen, J. and Sarjakoski, L.T., (2010): Displacement and grouping of points of interest for multi-scaled mobile maps.

In: Proceedings of LBS 2010, Guangzhou, 20-22 September 2010.
Lonergan, M. and Jones, C.B. (2001): An iterative displacement method for conflict resolution in map generalization.

Algorithmica 30, 287-301
Lops, P., de Gemmis, M. and Semeraro, G. (2010): Content-based recommender systems: State of the art and trends.

In: Ricci, F., Rokach, L., Shapira, B. and Kantor, P. (eds), Recommender Systems Handbook. Springer, 73-105.
Mackaness, W.A. and Fisher, P.F. (1987): Automatic recognition and resolution of spatial conflicts in cartographic

symbolisation. In: Proceedings of AutoCarto 8, 29.03-03.04, Baltimore, USA, 709-718.
Mackaness, W.A. and Purves, R.S. (2001): Automated displacement for large numbers of discrete map objects.

Algorithmica, 30, 302-311.
MarkerManager v3 (2011): http://google-maps-utility-library-v3.googlecode.com/svn/tags/markermanager/1.0/

docs/reference.html. Accessed on June 2011.
Marks, J., and Shieber, S. (1991): The computational complexity of cartographic label placement. Technical Report TR-

05-91, Center for Research in Computing Technology, Harvard University.
Morandell, C. (2010): Möglichkeiten der nutzerspezifischen Gestaltung von Location Based Services mit Daten aus

Social Networks. Master thesis of Vienna University of Technology.
Pearman, M. (2011): Google Maps API Projects. http://googlemapsapi.martinpearman.co.uk/readarticle.php?

article_id=4. Accessed on June 2011.
ProgrammableWeb (2011): http://www.programmableweb.com/mashups#topt-2. Accessed on June 2011.
Ricci, F., Rokach, L. and Shapira, B. (2010): Introduction to recommender systems handbook. In: Ricci, F., Rokach, L.,

Shapira, B. and Kantor, P. (eds), Recommender Systems Handbook. Springer, 1-35.
Ruas, A. (1998): A method for building displacement in automated map generalisation. International Journal of

Geographic Information Science, 12(8), 789-803.
Sinha, R. and Swearingen, K. (2001) Comparing recommendations made by online systems and friends. In: DELOS

Workshop: Personalisation and Recommender Systems in Digital Libraries.
Svennerberg, G. (2009): Handling Large Amounts of Markers in Google Maps.

http://www.svennerberg.com/2009/01/handling-large-amounts-of-markers-in-google-maps/. Accessed on
June 2011.

Wang, J., Vries, A. and Reinders, M. (2006): Unifying user-based and item-based collaborative filtering approaches by
similarity fusion. In: Proceedings of the 29

th
 ACM SIGIR Conference on Information Retrieval, 501-508.

Wikipedia (2011a): http://en.wikipedia.org/wiki/Web_2.0. Accessed on June 2011.
Wikipedia (2011b): http://en.wikipedia.org/wiki/Mashup_%28web_application_hybrid%29. Accessed on June 2011.
Wikipedia (2011c): http://en.wikipedia.org/wiki/Information_filtering_system. Accessed on June 2011.
Wikipedia (2011d): http://en.wikipedia.org/wiki/Information_overload. Accessed on June 2011.
Wu, X. (2011): MarkerClusterer: A Solution to the Too Many Markers Problem.

http://googlegeodevelopers.blogspot.com/2009/04/markerclusterer-solution-to-too-many.html. Accessed
on June 2011.

