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Mobile pedestrian navigation systems are one of the most popular Location Based 

Services. In the era of Web 2.0, current mobile navigation systems often suffer from the 

following problems: the lack of social navigation support (utilizing other people’s 

experiences), and the challenge of making user-generated content (UGC) useful. This 

paper designs some collective intelligence based route recommendation methods to 

address these problems. The proposed methods can make use of UGC (reflecting other 

users’ navigation experiences), and provide users with the least complex route and the 

length-complexity-optimized (LCO) route. Some simulations using the street network 

of the first district of Vienna (Austria) are designed to evaluate the proposed methods. 

The results show that compared to the shortest route, the collective intelligence based 

routes have a significant improvement of the route quality (with less complexity rating), 

thereby more effectively supporting users’ navigation tasks (more chances of reaching 

the destination, fewer mistakes made and shorter distance travelled). 

Keywords: user-generated content; collective intelligence; social navigation; route 

calculation; pedestrian wayfinding 

1. Introduction 

Mobile pedestrian navigation systems are one of the most important Location Based Services 

(LBS) (Raper et al. 2007). They aim to effectively assist pedestrians’ wayfinding tasks in 

unfamiliar environments. Recently, mobile pedestrian navigation systems have become 

increasingly popular not only in citywide outdoor environments but also in many indoor 

environments, such as shopping malls, complex buildings, and train stations. 

Mobile pedestrian navigation systems are designed to facilitate pedestrians’ 

wayfinding. In our daily life, we often ask other more experienced people in the surrounding 

area for orientation and route advice (i.e. the “social strategy” of wayfinding). These 

techniques utilizing “experiences of other people” are also known as social navigation 

hao
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(Dourish and Chalmers 1994). Research has shown that experiences/information from similar 

users in similar context can help current problem-solvers to gain more efficient and more 

satisfying answers to their problems (Wexelblat 1999). However, this aspect has widely been 

ignored in current mobile pedestrian navigation systems. 

What’s more, in recent years, we have seen a trend towards incorporating Web 2.0’s 

“participation” notion into LBS. These LBS applications employing the “participation” notion 

enable users to annotate their personal experiences and feelings to physical places during 

using the systems. The user-annotated information (known as user-generated content (UGC)) 

reflects the perspectives and experiences of other users who solved their similar spatial tasks 

in this situation. It can be very useful for current users (e.g. navigators). However, little work 

has been done on investigating how UGC can be used to generate value/benefits for mobile 

pedestrian navigation systems. 

Recommendation systems can help to make UGC useful. Some examples are “best 

seller lists” at Amazon.com, “Most viewed” and “Top Favourited” at YouTube, and “Most 

popular tags” at Flickr, etc. As UGC may reflect other navigators’ wayfinding experiences, 

aggregating UGC can help to provide social navigation support in mobile navigation systems. 

This paper focuses on designing some route recommendation methods to address the two 

problems mentioned above. We call these methods collective intelligence based methods 

because they provide routes by aggregating other navigators’ UGC that reflects their 

collective intelligence (experiences). Two kinds of routes are provided with the proposed 

methods: the least complex route and the length-complexity-optimized (LCO) route. 

The rest of this paper is structured as follows. In section 2, we outline related work. 

Section 3 describes the proposed collective intelligence based route recommendation 

methods. Some simulations are designed and implemented to evaluate the proposed methods 

in section 4. Major results are also discussed in section 4. Finally, section 5 draws the 

conclusions and presents the future work directions. 

2. Related work 

The research concerns how mobile pedestrian navigation systems can be improved in the era 

of Web 2.0. This issue integrates several mainstream trends and concepts, such as mobile 

pedestrian navigation systems, social navigation, and Web 2.0. From these aspects, we 

summarize the related work. 



2.1 Route calculation in mobile pedestrian navigation systems  

Mobile navigation systems often consist of three modules (Huang and Gartner 2009): 

positioning, route calculation (planning), and route communication. The positioning module 

determines the current location of a user. For outdoor navigation, GPS is often employed. For 

indoor navigation, additional installations (e.g. WiFi, Bluetooth, and RFID) are required. The 

route calculation module focuses on computing the “best” route from an origin to a 

destination. The route communication module aims to explore technologies to convey route 

information (directions) efficiently. This paper mainly focuses on route calculation.  

For car navigation, fastest routes and shortest routes are very useful and often 

employed. However, findings in pedestrian behaviour research have shown that pedestrians – 

especially when having enough time – might favour different route qualities rather than 

shortness, such as, simplicity, safety, attractiveness, and convenience (Golledge 1995). There 

is some research focusing on calculating different “best” routes for navigation, such as: routes 

with a minimal number of turns and routes with a minimal angle (Winter 2002), routes with 

least instruction complexity (Duckham and Kulik 2003), and reliable routes minimizing the 

number of complex intersections with turn ambiguities (Haque et al. 2007). However, the 

above routes are mainly based on the geometrical characteristics of the road network, which 

may not accurately reflect the qualities (e.g. simplicity, safety, attractiveness, convenience) of 

the route. 

In daily life’s wayfinding, we often employ some social strategies, such as asking 

other more experienced people in the surrounding area for orientation and route advice. This 

technique is also known as social navigation that is based on the observations that may seem 

really obvious and simple: Much of the information seeking in everyday life (e.g. choosing 

where to visit next or which route to take) is performed through watching, following and 

talking to other people (Höök 2003).The idea of social navigation is often used to help users 

effectively finding relevant information on the Web, such as the Footprints system (Wexelblat 

1999) and the Kalas system (Svensson et al. 2005). It is important to note that very few 

studies on introducing social navigation technique into mobile pedestrian navigation systems 

have been done so far. An exception is Gams et al. (2007) which proposed to use other 

people’s trails (i.e. wayfinding experiences) for wayfinding assistance and mainly focused on 

trail modelling. However, a comprehensive investigation of how social navigation can be used 

to assist pedestrians’ wayfinding is missing. 



2.2 LBS in the era of Web 2.0 

Recent years have seen a trend towards incorporating Web 2.0’s “participation” notion into 

LBS. These applications, such as Geonotes (Espinoza et al. 2001), E-Graffiti (Burrell et al. 

2002), CityFlock (Bilandzic and Foth 2008) and Hycon (Hansen et al. 2004), enable users to 

annotate their personal experiences and feelings (i.e. UGCs) to physical places or objects 

during using the systems. Users can also access other users’ UGCs. However, these systems 

can only be viewed as a new form of computer-mediated communication (information 

exchange) which is location-based.  

Volunteered Geographic Information (VGI), termed by Goodchild (2007), is a special 

case of UGC. Much research on VGI focuses on investigating the behaviour of contributors 

and their motivation (Budhathoki et al. 2010), data quality (Kounadi 2009), applications of 

VGI (e.g. disaster risk management) (Poster and Dransch 2010), etc. Recently, the increasing 

ubiquity of GPS-enabled devices has led to the collection of large spatio-temporal datasets, 

such as taxi trajectories. A significant number of papers have presented work aiming to mine 

GPS trajectories of car drivers (e.g. taxi drivers) for route recommendation for car navigation 

(Letchner et al, 2006, Gonzalez et al. 2007, Ziebart et al. 2008, Yuan et al. 2010). Many of 

them try to provide routes with less travel time for car drivers.   

In this paper, we investigate how UGCs/VGIs can be used to provide route 

recommendation for pedestrian navigation. Instead of mining GPS trajectories to provide 

fastest routes, we harness UGCs collected in smart environments to provide pedestrians with 

least complex routes and length-complexity-optimized routes. UGCs in smart environments 

reflect the perspective and experiences of other people who solved their spatial tasks in their 

situation. If most of the other users in similar context consider a specific route as complex, 

probably, this route can also be viewed as complex for the current user in the current context. 

From this aspect, other users can help the current user to define/measure route qualities.  

3. Collective intelligence based route recommendation 

As mentioned before, recommendation methods can help to make UGC useful.  It is also a 

good approach to show the “wisdom of the crowds” (Surowiecki 2004). In this section, we 

propose two collective intelligence based route recommendation methods, which can make 

use of UGC from past navigators (reflecting their wayfinding experiences), and provide 

current navigators with “the least complex route” and “the length-complexity-optimized 

route”. 



3.1 Data Modelling 

In the UCPNavi (Ubiquitous Cartography for Pedestrian Navigation) project, a smart 

environment with an indoor positioning module, and a wireless communication module was 

set up to support navigators’ wayfinding, and facilitate navigators’ interaction and annotation 

with the smart environment. Navigators can contribute their UGCs (e.g. ratings, comments, 

and feedback) to the smart environment during navigating in the smart environment. 

For navigation, the route (from an origin to a destination) navigators need to follow 

can be viewed as route segments connected by decision points (DPs, e.g. street intersections). 

Making correct decisions at DPs is crucial for successful wayfinding. At different DPs, the 

complexity of making correct decisions is different.  

Users are encouraged to give rating for a DP to indicate their perceived complexity of 

making the correct decision (choosing the correct road to follow) at this DP. The rating value 

scales from 1 to 5. The more the complexity, the higher the rating value. A rating for a DP is 

always involved with a pair of connected route segments (the route segment that the user just 

visited, and the route segment that the user is going to visit). The current DP is the junction of 

these two route segments. Therefore, a rating for a DP is modelled as a 5-tuple (user, 

previous, current, next, rating) containing a user ID, a previous DP, a current DP, a next DP, 

and a rating value. It is represented as R_DPuser,previous,current,next. For example, in Figure 1, 

R_DPu,S,A,B = 4 is the rating for DP A, and it means that user u’s perceived complexity of 

navigating from S to B through A is 4. It is important to note that for the same navigator, the 

perceived complexity (effort cost) at a specific DP to its neighbourhoods may be different 

(“some roads are easy to be recognized”). For example, in Figure 1, user u may have the 

following ratings for DP A: R_DPu,S,A,B = 4, R_DPu,S,A,C = 2, R_DPu,S,A,E = 5. 

 

Figure 1. A road network. 

 

 



In the smart environment, users’ moving trajectories may be also employed to 

unobtrusively infer their implicit ratings for DPs. We do not discuss this aspect here. 

3.2 Collective intelligence based route recommendation 

Inspired by the “most popular (viewed, discussed)…” like recommendations on the Web, we 

design some algorithms to provide smart navigation support based on the UGC described in 

section 3.1. The overall UGC collected in the smart environment reflects users’ navigation 

experiences in the smart environment, and can be viewed as users’ collective intelligence. 

These collective intelligence based algorithms can provide users with the least complex route 

and the length-complexity-optimized (LCO) route.  

It is also important to note that, the collective intelligence based route 

recommendations for the current navigator are based on the experiences of past navigators 

(people who have ever navigated in the smart environment before). Current navigator’s 

navigation experiences in the smart environment will be used for assisting future navigators. 

3.2.1 The least complex route 

The goal of this algorithm is to compute the route with least complexity rating between an 

origin and a destination. A route from an origin to a destination includes a sequence of DPs. 

The overall complexity rating of the entire route is simply calculated as the sum of the 

complexity rating of each DP. As a result, the least complex route can be viewed as route with 

a minimal overall complexity rating. 

For every DP, ratings from different users may be available.  We average these ratings 

to represent the collective intelligence based cost for that DP. To be specific, the collective 

intelligence based cost (complexity rating) of navigating from node previous to node next 

through node current (i.e. the current DP), represented as CI_DP(previous, current, next), is 

calculated as the average of all R_DP*,previous,current,next ratings.  

Dijkstra’s algorithm is often used to calculate the shortest (cost) routes from a graph 

(Dijkstra 1959). The basic idea of Dijkstra’s algorithm is to assign some initial distance values 

and try to improve them step-by-step. Figure 2 depicts the pseudo code of the algorithm. 



 

Figure 2. The pseudo code of Dijkstra’s algorithm (adapted from (Wikipedia 2011)). 

 

 

When introducing cost for pairs of connected edges, the least cost route may include 

cycles. For example, in Figure 3, the route with a minimal rating from S to E is (S, A, B, C, A, 

E), which crosses the centre node A twice
1
. 

 

Figure 3. The least complex route crosses the centre node A twice. 

 

 

Therefore, it is inappropriate to simply adapt the cost function in line 12 of Figure 2 to 

“alt:=dist[u]+CI_DP (previous[u], u, v)”, and run Dijkstra’s algorithm. Because at the 
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second step of the main loop (lines 6-14) in Figure 2, node A will be removed from Q (list of 

unvisited nodes), and not checked anymore. Finally, Dijkstra’s algorithm will report that 

“there is no route from S to E”. 

To solve this problem, we use the restricted pseudo-dual graph proposed by Winter 

(2002). The pseudo-dual graph D of an original graph G is defined as: 1) Each edge ei of G is 

represented as a node vi in D, 2) Each pair of connected edges (ei, ej) in G is represented as an 

edge ε connecting nodes vi and vj in D. Winter (2002) proves that the shortest (cost) route 

(single-source/single-target) problem in the original graph G can be transformed to a multi-

sources/multi-targets problem in D. He reduces this problem to a single-source/single-target 

problem by adding a virtual source node and a virtual target node to D. In this new graph D’, 

the shortest (cost) route can be computed by using Dijkstra’s algorithm.  

For our case, a collective intelligence based cost for a DP CI_DPA,B,C can be easily 

assigned to the corresponding edge  in the pseudo-dual graph D’ :  

 

cost(v1,v2) = CI_DP(A, B, C)                                          (1) 

 

Where v1 in D’ is the edge (A, B) in G, and v2 in D’ is the edge (B, C) in G. 

Based on D’, we adapt line 12 of Figure 2 to “alt:=dist[u]+cost(u,v)”, and use 

Dijkstra’s algorithm (Figure 2) to compute the route with least complexity between an origin 

and a destination. The result of this calculation is the least complex route in graph D’. It can 

be easily transformed back to the route in graph G. 

3.2.2 The length-complexity-optimized route (the LCO route) 

Compared to the shortest (distance) route, the least complex route in section 3.2.1 may lead to 

a longer distance between an origin and a destination. Literature has shown that distance is 

one of the most important criteria for route choice (Golledge 1995). As a result, we calculate 

the LCO route, which considers both complexity ratings of DPs, and the Euclidean distance of 

route segments. In order to calculate the LCO route, we assign some weights to the 

complexity rating of DP, and the Euclidean distance. This optimum cost is given by: 

 

CI_Optimal (A, B, C) = λ * CI_DP(A, B, C) + (1-λ) * Dist(B, C)                       (2) 

 

Where Dist(B, C) is the Euclidean distance of route segment (B, C), and CI_DP (A, B, 

C) is calculated as the method in section 3.2.1. λ ∈ (0,1) is the weight. 



Similar to what we did when calculating the least complex route, we also represent 

these optimum costs in the pseudo-dual graph D’. In addition, for every node v in D’ (i.e. an 

edge in the original graph G), we assign the Euclidean distance of the corresponding edge as 

its cost Len(v).  

As a result, based on D’, we adapt line 12 of Figure 2 to “alt:=dist[u]+ λ *cost(u,v)+ 

(1-λ) *Len(v)”, and use Dijkstra’s algorithm (Figure 2) to compute the LCO route between an 

origin and a destination.  

For every smart environment, the optimum value for λ needs be learned. Section 4.3 

gives a detailed description on how to learn the value. 

4. Simulations and results 

In this section, we design some evaluations for the proposed methods. The setting and the 

metrics of the experiments are discussed in section 4.1. The results are presented in section 

4.2 (the least complex route) and section 4.3 (the LCO route). Section 4.4 summarizes the 

findings of the experiments. 

4.1 Experiment setting 

The proposed routes and human performance when following these routes should be 

evaluated in an experimental manner. Because of the high cost of evaluating the algorithms 

with human participants (large-scale field studies are needed in order to provide a meaningful 

evaluation), some simulations are designed. Similar to Haque et al. (2007), two kinds of 

evaluations are performed. 

4.1.1 Setting of the first evaluation 

The first evaluation analyses the least complex route and the LCO route by considering length 

and complexity rating. Its corresponding shortest (distance) route (i.e. from the same origin to 

the same destination) using Dijkstra’s Algorithm is also calculated as a benchmark. The street 

network of the first district of Vienna, Austria is used as the study area.  

At a DP (e.g. a street intersection), the number of available alternatives may affect 

navigators’ perceived complexity of choosing a correct road
2
.The more outgoing alternatives 

at a DP, the more complex people might feel to choose the correct road. Navigators are more 

                                                 
2
 Some other factors may also affect navigators’ perceived complexity of a DP, such as spatial layout, 

signage, differentiation and whether there are landmarks at the DP (Montello 2005). 



likely to give higher complexity rating for a DP that has more outgoing alternatives. As a 

result, the rating a navigator gives to indicate the complexity of a turn from edge (S,A) to edge 

(A,B) is simulated by: R_DPu,S,A,B = (NA-2)/(NA-1), where NA is the number of branches at the 

decision point A.  

For any two nodes (not directly connected) in the street network, the proposed 

methods and Dijkstra’s Algorithm are employed to calculate the least complex route, the LCO 

route and the shortest route respectively. 

4.1.2 Setting of the second evaluation 

The second evaluation simulates human navigators traversing these routes, and compares the 

performance (of navigators) when following the least complex route, the LCO route and its 

corresponding shortest route. The following assumptions are set for the simulated navigator 

(agent): 

(1) If it is told to choose a road at a DP (on the calculated route), it would choose one of 

the outgoing alternatives of this DP (i.e. it does not go back). 

(2) In case the navigator makes a wrong choice at a DP and subsequently arrives at 

another intersection (deviating from the calculated route), it would realize that it has 

made a mistake
3
, and goes back to the previous DP.  

(3) If the simulated navigator has made 10 errors during following the route, it stops. We 

consider it fails to reach its destination. 

 

Similar to Haque et al. (2007), the following metrics are employed when comparing 

the performance of navigators using the shortest route with that of the least complex route, 

and with that of the LCO route: 

 Failed travel: If the navigator has made 10 errors during following the route, its travel 

is considered as a failed travel 

 Total distance travelled when successfully arriving at the destination: the total 

distance travelled by the simulated navigator following the calculated route (including 

distance travelled due to errors) 

 The number of errors when successfully arriving at the destination: the number of 

times the simulated navigator realizes that it is on the wrong route, and goes back to 

the previous DP 
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 Distance of stopping point to the destination when failing to reach the 

destination: the shortest distance between the place where the simulated navigator 

finally stops (after 10 errors) and the destination. With this, we want to know whether 

the proposed routes can bring navigators closer to the destination even if they fail to 

reach the destination. 

4.2 Results: the least complex route 

The street network dataset of the first district of Vienna (Austria) is employed. More than 

135,000 triples of routes (with the length longer than 300 metres, involving at least 1 turn) are 

calculated using the proposed methods and Dijkstra’s Algorithm. 

Figure 4 shows a typical example of a least complex route and its corresponding 

shortest route. The least complex route is only 17% longer than the shortest route, while with 

38% less complexity (in rating) than the shortest route. 

 

Figure 4. A typical example: comparison of a least complex route and its corresponding 

shortest route, complexity rating (36 vs. 58) and distance (1472 metres vs. 1259 metres). 

 

 

4.2.1 Results of the first evaluation: the least complex route 

Figure 5 depicts the comparison in terms of complexity rating. The difference in complexity 

rating is measured as Cshortest – Cleast_complex, where Cshortest and Cleast_complex are the complexity 

ratings of the shortest route and the least complex route respectively. It shows that for all the 

pairs of routes, the least complex route has a lower complexity rating than its corresponding 

shortest route. The average difference in complexity rating between the shortest routes and the 



least complex routes is about 3.68. With the increase of the distance between origin and 

destination, the difference in complexity rating increases. 

 

Figure 5.  Comparison of the complexity rating of the least complex route and its 

corresponding shortest route.  

 

 

Figure 6 shows how the increase of length (in percentage) changes with the decrease 

of complexity rating (in percentage) among different pairs of origin and destination with 

various distances. The increase of length (in percentage) is calculated with (Lleast_complex - 

Lshortest )/ Lshortest * 100%, and the decrease of complexity rating (in percentage) is measured 

with (Cshortest - Cleast_complex)/ Cshortest * 100%, where Cshortest, Lshortest, Cleast_complex and 

Lleast_complex are the complexity ratings and the lengths of the shortest route and the least 

complex route respectively. 

The results show that the least complex routes are on average 7.84% longer than the 

shortest routes, while on average with 9.92% less complexity (in rating) than the shortest 

routes. The gaps (between increase of distance in percentage and decrease of complexity 

rating in percentage) widen with the increase of the distance between origin and destination. 



 

Figure 6. How the increase (in percentage) of length changes with the decrease (in 

percentage) of complexity rating among different pairs of origin and destination with various 

distances. The least complex routes are on average 7.84% longer than the shortest routes, 

while on average with 9.92% less complexity than the shortest routes. 

 

 

In summary, Figure 5 and 6 confirm our expectation that the least complex routes lead 

to improvement of the route qualities (with a less complexity rating). 

4.2.2 Results of the second evaluation: performance of navigators using the least 

complex route 

To compare the performance of navigators following the least complex route and its 

corresponding shortest route, we run the simulated navigator 100 times per route (in total we 

have 135817*3*100 simulations), and use the average value for each metric described in 

section 4.1.2 per route. 

Figure 7 compares the shortest route and the least complex route in terms of the 

percentage of failed travels. The bar graph shows that the average percentage of failed travels 

using the shortest route is considerably higher than the percentage of failed travels using the 

least complex route (19.23% vs. 7.13%). For all different pairs of origin and destination with 

various distances (except the distance shorter than 600 metres), the percentage of failed 

travels using the shortest route is higher than that of using its corresponding least complex 

route. 



 

Figure 7. Comparison of the percentages of failed travels when using the shortest routes and 

the least complex routes. Using the least complex routes raises the chance of reaching a 

destination.  

 

 

Figure 8 depicts the comparison of total distance travelled (left) and the number of 

errors made (right) when the simulated navigator reaches a destination. The bar graphs show 

that the total distance travelled using the shortest routes is bigger than that of its 

corresponding least complex routes. Similar results about the number of errors can be found. 

 

Figure 8. Total distance travelled in metres (left) and number of errors (right) when the 

simulated navigator reaches a destination, comparing the least complex routes and the shortest 

routes. 

 

 

Figure 9 depicts the distance between the place where the simulated navigator finally 

stops (after 10 errors) and the destination. From the results, there is a clear advantage for the 

least complex route in terms of distance of stopping point to the destination. 



 

Figure 9. Distance (in metres) of stopping point to destination, comparing the least complex 

routes and the shortest routes. 

 

 

In summary, when following a least complex route, the simulated navigator reaches 

the destination more often than when traversing the corresponding shortest route. For all 

successful travels, simulated navigators using the least complex routes make fewer errors, and 

travel shorter distance. For all failed travels, simulated navigators following the least complex 

routes get closer to the destination than navigators using the corresponding shortest routes. 

4.3 Results: The length-complexity-optimized route (the LCO route) 

It is clear that the least complex route has a lower complexity rating, but it also leads to a 

longer distance between two locations (see Figure 6). The LCO route tries to find an optimal 

trade-off between the least complex route and the shortest route.  

To estimate the optimum value for λ, we evaluate several hundred values, and use the 

best-performing one for our final simulations. The evaluation considers the difference in 

complexity rating between the least complex route and the LCO route, and the difference in 

length between the shortest route and the LCO route. The goal is to find value for λ that best 

approximates both, complexity rating and distance. Finally, λ is optimized as 20/21 ≈ 0.95. 

Figure 10 shows an example of a shortest route, a least complex route and a LCO 

route. The LCO route is only 5% longer than the shortest route, and 17% shorter than the least 

complex route, while with 14% less complexity (in rating) than the shortest route, and with 

28% more complexity (in rating) than the least complex route. 



 

Figure 10. A typical example: comparison of a shortest route, a least complex route and a 

LCO route, complexity rating (57 vs. 38 vs. 49) and distance (1265 metres vs. 1603 metres vs. 

1333 metres). 

 

 

4.3.1 Results of the first evaluation: the length-complexity-optimized route (the LCO 

route) 

Figure 11 shows the decrease (in percentage) of complexity rating and increase (in 

percentage) of length when comparing the LCO route and the least complex route. The 

increase of length in percentage is calculated with (Lleast_complex - Lshortest)/ Lshortest * 100%, and 

(Loptimized - Lshortest)/ Lshortest * 100%. The decrease of complexity rating in percentage is 

measured with (Cshortest - Cleast_complex)/ Cshortest * 100%, and (Cshortest - Coptimized)/ Cshortest * 

100%. The results show that the LCO routes are on average 2.08% longer than its 

corresponding shortest routes, while on average with 7.54% less complexity (in rating) than 

its corresponding shortest routes. 

 

Figure 11. The decrease (in percentage) of complexity rating (left) and increase (in 

percentage) of length (right). 

 



 

In order to make a clear conclusion, we also compare the gaps (between increase of 

distance in percentage and decrease of complexity rating in percentage) between shortest-

LCO and shortest-least_complex. Figure 12 depicts the results. It shows that the gaps of 

shortest-LCO are considerably bigger than that of shortest-least_complex. It means that the 

LCO routes can achieve a better trade-off between distance and complexity rating than the 

least complex routes. 

 

Figure 12. Comparison of the gaps (between increase of distance in percentage and decrease 

of complexity rating in percentage) between shortest-LCO and shortest-least_complex. The 

gaps of shortest-LCO are considerably bigger. 

 

 

In summary, the LCO routes provide a better trade-off between complexity rating and 

distance than the other two kinds of routes. 

4.3.2 Results of the second evaluation: performance of navigators using the LCO 

route 

Figure 13 compares the shortest route, the least complex route and the LCO route in terms of 

the percentage of failed travels. The bar graph shows the least complex routes achieve the best 

performance in terms of the percentage of failed travels, followed by the LCO routes, and the 

shortest routes (7.13% vs. 15.70% vs. 19.23% on average). For different pairs of origin and 

destination with various distances, similar results can be found. 



 

Figure 13. Comparison of the percentages of failed travels when using the shortest routes, the 

least complex routes and the LCO routes. 

 

 

Figure 14 depicts the comparison of the number of errors made and total distance 

travelled when the navigator reaches a destination. Similar to the results in Figure 13, the least 

complex routes achieve the best performance in terms of the numbers of errors, followed by 

the LCO routes, and the shortest routes (5.48 vs. 5.61 vs. 6.03 on average). 

It is important to note that in terms of total distance travelled, the LCO routes achieve 

the best performance, following by the least complex routes, and the shortest routes (1330 

metres vs. 1340 metres vs. 1377 metres on average). It means that simulated navigators using 

the LCO routes travels less distance compared to navigators using the other two kinds of 

routes. 

 

Figure 14. The number of errors (left) and total distance travelled in metres (right) when the 

navigator reaches the destination. Be aware of the right bar graph, it shows that simulated 

navigators using the LCO routes travel less distance compared to navigators using the other 

two kinds of routes. 

 

 

Figure 15 depicts the distance between the place where the simulated navigator finally 

stops (after 10 errors) and the destination. From the results, there is a clear advantage for the 



least complex route and the LCO route in terms of stopping distance to the destination. The 

difference in distance between the least complex route and the LCO route is considerably 

smaller. 

 

Figure 15. Distance (in metres) of stopping point to destination, comparing shortest routes, 

least complex routes and LCO routes. 

 

In short, for successful travels, navigators using the LCO routes travel less distance 

compared to navigators using the other two kinds of routes. For metrics of total distance 

travelled and distance of stopping point to the destination, the difference between the least 

complex route and the LCO route is considerably smaller. However, for all the metrics, using 

the LCO routes leads to a better performance compared to using the shortest routes. 

4.4 Summary 

In summary, the main findings of the simulations are as follows: 

 Compared to the shortest routes, the least complex routes and the length-complexity-

optimized (LCO) routes lead to less complexity rating, and thus increase the chances 

of reaching the destinations when traversing the routes (Figures 5, 6, 7, 12 and 13). 

 Compared to navigators using the shortest routes, when successfully reaching the 

destinations, navigators using the least complex routes and the LCO routes make 

fewer mistakes and travel shorter distance (Figures 8 and 14). 



 Compared to navigators using the shortest routes, when failing to reach the 

destinations, navigators using the least complex routes and the LCO routes get closer 

to the destinations (Figures 9 and 15)
4
. 

 Compared to the least complex route and the shortest route, the LCO routes can 

achieve a better trade-off between complexity and distance (Figure 12). 

 

In conclusion, the least complex route and the LCO route lead to less complexity 

rating, and thus improve the performance of navigators’ tasks (more chances of reaching the 

destination, fewer mistakes made and shorter distance travelled). 

Some drawbacks of the current simulations have to be noted. Literature has shown that 

the perceived complexity of a DP is often affected by many factors, such as signage (e.g. 

street names), spatial layout (e.g. the number of outgoing branches at the DP), visibility, 

differentiation, and whether there are landmarks at the DP (Montello 2005, Golledge 1999, 

Raubal and Winter 2002). In this paper, a navigator’ complexity rating for a DP was 

simulated simply by considering the number of outgoing alternatives at the DP. Another 

criticism for the above evaluation is the simple behaviour designed to simulate human route-

following. In the real world, humans often employ some other strategies when following a 

route (Montello 2005, Klippel et al. 2009). However, to some extent, the simulated 

complexity ratings partly reflect human’s judge on complexity of DPs, and the simulated 

navigator also imitates some simple behaviour of human route-following.  As the goal of the 

paper is to show how UGCs can be used to assist pedestrians’ wayfinding, we argue that the 

designed simulations are sufficient for evaluating the proposed methods. In the meantime, we 

also expect that, compared the simulations, evaluation in field with human navigators will 

provide stronger and more compelling results about the advantages of collective intelligence 

based routes. The main reason is that compared to simulated navigators, human navigators 

can give more accurate ratings to indicate their actual perceived complexity of a DP. In 

addition, human navigators will use more advanced strategies when following a route. We 

will investigate these aspects in a follow-up project. 

                                                 
4
 Compared to navigators using the least complex routes and the LCO routes, navigators using the 

shortest routes make more errors during navigation, and therefore they are more often needed to 

recover from errors, which really slows down their wayfinding progress. 



5. Conclusions and future work 

The ubiquity of mobile devices (such as cell phones and PDAs) has led to the introduction of 

LBS. In this paper, we focused on one of the most important LBS applications - mobile 

pedestrian navigation systems. Current mobile navigation systems often ignore the social 

navigation aspect (i.e. using other people’s experiences) which however is often used in our 

daily life. In addition, in the era of Web 2.0, more and more UGC is created/generated in 

many LBS applications. Making use of these UGCs is becoming more and more crucial. 

In recognizing these challenges, we proposed the collective intelligence based route 

recommendation methods. The methods can make use of UGC (reflecting other navigators’ 

wayfinding experiences), and provide navigators with the least complex route and the length-

complexity-optimized (LCO) route. It is important to note that the proposed methods can be 

applied to both outdoor and indoor pedestrian navigation. 

In order to analyse and evaluate the proposed routes and human performance when 

following these routes, some simulated experiments using the street network of the first 

district of Vienna (Austria) were designed. The simulated navigator (agent) was implemented 

to imitate human navigators’ behaviours. Therefore, the designed simulations are sufficient 

for evaluating the proposed methods. 

Our expectation was that the collective intelligence based routes (i.e. the least complex 

route and the LCO route) lead to less complexity rating, and thus improve the performance of 

navigators’ actual wayfinding process. The results of the simulated experiments confirmed 

our expectation. It showed that compared to the shortest route, the collective intelligence 

based routes have a significant improvement of the route quality (with less complexity rating), 

thereby more effectively supporting users’ wayfinding tasks (more chances of reaching the 

destination, fewer mistakes made and shorter distance travelled). More simulations with 

different road networks and different behaviour need to be done. We also plan to test the 

methods in a real world setting with human navigators in the follow-up project named 

EmoMap. 

The proposed methods can be further improved by the following aspects:  

 Considering implicit ratings: The ratings on DPs can be contributed explicitly and 

implicitly. Explicit contribution requires users to provide ratings actively which brings 

some burden to users. For implicit contribution, the system tracks users’ implicit 

feedback (e.g. moving tracks) to unobtrusively infer their ratings (Ovaska and Leino 

2008). With more ratings available, the proposed methods can provide more 

appropriate routes to the current navigator.  



 Incorporating collaborative filtering: The collective intelligence based route 

recommendation algorithms make popularity-based recommendation to individual 

users. They are not especially made for any particular user but all get the same 

recommendations (Ovaska and Leino 2008). To make more relevant 

recommendations, personalized collaborative filtering (CF) should be introduced. A 

vision for this is “other people similar to you often chose this route”. CF includes two 

steps: 1) find out similar users (this step can be viewed as assigning the current user to 

a group), 2) carry out the “popularity-based recommendation” on this group of users. 

Therefore, the proposed methods can also be used in the second step of CF. 

 Context-aware route recommendation: Context-awareness is a key requirement for 

LBS applications. For different contexts (e.g. weather, companion, and season), 

pedestrians may need different kinds of routes. When incorporating context-awareness 

into the proposed methods, two key issues have to be considered: context modelling 

(identifying relevant context parameters) and context similarity. With these, the 

proposed methods can be easily adapted for context-aware route recommendation. 
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