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ABSTRACT: GPS-based pedestrian navigation systems have become increasingly popular. Different interface 

technologies can be used to communicate/convey route directions to pedestrians. This paper aims to empirically study 

the influence of different interface technologies on spatial knowledge acquisition in the context of GPS-based 

pedestrian navigation. A field experiment was implemented to address this concern. Firstly, the suitability of the 

evaluation methods in assessing spatial knowledge acquisition was analyzed empirically (focusing on the ability of 

differentiating “familiar” and “unfamiliar” participants). The suitable methods were then used to compare the influence 

of mobile maps, augmented reality, and voice on spatial learning. The field test showed that in terms of spatial 

knowledge acquisition, the three interface technologies led to comparable results, which were not significantly different 

from each other. The results bring some challenging issues for consideration when designing mobile pedestrian 

navigation systems. 
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11..  IInnttrroodduuccttiioonn  

Recent years have seen raising interests in using mobile phones to assist pedestrian wayfinding. Mobile 

pedestrian navigation systems are designed for this purpose. They often employ Global Positioning System 

(GPS) or other positioning methods for continuously tracking of mobile users, and thus provide users with 

real-time and in-situ route information (directions). Different interface technologies can be used to 

communicate/convey route information to pedestrians, such as mobile maps, voice, 3D, and images. 

Recently, mobile augmented reality (AR), which augments the real world camera view with virtual 

information overlays, is considered as another promising technology for conveying route information. 

There are many field tests studying the effectiveness of different interface technologies in supporting 

pedestrian navigation (Rehrl et al. 2010; Walther-Franks 2007). In many tests, subjects’ wayfinding 

performance was often evaluated and compared, such as how many errors they made during wayfinding, 

and how much time they took to finish the route. In contrast to these field tests, this article aims at studying 

the influence of different interface technologies on spatial knowledge acquisition. Spatial knowledge 

acquisition is needed to build a mental representation of space, which is essential for wayfinding and other 

spatial tasks. With sufficient spatial knowledge about an environment, people can still find their way when 

navigation systems fail (e.g., out of battery). Currently, more and more people are relying (or even over-

relying) on navigation systems to find ways. Therefore, it is important to investigate how these systems 

affect the acquisition of spatial knowledge during navigation. 

The goal of this article is to empirically study the influence of mobile maps, AR, and voice on spatial 

knowledge acquisition in the context of GPS-based pedestrian navigation. Three navigation prototypes, 

implementing mobile map-based, AR-based, and voice-based guidance respectively, were developed based 

on recent findings in literature. Subjects were asked to use the interfaces to solve some real-world 

navigation tasks in the city center of Salzburg (Austria).  

The rest of this article is structured as follows. Section 2 outlines related work. In section 3, the three 

navigation prototypes are implemented by integrating recent findings in literature. The study design is 
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presented in section 4. Section 5 analyzes and discusses the results, focusing on two issues: the suitability 

of the evaluation methods in assessing spatial knowledge acquisition, and the influence of the three 

interface technologies on spatial knowledge acquisition. Finally, we draw conclusions and present future 

work.  

 

22..  RReellaatteedd  WWoorrkk  

In this section, we describe related work on spatial knowledge acquisition, and empirical studies 

investigating spatial knowledge acquisition in pedestrian navigation.  

 

2.1 Spatial Knowledge Acquisition 
Three levels of spatial knowledge can be distinguished (Siegel and White 1975): 1) Landmark knowledge 

comprises salient points of reference in the environment, 2) Route knowledge puts landmarks into sequence 

(e.g., navigation paths), and 3) Survey knowledge allows people to locate landmarks and routes with a 

general frame of reference. Spatial knowledge, or mental representation of space, is essential for 

wayfinding. During wayfinding (especially without any external route aids), humans make route decisions 

to find a connection between a start point and an end point. Therefore, sequences connecting decision 

points are planned. When moving, this plan is monitored permanently by referring to objects of the real 

world and comparing them with the mental representation for route confirmation (Gartner and Hiller 2009). 

Spatial knowledge acquisition, or spatial learning, can help to build this kind of mental representation. 

Various methods can be used to acquire spatial knowledge, including sensual perception of the real world 

as well as acquisition from models of the real world, such as maps, 3D, AR and verbal description. 

When analyzing mental maps (the results of spatial knowledge acquisition), the method of sketch map is 

often used. Byrne (1979) demonstrated distorted distances and angles in sketch maps. Tversky (1981) and 

Thorndyke et al. (1982) pointed out that the skills of drawing correct angles and finding a way were not 

significantly correlated. It is therefore useful to stick to topological interpretation of sketch maps only 

(Lynch 1960). In contrast to the method of sketch map, Münzer et al. (2006) employed a route recognition 

task (ask participants to recall how they turned at each intersection) and a spatial relocation task (ask 

participant to place pictures, representing landmarks and intersections, at their correct locations on a map 

showing the test area) to assess acquisition of route knowledge and survey knowledge respectively.  

In this article, the methods provided by Münzer et al. (2006) will be employed in the field experiment. 

Firstly, the suitability of these methods in assessing spatial knowledge acquisition will be partially 

evaluated. The suitable methods will be then used to compare the influence of mobile maps, AR, and voice 

on spatial knowledge acquisition.  

 

2.2 Related Empirical Studies 
There are some studies empirically investigating the acquisition of spatial knowledge in the context of 

pedestrian navigation. Gartner and Hiller (2009) investigated maps with different display sizes and showed 

that display size influenced spatial knowledge acquisition during navigation. Ortag (2005) studied the 

differences of spatial knowledge acquisition with mobile maps and verbal instructions during navigation. 

Krüger et al. (2004) compared the impact of different modalities (i.e., audio and graphics; route directions 

were indicated on images) on spatial knowledge acquisition during navigating in a zoo, and concluded that 

the acquisition of route knowledge was much better than that of survey knowledge. Münzer et al. (2006) 

empirically compared paper maps with three electronic navigation systems, and found that navigation 

system users showed good route knowledge and poor survey knowledge, in contrast, paper map users 

showed better survey knowledge and nearly perfect route knowledge. Münzer et al. (2006) also showed that 

variations of information presentation within electronic navigation systems did not lead to significant 

differences in spatial knowledge acquisition. 

It is important to note that most of the above studies employed the ‘Wizard of Oz’ prototyping (e.g., 

without using the GPS) (Wikipedia 2011). In contrast, Ishikawa et al. (2008) compared the acquisition of 

spatial knowledge with a map-based GPS navigation system, paper maps and direct experience of 

travelling, and showed a poorer performance of subjects using the GPS-based system. However, it is 



important to note that the maps used in the navigation system showed the surrounding area with a ‘north-

up’ allocentric perspective; also relevant landmarks were missing or not purposely highlighted. To the best 

of our knowledge, none of the field test compares the influence of mobile maps, AR, and voice on spatial 

knowledge acquisition in the context of GPS-based pedestrian navigation.  

 

33..  CCoonnvveeyyiinngg  RRoouuttee  IInnffoorrmmaattiioonn  wwiitthh  MMoobbiillee  MMaappss,,  AARR,,  aanndd  VVooiiccee  

For studying spatial knowledge acquisition with different interface technologies, we used three self-

implemented mobile navigation systems running on Apple’s iPhone 4. These systems used map-based, AR-

based, and voice-based interfaces respectively. Recent findings on pedestrian navigation from literature 

were integrated and considered when developing these systems.  

Research on cognitive mapping and wayfinding has shown that routes are often thought as a sequence of 

turns (Tversky 1992; MacEachren 1995). Tversky and Lee (1999) showed that both route maps and route 

directions maintained a similar structure in schematizing information, and focused on communicating turn 

directions at each turning point (decision point). Therefore, in order to effectively support wayfinding, 

route guidance must convey turning point information in a clear and easy-to-understand manner, and the 

supplementary information (local context and overview context) should ‘only be included when it does not 

reduce the clarity of the turning point information’ (Agrawala 2001, p. 27). We applied this consideration 

when designing the three navigation systems. 

 

3.1 Map-based Interface 
The main factor that has to be considered when designing map-based navigation systems is the small size 

of mobile screens. Literature provides some useful suggestions for route map design (Radoczky 2004; 

Gartner and Radoczky 2005): 1) providing an overview of the whole route at the beginning of wayfinding 

and also during route following, 2) automatically adapting the map view to the position of the user, 3) 

providing a ‘track-up’ egocentric map view, 4) supporting scale changes, 5) clearly distinguishing the past 

and the future paths. Related research on landmarks was also considered when designing route maps 

(Michon and Denis 2001; Elias and Paelka 2007).  

 

 
Figure 1. A screenshot of the map-based interface, with an egocentric view, distinction between the past and future paths, automatic 

adaptation to real-time location, zooming and panning functions, etc. (© Salzburg Research, Map data: OpenStreetMap and 

Contributors, CC-BY-SA). 

 

 



A screenshot of the map-based interface is shown in Figure 1. The route is visualized as a red line filled 

with small white arrows pointing the forward direction. The past path is dyed in a lighter color to be clearly 

separated from the future one. The current position is determined by GPS, improved by a route matching 

algorithm. A ‘track-up’ egocentric map view is provided. In order to provide a better readability, the 

orientation of street names is changed accordingly. For visualizing relevant landmarks, the last three 

abstraction levels (i.e., words, symbol and icon) suggested by Elias and Paelka (2007) are used. Finally, 

some functions are also provided. Users can press the button in the middle of the header to fade out the 

route for a better readability of street names on the map tiles. Zooming and panning functions are also 

provided. 

 

3.2 AR-based Interface 
In the AR-based route guidance, route information is overlaid on the real world camera view. The GPS 

module, magnetometer, and tilt sensor on the mobile devices are used to calculate the position of the 

overlay information. The information includes a green virtual path showing the route to be followed. Also 

street names of the route and relevant landmarks along the route are designed as overlay information. In 

addition to the graphic interface, a vibration alarm alerts when a decision point is reached. Figure 2 shows a 

screenshot of the AR-based interface. 

 

 
Figure 2. A screenshot of the AR-based interface, with a real world camera view, route overlay, street names and relevant 

landmarks (© Salzburg Research). 

 

 

3.3 Voice-based Interface 
The development of the voice-based interface was based on the findings of the previous project SemWay. 

The project studied how people describe the world and routes, and designed a formal model of navigation 

language. Three sets of particles forming route instructions were extracted and modeled (Rehrl et al. 2009): 

motion concepts (a set of re-occurring verbs describing motion patterns, such as turn, walk, pass and cross), 

direction concepts (a set of re-occurring spatial relations which can be used to anchor motion with 

landmarks, such as along, in, out, direction of, to, through, and through between), and landmark concepts 

(reference entities along different route segments). With the model, semantic-based route instructions 

instead of metric-based instructions can be provided, for example, ‘walk straight, pass the theatre, and walk 

to the crossing’ instead of ‘walk straight for 103 m’. Voice instructions for each decision point of the test 

route were automatically generated by using this semantic-based model (Rehrl et al. 2010).  

The user interface of the voice-based guidance includes a single screen with a slider for controlling the 

sound volume and a button for repeating the last instruction. When a user gets close to a decision point, the 

mobile device vibrates, and plays the voice instruction describing the actions from this decision point to the 

next.   

 

44..  SSttuuddyy  DDeessiiggnn  



4.1 Study Routes and Participants 
A route in the city center of Salzburg was selected for the test. It was divided into three sub-routes, each 

with 9 decision points (e.g., interactions where multiple outgoing choices exist). The surroundings of these 

sub-routes were characterized by residential and business areas. 

Twenty four participants took part in the study (12 female and 12 male). The mean age was about 42 

years (range 21-73). They were paid for their participation. All of them were German-speaking people. 

 

4.2 Tasks for Assessing Spatial Knowledge Acquisition 
At the end of each sub-route, participants were asked to give an approximate direction to the starting point 

of the current sub-route (‘pointing task’). In addition, they had to finish the following tasks assessing their 

acquisition of spatial knowledge. For each sub-route, a corresponding photo album containing 11 randomly 

numbered pictures was given to them. Seven of the pictures were taken along the current sub-route (5 at 

intersections and 2 within route segments), using the perspective of route following. The other four pictures 

taken at other off-route places (2 at intersections) were introduced as ‘fake’ pictures. For pictures taken at 

intersections, all possible outgoing choices (branches) were labeled (‘A’, ‘B’, ‘C’ …). Participants were 

then asked to write down the IDs of all pictures that they thought were along the current sub-route 

(‘landmark recognition task’). In addition, for the chosen pictures that were at intersections, participants 

should indicate the turn (‘A’, ‘B’, ‘C’ …) they had taken at each of them (‘route direction task’). Landmark 

recognition task and route direction task were used to assess the acquisition of landmark knowledge and 

route knowledge respectively. Finally, participants were asked to place/write the IDs of the chosen pictures 

on an A4 paper, which showed a simple map of the current area, with the start point and the end point 

marked on the map (the sub-route was not indicated, and street and building names were erased). This 

‘landmark placement task’ helped to assess the acquisition of survey knowledge.  

 

4.3 Design and Procedure 
Participants were randomly divided into three groups, each with 8 participants (4 female and 4 male). A 

within-subject design and a counterbalancing consideration were used for the test, i.e., for each sub-route, 

these three groups each used one of the navigation prototypes (mobile maps, AR, and voice). When they 

reached the next sub-route, they switched to another prototype. Each participant was accompanied by two 

researchers. One observed the test run and guided through the interviews and the other collected 

quantitative and qualitative performance measurements (e.g., stops, and reasons for them). Participants’ 

movement, interaction with the navigation prototypes, task completion time, and GPS accuracy were 

logged on mobile phones.  

At the beginning of each test, participants had to complete the Santa Barbara Sense of Direction test 

(Hegarty et al. 2002) to measure their spatial abilities. After that, we explained the basic usage of the 

pedestrian navigation systems and gave a short demonstration of the prototypes.  

After a brief training session, the participants were led to the starting point of the first sub-route. Their 

task was to navigate to the end of the sub-route. If participants decided wrongly at a decision point, the 

observing researcher used gestures to indicate the correct choice. No other assistance was given during 

navigation. In order to keep the influence on participants to a minimum, the researchers walked several 

meters behind them. When reaching the end of the sub-route, participants were asked to answer 

questionnaires assessing usability and task load, and give some further qualitative feedback and comments. 

In addition, they were asked to do the following tasks one by one: indicating their familiarity with the 

current sub-route before the test, solving the pointing task, the landmark recognition task, the route 

direction task, and the landmark placement task. None of the tasks had a time limit for answering. Only 

accuracy performance was measured.  

When finishing all these tasks, participants switched to another prototype, and the same procedure was 

repeated for the next sub-route. Each test was completed within 1.5 hours in total. 

 

55..  RReessuullttss  aanndd  DDiissccuussssiioonn  



The field experiment was completed in July 2011. All participants successfully completed the navigation 

tasks. The results of the experiment included two parts: wayfinding performance and user experience, and 

spatial knowledge acquisition. In this article, we report the results of spatial knowledge acquisition.  

As mentioned above, the spatial knowledge acquisition test was conducted within a framework including 

many other empirical tests, in which familiarity with the area was not the only criterion in selecting 

participants. Therefore, not all participants were unfamiliar with the sub-routes. In total, 32 participant/sub-

route pairs were marked with ‘unfamiliar’i (10 for mobile maps, 13 for AR, and 9 for voice), and the other 

40 participant/sub-route pairs were ‘familiar’ii (14 for mobile maps, 11 for AR, and 15 for voice). The 

coexistence of ‘unfamiliar’ and ‘familiar’ pairs gives us a good opportunity to investigate the suitability of 

the proposed tasks in assessing spatial knowledge acquisition.  

In this section, we firstly investigate the suitability of the tasks, mainly focusing on their ability in 

differentiating “familiar” and “unfamiliar” participants. The suitable tasks will then be used to compare the 

influence of mobile maps, AR, and voice on spatial knowledge acquisition. The analysis of the latter issue 

will only use the results from the 32 ‘unfamiliar’ participant/sub-route pairs. 

 

5.1 The Suitability of the Employed Tasks in Assessing Spatial Knowledge Acquisition 
5.1.1 Results  
The pointing task, the landmark recognition task, the route direction task, and the landmark placement task 

were used in the experiment to assess the acquisition of spatial knowledge. This section analyzes the results 

of these tasks, comparing participants who were familiar and participants who were unfamiliar with the 

sub-routes. We aim to study whether these tasks can differentiate ‘familiar’ and ‘unfamiliar’ participants. 

In the pointing task, participants were asked to give an approximate direction to the starting point of the 

sub-routes. Their performances were measured as the deviation between actual directions and pointed 

directions. The deviations were measured in degrees. The results of the pointing task are given in Figure 3. 

On average, participants who were familiar with the sub-routes performed slightly better than participants 

who were unfamiliar (25° versus 29° deviation). A two-way analysis of variance (ANOVA) showed that the 

interaction between sub-routes and familiarity was not significant [F(2,66) = 0.079, p=0.924]. There was 

also no significant difference found between ‘familiar’ and ‘unfamiliar’ participants [F(1,70) = 0.124, 

p=0.727]. 

 

 
Figure 3. Results of the pointing task (deviation in degrees). Vertical error bars denote 95% confidence intervals.  

 

 

In the landmark recognition task, participants were asked to choose pictures that they thought were along 

the sub-routes. Their performances were measured by counting the number of correctly chosen pictures. 

Figure 4 shows the results. On average, participants who were familiar with the sub-routes performed much 

better than participants who were unfamiliar (13% versus 34% errors). The interaction between sub-routes 

and familiarity was not significant [F(2,66) = 1.544, p=0.221]. However, the difference between ‘familiar’ 

and ‘unfamiliar’ participants was very significant [F(1,70)= 19.556, p<0.001]. 



 
Figure 4. Results of the landmark recognition task (mean percent error). Vertical error bars denote 95% confidence intervals.  

 

The route direction task was designed to assess the route knowledge acquisition during navigation. The 

score was calculated by counting the number of wrong turning directions in participants’ responses to the 

route direction task. If the participants did not remember how they turned at an intersection shown on a 

picture, we counted an error as well. Figure 5 shows the mean percent error in the route direction task. 

Participants who were familiar with the sub-routes performed much better than participants who were 

unfamiliar (18% versus 42% errors). The interaction between sub-routes and familiarity was not significant 

[F(2,66) = 2.528, p=0.087]. However, the difference between ‘familiar’ and ‘unfamiliar’ participants was 

very significant [F(1,70)= 22.725, p<0.001]. 

 

 
Figure 5. Results of the route direction task (mean percent error). Vertical error bars denote 95% confidence intervals.  

 



 

In the landmark placement task, participants had to write/place the IDs of the chosen pictures on an A4 

size map of the area. For assessing the acquisition of spatial knowledge, the distance (deviation) between 

the placed position and the correct place on the paper map was measured in centimeters, and then 

transformed to meters in a real world scale. If a picture was missing, its deviation was set as the length of 

the corresponding sub-route. For each participant, the averaged deviation was taken as his/her score. The 

results are presented in Figure 6. Again, participants who were familiar with the sub-routes performed 

much better than participants who were unfamiliar (76 m versus 214 m). The interaction between sub-

routes and familiarity was not significant [F(2,66) = 0.393, p=0.677]. However, the difference between 

‘familiar’ and ‘unfamiliar’ participants was very significant [F(1,70)= 15.649, p<0.001]. 

 

 
Figure 6. Results of the landmark placement task (mean deviation in meters). Vertical error bars denote 95% confidence intervals.  

 



 

In summary, the results show that for all four tasks, people familiar with the sub-routes performed better 

than people who were unfamiliar with the sub-routes. The difference in the pointing task was not 

significant. However, the differences in the landmark recognition task, the route direction task, and the 

landmark placement task were all significant. 

 

5.1.2 Discussion 
The underlying hypothesis of a suitable task for assessing spatial knowledge acquisition is that: People with 

more spatial knowledge about an environment perform better in the task. In the experiment, participants 

had two kinds of familiarities with the sub-routes: ‘familiar’ and ‘unfamiliar’. It is obvious that people who 

were familiar with the sub-routes had more knowledge about the environment, compared to people who 

were unfamiliar. Therefore, by comparing the performance of ‘familiar’ and ‘unfamiliar’ pairs, we can 

investigate whether these proposed tasks can differentiate ‘familiar’ and ‘unfamiliar’ participants, which 

can then be used to judge the suitability of the tasks. 

The results of the pointing task showed no significant difference between ‘familiar’ and ‘unfamiliar’ 

participants. Two possible explanations can be argued for this result. In the first case, the pointing task has a 

poor ability in differentiating ‘familiar’ and ‘unfamiliar’ participants, and is therefore not suitable for 

assessing spatial knowledge acquisition. However, the results might also mean that, ‘unfamiliar’ 

participants learnt a lot during navigation, and were therefore as good as participants who were ‘familiar’ 

with the test environment. The current experiment did not provide additional information to favor one of 

the above two cases. Therefore, no clear conclusion about the suitability of the pointing task in assessing 

spatial knowledge acquisition can be made.  

In contrast, in the landmark recognition task, route direction task, and landmark placement task, 

significant differences were found between ‘familiar’ and ‘unfamiliar’ participants (with all p-values 

smaller than 0.001). In all three tasks, people who were familiar with the sub-routes performed much better 

than people who were unfamiliar. In other words, for all three tasks, people with more knowledge about the 

sub-routes will perform considerably better than people with less spatial knowledge. This suggests that the 

above three tasks can differentiate ‘familiar’ and ‘unfamiliar’ participants.  

 

5.2 The Influence of Mobile Maps, AR, and Voice on Spatial Knowledge Acquisition  
5.2.1 Results 
Results from section 5.1 show that the landmark recognition task, the route direction task, and the landmark 

placement task can differentiate ‘familiar’ and ‘unfamiliar’ participants. Therefore, the three tasks will be 

used to compare the influence of mobile maps, AR, and voice on spatial knowledge acquisition. As 

mentioned above, we only considered the results from participants who were unfamiliar with the sub-

routes. In total, we had 32 participant/sub-route pairs (10 for mobile maps, 13 for AR, and 9 for voice). The 

male-female ratios were similar in the three interface technologies. Figure 7 shows the results.   

 



Figure 

7. Comparison of the influence of mobile maps, AR, and voice on spatial knowledge acquisition: the landmark recognition task 

(mean percentage error), the route direction task (mean percentage error), and the landmark placement task (mean deviation in 

meters). Vertical bars denote 95% confidence intervals.  

 



 

In the landmark recognition task, AR users performed best with 33% errors, followed by map users with 

34% errors, and voice users with 37% errors. The interaction between sub-routes and interface technologies 

was not significant [F(4,23) = 1.405, p=0.264]iii. No significant difference was obtained among the three 

interface technologies [F(2,29) = 0.097, p=0.908]. 

In terms of the route direction task, map users and AR users performed best with 40% errors, followed by 

voice users with 47% errors. The interaction between sub-routes and interface technologies was not 

significant [F(4,23) = 0.740, p=0.575]. No significant difference was obtained among the three interface 

technologies [F(2,29) = 0.659, p=0.527]. 

For the landmark placement task, voice users performed best with a mean deviation of 203 m, followed 

by AR users with 215 m, and map users with 222 m. The interaction between sub-routes and technologies 

was not significant [F(4,23) = 1.069, p=0.485]. No significant difference was obtained among the three 

interface technologies [F(2,29) = 0.609, p=0.394]. 

To sum up, for all three tasks, the differences among the three interface technologies were not significant 

at the 5% level. It is also worth noting that, in all three interface technologies, participants did not perform 

so well in either of the three tasks (about 33%-47% errors in the first two tasks, about 42%-46% of the 

route length in the last task).  

 

5.2.2 Discussion  
In our field test, difference among mobile maps, AR, and voice was not significant in terms of spatial 

knowledge acquisition. All three technologies led to comparable poor results. These non-significant results 

are consistent with the findings of Münzer et al. (2006), in which they compared paper maps with three 

electronic navigation systems, and showed that the three navigation systems did not lead to significant 

differences in spatial knowledge acquisition.  

One of the possible interpretations of the above results can be the effect of the ‘active encoding principle’ 

(Münzer et al. 2006): Only information that is ‘actively’ processed during the primary wayfinding activity 

is learnt and remembered. The design of the three navigation prototypes integrated recent findings of 

pedestrian navigation, most of which aimed to reduce pedestrians’ cognitive workload during wayfinding. 

Communication of route directions in all of the prototypes was optimized to make navigation as easy as 

possible. For example, with the help of GPS, users were free from the mental effort of continuously 

maintaining the sense of where they were. In addition, a mental spatial transformation was not needed as an 

egocentric frame of reference was employed in all three interface technologies (egocentric map views in the 

map-based interface, view-based live camera pictures with overlays in the AR-based interface, and ‘turn 

right/left’ like instructions in the voice-based interface). In short, for all three interface technologies, 

participants did not need much active mental effort to derive direction information; they could just 

‘passively’ follow the readily available ‘turn by turn’ information to reach the destination. As spatial 

learning is an effortful process (Aginsky and Rensink 1997; Münzer et al. 2006; Parush et al. 2007), all 

three interface technologies led to poor results in spatial knowledge acquisition, which were also not 

significant from each other. However, in order to draw a clear conclusion, more empirical studies should be 

done on this aspect.  

 

66..  CCoonncclluussiioonnss  aanndd  FFuuttuurree  WWoorrkk  

Recent years have witnessed an increased interest in GPS-based pedestrian navigation systems. More and 

more people are relying (or even over-relying) on pedestrian navigation systems to find ways. Therefore, it 

is essential to study how these systems affect the acquisition of spatial knowledge, which is required when 

navigation systems fail. 

This article studied the influence of different interface technologies (mobile maps, AR, and voice) on 

spatial knowledge acquisition in a field test in an urban environment. The field test showed that the 

landmark recognition task, route direction task and landmark placement task can differentiate ‘familiar’ and 

‘unfamiliar’ participants. The field test also showed that in terms of spatial knowledge acquisition, the 

difference among the three interface technologies was not significant. Some possible interpretations of the 

results were discussed.  



In the future, we will analyze more aspects of the evaluation methods, such as the ability to identify 

smaller differences of the performances of spatial learning. In addition, a more in-depth analysis of the 

influence of different interface technologies on spatial knowledge acquisition will be done.  

The results of the field test also brought some considerations for designing mobile pedestrian navigation 

systems: Do users care about spatial learning during navigation? If yes, how can we design navigation 

systems, which not only guide users from A to B efficiently, but also support them to acquire spatial 

knowledge during navigation? Related findings of spatial cognition and human wayfinding together with 

cartographic communication and usability studies should be integrated to address these challenges.   
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i ‘unfamiliar’: participants who were new to the sub-routes 
ii ‘familiar’: participants who had been to the sub-routes before. 
iii As suggested by many statistic textbooks, if the interaction is not significant, we can then examine each factor without needing to 

qualify the effects because of the interaction. 


