
Teaching and Learning with Jupyter
Lorena A. Barba, Lecia J. Barker, Douglas S. Blank, Jed Brown, Allen B. Downey, Timothy George, Lindsey J. Heagy,
Kyle T. Mandli, Jason K. Moore, David Lippert, Kyle E. Niemeyer, Ryan R. Watkins, Richard H. West, Elizabeth

Wickes, Carol Willing, and Michael Zingale

2019-05-08

2

Contents

1 Introduction 5
Acknowledgments . 6

2 Why we use Jupyter notebooks 7
2.1 Why do we use Jupyter? . 7
2.2 But first, what is Jupyter Notebook? . 7
2.3 Course benefits & anecdotes . 9
2.4 Student benefits . 15
2.5 Instructor benefits . 16
2.6 Conclusions . 16

3 Notebooks in teaching and learning 17
3.1 Oh the places your notebooks will go! . 17
3.2 Before You Begin… . 22

4 A catalogue of pedagogical patterns 27
4.1 Introduction . 27
4.2 Shift-Enter for the win . 27
4.3 Fill in the blanks . 28
4.4 Target Practice . 28
4.5 Tweak, twiddle, and frob . 29
4.6 Notebook as an app . 30
4.7 Win-day-one . 30
4.8 Top-down sequence . 31
4.9 Two bites at every apple . 32
4.10 Coding as translation . 32
4.11 Symbolic math over pencil + paper . 33
4.12 Replace analysis with numerical methods . 33
4.13 The API is the lesson . 34
4.14 Proof by example, disproof by counterexample . 34
4.15 The world is your dataset . 35
4.16 Now you try (with different data or process) . 36
4.17 Connect to external audiences . 36
4.18 There can be only one . 37
4.19 Hello, world! . 37
4.20 Test driven development . 38
4.21 Code reviews . 39
4.22 Bug hunt . 39
4.23 Adversarial programming . 39

5 Jupyter Notebook ecosystem 41
5.1 Language support: kernels . 41
5.2 Using Jupyter notebooks . 41

3

4 CONTENTS

5.3 Authoring Jupyter notebooks . 42
5.4 Tips and tricks . 49
5.5 Gotchas . 50

6 Getting your class going with Jupyter 53
6.1 Local installation on students’ or lab computers . 53
6.2 Jupyter on remote servers . 55
6.3 Distribution and collection of materials . 58
6.4 Assessing student learning with Jupyter notebooks . 59
6.5 How do you create Jupyter notebooks for reuse and sharing? . 60
6.6 Jupyter: a 21st Century genre of Open Educational Resources and practices 61

7 Usage case studies 63
7.1 Jupyter notebooks in support of scaling for large enrollments . 63
7.2 The “CFD Python” story: guiding learners at their own pace . 64
7.3 Analyzing music with music21 . 65
7.4 Interactivity in computer science (high school and middle school) . 66
7.5 Interactive geophysics with Jupyter . 67
7.6 Investigating hurricanes . 67
7.7 Riemann Problems and Jupyter Solutions . 67

8 About the authors 71
8.1 Project lead . 71
8.2 Authors at the sprint . 71

9 Glossary 75

References 77

Chapter 1

Introduction

This handbook is for any educator teaching a topic that includes data analysis or computation in order to support
learning. It is not just for educators teaching courses in engineering or science, but also data journalism, business and
quantitative economics, data-based decision sciences and policy, quantitative health sciences, and digital humanities.
It aims to provide an entry point, and a broad overview of Jupyter in education. Whether you are already using
Jupyter to teach, you have found learning materials built on Jupyter that piqued your curiosity, or have never heard
of Jupyter, the material in this open book can empower you to use this technology in your teaching.

Project Jupyter is a broad collaboration that develops open-source tools for interactive and exploratory computing.
The tools include: over 100 computer languages (with a focus on Python), the Jupyter Notebook, JupyterHub, and an
ecosystem of extensions contributed by a large community. The Jupyter Notebook has exploded in popularity since
late 2014, fueled by its adoption as the favorite environment for doing data science. It has also grown as a platform to
use in the classroom, to develop teachingmaterials, to share lessons and tutorials, and to create computational stories.
Notebooks are documents containing text narratives with images and math, combined with executable code (many
languages are supported) and the output of that code. This marriage of content and code makes for a powerful new
form of data-based communication. Educators everywhere are adopting Jupyter for teaching.

Educators newly adopting Jupyter can be overwhelmed by having to navigate the ecosystem of tools and content.
They could study many examples, or consume a myriad of blog posts and videos of talks to distill the patterns of
good practices and technical solutions to serve their students best. Several early adopters, having much experience
to share, decided to begin collecting this know-how, and share open documentation about using Jupyter for teaching
and learning. The result is this open book: a living document that captures the experiences of community members
using Jupyter in education.

The Jupyter Community Workshop in Washington, DC (November 2018) began that process, with a book sprint
aimed at producing the first version of this handbook. The collaboratively written book consolidates explanations
and examples covering key topics, including: what is Jupyter, how to try Jupyter, sharing notebooks with students,
locally installing Jupyter, cloud offerings, finding example notebooks, writing lessons in Jupyter, making collections
for a course, exporting to other formats with nbconvert, writing textbookswith Jupyter, using Binder and JupyterHub,
making assignments and auto-grading, making online courses, teachingwith Jupyter in the classroom, active learning
and flipped learning pedagogies with Jupyter, and guiding learners to create their own content in Jupyter. This open
handbook will grow to encompass all you need to know about Jupyter in teaching and learning.

If you find these materials helpful or inspiring, give us a shout-out on Twitter using #Jupyter4Edu. We hope you
do!

5

http://jupyter.org/

6 CHAPTER 1. INTRODUCTION

Acknowledgments

The book sprint was held at the George Washington University in Washington, DC, on 28–30 November 2018, and
organized by Lorena A. Barba. Funding to support the logistics and travel of all participants was possible thanks to a
grant from Bloomberg to Project Jupyter, andmanaged byNumFOCUS. The groupwas fêted at a reception sponsored
by Leidos. Participants traveled from all over the country and volunteered their precious time and hard work to give
this work to the Jupyter community, with a heartfelt sense of gratitude to all the contributors to the software projects
we love and depend on. Thank you!

GitHub repository for this book: https://github.com/jupyter4edu/jupyter-edu-book

Content under a Creative Commons Attribution CC-BY 4.0 International license.

https://github.com/jupyter4edu/jupyter-edu-book
https://creativecommons.org/licenses/by/4.0/legalcode

Chapter 2

Why we use Jupyter notebooks

2.1 Why do we use Jupyter?

As teachers we are responsible for many activities, including creating lessons, lectures, courses, assignments, and
supportive environments; encouraging engagement and performance in the classroom; helping students learn to
think critically so they can become lifelong learners and problem solvers; making material relevant and meaning-
ful to students’ diverse interests and backgrounds; assessing student learning (including grading and evaluation);
encouraging students to persist with emotional labor (feedback, communication, etc.); and trying out teaching and
learning practices that improve our ability to do all of these things.

In short, we design learning environments and experiences.

We use Jupyter notebooks to design learning environments to help support these activities. We believe that incor-
porating Jupyter notebooks in our teaching has allowed us to improve students’ understanding of course content,
increase student engagement with material and their participation in class, and to make concepts more meaningful
and relevant to students’ diverse interests. We represent a variety of disciplines and have many diverse instructional
goals, all of which have been supported using Jupyter notebooks. The goal of this handbook is to provide you with
ideas to help you address your own instructional and pedagogical goals.

Through a series of anecdotes we will illustrate how you, as an educator, can use Jupyter notebooks to increase your
students’ 1) engagement, 2) participation, 3) understanding, 4) performance, and 5) preparation for their career.
These are starting places and we are confident that you will also take these examples in new and exciting directions.

2.2 But first, what is Jupyter Notebook?

Project Jupyter is three things: a collection of standards, a community, and a set of software tools. Jupyter Notebook,
one part of Jupyter, is software that creates a Jupyter notebook. A Jupyter notebook is a document that supports
mixing executable code, equations, visualizations, and narrative text. Specifically, Jupyter notebooks allow the user
to bring together data, code, and prose, to tell an interactive, computational story. Whether analyzing a corpus of
American Literature, creatingmusic and art, or illustrating the engineering concepts behindDigital Signal Processing,
the notebooks can combine explanations traditionally found in textbooks with the interactivity of an application.

Jupyter is a free, open source platform that is an excellent learning environment for students. For teachers, it in-
creases our efficiency and decreases cognitive load so we can engage students. Notebooks can be useful for achieving
your goals as a teacher in numerous environments from STEM labs or humanities narratives, to podium lectures or
flipped classrooms. We use Jupyter notebooks in small classes and for classes that have hundreds of students. Jupyter
notebooks can be used for teaching part of one lecture or can be used to teach a whole course. Jupyter notebooks en-
able us and our students to have a conversation with a problem and link to resources, like audio, video, images,

7

8 CHAPTER 2. WHY WE USE JUPYTER NOTEBOOKS

Figure 2.1: A Jupyter notebook, starting with a markdown cell containing a title and an explanation (including an
equation rendered with LaTeX). Three code cells produce the final inline plot.

2.3. COURSE BENEFITS & ANECDOTES 9

visualizations–and even allow students to mix and remix these. And yet students need to install nothing beyond a
modern web browser to use this free software.

Jupyter notebooks can be used to organize classroom materials and objects, store and provide access to reading ma-
terials for students, present and share lecture materials, perform live coding, explore and interact with materials,
support self-paced learning, grade students’ homework, solve homework problems, or make materials reusable to
others (see Chapters 3 and 4).

Read on to find out how we have used Jupyter notebooks for teaching and learning to benefit both our students
and ourselves. Jupyter notebooks support a wide range of learning goals, including learning to program, learning
domain knowledge, and practicing communication skills like storytelling. The authors of this book have used Jupyter
notebooks to teach:

• Sciences
– Physics and astronomy
– Geoscience
– Biology
– Cognitive Science
– Computer science
– Data science
– Statistics
– Social sciences

• Writing
– Writing Seminar
– Writing and technical communication

• Digital Humanities
– Music
– Text analysis
– Metadata processing

• Engineering
– Chemical engineering (kinetics and reactor design)
– Mechanical engineering
– Aerospace engineering

• Introduction to Programming
– High school
– College and university-level courses (true introductions through advanced courses)

Our other use of notebooks for education include:

• Building models/simulations (with and without programming)
• Using widgets to demonstrate and interact with simulations
• Visualizations of process and data

2.3 Course benefits & anecdotes

2.3.1 Engagement

As teachers we routinely struggle to engage our students, especially when we are constrained by the format of the
course (e.g., online, 50-minute lecture), available technologies, students distractions, and/or other factors. Never-
theless, it is substantially our responsibility to create environments and experiences within these limits that engage
students in our courses. This is where notebooks can give you another tool to break out of the mundane, and get
students engaged in their learning.

10 CHAPTER 2. WHY WE USE JUPYTER NOTEBOOKS

Figure 2.2: From: http://go.gwu.edu/engcomp2lesson4

2.3.1.1 Conversations with data

The creators of Jupyter describe it as a set of open-source tools for interactive and exploratory computing, and a
platform for creating computational narratives. Jupyter allows us, as educators, to narrate a “conversation between
the student and data”. Consider this example, using the data of life expectancy of many countries over the years:

I use a short bit of code to make a graph showing the time evolution, in what is called a “spaghetti plot”
(see figure). Looking at this messy graphic, I point out howmost of the lines show growth over time: life
expectancy is improving all over the world. But a couple of lines show a marked dip in a given year. I
can ask students: which country had that dip? What happened there? Why? With a bit more coding, we
identify that Cambodia had a shocking life expectancy of about 30 years in 1977, and Rwanda had even
worse life expectancy in 1992. We then have the opportunity to discuss why these countries experienced
a mortality crisis. The data brings to life a meaningful discussion, with many possible paths involving
history, politics, economics, and health. – Lorena Barba

Jupyter notebooks are essential tools of connection—tools that engage learners in transitions in their thinking. The
opportunity of intermingling computation into a narrative, creating a conversation with data is a powerful and effec-
tive form of communication. With Jupyter, you now have a new form of content to create and share with learners:
computable content. In a world where every subject matter can have a data-supported treatment, where computational
devices are omnipresent and pervasive, the union of natural language and computation creates compelling commu-
nication and learning opportunities.

http://go.gwu.edu/engcomp2lesson4

2.3. COURSE BENEFITS & ANECDOTES 11

2.3.2 Participation

Engaging students in your courses requires their participation and interaction with you, their peers, and/or the con-
tent (Moore, 1989). How, when, and why you use student participation in yours will, of course, depend on your
goals, the specific objectives for teaching the content within your course, your students, and other factors. Using
notebooks, however, encourages participation and gives you more tools for promoting participation. Notebooks can
connect students to authentic external audiences as well. Students can, for example, consume notebooks from other
classes, and publish notebooks where others can read them.

2.3.2.1 Real world experience – bringing concepts to life

Notebooks are living documents, meaning they can be edited to respond to questions or input from students and
used a conversation piece during a lecture or presentation.

Our group uses Jupyter notebooks as “apps” to demonstrate concepts in geophysics. These notebook-
apps connect numerical simulations to widgets and relevant plots. In the classroom, we ask students
to help define input parameters based on an application or case study that they are interested in. Prior
to displaying the results, we ask students to build a mental image of their expectations. If the resultant
image matches their expectations, then we have reinforced a concept, and if not, it is an opportunity to
learn. We as instructors can interactively engage with students’ questions by updating the inputs to the
simulation in order to explore concepts with them. Students have access to the same notebooks through
free web-platforms like Binder, so simply by following a link, they can take the steeringwheel and engage
with the concepts on their own. Notebooks bring the concepts to life and serve as a conversation piece
for the interaction between learners and educators. – Lindsey Heagy

2.3.2.2 Real world experience – Ticket to leave

Another example of generating participation in the classroom with Jupyter notebooks is the Activity magic, available
as an extension. It creates what has been called a “ticket to leave” (or “exit ticket”) via the notebook. The idea of
a “ticket to leave” is an excellent way to end a class or lab. Briefly, it is just a survey that you give the students (see
figure). Often, these surveys are given via a Personal Response System (also known as “clickers” or PRS) or cell
phones. There are a few uses of such surveys:

1. Give the instructor some feedback on the students’ understanding, as a whole
2. Provide time and opportunity for students to review and synthesize today’s materials
3. Allow the students to apply their recent knowledge to a novel problem
4. An additional instance to learn the materials

These questions do not typically requiremuch time to answer, but aremeant to capture the essence of the conversation
of the class. After a minute or so to contemplate the question, the students select their answer (by clicking one of the
buttons), and instructor shows the gestalt results (see figure).

Good “exit ticket” questions can be domain specific questions, but can also be metacognitive questions (about
one’s learning style, for example), or high-level organizational questions (e.g., “what was the goal of today’s
discussion?”). We recommend leaving enough time at the end of class (perhaps 10 minutes) to have a full
and complete wrap-up discussion. After the discussion, you may wish to adjust the following class meeting
if you feel that not enough students had the insight you were aiming for. For more information on “tickets to
leave” see https://www.brown.edu/sheridan/teaching-learning-resources/teaching-resources/course-design/
classroom-assessment/entrance-and-exit/sample. For more on the Jupyter Notebook extension, see using and
installing Calysto Activity magic.

https://www.brown.edu/sheridan/teaching-learning-resources/teaching-resources/course-design/classroom-assessment/entrance-and-exit/sample
https://www.brown.edu/sheridan/teaching-learning-resources/teaching-resources/course-design/classroom-assessment/entrance-and-exit/sample
https://github.com/Calysto/metakernel/blob/master/metakernel/magics/README.md#activity
https://github.com/Calysto/metakernel#use-metakernel-magics-in-ipython

12 CHAPTER 2. WHY WE USE JUPYTER NOTEBOOKS

Figure 2.3: Dr. Douglas Oldenburg (left) engaging with a student during a short course on geophysical electromag-
netics (https://geosci.xyz). Photo credit: Seogi Kang

Figure 2.4: Example of the Activity magic seen from the students view. A question, with multiple choice answers is
shown, with buttons for their input.

https://geosci.xyz

2.3. COURSE BENEFITS & ANECDOTES 13

Figure 2.5: The Activity magic, from the the instructor’s perspective. The barchart is shown on the projector once all
of the students have had a chance to respond.

2.3.3 Increasing understanding

Within any course you will typically try to achieve a diverse set of objectives. Benjamin Bloom (https://en.wikipedia.
org/wiki/Bloom%27s_taxonomy) provided a framework for the detailed objectives wewant to achieve, ranging from
basic knowledge (such as, terminology, specific facts, trends and sequences, classifications and categories, etc.) all the
way to ability to evaluate and create (such as, abstract relationships, judgments but based criteria, original works).
Achieving the former (i.e., basic knowledge and comprehension) is far easier to achieve than understanding (i.e.,
evaluation and creation); yet, most often we, as educators, are striving for increasing the complex understanding
of our students on the topics we are teaching. The good news is that notebooks offer a valuable tool for teaching
toward understanding –moving students, for example, frompassively viewing course content to exploring, analyzing,
synthesizing, and evaluating the content in active ways.

2.3.3.1 Real world experience – Guiding learners at their own pace

The fundamental theory behind Computational Fluid Dynamics (CFD) used in Aerospace Engineering is based on
understanding the Navier-Stokes equations. “CFD Python” is a collection of Jupyter notebooks based on a practical
module that Lorena Barba began using in class in her Computational Fluid Dynamics (CFD) course at Boston Uni-
versity in 2009. The 5-week module develops worked examples that build on each other to incrementally guide the
learner to create a program to solve the Navier–Stokes equations of fluid dynamics, in 12 steps.

In 2013, I was invited to teach a 2 day mini-course in the Latin-American School in High-Performance
Computing, in Argentina. The Jupyter notebooks platform allowed me to create a guided narrative to
support learners with different background experience and knowledge. For that event, we wrote note-
books based on the CFD course module, to use as instructional scaffolding in the minicourse. Twenty
students worked through the notebooks as self-paced lessons, while I went from desk to desk asking and
answering questions. About four of the students completed all 12 steps in the 2 days, a bulk of them
achieved up to about Step 8, and a few of them lagged behind in Steps 4 or 5 by the end of the course.
For those who completed the full module, they had achieved in 2 days what my regular students in the
classroom normally took 5 weeks to do. Seeing that was an eye-opening moment: both the power of
worked examples in code, and the ability to allow learners to follow their own pace made a remarkable

https://en.wikipedia.org/wiki/Bloom%27s_taxonomy
https://en.wikipedia.org/wiki/Bloom%27s_taxonomy

14 CHAPTER 2. WHY WE USE JUPYTER NOTEBOOKS

difference in these learners. – Lorena Barba

Based on the experience developing the “CFD Python” learning module (Barba & Forsyth, 2018), this basic design
pattern was adopted for creating lessons using computable content:

1. Break it down into small steps
2. Chunk small steps into bigger steps
3. Add narrative and connect
4. Link out to documentation
5. Interleave easy exercises
6. Spice with challenge questions/tasks
7. Publish openly online

This was particularly helpful for student understanding.

2.3.4 Increasing student’s performance

The goal of learning is often actualized through the performance of students. This is routinely most visible by what
we attempt to assess during and at the end of instruction. Using notebooks we can create a variety of a performance
opportunities for students, thereby giving them more opportunities for practice and feedback, as well as more oppor-
tunities for us, as instructors, to assess their ability to perform.

2.3.4.1 Real world experience – The worked-example effect

The worked-example effect is the best known and most widely studied of the cognitive load effects (Sweller, 2006). It
refers to providing full guidance on how to solve a problem, resulting in better student performance than problem-
solving conditions with no guidance. For complex tasks, inexperienced or beginner learners benefit the most from
the worked-examples procedure. One study (Chen, Kalyuga, & Sweller, 2015) concludes that: “worked example ef-
fect occurs for complex, high-element interactivity materials that impose a heavy working memory load” and “when
dealing with complex material that learners may have difficulty understanding, high levels of guidance are likely to
result in enhanced performance over lower levels of guidance.” This research-based guidance seems especially rele-
vant for teaching novice programmers to use computation in the context of their subject matter (science, engineering,
or other).

2.3.5 Increasing students’ preparation for their career

In preparing students to apply what they have learned, striving to align what happens in the course with what they
will experience in their career is important. From using parallel software to mirroring workflows, we want our stu-
dents to experience and be prepared for the workplace. Recognizing, of course, that workplaces are not static and
the skills required for a career are always emerging, using notebooks provides a flexible platform to build skills and
build portfolios of what students can do.

2.3.5.1 Real world experience – Publishing a data narrative as a demonstration of industry ability

For Data Science careers, a publicly shared narrative about a data analytics project goes a long way at demonstrating
the student’s potential at an interview. Elizabeth Wicks has her students develop a Jupyter notebook that tells the
story of a data munging and analysis project done in the class. The students then publish this notebook to their
Github profile pages. Being that Jupyter is one of the most popular ways in industry to communicate data science
results, the students have a very valuable key to a potential career.

TODO: Add quote from Elizabeth

2.4. STUDENT BENEFITS 15

2.4 Student benefits

Creating opportunities for students to develop as learners stretch beyond the boundaries of any specific course where
you may use notebooks. By enriching their learning experience in your course, you will help them develop valuable
skill-sets and mind-sets that they will take with them into other courses and into their career.

2.4.1 Computational thinking

Jupyter notebooks support a wide range of learning goals. Its interactivity enables building intuitive understanding
of domain knowledge, such as the understanding of a mechanical response of a system while varying parameters or
understanding how an algorithm behaves. Notebooks can also help teach effective communication skills, combining
prose with graphics into a strong narrative. Finally, notebooks can support teaching or strengthening programming
skills, by combining code with text descriptions and visualizations. Even if a notebook is designed to be consumed
passively, the exposure to code helps show students how to do something—and that they can do it themselves. This
also helps demystify coding for students who do not view themselves as traditional “computer science” types.

Using notebooks, you can create rich learning experiences that link together the core foundations of computational
thinking:

• Decomposition: Breaking down data, processes, or problems into smaller, manageable parts
• Pattern Recognition: Observing patterns, trends, and regularities in data
• Abstraction: Identifying the general principles that generate these patterns
• Algorithm Design: Developing the step by step instructions for solving this and similar problems

2.4.2 Open-source

Integrating notebooks into classes also exposes students to a large and growing ecosystem of open-source tools. This
supports their education, but also provides experience in the same environment of tools used in industries in high
demand for trained employees, such as data science andmachine learning. The open-source nature of these tools also
ensures that course content remains accessible and affordable to all students—including those outside the traditional
university environment.

Unlike proprietary notebook technologies such as Mathematica, or specific programming languages/environments
such as Matlab or C++, the barriers to entry for students learning with Jupyter notebooks can be extremely low.
At a minimum, during a lecture, students can simply watch/read an interactive demo using a notebook, to replace
slides or lecture notes. On their own, using a cloud service such as Binder or JupyterHub, students can open any
modern web browser to some address and interact with a notebook (an example of this technology can be found at
https://jupyter.org/try), without needing any installation or configuration. In the most complicated case, students
can install Anaconda and follow simple instructions to install the Jupyter Notebook, which works and looks the same
on all platforms—and is free and open source.

2.4.3 Active learning

Thanks to their interactivity, notebooks enable a spectrum of active learning methods, which have been shown to
increase performance in science, engineering, andmathematics (Freeman et al., 2014). To start, students can consume
notebook content by reading and running notebooks, then move to editing or completing notebooks as assignments.
This allows students to focus on the content and concepts, rather than just note-taking.

At the top of Bloom’s Taxonomy is pure creation, where students can, for example, author complete computational
essays. In both cases, notebooks support courses where students have a wide range of experience and ability: stu-
dents who need help can rely on the scaffolding of prose explanations and existing code, while also providing room
to stretch and explore for more-experienced students. The additional annotation and prose that accompanies code

https://jupyter.org/try

16 CHAPTER 2. WHY WE USE JUPYTER NOTEBOOKS

also helps support non-traditional learners and students from underrepresented groups who may have less initial
experience/comfort with programming.

Instilling the habits of active learning, through the use of notebooks, will also provide benefits beyond the boundaries
of your course. Interactivity drives engagement, interest, and exploration of concepts. Engaged students in your
course are more likely to be engaged learners in other courses and beyond.

2.5 Instructor benefits

Notebooks can be adopted at a variety of levels and formats, offering flexibility based on the needs of a course and
comfort/interest level of the instructor: in-class demos, interactive labs, auxiliary material (e.g., book replacements,
lecture note supplements), assignments, or full course content in a flipped learning environment. Notebooks offer
a route to active learning methods for instructors without experience of them, but do not force a particular teaching
style.

At a minimum, notebooks can be used to make publishable and interactive lecture notes that blend narrative text,
images, videos with image and results to present the concepts. Furthermore, these course materials can be developed
gradually, starting with a low-effort draft to a more-polished, publishable document that can be easily extended
over time—and adopted by others. The growth of open-source communities around software tools and educational
resources creates more opportunities for the re-use and adaptation of existing resources.

While many notebook authors do use Python, the Jupyter Notebook supports many languages, so students (and
instructors) are not tied to one specific language. Indeed, the name Jupyter comes from three languages: Julia, Python,
and R. Furthermore, these (free) tools have minimal barriers to entry—using a cloud infrastructure means students
and instructors do not have to install anything, while in the “worst” case installations require a few command-line
excursions, but these are free, openly available, and cross-platform.

2.6 Conclusions

We hope that this chapter has illustrated that teaching with Jupyter notebooks can be valuable for you and your
student. We have shown notebooks to be a tool that can increase student engagement, participation, understanding,
performance, and preparation for their careers. These are substantial accomplishments that can be achieved in a
variety of disciplines and content areas. Using several real world examples, we attempted to illustrate the numerous
ways teachers are using notebooks. Hopefully these, when combined with the chapters that follow, will guide you in
1) supporting your students’ learning, 2) giving you confidence that you can use notebooks, 3) help you understand
the necessary logistics, and 4) help give you clear expectations of what can be accomplished with Jupyter notebooks.

Chapter 3

Notebooks in teaching and learning

Jupyter notebooks are a valuable tool for teachers, but their value can only be leveraged if you apply them correctly
within the context of your course. In this chapter, you will learn how teachers can initially structure the design of
their course and then determine when and how notebooks can be used to achieve their goals.

3.1 Oh the places your notebooks will go!

3.1.1 Introduction

In Chapter 4 youwill learn about themany creative ways that notebooks can be usedwithin the design of your course.
Many times notebooks can be adapted into course activities that you are already doing, and other times notebookswill
give you opportunities to extendwhat youhave done in past to increase the engagement, participation, understanding,
and performance of your students. Jupyter notebooks can be a valuable member of your existing instruction toolkit,
useful at every point in the learning environment. New adopters of Jupyter can start small, incorporating notebooks
into single modules, assignments, or classroom activities. This is an excellent approach to see how your learning
audience interacts with the notebook environment and explore notebook hosting systems in a low cost/risk way.

Instructors adopt Jupyter within their classrooms at a variety of levels, each making use of the strong features of
the environment. Transitioning an existing course to any new platform seems daunting, but Jupyter notebooks are
modular and ideal for an iterative development approach of adoption. Some may find themselves inheriting a course
already built in Jupyter, while others will choose to build new courses entirely within Jupyter.

This section seeks to inspire you about the many uses of Jupyter within classroom content and presentation design,
and preview how other elements of the Jupyter ecosystem can be integrated into that use. Some of these uses are
quick to spin up as experiments to test the waters.

3.1.2 Jupyter notebooks as textbooks

Instructors often write Jupyter notebooks as linear narrative documents. These notebooks are to be read by students
and learners, perhapsworked through, marked up and are a relatively one sided information consumption experience.

Most often these notebooks exist as the readings a learner is required to do before class, as reference material (e.g.,
to review for future assessments), or something that a learner works through on their own as a part of self study.
Jupyter notebooks can be constructed of completely static text, which can serve as a starting point for transitioning
existing material into the notebook environment.

This traditional static textbook chapter or section can be extended into an active space by changing inline code text
to executable code cells that support modification and experimentation. Adding prompts with suggestions for inter-

17

18 CHAPTER 3. NOTEBOOKS IN TEACHING AND LEARNING

rogating the code and examples further extend active learning opportunities without rewriting the original content.
Interactive sliders, user input sources, andmanipulable visualizations are examples of how otherwidgets and plugins
can open up more possibilities.

As you’ll see in later chapters, many authors are using Jupyter notebooks as their primary authoring and publishing
platforms. These materials are published on paper and online, meaning that the interactive portions of the learning
experience are first class elements within the resource.

3.1.3 Notebooks as workbooks/primer

Workbooks engage students in the notebook environment by including active elements where they are asked to ma-
nipulate or create new content. This moves students from a passive or static learning environment like a book into
an active learning experience where they can engage with and critically think about the content.

You can include many pedagogical patterns (discussed in the next chapter) within a workbook, crafting a completely
custom learning experience. These workbooks can be assigned as independent student learning (for example, pre-
work for flipped classroom), or as part of an in class activity for individuals or small groups.

When teaching in the technical space, the exploration of concepts in their context is an ideal environment for showcas-
ing an authentic experience to students. Studying a concept in isolation may reduce the complexity of the problem to
be more accessible, but this removes it from the context for why it exists and may make it harder for students to put
all the pieces together and synthesize it into their larger problem solving repertoire.

Retention of this context adds the complexity of expository text, technical reference in disconnected documents, or
some boilerplate code. Providing this in a large script or lengthy lists of direction can be overwhelming for stu-
dents to work with. Jupyter notebooks are excellent tools for teaching these complex workflows, because instead of
a script with lengthy code comments or having disconnected documentation, this guiding text can be embedded ex-
actly where it is needed where the coding is happening. This guidance material can also be formatted as markdown
cells, which are visually distinct from code, making it easier to visually scan and opens the possibility to add helpful
formatting.

A variety of activities can be supported with the executable code cells so learners can explore the space in an inter-
active and iterative environment. They can see and inspect portions of the surrounding code, but aren’t required
to touch it, maintaining appropriate granularity for assignments and challenges. Using markdown formatting sep-
arating sections helps scaffold larger problems and help them really experience a real world workflow rather than
statically read about it.

3.1.4 Notebooks as worksheets/drill sets

Many programming and domain tasks have specific syntaxes to be learned and effectively memorized before they
can be internalized. Akin to math homework sheets, short worksheets where learners focus on highly granular or
decontextualized problem sets lets thempractice the complex syntax andprocedures in an isolated andhighly focused
way. A set of small targeted tasks where these complexities can be practiced without the worry of additional syntax
errors or other problem solving requirements can reduce the cognitive overhead a student might be overwhelmed by.

The cell based nature of the Jupyter notebookmakes interactive code-basedworksheets a clean experience for students
to run. Each problem prompt can be written in amarkdown cell, perhaps referencing an object or data file established
in an initial cell. For example, a list or other data structure would be defined at the top and the exercises below are
focused on the relevant methods and usage syntax. Each answer would then be completed by the student in a single
code cell just below that markdown cell. This means that outputs and errors stay with the code producing them, so
successes or bugs are easily traceable to the source.

Usages of autograding tools or unit tests, as discussed in later chapters, can be added to give students instant feedback
about their work. Example or desired outputs could also be reproduced in markdown cells with the question for
further guidance.

3.1. OH THE PLACES YOUR NOTEBOOKS WILL GO! 19

3.1.5 Notebooks as notepaper or course packets

The ability for a notebook to represent a linear experience with human prose and working code means that these
can be used a student’s notepaper in class. They can capture the linear narrative structure of a lesson or lecture, and
actually run the code they are taking note of. This ensures that what they have written down actually works, and
makes for a strongly reusable document for them moving forward with homework.

Encouraging students to use Jupyter notebooks for taking class notes opens up further opportunities to provide scaf-
folding and support within the classroom. Providing notebooks with outlines of lecture content or other materials
covered in class can become an useful active learning and engagement strategy. You might provide a mostly blank
notebook with just topic headings, and ask them to take notes in their own style within those spaces. Or you could
choose to embed reference notes, examples, and even small activities within the notebook, asking them to both take
notes and work through examples with you.

Caution should be taken to encourage students to carefully maintain a linear order of their code in the notebooks. A
later chapter has more information on Jupyter specific caveats that students should remain aware of.

3.1.6 Notebooks as an app

Notebooks even have a place in non-coding classroom content or activity. Interactive user inputs like mouse or touch-
screen controlled sliders, buttons, highlighting, etc. allow a notebook user to manipulate input parameters for a
visualization, tool, or model without directly editing any of the code within the notebook. These strategies support
interactive computational exploration, or transform the notebook into an advanced calculator tool for students to use
within their homework. These notebooks are then treated as applications that are distributed or made available for
students to use during class or explore on their own.

This allows you tomake an existing researchworkflowaccessible to novice students as part of a computationalmodule
of a foundational class, or mock up content from a static textbook or reading into something for an active learning
activity. The adaptability and reuse aspects of Jupyter notebooks also create opportunities for students to take this
code further and adapt it for assignments or other research.

3.1.7 Notebooks as lab reports or assignments

There are a variety of assignment deliverables that programming and technical courses may require. Students may
be asked to produce essays, presentations, working code, analytics, and even art or music. Many of these deliverables
are directly supported within the notebook environment. Any written work could be completed within the notebook
environment with markdown, which is ideal for communication content that is driven by data or incorporating code
content. For example, a student could write a computational essay within a notebook, and use one of the presentation
tools to present a report out in class, all using the same notebook.

Coding assignments can be submitted to a Jupyter supported learning management system and be autograded (dis-
cussed in later chapters), providing instant feedback and automating the grading process. This opens up self paced
and highly scaled options for many courses, particularly open access MOOCs or large sections. Meanwhile, the inline
visualization options mean that an assignment with graphical output can be self contained without trying to embed
images within a word processing document or attaching a collection of images along with a script.

The multiple conversion and hosting options available to notebooks means that they can be shared or submitted
across many formats. For example, conversion to HTML means that there is zero overhead for viewing the content,
and support for markdown and PDF opens up accessibility and other publishing platforms.

3.1.8 Notebooks as interactive multimedia platforms

A variety of media formats can be embeddedwithin a notebook, and other tools more offer platforms to more directly
connect notebooks with multimedia content. Instruction content might be split up between short videos (often for

20 CHAPTER 3. NOTEBOOKS IN TEACHING AND LEARNING

flipped classrooms) or a variety of static images might be important for an assignment. The markdown cells within
the Jupyter notebook provide several ways to place hyperlinks and embed a variety of media.

Several widgets are also available for embedding playable audio and video content (including from streaming video
services) directly within the notebook. This creates a cohesive platform experience for the student, so they don’t have
to exit out or change screens to work on their assignment and reference that content.

Other tools are available formore directly connecting the notebook content to a video guide. Video lectures or content
in your courses can get lengthy in running time and associated notebooks are often just as long. Tools like Oriole
provide a platform where you can integrate video timestamps into notebooks to create interactive video experiences.
You can include, for example, Youtube videos within notebooks, with text and/or coding opportunities before/after
the video. Using timecodes, you can also guide students through the videos in tandem with the notebook text. This
further extends the ability to create a single cohesive interactive experience without the need for students to go back
and forth between materials.

3.1.9 Notebooks as a demonstration platform

Eventually you will have to display a notebook in class. This may be as a demonstration of how to use a notebook,
presenting more a traditional style lecture, creating and editing code, or using an interactive feature to explore an
experiment. Normal standards for font sizes, organization, and accessibility stand for these cases.

Displaying actual notebook within your presentation is a natural starting point. This content may include text from
markdown and LaTeX, code, and independent figures and sketches. For instance the lecturer could display the note-
book, slowly scrolling through the material and interacting with cells containing code while also making use of either
a digital or analog (e.g. chalkboard) sketching device. Custom styling plugins are available to change the background
color, font, and other viewing aspects of the notebook for better presentation quality and accessibility.

Several slide show tools are available, which allow you to markup notebook cell content for a more traditional
slideshow presentation mode without having to exit from your standard notebook. These slides can be scattered
across notebook content into specific cells that will correspond to individual slides, with the other content ignored
from the presentation. This then can be shown alongside the usual notebook interface and can be flipped between
the other forms of content.

It is natural for students to read and interact with notebooks in their standard form, using either Jupyter Notebook
or JupyterLab, and this can also be used for presentation. Jupyter Lab offers the convenience and uniformity of being
able to open and edit source files (.py, etc.) within the same environment andwithout OS- or browser-specific clutter.
Full screening the browser is recommended if presenting using this mode. Presentation styles vary widely and span
a spectrum from full-prepared notebooks to blank-slate live coding.

Many find it useful to incorporate an alternate modality such as a physical or digital “board” for free-form diagram-
ming, working through a mathematical derivation, or other written procedural task. Notebooks can be a portion of
these presentations or the complete environment, depending on your personal instruction style and content needs.

Care should be taken about how the notebook is presented and demonstrated. Doing a live demo gives you a few
options. You might choose to:

• Scroll through a notebook
• Step through a notebook by executing the cells in order
• Fill out details or values into a mostly complete notebook
• Tweak or flesh out a notebook with some content
• Add content to a completely blank notebook

Each of these strategies have a place within a classroom, and their use should be informed by audience needs and
learning goals. For example, having a notebook with prepared challenges for the end of each module or section, but
with blank cells for the content gives you the opportunity to develop code live within class, but within a structure that
keeps yourworkfloworganized, and your formative assessments coded directly into your presentation. Incorporating
reference information can make these documents more complete for students and answer common questions. There

https://www.safaribooksonline.com/oriole/

3.1. OH THE PLACES YOUR NOTEBOOKS WILL GO! 21

are many possibilities about what you can put in. Keep in mind that students will often ask for you to share copies
of these notebooks after the class session is completed.

How much you focus on live coding will likely be determined by the domain content of the class. Programming
courses would clearly have a priority for students to have more thorough practice with writing and typing in the
code. However, a conceptual class looking at computational models may interactively tweak parameters for a model
and discuss only what is happening within that mathematical model. No code is written or directly changed in the
process.

3.1.10 Notebooks as a live coding environment

Live coding, as the name implies, involves the active writing of code within the instruction process. This might be
part of a recorded screencast or an in person classroom. The process of live coding has several benefits for the student
and instructor.

Showing the process of building up code examples showcases the natural non-linear process of how code is crafted,
but walking through the logic of a code example slows instruction down and highlights the reason for inclusion of
each element within the code.

Introduction of bugs (either purposeful or accidental) to the code has the added benefit of giving the presenter an
opportunity to work through the debugging process and demonstrating that perfect code is never created on the first
go.

Live-coding can also be an opportunity to provide an active learning experience by providing notebooks with code
that has not been completed before the lecture and having students attempt to fill in the missing lines before doing
the live-coding demonstration. Feedback on where students are in this process can be a useful way to also judge what
students are retaining and are struggling with leading to just-in-time teaching opportunities.

Formative assessment and prediction prompts can also be incorporated either directly into the notebook or as part
of the narration of the lecture. Creating live-coding opportunities can be done anytime where a block of code exists
but picking out particularly illustrative examples or key points and appropriately scaffolding the example can be
critical. For example, if the critical concept is inside of a for loop then only coding the inner part of the for loop can be
helpful and not overwhelm the presentation with scaffolding such as the setup. The reverse can also be true however.
If too much complexity or scaffolding is displayed learners may struggle to understand the scaffolding rather than
concentrating on the key concept.

Many instructors utilizing live codingwill choose to have students code alongwith them. This allows them to practice
what they are learning, see it in the natural context of their environment, make all the normal mistakes and typos, and
all within an environment where they can ask questions (or pause a video). Actively coding along with the instructor
also includes a requirement that they are actively listening to the instructor and engaged with the content.

Presentation styles of scrolling or shift + enter are not live coding, but live demonstrations. While these limit or
negate the benefits of the live coding environment, the benefits of speeding up the presentation or running through
code that’s irrelevant to the learning goals may be more important. Removing the student’s active engagement with
the content may eventually lead to their disengagement with the lesson, or missing large chunks of information.
Instructors should balance their inclusion of live coding and live demonstration to ensure that students are active and
engaged with the most important aspects of the lesson.

Information bandwidth in the classroom during a live coding session needs to be carefully managed, particularly
when students are trying follow along. The rhythm of live coding roughly has three stages: preparation, typing, and
explanation. These three follow quickly in succession but are independent phases. Preparation is the first, where you
stop and explain what you are about to do. Typing is the next phase where you should speak as you type but only
say what you are typing. This ensures that what the learners are seeing on the screen and hearing from you match.
They will likely be looking back and forth between their screen and yours that they often won’t be able to stop and
followwhat you are sayingwhile they are typing. The final stage is to stop and explain what you have typed andwhat
has or will happen when you run the code. You may choose to execute the code and explain the results or include a
formative assessment or prediction question before running the code. Pausing to explain the code you just wrote and

22 CHAPTER 3. NOTEBOOKS IN TEACHING AND LEARNING

walk through the results gives students time to catch up to your typing, time to consider what has happened, and a
natural place to ask (and for you to as for) questions about what has happened.

Live coding does take practice to get used to, but can be extremely powerful for you to restrain your pace to your
learners and to retain engagement with your students.

3.1.11 Conclusion about places

As you have just seen, notebooks provide a flexible tool that can be used in numerous ways to achieve your course
goals. Notebooks are flexible enough that you can use them from relatively passive to very active student learning,
you can use them in your lecture or in a flipped-classroom environment. There is no single best way to use notebooks
in your courses, and you explore the various options youwill want to start filling your use of notebooks with a variety
of the pedagogical patterns described in the next chapter.

3.2 Before You Begin…

This chapter focuses on course considerations when incorporating notebooks into a class. Experienced instructors
may choose to skim parts of this chapter and focus specifically on how Jupyter notebooks would change their current
teaching style.

Before you begin adding Jupyter notebooks to your course, take some time to:

• Identify your teaching goals
• Understand your students
• Develop your content strategy
• Consider the context of the learning environment

The Jupyter notebook is a tool; its use in this context is subject to the expectations of the instruction. Setting expecta-
tions for learning depends on your goals, your students, the content, the learning environment context, and you.

3.2.1 Identify Your Teaching Goals

As with the creation of a building or robot or book, it is important to begin the process with a clear goal of what you
are trying to create and why. The “and why” could be the most important decision you make in the whole process
and it will (or at least it should) guide all the decisions that follow. The why here is not about why to use Jupyter
notebooks, but the why is the goal you have for your students.

Is the goal to teach them critical thinking skills, or how to execute a specific set of functions to solve a problem? Is the
goal that they will be able to translate mathematical concepts into real world application, or is the goal to teach them
how to code? Be specific and clear, and then let the answers guide your decisions.

3.2.2 Understand Your Students

Your students are central to decisions about when and how to use notebooks alongside other tools in your instruction.
An obvious illustration of these decisions would be selections made if you compare teaching 5th graders in relation to
teaching graduate students. Yet, there are more subtle differences that you will also want to be aware of and monitor.
For example, within a classroom, you will have variation among the backgrounds and skill levels of the students.
Depending on the domain, some students may have extensive experience with coding in multiple languages while
othersmay be doing their first computational explorations. Keeping students of all different experience levels engaged
and excited is challenging.

3.2. BEFORE YOU BEGIN… 23

3.2.2.1 Learn About Your Students

In many circumstances you will have little background information on your students prior to the first day of a class or
workshop. You will have to learn quickly and be prepared to adjust the instruction to fit the students in attendance—
not the students you wish you had or anticipated having. Some key considerations to learn about your students:

• Motivation: Why are your students participating? What are their goals beyond the workshop or class? Will
they be applying what they learn soon, or not for months or potentially years?

• Entry skills: What skills are students coming to the instruction with, both technical (e.g., basic computer, cod-
ing, computational) and psycho-social (collaboration, presenting, asking questions)?

• Prior topic knowledge: Specific to the content of the instruction, what do they already know coming in?
• Attitudes toward content: Are they excited to learn, or nervous about the content? How confident are they

about their success in the class?
• Attitudes about the delivery format: Do they have attitudes, positive or negative, about the delivery format

(e.g., lecture, flipped classroom, lab) and/or technologies (e.g., learning management systems)
• Learning preferences: Are learners comfortable in active learning experiences? (e.g., working with teams,

interacting with the instructor, using technology while learning, etc.)
• Group characteristics: Looking at these considerations, how diverse is the group? Have they been together for

instruction before? Do you have a small class or a very large class?

A simple online survey ahead of class can be very helpful in gaining an understanding of your audience.

3.2.3 Cultivate Student Study Skills and Learning Strategies

Do not assume that your students will have acquired the necessary study skills to effectively and efficiently learn
from your course. From note-taking skills (i.e., finding patterns, discerning what is worth writing down, linking to
readings, etc.) to multitasking (i.e., knowing when it is ok to keep their email open while studying and when they
really have to focus) are skills that often have to be developed during learning experiences.

Formost students learning through hands on tools, such as notebooks, will be quite different than their previous learn-
ing experiences—especially coming out of traditional high school or large-lecture undergraduate course. Interacting
actively with technologies for the express purpose of learning (i.e., not just socializing with friends) is valuable—and
yet not common.

Take time to work with your students to help them build the foundations for how they can most benefit from the
experiences you are creating. Talk with them early in the instruction about how notebooks will be used and how they
will have to adapt their study strategies (where, when, and how they study) to best learn the content and achieve the
goals of the instruction.

3.2.4 Develop Your Content Strategy

The content of the instruction should support the instructional goal(s) you have identified for the course. Sometimes
the goal(s) and the content are synonymous, but other times they are not. For example, if your goal is for students to
be able to calculate conjoint probabilities, then your content will be synonymous and be on calculating conjoint prob-
abilities. Whereas in other contexts, your goal may be to develop critical thinking skills in relation to logical fallacies,
and the content you use to achieve this is the analysis of political discourse, which is not necessarily synonymous.

In both cases, the content guides why, when, and how notebooks can be used to achieve the goals. Remember that
notebooks are solutions we can use to achieve our goals; they should not be confused with the goals themselves, even
then they are closely related.

The content of your instruction is not limited to what you want to teach; it involves activities, exercises, feedback
opportunities, and assessments. Each of these supports your goal(s) for instruction and benefits from the use of
different tools within and outside of Jupyter notebooks. For example, if your content goals suggest that students
require some specific knowledge (such as, what is a logic fallacy) before they are prepared to move on to another

24 CHAPTER 3. NOTEBOOKS IN TEACHING AND LEARNING

content topic, then you should assess that knowledge before you select which tools (e.g., a fill-in-the-blank item in a
notebook, or a verbal question to the students in a classroom, or a self-reflection) is most appropriate for that step in
your instruction.

Having a comprehensive outline of the goals and related content for the instruction is key to making good decisions
about how, when, where, and why to use notebooks in your instruction.

3.2.5 Consider the Context of the Learning Environment

Instruction happens in many interesting contexts—but learning is not restricted to the instructional texts that we
construct. Students learn before, during, and after instruction, and notebooks may be a integrated components for
students in all those contexts (see below).

Within our instructional contexts, those times when we likely have the most influence on student learning, we also
have lots of options for howwe deliver learning experiences. As an instructor you can, for example, assign notebooks
as pre-work for a flipped classroom approaches; use notebooks during an in-person or online class to demo or offer
student practice; and/or use notebooks for homework, assessments, and resources that students can use later long
after your instruction. All of these create different contexts for your use of notebooks.

Other aspects of context that you should consider when determining your use of notebooks including both those of
the instructional environment and then the later performance environment of the learners.

3.2.5.1 Instructional Environment

Today the instructional environment can be quite complex and involve multiple aspects. For instance, the instruction
may include online videos, short lecture in a classroom, and then group activities in a lab. Each of these are unique
environments and their characteristics may influence how, when, where, and why you use notebooks.

• Classroom: How will students be engaged with the content? Given the layout of the room (e.g., small tables,
lecture hall) are there opportunities for peer engagement?

• Lab: How does the physical structure of the lab environment offer opportunities for peer learning and sharing?
What are the hardware and software tools available to students?

• Flipped classroom: What are required knowledge and skills that students must gain from pre-activities? What
is the role of video in the flipped classroom? Are students prepared with the study skills and strategies for
learning independently in the flipped classroom approach? Will all students have access to the materials (po-
tentially in a notebook) prior to the class? Do students have access to computers outside of the classroom? How
will pre-reading/pre-watching be incentivized and assessed in the course?

• Online classroom: Are students prepared with the study skills and strategies for learning independently in
the online classroom?

3.2.5.2 Performance Environment

After the instruction your students will, hopefully, apply what you have taught them, and the environment in which
they apply your instruction can vary greatly. You will want to consider how any differences between the instructional
environment and the performance environment might impact on the ability of students to apply what they have
learned.

• Organizational/Managerial Support: Will students be supported in their use of the instruction and tools that
you are using?

• Social Support: If they learn through group projects, will they also be able to apply the instruction when
working on their own?

• Physical Aspects: Will they have access to the same, or similar, tools and resources they have access to during
the instruction? For example, if students only learn in notebooks, will they also be able apply the learning in
an IDE that is used by their employer?

3.2. BEFORE YOU BEGIN… 25

3.2.6 Crafting an experience: choose the right tool and approach for the task

As an instructor, you create many types of learning objects for your classroom. Jupyter notebooks can be used to
present many types of information, from slideshows to book chapters to homework. You can imagine the large differ-
ences you might have with the information you present within a slideshow, a book chapter, a homework assignment,
and a worksheet for an in class activity. Jupyter notebooks can be used for all these activities, yet this is all within the
same type of document platform.

This freedom of expression available within the Jupyter notebook environment can add a lot of pressure and decision
fatigue to the design process. A blank notebook you intend to make a lecture document within and a blank notebook
for an in class activity each look the same when first created.

Content and design decisions should be driven by the purpose of the lesson and the needs of the audience. How
many times have you asked someone a question and had them answer it in a completely unhelpful way? Perhaps you
asked about how to implement something but they answered it conceptually, or you asked for reasoning about why
something existed but they gave you a syntax information.

Learning goals and pedagogic practice are complex and often domain and skill specific, but decisions about them
come back to the essential question: what are you trying to do here? As an instructor, you not only need to select the
right technology for the learning experience, but the right activities to fulfill the learning mission of the day and the
course.

Students are given a variety of experiences to aid in the learning process. Some topics are conceptual that students
need time to experiment with and build intuition over; others are purely syntax that requires reference and practice
to build their internalize knowledge over usage, and some fall in between.

The rhythm of the learning process sees students working independently, working together, reading, producing, lis-
tening, problem solving, and struggling. Each activity should serve a purpose as part of a larger experience. The
same way that restaurant or business owners craft an experience for their customer, you are crafting an experience
for your students.

This design of this experience is not a simple process, and something driven by your expertise of your audience,
domain, and your own ability to instruct. Through it all, your core perspective should be to incorporate elements that
harmonize together to make an experience leading to your desired learning goal.

Perhaps for the section above add a block diagram or word cloud visual of the major decision considerations.

3.2.7 Transitioning to and from Jupyter

Although this book focuses on using Jupyter notebooks in education, we recognize that students have different back-
grounds and familiarity with coding. Not all students are ready to jump right into notebooks from a traditional
lecture-based classroom; while, other students may have significant programming experience and may be closer to
being ready to transition to IDEs.

Based on your analysis of the goals and context you will want consider the appropriate instruction points for in-
troducing and exiting from notebooks as a tool for achieving your goals. As your students gain experience with
programming, they may be more interested in using an IDE. Likewise, you may choose to introduce a more tradi-
tional IDE first and introduce Jupyter notebooks later. Exercises that can support this transition include assignments
where they do the same task in 3 or 4 different IDEs and then reflect on those experiences as they make decisions
about which environments best supports their ambitions at the time.

3.2.8 Conclusion about teaching practices

In this chapter we have attempted to place the use of Jupyter notebooks into the process of good course design.
Notebooks are a tool that many teachers can use to increase student engagement, participation, understanding, and

26 CHAPTER 3. NOTEBOOKS IN TEACHING AND LEARNING

performance—but that is not to say that every course and every lesson should use notebooks. Let the goals of your
course define when and how to best use notebooks to achieve those goals.

Chapter 4

A catalogue of pedagogical patterns

4.1 Introduction

In this chapter, we present a collection of patterns that are particularly alignedwith teaching and learningwith Jupyter.
Each pattern is targeted at specific learning goals, audiences, and teaching formats. With those in mind we describe
each pattern and its pedagogical features that support the learning goals, present a practical example, and close each
with any potential pitfalls you would want to be aware of.

4.2 Shift-Enter for the win

Description: Instead of reading a static chapter about a topic, the learners read and execute code, aswell as potentially
interact with a widget to explore concepts. Starting from a complete notebook, the instructor or learner runs through
the notebook cell-by-cell by typing SHIFT + ENTER.

Example: The notebook (or a collection of notebooks) can be used as an alternative to a static textbook on a topic.

Learning goals: This pattern can be used to introduce a topic or promote awareness about a set of tools. Additionally,
it can serve as documentation that provides a tour of an application programming interface (API).

Audience(s): Depending on the style of the notebook, this pattern can be used for a spectrum of programming
abilities.

Format (lecture / lab / …): This pattern can be used as an alternative to a static textbook. In a tutorial, a complete
notebook can be used to provide a tour of an application programming interface (API) of a software package.

Features: One benefit of this approach is that learners have a complete working example which they can adapt or
build from. It provides opportunity for richer interaction than a static textbook.

Pitfalls: This style does not prompt much engagement with students. Having a class that interactively works through
a notebook can lead to some students finishingmuch faster than others (e.g., racing through SHIFT + ENTER). Break-
ing long notebooks into many smaller ones can help with the pacing in a lecture. Having a master notebook serve as
the table of contents can then help students navigate through the class. Notebooks can be linked in a markdown cell
as:

[Notebook 1](part1.ipynb)

27

28 CHAPTER 4. A CATALOGUE OF PEDAGOGICAL PATTERNS

4.3 Fill in the blanks

Description: To focus attention on one aspect of a workflow, the scaffolding and majority of the workflow can be laid
out and some elements removed with the intent that students (or the instructor during a demo) fill in those pieces.
The exercise might be accompanied by a small test that the code should pass, or a plot, or value which the code should
generate if correct.

Example: A fundamental concept in computing is the use of a for loop to accumulate a result. A fill-in-the-blank
exercise demonstrating an accumulator could lay out the initialization, provide the skeleton of the for loop and include
plotting code, with the aim being that students write the update step inside the for loop.

Related patterns: This pattern is similar to Target practice; a difference is that Target Practice often focuses on a bigger
step in a multi-step process. Fill in the Blank exercises tend to be smaller and more immediate.

Learning goals: This pattern focuses attention on a component of a task and provides the benefit of demonstrating
how that component fits into the bigger picture or a largerworkflow. It can be an effective approach for taking students
on a tour of an API, requiring that they use the documentation of the software, or for focusing attention on one aspect
of an multi-step computational model.

Audience(s): This approach can be used with a range of students, from those who are first being introduced to
computing concepts to those who have significant experience.

Format (lecture / lab / …): Assignments and labs can adopt this approach (nbgrader can be used to help with
marking). It can also be used in a lecture or tutorial setting where the instructor demos how to fill in the blank.

Pitfalls: Some students don’t find this approach engaging. In particular, if the exercise is too simple for the level of
programming competency of the students, it can be perceived as a “make-work” task.

4.4 Target Practice

Description: The Target Practice pattern focuses the learner’s attention on one component of a multi-step workflow.
The instructor provides all workflow steps except the onewhich is the focus of the exercise; the studentwill implement
the “target” step within a notebook.

Example: In a climate science assignment, the notebook that is given to students provides code for fetching and
parsing 20 years of hourly average temperature data fromapublic database. Students are asked to design an algorithm
for computing yearly average temperature and standard deviation. Following this, the plotting code which plots the
yearly temperature with error-bars showing the standard deviation is also provided to the students.

Related patterns: This pattern is similar to [Fill in the Blank] exercises. Fill in the Blank exercises are typically smaller
and more immediate, while Target Practice exercises tend to be larger (e.g. an entire step in a multi-step process).

Learning goals: The aim of a Target Practice exercise is to focus attention on one component of a workflow and
practice skills for solving that component. It can also be used to reflect on broader consequences of choices made in
the target step of an integrated workflow or analysis.

Audience(s): This approach assumes some programming competency as learners are typically asked to start from
scratch on the step that they are practicing.

Format (lecture / lab / …): This approach is readily used in assignments or labs. It can also be used in an in-class
demo where the instructor live-codes the missing component. It is beneficial if preceeding steps have been discussed
in earlier lectures.

Pitfalls: As there is more freedom in the implementation, this approach is typically more engaging than a Fill in
the Blanks approach. However, starting from more of a “blank slate” can require more instructor input in order to
get students started. Unit tests and pointers to useful library functions are often helpful, but may over-constrain
the space of solutions, thereby reducing the level of creativity and problem solving expected from students. The
amount of guidance should be carefully calibrated to the class and can be adjusted by giving tips in response to

4.5. TWEAK, TWIDDLE, AND FROB 29

formative assessments. Working in small groups can helpmitigate the risks of students having trouble getting started
or pursuing tangents.

4.5 Tweak, twiddle, and frob

Description: Students are given a notebookwith aworking example. They start by reading the text, running the code,
and interpreting the results. Then they are asked to make a series of changes and run the code again; the changes can
be small (tweaks), medium-sized (twiddles), or more substantial (frobs). For the origin of these terms, see The New
Hacker’s Dictionary (Raymond, 1996).

Offering manipulations on a range of scales allows students to interact with notebooks in ways that suit their back-
ground and styles. Students who feel overwhelmed by the technology can get started with small, safe changes, enjoy
immediate success, and work their way up. Students with more experience or less patience can make more radical
changes and learn by “destructive testing”.

Examples: In machine learning there are many steps to implementing an effective algorithm:

• Understand a problem
• Identify the proper machine learning algorithm to create the desired results
• Identify data and feature sets
• Optimize the configuration of the machine learning algorithms

We can write machine learning notebooks that allow students to modify parameters and interact at multiple levels of
detail:

• twiddle hyper parameters to quickly see minor improvements in the results.
• tweak feature sets to create new models for a bigger impact
• frob by replacing the machine learning algorithm with a new algorithm or a new version

This pattern is particularly suitable for examples with a lot of parameters.

Learning goals: This pattern helps students acquire domain knowledge by seeing the relationship between parame-
ters and the effect they have on the results. It can also help students learn new notebook use patterns

This pattern is similar to “notebook as an app”; a difference is that in this pattern the code is more visible to the
students, which can help orient them if they will make bigger changes in the future.

Audience(s): This pattern can work with students who have no programming experience; they only need to be able
to edit the contents of a cell and run a notebook. It can also work with students who have no background with the
domain; they can learn about the domain by exploring the effect of parameters.

Format (lecture / lab / …): This pattern lends itself to a workshop format, where students are guided through a
notebook with time-boxed opportunities to experiment. It also lends itself to pair programming, where a navigator
can suggest changes and a driver can implement them.

Features: Can help students overcome anxiety about breaking code, and build comfort with self-directed exploration.

Pitfalls: One hazard of this pattern is that students might have trouble getting started, so you might suggest a few
examples; however, another hazard is that, if you provide examples, students will do what they are told and fail to
explore. A third hazard is that the changes a student makes might be too unorganized; in that case the effect of the
parameters might be lost in the chaos.

Enabling technologies: Ideally the students should work in some kind of version control system that lets them revert
to a previous version if they break something (and don’t know how to fix it). Note that undo and redo, Ctrl-z and
Ctrl-y, can be used to traverse deep history within each cell, but not across cells.

30 CHAPTER 4. A CATALOGUE OF PEDAGOGICAL PATTERNS

4.6 Notebook as an app

Description: Notebooks can be used to rapidly generate user interfaces where students and instructors can interact
with code through sliders, entry boxes, and toggle buttons. The code can run numerical simulations or perform
simple computations, and the output is often a graph or image.

Example: In geophysics, a direct current resistivity survey involves connecting two electrodes to the ground through
which current is induced. Current flows through the earth and the behavior depends upon the electrical resistivity
of the subsurface structures; current flows around resistors and is channeled into conductors. At interfaces between
conductors and resistors, charges build up, and these charges generate electric potentials which we measure at the
surface of the earth. Each of these steps can be demonstrated through a simulation where students or the instructor
builds a model, and views the currents, charges and electric potentials.

Related patterns: Top-down sequence

Learning goals: This approach can be effective for focusing on domain-specific knowledge and facilitating the explo-
ration of models or computations.

Audience(s): This style can be effective for students with minimal programming experience as they do not have to
read, write, or see the code.

Format (lecture / lab / …): In lecture, this style of notebook can be used by an instructor to methodically walk
through a concept step-by-step. It is also useful for promoting in-class engagement as students can suggest different
parameter choices and instructors can adapt the input parameters based on students’ questions.

In a lab or assignment, the notebook can be used as a “app” around which questions and exercises are built.

Features: Notebooks as apps can be used to promote engagement with students in lecture. In labs, assignments or
in-class activities, this approach lowers the barrier-to-entry for students to explore complex models.

Pitfalls: It is important to have well-structured exercises and questions for students to address with the app. As with
any app, simply asking students to play with it does not promote productive engagement.

In structuring an exercise for students, we recommend putting instructions and questions in a separate document
rather than in the notebook. If students view the notebook as an app, they often want to interact with it rather than
read it. By having instructions and questions that go alongside the notebook, they can have the app in view while
reading.

This approach is not intended to be used for developing students’ programming skills.

Enabling technologies: Widgets, domain-specific libraries such as simulation tools.

4.7 Win-day-one

Description: A win-day-one exercise brings learners to the answer quickly and concisely, almost like a magic trick,
and then breaks down and methodically works through each of the steps, revealing the magician’s tricks. It gen-
erally involves multiple notebooks: the first notebook being the “win” which shows the workflow end-to-end, and
subsequent notebooks breaking down the details of each component of the workflow.

Example: To solve a numerical simulation using a finite volume approach, a meshmust be designed, differential oper-
ators formed, boundary conditions set, a right-hand side generated and then the system solved. Naturally, there are
important considerations for each step. For even a moderately sized problem, sparse matrices are necessary in order
to keep memory usage contained, the mesh must be appropriately designed in order to satisfy boundary conditions,
and the solver needs to be compatible with the structure of the systemmatrix. These details are critical for assembling
a numerical computation, but if introduced upfront, they can overwhelm the conversation.

In a win-day-one approach, learners are first shown a concise example, in which many of the details are abstracted
away in functions or objects. For example, methods such as get_mesh, get_pde, and solve abstract away the de-

4.8. TOP-DOWN SEQUENCE 31

tails of mesh design, creating differential operators and solving the set of equations. In subsequent notebooks, the
workflow is tackled methodically, and the inner workings of each component discussed.

Related patterns: Top-down sequence, Proof by example, disproof by counterexample

Learning goals: This can be an effective approach for introducing complex processes, providing context for how each
of the components fits together, and focusing attention.

Audience(s): This style can be effective for a spectrum of student audiences from those with some programming
experience to those with significant experience.

Format (lecture / lab / …): This can be effective for tutorials and workshops, and can be used over multiple lectures.
This can be useful when introducing new topics to help hook students because they accomplish significant results
early in the learning process.

Pitfalls: One hazard of the “win-day-one” is that the “win” is overwhelming (too much detail) or too magical (too
little detail). An appropriate level of detail needs to be selected so that each of the components of the workflow is
demonstrated, but at a high-level.

4.8 Top-down sequence

Description: Particularly in STEM, the default sequence of presentation is bottom-up, meaning that we teach students
how things work (and sometimes prove that they work), before students learn how to use them, or what they are for.

Notebooks afford the opportunity to present topics top-down; that is, students learn what a tool is for and how to use
it, before they learn how it works.

Examples

• In digital signal processing, one of the most important ideas is the discrete Fourier transform, which depends
on complex arithmetic; in a bottom-up approach, we would have to start by teaching or reviewing complex
numbers, which is not particularly engaging.

In contrast to writing the mathematics on paper, in a notebook students can use a library that does the discrete
Fourier transform for them, so they understand what it is used for, and see the value of learning about it, before
we ask them to do the work of understanding it.

• Some important methods are intrinsically leaky abstractions that require user expertise to use effectively and
reliably. This is often because truly reliable solutions (if they exist) are disproportionately expensive for com-
mon cases. Numerical integration and methods for discretizing and solving differential equations often fall in
this category. In addition to gaining intuition before diving into the details, the top-down pattern can be used
to expose these leaks as motivation to understand the methods well enough to explain and correct for the short-
comings. For example, one can motivate convergence analysis and verification (Roache, 2004) by showing a
solver that passes some consistency tests, but does not converge (or converges suboptimally) in general; or mo-
tivate conservative/compatible discretizations by showing a solver that has been verified for smooth solutions
produce erroneous results for problems with singularities or discontinuities. Consider, for example, Gibbs and
Runge phenomena, instability for Gram-Schmidt (Trefethen & Bau, 1997), entropy principles (LeVeque, 2002),
eddy viscosity (Mishra & Spinolo, 2015), and LBB/inf-sup stability and “variational crimes” (Brenner & Scott,
2008; Chapelle & Bathe, 1993).

Learning goals: This pattern is useful for building intuition, context, and motivation before introducing technical
domain content instead of building up in a setting where implementation details often take center stage.

Audience(s): This pattern can be effective with students who have limited programming skills, as they can use a
library and see the results without writing much, if any, code.

Format (lecture / lab / …): This pattern can be used in a single class session or homework, or spread out over the
duration of a course; for example, students could use a tool on the first day and find out how it works on the last.

32 CHAPTER 4. A CATALOGUE OF PEDAGOGICAL PATTERNS

Features: Shows students value and rewards their attention quickly (see Win-day-one).

Pitfalls: A potential hazard of this pattern is that students might be less motivated to learn how the tool works if they
think they have already understood what it is for and how to use it. This hazard can be mitigated by making obvious
the additional benefit of understanding how it works (assuming that there actually is one—it is not enough to assert
that knowing how it works is necessarily better). “Interesting” failure modes (see examples above) discovered by
students while trying to solve a problem are great for motivating deeper understanding.

4.9 Two bites at every apple

Description: This pattern involveswriting an activity that can addressmultiple audiences fromdifferent perspectives
at the same time. This can be powerful when addressing a mixed audience of students.

Example: Say you have a group of students, some of whom are computer science students and some of whom are
physics students, and ask them to come upwith two expressions for computing the centroid of an area. The computer
science students will be tasked with a description that involves adding up discrete pieces of areas with for loops and
the physics students taskedwith using the integral definition. When the students come upwith their expressions they
can then pair up with someone from the other background where they can attempt to explain how their approach
matches the other and compare their final answers.

Learning goals: Ability to translate from one field/language to another. Explain complex topics to someone from a
different field.

Audience(s): Groups which are composed of disparate backgrounds.

Format: This format involves both individual and group work but can be used in a lab or lecture setting. The basic
notebookwould include an overview of the problem and then pose questionswhose answer is the same but is worded
for the different audiences. There can be a single notebook that contains both questions so that students can fill in
their peers solution once they understand it or there can be separate notebooks for each group so they do not get
distracted by the other question.

Features: Group work and peer teaching has been shown to be effective at not only reinforcing student knowledge
but also at introducing students to new concepts.

Pitfalls: It can be difficult to construct questions for each audience that require equal amounts of difficulty.

4.10 Coding as translation

Description: Converting mathematics to code is a critical skill today that many students, especially those without
strong programming backgrounds, struggle to do. Explicitly taking an equation and translating it step-by-step to the
code can help these students make the transition to attaining this skill.

Example: Say you wanted to show the translation of matrix-vector multiplication from equation to a numerical compu-
tation. This would involve setting up and explaining the mathematics and suggesting replacing the sums with loops
and initializing the sum properly.

Learning goals: Translating mathematics to code (and vice versa)

Audience(s): Learners who understand the theory but struggle with the programming side of things.

Format: This type of pattern is often best served as a notebook with some explanatory text and possibly some scaf-
folded code so that a student can focus on the critical areas. This can be done as easily as a lab exercise or in lecture
with perhaps some time held out for the students to solve it themselves before moving forward. It is critical to this
pattern that there is a clear connection between the mathematical symbols (such as the summation) to the code (such
as the for loops).

4.11. SYMBOLIC MATH OVER PENCIL + PAPER 33

Features: This pattern can work to lower the barrier for students with low programming knowledge to take on more
complex tasks.

Pitfalls: If the exercise is not properly scaffolded, namely it is too complex, students can be turned off. This is especially
true if the code example is too complex with too many steps. For instance avoiding compound operators in the
example above (+=) can help student retention.

4.11 Symbolic math over pencil + paper

Description: Your objective is to convey an understanding of a physical system governed by a complicated mathe-
matical system. Working out the algebra is necessary to uncover the fundamental behavior of the system, but how
to do the algebra is not the goal of the lesson. In this case, you want to see the algebraic result and then teach the
students the underlying meaning of the system,

Example: The Euler equations for hydrodynamics are a system of partial differential equations governing conserva-
tion of mass, momentum, and energy. Their mathematical character admits wave solutions, and the eigenvalues and
eigenvectors of the system in matrix form are important to understanding the physical behavior of the density, pres-
sure, velocity, etc., in the system. Working out the eigenvalues with pencil and paper is tedious, and not the objective
of the lesson. In this case, we can use a symbolic math library like SymPy (Meurer et al., 2017) to do themathematical
analysis for us, finding the eigenvalues and eigenvectors of the system, and we can then use this result to continue
our theoretical discussion of the system.

Learning goals: Students will see how to do symbolic math that arises in their theoretical analysis.

Audience(s): STEM students that want to focus on understanding a mathematical system without worrying about
the algebraic details.

Format: This works well as a notebook that acts as a supplement to the main lecture. Since the goal of the lecture is
the theory, the notebook can [TODO: complete]

Features: Abstracts the details of mathematics that is secondary to the discussion at hand into a separate unit that
students can explore on their own.

Pitfalls: This only works well in the case that the algebra is not essential to the main learning goals, but rather is
simply something that must be done to get to the main goal.

4.12 Replace analysis with numerical methods

Description: Some ideas that are hard to understand with mathematical analysis are easy to understand with com-
puter simulation and numerical methods.

In the usual presentation, students see and learn to do mathematical analysis on a series of simple examples, and
resort to numerical methods only when necessary. In an alternative pattern, students skip the analysis and start with
simulation and numerical methods, optionally visiting analysis after gaining practical experience.

Examples: In statistics, hypothesis testing is a central idea that is notoriously difficult for students to understand.
Students learn methods for computing p-values in a series of special cases, but many of them never understand the
framework, orwhat a p-valuemeans. The alternative is to compute sampling distributions andp-values by simulation;
anecdotally, many students report that this approach makes the framework much clearer. Such simulation can also
be used to drive home points about misconceptions held by most students and instructors (Haller & Krauss, 2002).

Similarly, in queueing theory, there are a few analytic results that apply under narrow conditions; when those con-
ditions don’t apply, there are no analytic solutions. However, queueing systems lend themselves to simulation and
visualization, and in simulation it is easy to explore a wide range of conditions.

34 CHAPTER 4. A CATALOGUE OF PEDAGOGICAL PATTERNS

And again, with differential equations, there are only a few special cases that have analytic solutions; the largemajority
of interesting, realistic problems don’t.

Learning goals: This pattern is primarily about helping students see the big ideas of the domain more clearly, but
it is also a chance to develop their programming skills. It also provides students with tools that are likely to be
needed if they encounter similar problems in the real world, where analytic methods are often inapplicable, fragile,
or complicated to use effectively.

Audience(s): This pattern requires students to have some comfort with programming, although it would be possible
for them to get some of the benefit from seeing examples without implementing them. Non-programmers can use
this pattern via prepared notebooks; see Win Day One.

Format (lecture / lab / …): This pattern can be used for in-class activities or homework.

Features: Students can understand general ideas without getting bogged down in the details of special cases; and
they are able to explore more interesting and realistic examples.

Pitfalls: If students are not comfortable programmers, they can get bogged down in implementation details and
debugging problems, and miss the domain content entirely. It is important to scope the implementation effort to suit
the full range of students in the class. Pair programming can help mitigate these problems, especially if every pair
has at least one student with programming skills, and if students are coached to pair program effectively (without
letting the more experienced student dominate).

4.13 The API is the lesson

Description: When students work with a software library, they are exposed to functions and objects that make up an
application programming interface (API). Learning an API can be cognitive overhead; that is, material students have
to learn to get work done computationally, but which does not contribute to their understanding of the subject matter.
But the API can also be the lesson; that is, by learning the API, students are implicitly learning the intended content.

Example: In digital signal processing, one of themost important ideas is the relationship between two representations
of a signal: as a wave in the time domain and as a spectrum in the frequency domain. Suppose the API provides two
objects, called Wave and Spectrum, and two functions, one that takes a Wave and returns a Spectrum, and another
that takes a Spectrum and returns a Wave. By using this API, students implicitly learn that a Wave and a Spectrum
are equivalent representations of the same information; given either one, you can compute the other.

Related patterns: Top-down sequence

Learning goals: This pattern is useful for shifting students’ focus from implementation details to domain content.

Audience(s): This pattern is most effective if students have some experience using libraries and exploring APIs.

Format (lecture / lab / …): This pattern TODO: complete

Pitfalls: Ahazard of this pattern is that students sometimes perceive the costs of learning the API and do not perceive
the benefits. It might be necessary to help them see that learning the API is part of the lesson and not just overhead.

4.14 Proof by example, disproof by counterexample

Description: In many classes, students see general results derived or proved, and then use those results in programs.
Notebooks can help students understand how these results work in practice, when they apply, and how they fail when
they do not.

Example: In statistics, the Central Limit Theorem (CLT) gives the conditions when the sum of random variables
converge to a Gaussian distribution. Students can generate random variables from a variety of distributions and test
whether the sums converge and how quickly.

4.15. THE WORLD IS YOUR DATASET 35

The classical Gram–Schmidt is unstable while the modified method is stable. Students can find matrices for which
this instability produces obviously unusable results. They can also find matrices for which modified Gram-Schmidt
produces unusable results due to its lack of backward stability, and this can be used to motivate Householder factor-
ization and discussion of backward stability.

Some numerical methods for PDE converge with an assumption on smoothness of coefficients. Students can show
howviolating these assumptions leads to erroneous solutions, thusmotivating discussion of conservative/compatible
methods that can converge in such circumstances.

Learning goals: This pattern is primarily useful for developing mathematical or domain knowledge, but students
might also develop programming experience by writing code to run the examples and test the outcomes. This is
especially true if the space of (counter-)examples is “small”, such that principled exploration (e.g., by finding an
eigenvector, running an optimization algorithm, or searching a dictionary) is beneficial.

Audience(s): This pattern requires students to have some programming experience.

Format (lecture / lab / …): This pattern can be used for in-class activities or homework.

Features: Helps students translate from theoretical results to practical implications, and to remember the assumptions
and limitations of theory.

Pitfalls: This pattern requires additional time and student effort on a topic that might not deserve the additional
resources.

4.15 The world is your dataset

Description: Notebooks provide several ways to connect students with the world beyond the classroom: one simple
way is to collect data from external sources. Data is available in many different formats that require different software
tools to collect and parse.

If a dataset is available in a standard format, like CSV, it can be downloaded from inside the notebook, which demon-
strates a good practice for data integrity (going to the source rather than working with a copy) and demystifies the
source of the data.

For data in tabular form on aweb page, it is often possible to use Pandas to parse theHTML and generate a DataFrame.
Also, for less structured sources, tools like Scrapy can be used to extract data, “scrape”, from sources that would be
hard to collect manually, and to automate cleaning and validation steps.

Examples: Datasets like the National Survey of Family Growth are available in files that can be downloaded directly
from their website, but the terms of use forbid redistributing the data. So the best way for an instructor to share this
data is to provide students with code to input into a notebook cell, which, when executed, will download the data set
the first time the student runs the notebook.

Many Wikipedia pages contain data in HTML tables; most of them can be imported easily into a notebook using
Pandas.

Sources of sports-related statistics are often embedded in large networks of linked web pages. Tools like Scrapy can
navigate these networks to collect data in forms more amenable to automated analysis.

Audience(s): Students with limited programming experience can work with datasets in standard formats, but scrap-
ing data might require more programming experience.

Format (lecture / lab / …): This pattern lends itself to more open-ended project work where students are responsible
for identifying data sources, collecting data, cleaning, and validating, but it can be adapted to more scaffolded work
(see Target Practice).

Features: Contributes to students’ feelings of autonomy and connectedness.

Pitfalls: A hazard of this pattern is that students can spend too much time looking for data that is not available. They
might need coaching about how to make do with the data they can get, even if it is not ideal.

https://www.cdc.gov/nchs/nsfg/index.htm

36 CHAPTER 4. A CATALOGUE OF PEDAGOGICAL PATTERNS

Enabling technologies: Pandas, Scrapy, R, ROpenSci packages

4.16 Now you try (with different data or process)

Description: Students start with a complete working example provided by an instructor and then they change the
dataset or process to apply the notebook to an area of their own choosing. This method can allow more or less
fluctuation depending on the skills of the students. For example we can allow students to select new datasets from a
list that ensures the cells of the notebook will all still work or we can give them freedom to try new data structures or
add new processes to break the notebooks and learn as they go through the process of fixing the broken cells.

Example: An instructor designs a lesson in exploratory data analysis to scrape the critics’ reviews for a specific movie
from a particularmovie reviewwebsite and then provide some simple visualizations. The students have a few options:

1. Green Circle - replace the movie name and pick any movie they want and then step through the new notebook
and see the new results.

2. Blue Square - adjust the notebook to scrape users’ reviews rather than critics’ reviews and then fix any data
parsing problems.

3. Black Diamond - add different visualizations tailored to explore the user reviews (as opposed to the initial
visualizations that are tailored for the critics’ reviews).

There are various ways to test the properties of numerical methods. For example, students can use the method of
manufactured solutions to test the order of accuracy for a differential equation solver. They can also measure cost as
the resolution is increased and present the results in a way that would help an analyst decide which method to use
given external requirements (e.g., using accuracy versus cost tradeoff curves).

Related patterns: Top-down sequence

Learning goals: This pattern allows students to apply their knowledge

Audience(s): This pattern can be tailored for students with more or less experience even in the same course.

Format (lecture / lab / …): This pattern is best in a lab or an interactive tutorial

Pitfalls: A hazard of this pattern is that students may go completely off the rails and chose datasets or new processes
that have not been tested and will not work in the timeframe allowed.

4.17 Connect to external audiences

Description: This is in some sense the opposite of “the world is your dataset.” Here the goal is to take a workflow or
computational exploration and share it with the world so others can see it, learn from it, reuse and remix it.

Examples: Your students are doing an observational astronomy lab where they take data from a telescope of a transit-
ing exoplanet (a planet around a star other than our Sun) and they examine the lightcurve to learn about the planet.
The students present the lab as a Jupyter notebook with a reproducible workflow that starts with reading in their
data (images), walks through cleaning and reducing the images, and then performs photometry on the host star to
produce a lightcurve. The end product is a plot showing the star’s brightness, dimming just slightly as the unseen
planet comes between the star and earth. Elated with their result, the students want to share their data and workflow
so anyone else can redo the analysis.

Learning goals: Reproducibility is an important part of the scientific process. Having completed the primary sci-
entific analysis that was the goal of the lab (obtaining a lightcurve of a transiting exoplanet), the students now can
learn reproducible science practices by hosting their notebook on a webserver (e.g., Github) along with the data.
An essential part of making the notebook reproducible will be ensuring that the notebook clearly lists the needed
dependencies.

Audience(s): All students—everyone should learn about reproducibility.

4.18. THERE CAN BE ONLY ONE 37

Format: A self-contained notebook hosted on a webserver.

Features: Teaches students about reproducible science workflows.

Pitfalls: You need to be clear about the library requirements needed to run the notebook. Also, since the data files are
likely separate from the notebook, it is possible for copies of the notebook to get shared without the data. Students
may also be shy or fearful of showing their work publicly, so explaining the benefits may be needed to curtail their
worries.

4.18 There can be only one

Description: This pattern involves creating a competition between individual students or teams of students. Clear
goals andmetrics need to be defined and then students submit notebooks that are scored and evaluated. Competitions
can span months or be completed in a single class.

The Jupyter ecosystem support for reproducibility and data sharing make it a great environment for creating healthy
competitions. Kaggle is a site that hosts many machine learning competitions using Jupyter as its underlying infras-
tructure and is a great place for advanced students to extend their knowledge with a chance of winning cash prizes
and solving current world problems.

Examples: Identify a machine learning problem and a labeled dataset your students can use to train their model.
Then select an evaluation metric and detail your problem statement and rules. Finally, launch your competition and
allow your students to submit their notebooks and post their results on a public leaderboard.

Learning goals: Creative problem solving is a key aspect of this pattern. In addition, if the competition is team-based
then the students will learn how to work in groups and communicate effectively and share responsibilities.

Audience(s): Students can benefit from healthy competition and working in teams, however it is critical that a safe,
fun, and engaging environment is created. Advanced students can be pointed toward kaggle or other public compe-
titions that may be in their area of interest and give them a chance to test their skills in the real world.

Format: A competition can be defined with any metrics and rules and can be run in multiple ways. The students can
help define the rules or a simple vote can decide the winners. For a more formal competition instructor can host free
competitions for their class hosted by Kaggle. https://www.kaggle.com/about/inclass/overview

Features: Teaches students about creative problem solving and teamwork.

Pitfalls: Creating a fair competition is not trivial and considerations regarding data, metrics, rules, and scoring may
be time consuming. Competition is risky business and effort should be made to ensure both winners and losers enjoy
the experience.

4.19 Hello, world!

Description: In some situations (such as the first day of class of a very introductory course) you may wish to do
no more (and no less) than build confidence in the students’ abilities to be able to write a first computer program.
Traditionally, the first programwritten was a “hello, world” program: a program that did nothing but display the text
“hello, world” on the screen. However, these days students can have much more fun, and step fully into the creative
world of computing with very little instruction.

Example: Draw a rectangle. Change the numbers, run it again, and see what happens.

Learning goals: Reduce stress, build confidence, connect onto their personal lives. Requires that they do learn the
basics of Jupyter including: log in, open a new notebook, enter the provided code, and execute it. Often leads to a
very animated, active learning classroom activity (“How can I change the colors?”, “How do I draw a circle?”, etc.)

Audience(s): Beginning students.

https://www.kaggle.com/about/inclass/overview

38 CHAPTER 4. A CATALOGUE OF PEDAGOGICAL PATTERNS

Figure 4.1: Figure: a first sketch using Calysto Processing, a Java-based language designed for creating art.

Format (lecture / lab / …): First day of class, in-class exercise. Build on what students already know from typing
and reading (e.g., cut and paste, read top-to-bottom).

Features: Open ended, creative, fun.

Pitfalls: Works best when used with a pre-installed Jupyter (see the relevant chapter). Rather than telling students
that they can do it, just do it. As a first assignment, to cut down on the vast possibilities, we suggest limiting the palette
of options. For example, restrict their drawings to use only a single shape, such as rectangle or triangle. We suggest
having the students draw something in their life that is important or meaningful to them. We suggest discussing the
coordinate grid for the first assignment and sketching an idea on paper first.

4.20 Test driven development

Description: The instructor provides tests written in a unit testing framework like unittest or doctest; students
write code to make the tests pass.

Example: TODO: Necessary?

Learning goals: Helps students learn a good software development process.

Audience(s): This pattern requires students to have some programming experience.

Format (lecture / lab / …): This pattern can be used for in-class activities or homework.

Features: Helps students focus on the task at hand and knowwhen they are done (at least to the degree that the tests
are complete).

Pitfalls: Some Python unit testing frameworks are not designed to work with notebooks, and can be awkward to
use. On the other hand, nbgrader [TODO: add cross reference to nbgrader] supports automated testing of the code
students write in notebooks; in that environment, the tests are not visible to students, which may or may not be a bug.

This pattern requires the overhead of teaching students about the unit testing framework. Students working to make
tests pass can lose their view of the big picture, and feel like they have been robbed of autonomy. This type of exercise
is best used sparingly.

4.21. CODE REVIEWS 39

4.21 Code reviews

Code reviews involve a student or instructor providing feedback on someone else’s code. This pattern involves peer
work as well as a means for providing feedback to students on topics other than correctness of their code but also on
code readability and styling.

Example: Present a problem to students that theymust write a solution to, say computing the square root of a number
without using a built-in function but have them write a test for their function that uses a built-in function to compute
the answer. After they are finished have the students pair up and perform peer reviews of each other’s code, com-
menting not only on the way they solved the problem, such as making up a list of pros and cons of their approaches,
but also on the readability of the code.

Learning goals: Learn to read and understand someone else’s code. Learn to write readable code.

Audience(s): Any group of students who are involved in coding.

Format: Once a suitable problem is formulated in a notebook (or simply a script) then in-class review, as with the
above example, can work for peer reviews. Alternatively students can upload their notebooks/scripts to a platform
such as GitHub and the code reviews can be done using the tools available there. Sufficient scaffolding must be pro-
vided so that students understand the process, how tomake constructive comments andwhy the process is important.
If an instructor wants to review and provide feedback notebooks/scripts can be collected and commented on with a
similar explanation to students as to how they are going to be graded (if they are).

Features: This pattern leads to not just feedback for the person who wrote the code but also for the reader. Code
review is also a critical piece of the software development process used in industry providing students with a view
of the process. This can also have the result of making sure that a student’s code is readable via appropriate code
styling, commenting and documentation.

Pitfalls: Students need to be properly informed as to how the code reviews will impact their grades, especially if peer
review is used. Notebooks on GitHub are not as easily reviewed as scripts.

4.22 Bug hunt

Description: The instructor provides a notebook with code that contains deliberate bugs. The students are asked to
find and fix the bugs. Automated tests might be provided to help students know whether some bugs remain unfixed.

Example: TODO

Learning goals: This pattern helps students develop programming skills, especially debugging (of course); it also
gives the practice reading other people’s code, which can be an opportunity to demonstrate good practice, or warn
against bad practice. It can also be used to teach students how to use debugging tools.

Audience(s): This pattern requires students to have some programming experience.

Format (lecture / lab / …): This pattern can be used for in-class activities or homework.

Features: Can be engaging and fun; develops important meta-skills.

Pitfalls: The bugs need to be calibrated to the ability of the students: if they are too easy, they are not engaging; if
they are too hard, they are likely to be frustrating.

4.23 Adversarial programming

Description: This pattern involves participants writing a solution to a problem and tests that attempt to make the
written solution fail. This pattern can be done in many ways including having students complete the tasks and pair
up and exchange solutions/tests or having the instructor writing the solution and the students then write the tests.

40 CHAPTER 4. A CATALOGUE OF PEDAGOGICAL PATTERNS

Example: Students are tasked to write a function that finds the roots of a polynomial specified via some appropriate
input. They are also asked to write a set of tests that their function passes and fails on. When students have completed
these tasks they then exchange their notebooks and use the tests they wrote on their peer’s function. Finally they will
discuss any differences in their approaches and whether they can come up with ways to not fail each other’s tests or
if the tests provided are invalid.

Learning goals: Learn to write unit tests. Think critically on how an adversary might break their solution.

Audience(s): Any group of students who are involved in coding.

Format: Decide on a sufficiently complex problem that may have non-trivial tests written for it and write up the
question in a notebook. Then as an in-class activity or lab start the discussion regarding the tests. If appropriate the
instructor can collect notable tests written by students and also share those.

Features: Provides a means for students to think critically about a problem they are solving and how someone might
break their solution. Also can provide a learning activity with a form of competition involved, which can then lead
to an award system if desired.

Pitfalls: With competition come dangers if students are not properly scaffolded so that they can provide constructive
feedback. Some problems and/or solution strategies are vulnerable to many corner cases, leading to tedious whack-
a-mole or fatalism that may distract from learning objectives.

Chapter 5

Jupyter Notebook ecosystem

5.1 Language support: kernels

The Jupyter system supports over 100 programming languages (called “kernels” in the Jupyter ecosystem) including
Python, Java, R, Julia, Matlab, Octave, Scheme, Processing, Scala, and many more. Out of the box, Jupyter will only
run the IPython kernel, but additional kernels may be installed. Language support continues to be added by the
open source community and the best source for an up-to-date list is the wiki page maintained by the project: https://
github.com/jupyter/jupyter/wiki/Jupyter-kernels. These projects are developed and maintained by the open source
community and exist in various levels of support. Some kernels may be supported by a vast number of active (and
even paid) developers, while others may be a single person’s pet project. When trying out a new kernel, we suggest
exploring a kernel’s community of users and documentation to see if it has an appropriate level of support for your
(and your students’) use.

Jupyter’s kernel flexibility allows instructors to pick the right language for a particular context. For example instruc-
tors may use Python to teach programming, while switching to R to teach statistics, and then perhaps Scala to teach
big-data processing. Regardless of the language chosen, the Jupyter interface remains the same. Thus, some cognitive
load can be lessened when using multiple languages within or across courses (e.g., the user interface stays the same
between the student’s Digital Humanities and Biology courses). Students often appreciate consistent use of the same
language within a course, however.

5.2 Using Jupyter notebooks

When using Jupyter notebooks on the data projector or large screen monitor in the classroom, we recommend giving
the students specific instructions on the meaning of the user interface of the notebook. It is not exactly intuitive.

The first andmost salient component of the notebook is the cell. Indeed, the entire contents of a notebook is composed
of only cells. These cells can take one of two forms: text or code. We will descibe the authoring of a notebook in the
following section; however, here we identify some of the subtle, yet important components of a code cell.

Code cells are composed of three areas: the input area, the display area, and the output area. The input area is
identified by the In []: prompt to the left of the cell. Between the brackets of the In prompt can be one of three items:
a number, an asterisk, or a blank. A number indicates that this cell has been executed and the value of the number
indicates the order of execution. For example, normally, after you execute the first cell after opening a notebook, its
prompt will read In [1]:.

Pro Tip

41

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

42 CHAPTER 5. JUPYTER NOTEBOOK ECOSYSTEM

When teaching with notebooks, you often will want to refer to a cell my name. You could refer to a cell by its
input prompt number. However, keep in mind that this number will change if you excecute the cell again, or
that students may have different numbers if they, too, are executing their own copy of the notebook. A better
way of referring to a cell may be to refer to the text right above the cell as that won’t change while you execute
cells. For referring to lines of code, see the following section on Tips and Tricks.

Before executing a cell, the input prompt number area will be blank. Therefore, you can tell at a glance that that cell
has not been executed yet. It may also be the case that if an input prompt does have a number in it, then the cell
has been run in the past. However, the cell may not have been run during this session, and thus the output may
be showing old results. We recommend running from the menu: Cell, All outputs, Clear at the beginning of a
presentation. That initializes all cell inputs to the blank state.

During the execution of a cell, the input prompt will contain an asterisk. If it seems that too much time has passed
and you still see In [*]: your code may be in an infinite loop, or you have lost communication with the kernel. You
may have to interrupt or restart the kernel. This is discussed below.

Finally, it is important to keep separate the display and output areas below the input cell. The difference between
these two areas is subtle and confusing, but is very important in some instances. The display area is reserved for any
item that code has produced for viewing. That includes simple text (i.e., print("hello, world")) or figures from
a plot. The output area is reserved for items that the cell “returns.” This is why in many notebooks you may see a
variable assignment followed immediately by the variable, like this:

x = 2434 + 33476
x

In this example, you wouldn’t actually see the value computed unless you print it to the display area, or return the
value. Here, we return it as the last value of the cell.

Keep in mind that the bottom portion of the notebook on the screen or monitor may not be visible to students
in the back of the room. Make sure that the font size is large enough, and that you don’t go too fast when
demonstrating code that students don’t have access to. We also recommend that you hide the Jupyter toolbar
and header to get more room for the actual notebook (select Toggle Header and Toggle View under the
Jupyter Viewmenu).

5.3 Authoring Jupyter notebooks

Before embarking on writing notebooks for your course, we recommend that you look around on the internet for
related courses. A similar course for which an instructor has already generated notebooks could exist for you to use
or adapt for your course. Notebook authors often are happy to collaborate on open source educational resources
or have their resources be used by other instructors. The following sections focus on Python simply because it is
currently the language with the largest Jupyter feature support.

5.3.1 Accessing documentation in the notebook

One of the best features of quality libraries is their documentation, which students and other users will likely consult
regularly. From a notebook cell, the TAB key autocompletes (or gives completion tips) and SHIFT-TAB brings up full
documentation. Similarly, using a question-mark after a method or function will bring up the documentation after
the cell is run, as shown in Figure 5.1.

Using this feature in class during live coding or while explaining how code works helps make students comfortable
of working effectively with libraries.

5.3. AUTHORING JUPYTER NOTEBOOKS 43

Figure 5.1: A question mark used after a method or function brings up the documentation after executing the cell.

5.3.2 Widgets

Widgets provide the opportunity for learners and instructors to interact with code outputs, such as charts and tables.
Widgets are “mini” Graphical User Interfaces (GUI) that give the notebook user access to slide bars, toggle buttons,
and text-boxes. They can be used in conjunction with code, allowing a change of mindset from programming as a
primary goal to exploring a model or computation as the primary goal. Alternatively, the code can be hidden and the
widgets used to create a notebook “app” that might connect input parameters with a simulation and a plot.

Currently, only a small subset of kernels have widget functionality. The reference implementation of widgets are the
Jupyter-Python widgets (https://ipywidgets.rtfd.io). It includes widget components to generate and display sliders,
progress bars, text boxes, check boxes, toggle buttons, etc. Many popular visualization tools, such asMatplotlib, Plotly,
leaflet.js, three.js, have Jupyter-Python widget implementations. The documentation contains an up-to-date list of all
of the widgets and their variations. The interact method allows you to wrap a function, which might be a simple
computation or a complex simulation that produces a plot, and provides widgets for each of the inputs to the function.
Figure 5.2 shows a simple example of a sinusoid plot whose frequency is controlled by a slide-bar. Another kernel
that has some widget functionality is C++ (https://github.com/QUantStack/xwidgets).

In addition to the IPywidgets library, the ipyleaflet library (https://ipyleaflet.rtfd.io) displays an interactive map in
a notebook.

Example

from ipyleaflet import Map
Map(center=[34.6252978589571, -77.34580993652344], zoom=10)

For the ambitions reader, there are resources available for you to write your your own custom widgets. The widget
cookie cutter project (https://ipywidgets.rtfd.io) is a good place to start.

5.3.3 Magics

Magics are meta-commands that only function within Jupyter and allow a user to access language/kernel-specific
features. For instance, the IPython kernel provides a number of magics that can be useful while developing Jupyter
notebooks using Python as the primary language. These are documented and we will only call out a few of these
here. Many other magics are available for different kernels but they are specific to Jupyter so may not be usable in a
stand-alone script in that language outside of Jupyter. In some instances, you may want to use magics sparingly to
avoid obfuscating these meta-commands with the actual commands in the language you are teaching. Magics always

https://ipywidgets.rtfd.io
https://github.com/QUantStack/xwidgets
https://ipyleaflet.rtfd.io
https://ipywidgets.rtfd.io
https://ipython.readthedocs.io/en/stable/interactive/magics.html

44 CHAPTER 5. JUPYTER NOTEBOOK ECOSYSTEM

Figure 5.2: Here, a slider allows the user to interactively change the variable k in our function as we plot it.

5.3. AUTHORING JUPYTER NOTEBOOKS 45

Figure 5.3: Interactive map widget with ipyleafletalt_text.

begin with either a single % for single-line commands or with %% for applying a command to an entire cell. Some
magics can be used with single or double %, but some cannot.

Examples

• Matplotlib is a common choice for visualization. In Jupyter, themagic%matplotlib allows the resulting figures
to be displayed in the notebook: %matplotlib inline produces static images embedded in the notebook, and
%matplotlib notebook produces interactive images (with zooming, panning, etc.).

• The %run magic allows running external scripts (and other notebooks), captures output and displays it in the
notebook, e.g., %run my_script.py. The %run magic is one answer to “how do I import one notebook into
another?”

• The %timemagic times the execution of the Python expression following it, e.g., %time sum(range(1000)).

• The %timeit magic is similar to %time, but it runs the expression multiple times and reports the average
execution time.

• The %reset magic deletes all user-defined variables along with input and output. Magics often have “flags,”
following the Unix command pattern. For example, %reset -s is a soft reset and only removes user-defined
variables. These commands can be useful to avoid problems with out-of-order execution problems.

• The %debugmagic is used after code has stopped due to an exception (i.e., “the program has crashed”). Enter
the %debug magic immediately after the crash, and you will be placed into the environment that caused the
problem. From there you can explore variables and find the cause of the problem.

A good example of a magic operating on the entire contents of cell is the %%HTML magic, forcing the cell to be in-
terpreted as HTML and rendered appropriately. You can also use magics to call other languages while running the
IPython kernel. For example, you can run R code from within an IPython notebook by using the %%Rmagic.

Pro Tip

In the IPython kernel you can also use the %shellmagic. This is often abbreviated as ! and can run and return
results from the shell/terminal. In IPython, you can also mix magics with regular Python code. For example,

46 CHAPTER 5. JUPYTER NOTEBOOK ECOSYSTEM

files = ! lswill use the ls (list files) command in the terminal, return the list, and set the Python variable
files to that list.

5.3.4 Notebooks under version control

Keeping notebooks under version control is a great way to not only keep track of changes to your content, but also for
sharing it. In a course where multiple people are contributing to the development of notebooks for the course, using
version control in conjunction with a platform like GitHub, allows authorship to be tracked and provides communi-
cation tools for reviewing new contributions or outlining requested development for a new assignment, activity, etc.
Another advantage of using version control is that some services will provide rendered views of notebooks that you
have made public. GitHub shows a rendered version of the notebook, rather than the ASCII text that a notebook is
comprised of. Some pitfalls with LaTeX rendering may occur, as platforms do not always render the notebooks the
same as they would appear in an active Jupyter interface.

We should mention a few caveats to keeping notebooks under version control. The code output, including images, is
stored in the repository, unless you clear the output before committing changes. This can make reviewing changes
difficult, as changes in output will be detected even when nothing has actually changed content-wise. The tracked
notebooks also can become large if output is tracked. Even when clearing the output, reviewing changes can be
awkward due to the format of the notebook (notebooks are plain-text files and the file format is represented as JSON).
The community is actively developing tools to make it easier to use version control with Jupyter notebooks; one such
tool is nbdime (see box).

nbdime nbdime.readthedocs.io/

nbdime includes a set of tools for reviewing the changes (“diffs”) and merging changes in Jupyter notebooks.
You can compare versions of a notebook using the terminal, view the changes richly rendered on a browser,
and merge in various ways. Because nbdime understands the structure of notebook documents, it can make
smart “diffing and merging” decisions.

Another option to improve your version-control experience is to export a Jupyter notebook to a markdown document,
for example using the jupytext tool. Then you can review diffs in the usual way for plain-text files.

5.3.5 Testing notebooks

Before distributing notebooks, and in particular if you are working with multiple contributors to the course material,
testing the notebooks before they are distributed to students or used in a live demo can help mitigate unexpected
bugs. At a minimum, you can test that the notebook executes cleanly from top to bottom by restarting the kernel and
running all cells from top to bottom. This can be done from the menu (Restart + Run all).

Though it requires a bit more setup, tests can be run automatically using a continuous integration service, such as
TravisCI (https://travis-ci.org). This will require executing the entire notebook via the command line, for example
jupyter nbconvert --ExecutePreprocessor.enabled=True --to=html my_notebook.ipynbwill execute
the notebook (same as pressing “Restart + Run All”) and then convert it to HTML. These services can be connected
to GitHub so that any time that the notebooks are changed, the tests are run automatically. Simplifying this process is
an area that is under development in the open source community. The package https://github.com/opengeophysics/
testipynb provides an easy way to test notebooks.

5.3.6 Essential Python libraries

The purpose of this section is to introduce some of the most widely used packages within the Python ecosystem. As
mentioned before, over 100 kernels enable different programming languages in Jupyter. But Python is a common

https://www.json.org/
https://github.com/mwouts/jupytext
https://travis-ci.org
https://github.com/opengeophysics/testipynb
https://github.com/opengeophysics/testipynb

5.3. AUTHORING JUPYTER NOTEBOOKS 47

choice in many disciplines, due to its large open-source community which develops and maintains an ecosystem of
over 150,000 software packages.

The core Python library (https://docs.python.org) contains basic data types such as lists and dictionaries, as well as
core functionality such as arithmetic operators and simple file parsers. Most tasks can be achieved with core Python.
They are often made easier, however, with higher-level libraries. This particularly applies for scientific computing
with Python. Among the vast number of packages in the Python ecosystem, NumPy, Scipy, Matplotlib and Pandas
are among the most commonly used. A good resource for getting familiar with these libraries is the Scipy Lecture
Notes https://scipy-lectures.org/.

• Numpy (http://www.numpy.org/) is a fundamental library for numerical and scientific computing with
Python. It contains data structures for numerical arrays, tools for linear algebra, random number capabilities,
and much more.

• SciPy (https://docs.scipy.org/) offers a varied set of functions for scientific computing, such as optimization,
interpolation, statistics and signal processing. It also includes fundamental constants from many disciplines
such as the speed of light as well as data structures for sparse matrices.

• Matplotlib (https://matplotlib.org/) is the core plotting library for Python and can be used inline in the note-
book with the %matplotlib notebook or %matplotlib inline cell magics.

• Pandas (https://pandas.pydata.org/) provides resources for data analysis and a flexible data structures for
labeled tabular data.

5.3.7 Advanced topic: extensions

There aremany community contributed extensions that add functionality to Jupyter notebooks. Extensions vary from
displaying an automated table of contents for a notebook, or prettify code, or hiding/showing solution cells. Here
is the link for how to install and enable extensions: https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/
install.html

Here is a list of a collection of extensions that are bundled together: https://jupyter-contrib-nbextensions.readthedocs.
io/en/latest/nbextensions.html

Creating custom extensions is a way to extend or customize Jupyter to add a capability that is not currently available
with current extensions or out of the box. These extensions may be targeted for a specific kernel. Here are instruc-
tions for how to create and install custom extensions: https://jupyter-notebook.readthedocs.io/en/stable/extending/
frontend_extensions.html

Figure X shows shows how Google Collaboratory, one of many tools to interact with Jupyter notebooks, leverages the
power of Jupyter extensions for custom interaction and presentation.

The set of extensions for Jupyter is constantly evolving. Educators are exploring new and interestingmethods of using
notebooks in pedagogy. While the list of current extensions is far too long to list, you can interactively experience some
of themost useful extensions through this live Binder notebook (Binder is described in detail in the following chapter).
This live notebook demonstrates the following:

• Turning on line numbers in code cells (makes it easier to refer to a line of code)
• Code folding extension (hide code blocks to help focus attention)
• Locked and frozen cells extension (prevent changes to cells)
• An extension for a better user interface for error messages
• A “turtle” extension (draws in a canvas in the notebook)
• Block-based programming extension

The block-based programming extension (called Jigsaw) allows users to program using drag-and-drop blocks of code
that can be integrated with other cells in a Jupyter Notebook (see figure). The advantages (and disadvantages) of
blocked-based languages are active research topics in computer education research (see, for example, Mark Guzdial’s
excellent Computing Education Research Blog, specifically those posts on block-based languages).

https://docs.python.org/3/
https://scipy-lectures.org/
http://www.numpy.org/
https://docs.scipy.rg/
https://matplotlib.org/
https://pandas.pydata.org/
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/install.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/install.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions.html
https://jupyter-notebook.readthedocs.io/en/stable/extending/frontend_extensions.html
https://jupyter-notebook.readthedocs.io/en/stable/extending/frontend_extensions.html
https://hub.mybinder.org/user/psychemedia-showntell-eii7j2nh/notebooks/index_computing.ipynb
https://computinged.wordpress.com/
https://computinged.wordpress.com/tag/blocks-based-language/

48 CHAPTER 5. JUPYTER NOTEBOOK ECOSYSTEM

Figure 5.4: Google Collaboratory uses Jupyter extensions to customize Jupyter for their users. The run/play icon to
the left of the code cell is created using extensions. This is not present in the standard Jupyter software. TensorFlow
is a library for creating Machine Learning experiments in Python.

Figure 5.5: Example of incorporating Jigsaw, a block-based extension, in a Jupyter Notebook. The extension allows
the user to assemble code blocks that can then be translated into Python or Java, and executed.

5.4. TIPS AND TRICKS 49

5.4 Tips and tricks

5.4.1 Reminders

If you are using a single notebook as a standalone exercise in a traditional class (i.e., this is the only computational
component of your class), then it is helpful to have a few cells at the top of that notebook that reviews how to navigate
through the notebook and how to insert cells, etc.

5.4.2 Feedback

How do we get feedback from students in an interactive session to see if students have completed an exercise?

A low tech solution is to give students sticky notes of different colors, onemeaning “finished” and onemeaning “need
help”, that they can stick on the back of their computers. The instructor can then quickly look up to take a survey of
the state of the class and decide how to proceed.

Projecting Slack or a similar chat group on a screen and having student copy-paste solutions (provided they are short
functions) is a nice way to let everyone in the class see one another’s solutions. A positive aspect of having multiple
student solutions projected is that it can show the variety of ways to solve a problem. This gives an opportunity to
talk about the readability of solutions and their efficiency. A downside is that in a large class, the sheer volume of
posts can make it overwhelming. Instead polling can be used to aggregate student answers and provide some form
of feedback to the instructor. Nbgrader or travis-CI can also be options here, requiring students to submit completed
code where it is assessed automatically. These will however require more setup and can take some time to complete.

5.4.3 Explaining each cell

Consider moving the comments for a code block into a markdown cell either directly above or below the code cell.
Comments in a markdown cell often read much better and give you more flexibility in discussing or describing the
code. However, short comments in a block of code can still be useful.

5.4.4 How to structure code cells

How much code should you put in a cell? You will develop your own style of writing noteooks with experience.
Typically, you will want to keep the number of lines low so that it is easy to follow, and you can have useful comments
above the cell. However, we recommend putting code that “goes together as a meaningful unit” into a single cell. For
example, if you have lines of code that are highly dependent on each other, then youmight want to put them together.
As an example, consider two lines of code: one that opens a file, and the second that reads the data from the file. It is
probably a good idea to put those into the same cell so that they are always executed together. Otherwise, the student
may encounter errors if they execute cells independently a second time (e.g., there are no more data).

Specifically, messing up the dependencies between cells is where most of the confusion using notebooks comes from
with new users. For example, if you change a variable’s name (without restarting the notebook), then the following
code cells may continue to use the old variable’s name (and value). Later, when running the notebook again, the
notebook may fail in unexpected ways because the old variable no longer exists. This is sometimes referred to as “the
hidden state problem.” This is an open research problem, and researchers are exploring various possible solutions.
For example, trying searching the internet for “jupyter dependency graph” or “jupyter dataflow notebook.”

Pro Tip

You can easily split a cell into two parts at the cursor using the keystroke CONTROL + SHIFT + -. You can also
merge multiple cells with SHIFT + m. Both of these are also available from the menu under Edit.

50 CHAPTER 5. JUPYTER NOTEBOOK ECOSYSTEM

On the other hand, it is often a useful idea to separate lines of code where you want to provide the student a place
to interactively add cells, and examine the state at that particular point in the process. Asking probing questions in
a Socratic method is a very useful technique for engaging the reader and encouraging them to become more than a
reader. Students do not naturally know to insert cells and explore items in a notebook. You will need to explicitly
teach this skill. In fact, teaching students how to effectively weave code into their own notebook stories is an important
component of teaching with notebooks.

5.4.5 Custom styling

New notebook creators often try to centrally manage the formatting of headings, equations, and other textual items.
For example, rather than using a standard markdown heading, a creator may over-design the headings by using
HTML styles. This may create two problems:

1. The rendering of the notebook markdown may change and your formatted HTML header may not maintain
the same look over time.

2. Headers created using markdown can be used by notebook tools, such as automatically creating a Table of
Contents.

Our recommendation is to resist the desire to customize the styling and simply use the default representations. If you
want to do customization (for example if you want to color certain cells) you can use CSS.

5.4.6 Length of notebooks

Notebook authors sometimes make the notebooks very long with many topics and sections. Notebook sections and
cells are currently not easily reused in a copy/paste sense for mixing intra-notebook content. Until this functionality
is available, we recommend that authors make short, self-contained notebooks around short topics. This allows other
notebooks authors to mix and match notebooks to create curriculum.

5.5 Gotchas

5.5.1 Programming language ̸= Jupyter

Teaching a class entirely with Jupyter can give the sense to students that this is the way all computational exploration
is done. In particular, students can be confused into thinking that programming requires the notebook, instead of
understanding that a notebook is just one way to interact with a particular language. This point should be made clear
periodically. A good way to reinforce this is to show how to take a function that has been developed and debugged
in a notebook and cut-paste it into a script (such as a file ending in .py for Python) and then import it into the
notebook to regain that functionality. Also, the Integrated Development Environment (IDE), Spyder, has a plugin
(https://github.com/spyder-ide/spyder-notebook) that allows notebooks to be displayed alongside Python scripts
and a python terminal which can be useful for showing this dichotomy.

5.5.2 Restart, restart, restart…

Often, students may need to stop a computation, and this can be accomplished by pressing the “Interrupt” button in
the toolbar. However, students should also be made aware of how to restart the kernel in a notebook, and what this
means. There are several instances when students might need to do this. Sometimes students write code that can go
into an infinite loop. The visual cues that notebooks give in this case are subtle, and students may not realize this and
don’t understand why the notebook is non-responsive. In live-coding situations, it can be useful to demonstrate this
to students and show them how to restart the kernel and carry on.

https://github.com/spyder-ide/spyder-notebook

5.5. GOTCHAS 51

Figure 5.6: Jupyter notebook displayed in a window pane inside Spyder.

A second instance of where restarting a kernel might be needed is due to how the notebook stores the state of the
computation. We like to think that, since the notebook is laid out in a linear fashion, that the state will always reflect
what would happen if the notebook was run from the start up to that point. However, it is common to work in a
notebook out of order, for instance if students ask a question about some previous example. If the variable has been
changed in subsequent cells, then its value might not reflect what you expect when you rerun a cell earlier in the
notebook. Restarting the kernel is sometimes the only solution.

5.5.3 Notebook hygiene

Many gotchas can be mitigated by developing notebooks that will be robust to incremental and non-linear execution.
The main principle is to minimize side-effects of executing a cell andmanifests itself somewhat differently in different
languages; our suggestions here will be relevant to Python and may need to be adapted for other languages. Note-
books should generally be able to execute sequentially, such as via “restart kernel and run all cells”. (An exception
is when a notebook is intentionally incomplete for the purpose of live coding or student exercises, see nbgrader or
the exercise estnations for more elegant ways to handle this.) Variable mutation is the most common way in which a
notebook may malfunction when executing cells in a non-linear way (e.g., in response to student questions or when
comparing and contrasting different methodologies). Sometimes this mutation is incidental, through dummy vari-
ables that were not meant to have significance outside the scope of the cell in which they are used. Their scope can
be limited by placing them in a function, even if that function is only called once. Redefinition of functions can often
be avoided by parameterizing the desired functionality as would typically be done if designing a library (though this
may be a distracting software design for novice programmers). Function definitions should have little or no depen-
dency on variables from their enclosing scope. When modifying cells for demos and formative assessments during
class, it is useful to either copy the cell or modify/execute such that a conforming implementation remains present
when moving on to other cells where it may be used. Additionally, you can minimize these issues by grouping code
in a single cell that should always be executed sequentially, because code within a cell will always be sequential.

52 CHAPTER 5. JUPYTER NOTEBOOK ECOSYSTEM

Chapter 6

Getting your class going with Jupyter

You have several options on how to get Jupyter notebooks to your students. You can ask students to install Jupyter
on their own computers, install Jupyter on lab computers for students to use, or run Jupyter on a remote server that
your students access on the internet.

6.1 Local installation on students’ or lab computers

“Local installation” means that each computer is running the software that includes the Jupyter Notebook. Typically,
this requires installing a distribution that includes Jupyter, Python, and possibly other language kernels.

A popular software distribution that includes Jupyter is Anaconda, which is easy to install on Windows, Mac, and
Linux. Because it can install everything with user level permissions, it does not require the user to have administrator
(or root) access to the computer. Anaconda includes over 1500 software packages providing most, if not all, needed
software for learners. Jupyter notebooks can be opened by launching Jupyter or by opening them through the Spyder
IDE. These attributes make it attractive for both personal use and for installation on institution controlled computers.

What is Anaconda?

You will see the Anaconda distribution recommended by many educators and course authors. Anaconda is
a package manager, an environment manager, a Python distribution, a collection of over 1,500+ open source
packages, including Jupyter. It is free to download, open source, and easy to install, on any computer system
(Windows, MacOS X or Linux). It also includes the conda packaging utility to update and install new packages
of the Python and R ecosystems, and to manage computational environments. According to the company’s
webpage, Anaconda has more than 6 million users; see: What is Anaconda?. The Software Carpentry project
provides installation instructions for Anaconda, with videos.

Two other easily installable software packages that can run Jupyter notebooks are nteract and Hydrogen. nteract
is installed by downloading a binary installer from their website and double-clicking the installation file. nteract’s
simple user interfacemake it an excellent choice for students new to computer programming. Once nteract is installed,
any Jupyter notebook on a student’s local system with a graphical interface can be double-clicked and it will open
within nteract. Hydrogen is a very popular plugin for the open source Atom editor; it’s currently used by over 700,000
people. Hydrogen lets a user edit, display, and execute a notebook within the Atom editor.

You can ask students to install Jupyter on their own computer or make it possible for them to use it on lab computers.
These can also be combined: give students the instructions to install it on their own, but also tell them that it’s available
in the lab if they can’t get it towork on their laptop. Thisway you don’t need a large enough computer lab for everyone,
and don’t need to worry that not everyone can get it to work on their own.

53

https://nteract.io/
https://nteract.io/atom
https://atom.io/packages/hydrogen

54 CHAPTER 6. GETTING YOUR CLASS GOING WITH JUPYTER

6.1.1 Jupyter on student-owned computers

The benefits of installation on student-owned computers include:

• Once students have the software on their computers, they always have access to it; they can work anywhere,
and they can use it for internships, jobs, and other non-school activities.

• It is easy for them to install additional packages later.

• Students learn to install and set up Jupyter, and software in general, which is a skill they are likely to need.

• The total computing power for the class scales with the number of students, as long as each student has enough
CPU power and memory to support the intended applications.

• You can adopt Jupyter without support or resources from your institution.

• Students learn to use Jupyter on their preferredOS, e.g. Linux, Mac, orWindows, whichmeans they are already
familiar with the basic idioms of their OS.

Drawbacks include:

• This approach is only possible if every student owns a computer with enough capacity.

• Students with less powerful computers might be at an unfair disadvantage.

• Although installation is generally easy, it still takes time. The time you spend at the beginning of a class can
be worthwhile for a semester-long course that uses Jupyter throughout, but it is a barrier to using Jupyter for a
single module or one-off assignment in a course about something else.

• Also, the amount of time spent debugging esoteric problems scales with the number of students: a class of
25 students is bound to have a few people with 32-bit processors, incompatible libraries, out-of-date operating
systems, over-zealous virus checkers, etc., and a class with 100 students will have four times as many. One
work-around is to have students work in pairs: the probability that more than half of the students cannot get it
working is reduced.

• Discrepancies in installed library versions can cause issues for students and may lead to different behaviors
when students run code.

Although Jupyter is cross-platform and ideally behaves the same on Windows, Mac, or Linux, and distributions such
as Anaconda also behave very similarly on all platforms, the instructions for installing and launching it are slightly
different on each operating system, so fine-grained instructions such as “double click here” or “type this command”
need different versions for Linux, Mac, andWindows users, which can be challenging when the instructor presenting
the material has only one platform at their disposal. It is worth developing detailed instructions that the students can
go through at their own pace, rather than relying only on a live demo in class that will only apply to a fraction of the
students.

6.1.2 Jupyter on lab computers

Using lab computers instead of student-owned computers has the benefits of uniformity and improved equity. Each
student will have exactly the same setup, and the instructions will work the same for everyone. This reduces the
amount of individual tech support required and guarantees that all students have access to enough computational
power.

However, this deployment has some disadvantages:

• Depending on how much control you have of the computer lab, you might need institutional permission and
support.

• Students might be limited to working on assignments only when they are on campus and when computer labs
are open, which might be an unfair disadvantage for non-resident students or those with full time jobs.

6.2. JUPYTER ON REMOTE SERVERS 55

• It might be difficult to install additional packages as the need arises, and studentsmight not be allowed to install
packages they need for projects.

• Even in a computer lab, it can be difficult to maintain consistency across machines, and to keep all installations
functional.

6.2 Jupyter on remote servers

Even when Jupyter runs locally, it runs as a web application; that is, it runs in a browser connected to a server. In
a local installation, the browser and the server run on the same machine. But it is also possible to run the server
remotely.

In that case, students don’t have to install anything; they only have to run a browser and load a URL.

There are several ways to run Jupyter on a remote server:

1. You can run Jupyter on a server owned by you or your institution.
2. You can run Jupyter in a temporary environment running in the cloud.
3. You can run Jupyter in a persistent environment running in the cloud.

Running Jupyter remotely has many of the advantages of running in a lab: you can provide a consistent environment
and guarantee that all students have access to sufficient computation resources. And it mitigates one of the drawbacks
of a lab installation, since students have access to cloud resources from anywhere, not just on campus.

Working in the cloud also means that students do not have to manage their own backups of a laptop hard drive.
Although a student could still inadvertently overwrite, delete, or destroy the contents of a notebook stored in the
cloud, they will not lose their entire work if a laptop is damaged or lost.

For simple, one-off uses of Jupyter (say, for a single assignment or in-class activity) the cloud option is very attractive
as it requires little in-class time to discuss installation of additional software.

6.2.1 Running in a temporary environment in the cloud

The easiest option for running Jupyter in the cloud is to use a cloud service that provides temporary environments.
Some of these services are free of cost, and you can use them without installing anything.

These environments are well-suited for short examples in classes that do not use Jupyter extensively. Students can
open a notebook and start running with the push of a button.

However, there are some limitations to these services:

• If your notebooks depend on particular packages, or particular versions of packages, it can be difficult to satisfy
these requirements.

• These services run notebooks in a temporary environment that disappears if it is left idle. So they might not be
suitable for managing student work.

• Some of these services do not guarantee a level of service and may not be as reliable as you need for a class or
workshop.

Binder mybinder.org

Binder is an open-source service provided by Project Jupyter. It allows the owner of a set of notebooks residing
in a public repository to pre-build an image in the Binder service, and get a shareable link that any visitor
can use to obtain a working instance of JupyterHub, pre-loaded with the notebooks in the repository. The
session is temporary (any changes the user makes will be deleted when closing the tab or window), but it’s
fully interactive. Binder is currently one of the favorite services for running one-off workshops or tutorials.

56 CHAPTER 6. GETTING YOUR CLASS GOING WITH JUPYTER

6.2.2 Running on servers you control

If you have access to a server or cluster with enough computing power to support your class—including CPU and
especially memory—you can provide a Jupyter as a service using JupyterHub.

JupyterHub is open-source software that provides a cloud-based Jupyter application for each user in a group. Each
user has their own account and home directory on the server. The Hub, JupyterHub’s central system, allows authenti-
cating users and starting individual Jupyter notebook servers. Programs that start notebook servers can use a variety
of technical solutions. For more details, see https://github.com/jupyterhub/jupyterhub/wiki/Spawners

Once the Hub starts a user’s notebook server, the Jupyter Notebook running in the cloud behaves just like Jupyter
does when installed on an individual’s computer, but JupyterHub will be running notebooks and storing files on a
remote cloud computer. Students can download notebooks stored in the cloud to their local computer if they wish to
work with a local installation as well. Additionally, students can upload notebooks (and other files) from their local
computer to the cloud.

While anyone can run a JupyterHub server on their own Linux or Mac computer, installing and configuring Jupyter-
Hub requires sophisticated knowledge spanning the Linux/Unix operating system, system administration, and net-
working. For more information, see:

• https://github.com/jupyterhub/jupyterhub (the basic JupyterHub project, which can be installed on a bare-
metal server, a virtual private server (VPS), or a commercial cloud cluster)

• https://github.com/jupyterhub/the-littlest-jupyterhub (a simplified installation of JupyterHub on a remote
server or VPS)

• https://github.com/jupyterhub/zero-to-jupyterhub-k8s (a step-by-step guide to install JupyterHub on a Ku-
bernetes cloud system)

Providing a JupyterHub service offers several benefits. First, students get up and running immediately—they spend
no time installing software. They navigate to a web URL, log in to JupyterHub, and begin using Jupyter. This ability
to quickly log in and begin computing is a powerful way to get students to engage with the lesson, builds confidence,
and avoids the sometimes-stressful experience of installing software on the student’s computer.

However, running JupyterHub on your own server has drawbacks:

• Getting started is not easy; most instructors would require (or at least benefit from) institutional support that
may not be available.

• It can be difficult to scale: if the number of students increases, you might need more computing power. And
the load students generate can be uneven; for example, if everyone runs a computationally-intensive example
at the same time, your server might not be able to handle it.

• This option can be expensive, unless you already have servers with sufficient power.

6.2.3 Running Jupyter in the cloud

If you or your institution don’t own computing hardware with the power to support your class, you can run Jupyter-
Hub on virtual servers provided by cloud services like AWS and Microsoft Azure. In those environment, you can
install JupyterHub as described in the previous section

Commercial offerings also exist to use Jupyter in the cloud, some of which provide free trials or a “freemium” pricing
model. They include:

• CoCalc (previously SageMathCloud) (https://cocalc.com) is an online open source computing environment
with first class support for Jupyter notebooks supported by SageMath, Inc. It is one of the few services that al-
lowsmultiple users to edit a Jupyter notebook simultaneously. It also allows the notebook user to cycle through
the revision history of a notebook and provides a number of popular kernels by default. The service includes
the ability to share files with project collaborators. It is free to use and greater computational resources can be

https://github.com/jupyterhub/jupyterhub/wiki/Spawners
https://github.com/jupyterhub/jupyterhub
https://github.com/jupyterhub/the-littlest-jupyterhub
https://github.com/jupyterhub/zero-to-jupyterhub-k8s
https://cocalc.com
https://github.com/sagemathinc/
https://cocalc.com/doc/jupyter-notebook.html

6.2. JUPYTER ON REMOTE SERVERS 57

obtained by paying the monthly, yearly, or course based subscription fees. Instructors can pay for resources
for an entire class or ask students to pay and subscribe for a semester. Instructors can make use of the course
management system for assignment distribution, collection, grading, and more. The free version limits access
to the internet to prevent abuse, effectively blocking use of standard package managers. While an instructor
could work around this limitation by uploading files to the service or requesting the company to install soft-
ware, this is likley onerous for many users. Paid versions lift this limitation and allow use of standard package
managers (e.g. pip, conda, R, Julia, etc).

• Gryd (https://gryd.us) is another subscription service with a free tier. It includes course-management features,
like a way to create a course, invite students, and deploy auto-graded assignments.

• HubHero (https://hubhero.net) provides professionally configured JupyterHub servers for teachers. For
courses of up to about 30 students they offer the community install which gets you your own JupyterHub on
your own hardware or a cloud provider of your choice. For larger courses or fully managed deployments
hosted solutions are available as well. HubHero is owned by TimHead a project lead for https://mybinder.org
and contributor to JupyterHub.

• KaggleKernels (https://kaggle.com/kernels) are free hostedPython andRnotebookswith access to substantial
computational resources (quad-core, 16GB RAM, GPU, Internet connected, up to 6h runtime per session). All
notebooks have also seamless access to datasets hosted on Kaggle Datasets. Instructors can use one of the
thousands of datasets available on Kaggle Datasets (perfect for implementing the The world is your dataset
pedagogical pattern) or upload their own data (up to 10GB per dataset). Kaggle can also help implementing
the There can be only one pattern with In-class competitions a feature that allows instructors to easily set up
competitions with automatic leaderboards. All of the work students do on Kaggle is saved and available to
them beyond the duration of the course/workshop. Additional software dependencies can be installed within
notebooks via !pip or included in the common environment by sending a Pull Request to Kaggle Dockerfile.

• codio (https://codio.com/features/ide)

• Microsoft Azure notebooks (https://notebooks.azure.com/)

• Amazon Sagemaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-prepare.html)

• Gradient by Paperspace (https://www.paperspace.com/gradient)

• Google Colaboratory (https://colab.research.google.com/)

The biggest advantage of these services is that they require no installation andminimal setup by instructors, and some
of them provide features that integrate with learning management systems. However, instructors generally have to
create student accounts and set up student environments.

These services are highly scalable; that is, they can handle large numbers of students and uneven loads. However,
they are not infallible; they might require some tending to make sure students have access to enough resources.

The biggest drawback of these services is that they can be expensive. Some charge on a per-student basis, with limits
on computation and memory use. Some charge on the basis of actual use, which can be unpredictable (and might
require instructors to enforce limits on student activities).

Other drawbacks include:

• It may be difficult or impossible to install packages you need, or particular versions of packages.

• Some of these services impose limits on what students can do; for example, they might have limited ability to
access external services.

• Many of these services are relatively new, and they sometimes expose instructors and students to rough edges.

• Students generally lose access to their accounts when the class ends (or a limited time after).

• There may be privacy concerns with sharing student information on commercial servers. Some institutions
have agreements with one or more of these providers that address privacy.

https://tutorial.cocalc.com/
https://tutorial.cocalc.com/
https://github.com/sagemathinc/cocalc/wiki/How-to-Install-Python-Packages-into-CoCalc
https://github.com/sagemathinc/cocalc/wiki/How-to-Install-Python-Packages-into-CoCalc
https://gryd.us
https://hubhero.net
https://hubhero.net/community/
https://hubhero.net/hosted/
https://github.com/betatim/
https://mybinder.org
https://kaggle.com/kernels
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/about/inclass/overview
https://github.com/Kaggle/docker-python
https://codio.com/features/ide
https://notebooks.azure.com/
https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-prepare.html
https://www.paperspace.com/gradient
https://colab.research.google.com/

58 CHAPTER 6. GETTING YOUR CLASS GOING WITH JUPYTER

6.3 Distribution and collection of materials

You may want to distribute course materials to and collect them from students. A variety of options are available.
Some important things to consider:

• Do you want to share your notebooks publicly, or do they require privacy?

• Can the notebooks that the students create or edit be public? Or do they require privacy?

• How do you plan to assess collected notebooks?

• Do you need integration with your LMS?

• Do you need integration with a file-sharing system?

• Do you want to distribute with the cell output showing?

• Do students need software that is not easily available on their own (or laboratory) computers?

Jupyter notebooks are plain text computer files, so you can distribute them to students and collect them using any
system that handles text files, including GitHub, Google Drive, and (as a last resort) email attachment.

6.3.1 Learning management systems

Many instructors use a LearningManagement System (LMS) to communicate with students. These tools offer private
file sharing and assignments that connect to the students’ institutional computing accounts and they can be used to
distribute and collect notebooks as text files. However, most LMS tools are not yet notebook-aware, so they don’t
render notebooks or make it easy for instructors to comment on or grade them.

Some tools and workflows are being actively developed to connect the Jupyter ecosystem to the LMS ecosystem using
the Learning Tools Interoperability (LTI) standard. By the time you read this, you might find that the options have
improved.

6.3.2 Web hosting

Notebooks can be publicly hosted on any website, so students can download the files by clicking on a link. Most web-
hosting software is not notebook-aware, but you can use nbviewer to share public notebooks, rendered as a static
web page.

nbviewer nbviewer.jupyter.org

nbviewer is a web service provided by Project Jupyter. You can enter the URL of any publicly hosted notebook,
and get a web page with the content of the notebook fully rendered. Some browser extensions and add-ons let
you open a notebook in nbviewer with a button click. See: Open in nbviewer.

6.3.3 GitHub

One of the popular tools for distributing and collecting notebooks is GitHub, a hosting and collaboration platform for
software. GitHub is based on git, a version-control system. Files under version control are often hosted on services like
GitHub, GitLab, or Bitbucket, all of which are notebook-aware. For example, when you view a notebook on GitHub,
you see a rendered notebook that includes formatted text, typeset mathematics, code highlighting, and the output of
the code, including figures.

GitHub Pages (and other similar services) can also be used to host rendered notebooks, and continuous integration
services can build the web pages from the notebooks and then display the content. See: Jupyter Book and use of
doctr to do this.

https://open.edx.org/learning-tools-interoperability
https://drdoctr.github.io/doctr

6.4. ASSESSING STUDENT LEARNING WITH JUPYTER NOTEBOOKS 59

Educators at academic institutions can use GitHub Classroom, which allows instructors to set up assignments for a
class. Students click on a link for an assignment and a copy of the assignment repository is created and initialized
with the assignment content, which can be a notebook. Each student’s repository can be made private, with access
only granted for the student and instructor. This can be an efficient way to distribute assignments to a large class.

A drawback of git is that it is hard to use. It might be worth spending time in your class to teach git, if it is valuable
for students to learn about version control. But if this is not one of the learning goals for your class, you can minimize
the students’ exposure to git using graphical interfaces like GitHub Desktop and git for Windows.

The default git tools for comparing files and merging changes do not work well with Jupyter notebooks. However,
some specialized tools can help with these tasks (see Notebooks Under Version Control).

6.3.4 JupyterHub

If your students are using JupyterHub, you can place notebooks and any related files directly into the students’ di-
rectories manually or via a script. If nbgrader is available on your JupyterHub instance you can use it to collect and
distribute notebooks (whether or not you choose to use nbgrader’s assessment features). This allows you to develop
the notebooks and incrementally make them visible to the students for them to “fetch”. They can then edit the note-
books or create new ones in the directory created in their storage space, and then publish their notebooks back to you
for downloading, viewing, or assessing with the nbgrader tools (see the next section for details on this tool).

nbgrader

nbgrader is a tool for creating, handling, and automatically grading assignments based on Jupyter notebooks.
It works as a Jupyter extension that the course creator installs on their computer. nbgrader is a flexible project
in the Jupyter ecosystem that allows the distribution and collection of materials. As its name implies, it also
can grade assignments; it can be used in a distributed manner where each student is running Jupyter on their
own computers, or in a centralized manner, for example, if the students each have an account on a JupyterHub
installation. (More details in the Assessment section.) https://nbgrader.readthedocs.io

6.3.5 Using an LMS and nbgrader together:

Integration of nbgrader with learning management systems is still primitive, but the following is a strategy that
works with current tools.

1. The instructor creates an assignment notebook using nbgrader, then distributes the assignment to students
via an LMS.

2. Students complete the assignment and upload the solution to the LMS.

3. The instructor downloads the completed assignments as a zip file and extracts the students’ solutions in a
Jupyter environment.

4. Instructors and graders use nbgrader to grade the assignment and save the grades to a CSV file.

5. The CSV file is then uploaded to the LMS.

Some tools that make this workflow easier include the Extractor plugin to the ZipCollect feature in nbgrader.

6.4 Assessing student learning with Jupyter notebooks

Many educators develop course-assessment activities as Jupyter notebooks. This includes exams, in-class activities,
homework assignments, and projects.

https://nbgrader.readthedocs.io
https://nbgrader.readthedocs.io/en/stable/plugins/zipcollect-plugin.html

60 CHAPTER 6. GETTING YOUR CLASS GOING WITH JUPYTER

Simple ways to handle the assessment of a notebook-based submission: have students either print them out, email
them, submit them as a standard electronic document (say, into the LMS), or drop them into a shared folder. At that
point, the instructor canmark and grade them in a traditionalmanner, for example bywriting comments on a printout
or adding annotations to a PDF.

Pro Tip

Printing out a notebook can sometimes result in wasted space on pages, especially for notebooks with many
images or figures. Converting to PDF requires large/complex LaTeX installations. Exporting to HTML and
then printing often gives a better result.

nbgrader allows code cells in a notebook to be marked to be auto-graded or manually graded. An instructor can
then create an assignment that can be completely auto-graded, requiring little work after the notebook has been
created. Thismakes gradingmuch easier and scaleswellwith large class sizes. However, creating such an auto-graded
notebook in nbgrader can be quite time-consuming. In addition, pedagogically a completely auto-graded notebook
may have serious downsides. For example, studies suggest that students learn better when they can actively connect a
topic to their own interests [CITATIONNEEDED]. One method of encouraging this is to have a “reflection” question
on each submission. Such a reflection question can encourage students to comment on the material in a personal
way, but it cannot be auto-graded. Another downside is that simply autograding code with unit tests is unlikely to
assess many of the learning objectives you might have for an assignment, e.g., ability to use specific software-design
patterns. To address this, you can create manually graded cells for a portion of an assignment and provide written
feedback to the student.

Caution

At the time of this writing, nbgrader has some limitations that require careful use. For example, using it in a
multi-class setting (say, on JupyterHub) requires that instructors coordinate the naming of assignments so that
they do not collide.

nbgrader is a sophisticated tool that can be set up to allowmultiple graders, teaching assistants, andmore. For more
information on using nbgrader, see https://github.com/jupyter/nbgrader.

Some third-party notebook-based assessment solutions do exist. For example CoCalc, Vocareum, and Gryd provide
a cloud notebook platform that can also grade assessments similar to or using nbgrader.

[TODO] _For example, cocalc.com offers… [are there other third-party course management notebook-oriented solu-
tions?] and Berkeley uses DataHub for their large Data8 course. Vocareum (https://www.vocareum.com) TODO

6.5 How do you create Jupyter notebooks for reuse and sharing?

As you create notebooks for your lectures, computational essays, or homework assignments, you may wish to think
about how to make it possible that they can be reused by yourself and others.

First, you may want to make the materials openly accessible and findable via the internet. This suggests avoiding
keeping the notebooks behind a “walled garden,” such as a Course Management System. That is, users may have
access to some material, but be prevented from seeing other materials. You will have to decide whether you want
others to have full access. For example, many teachers do not want students to be able to see notebooks that may have
solutions, or hints of solutions and therefore limit their access.

To share your notebook with others you can submit it to https://www.engage-csedu.org/. This curated
collection of open educational computing resources is maintained by the National Center for Women in
Information Technology (NCWIT).

If you decide to make your notebooks reusable by others, make it clear under which license the materials can be
used. For example, you can include a Creative Commons attribution and share-alike statement at the bottom of your

https://github.com/jupyter/nbgrader
www.cocalc.com
www.vocareum.com
https://gryd.us
https://www.vocareum.com
https://www.engage-csedu.org/
https://www.ncwit.org/
https://www.ncwit.org/
https://creativecommons.org/licenses/by-sa/3.0/us/

6.6. JUPYTER: A 21ST CENTURY GENRE OF OPEN EDUCATIONAL RESOURCES AND PRACTICES 61

notebook. Adding a license allows people to reuse your materials without asking for permission explicitly.

GitHub may be the most common service to host and share notebooks, where they can be viewed (including render-
ing), downloaded, or forked by others. (Private repositories can also be used to limit visibility to colleagues, students,
or other organizations.). Make sure to be aware of some of the pitfalls of keeping notebooks version controlled how-
ever (see Notebooks Under Version Control for details).

Another potential issue with sharing deals with external files that you may want to include in your notebook. This is
in contrast with content (say a plot) that can be directly created by the notebook’s code. Possible content includes data,
images and videos using code and embedding tags in markdown or HTML. The implication is that if you share your
notebook you must include the external files along with the notebook. This can be done a number of ways including
using a version control repository, a zip-file, or a file sharing service. Another external dependency issuewith sharing
notebooks involves software libraries. In this case you share a configuration file that a user can use to setup the same
environment. Examples of these files include a conda env.yml, a pip requirements.txt, or dockerfile.

Because Jupyter notebooks embed the output of cells into the ipynb file itself (e.g., images, videos, etc.), the files can
grow large. To make it possible to display the cell output via the renderers on Github, Gitlab, or nbviewer, save the
notebook after it is executed and then upload to those services. If instead you want to reduce file size and provide
the notebooks to someone with the code cell output cleared, choose this option in the notebook’s dropdown interface.
Then the user will need to execute the notebook themselves to see the output.

6.6 Jupyter: a 21st Century genre of Open Educational Resources and prac-
tices

Educators create teaching and learning materials. With the appearance of the internet, a community of educators
began producing open access traditional teaching materials. In parallel, a community of software developers began
creating open source software. Each community developed their own development patterns. In particular open
source software communities gravitated to the bazaar style1 of distributed and collaborative work. Jupyter notebooks
may be the first time that these communities are merging. Jupyter notebook authors are applying the content creation
patterns they use to the creation of open educational resources that teach computation or teach through computation.

Open Education encompasses a large community, with its own conferences and journals, with leaders and advocated
practices. The most visible efforts are related to Open Educational Resources (OER): the creation and adoption of
openly licensed learning materials. In 1994, Wayne Hodgins coined the term “learning object” and the idea spread
that digital materials could be designed and made to be reused. This was followed by efforts to develop metadata
standards, content exchanges, and so on (addressing the concern of how to find the objects to reuse them). In 1998,
David Wiley coined the term “open content” and spread the idea that principles of Free and Open Source Software
(FOSS) could be applied to content on theWorldWideWeb (OpenContent, 1998). The Creative Commons non-profit
organization was founded in 2001 to provide ready-made license agreements for sharing content and served a vital
infrastructure role on the spread of OER. The Creative Commons licenses are now the most widely used licensing
framework for open education. The year 2001 also saw the launch of MIT OpenCourseWare (OCW). MIT promised
free public access for non-commercial uses of their course materials. It was a unique commitment at an institutional
level, strengthened by the MIT brand. Other universities joined the OCW movement: Rice with the OpenStax project
(now formerly Connexion), CMU with the Open Learning Initiative (OLI), Utah State University with the Center for
Open and Sustainable Learning, and so on. Today, the Open Education Consortium has hundreds of members from
around the world. The recurrent topics in OER are: reducing costs for students buying textbooks, increasing access,
and dealing with copyright and licenses.

In the last few years, educators using Jupyter have been creating and sharing all kinds of educational materials in the
form of notebooks, typically under a Creative Commons Attribution license (CC-BY). In fact, Jupyter is a new genre of
OER. But in addition to creating open content, educators using Jupyter often take active part in the Jupyter community
and adopt the culture of open-source software. This is a culture with strong ethical commitments, related to freedom
of access, transparency, and governance (Coleman, 2012). The content they create has the value of giving access (the

1The bazaar style is a method of collectively creating software that isn’t top down directed like a traditional company hierarchy.

62 CHAPTER 6. GETTING YOUR CLASS GOING WITH JUPYTER

very definition of OER), under an open model. But open-source culture also promotes a culture of collaboration. In
this regard, engaging in teaching with Jupyter opens new possibilities for educators to engage in open development and
collaborate with others in producing lessons, tutorials, courses, and even books.

Pro Tip

Away to share educational notebooks, gain feedback on them and receive credit for yourwork is to publishwith
the Journal of Open Source Education. This is a peer-reviewed journal aimed at educators developing OERs
that use code to teach. In addition to receiving a publication advertising your work, the peer-review process
will result in higher quality software, code, and educational material.

http://jose.theoj.org

Chapter 7

Usage case studies

Contributors to this chapter: you may increase adoption by new users if you integrate information about some of the
following into your case:

1. Demonstrate that you can increase students’ ability to:
1. Engage material & participate in class
2. Understand material and perform well
3. prep their for career
4. Enjoy learning this way

2. describe:
1. how it fits with how their students learn
2. how it connects to how they teach
3. the needed resources (support, hardware, etc.)
4. the necessary logistics (e.g., how much time will it take? Be honest: time is a consideration, and an im-

portant reason that people do not adopt new practices, but is not a reason that they stopped using one)
5. what Jupyter does in terms of promoting learning, instructor affordances

7.1 Jupyter notebooks in support of scaling for large enrollments

7.1.1 Supporting large enrollment courses at UC Berkeley

The University of California at Berkeley started a pilot course titled “Foundations in Data Science” (also known as
Data-8) for about 100 incoming undergraduate students in Fall 2015. Data-8, the fastest growing course in Berkeley’s
history, is entirely Jupyter-based, allowing the program to scale the course to 1,400 students in 2018. This scale ismade
possible by Jupyter’s shared computational environment. In particular, Jupyter allowed “browser-based computation,
avoiding the need for students to install software, transfer files, or update libraries” (see The Course of the Future
and the Technology Behind It [https://data.berkeley.edu/news/coursefuture]). Data-8 is powered by JupyterHub
and all the course materials are published openly (http://data8.org).

7.1.2 Large-scale adoption: Jupyter across Canada

Recognizing the importance of data science, computational research, and educational resources, the Pacific Institute
for the Mathematical Sciences (PIMS), in partnership with Compute Canada and Cybera, have launched Jupyter-
Hub platforms (under the project name Syzygy) to support researchers and educators across Canada. Syzygy (http:
//syzygy.ca) provides access to cloud-hosted Jupyter resources using existing institutional credentials and encour-
ages the development of computational and data science skills. It is currently accessible at 16 institutions across the

63

https://data.berkeley.edu/news/coursefuture
http://data8.org
https://www.pims.math.ca/
https://www.pims.math.ca/
https://www.computecanada.ca/
https://www.cybera.ca/
http://syzygy.ca
http://syzygy.ca

64 CHAPTER 7. USAGE CASE STUDIES

country (McMaster, Queen’s, SFU, UAlberta, UBC, UCalgary, ULethbridge, UNewBrunswick, UOttawa, URegina,
USask, UToronto, UVic, UWashington (US), UWaterloo, Yorku) and has been used by over 11,000 people at those
institutions.

Syzygy is extensively used for teaching, but is also being used for research activities. One notable example is a scien-
tific software seminar at the University of British Columbia, where graduate students and post-doctoral researchers
meet to share and learn data science techniques with their peers. Initiatives are also underway, as part of syzygy, to
deepen its relevance into research by providing seamless access to larger and more varied types of resources (GPUs,
parallel machines, different language kernels etc.).

Callysto (https://callysto.ca/) is a related project, also launched by PIMS and Cybera, to bring Jupyter to students
in Canadian middle and high schools (grades 5-12). Callysto focuses on creating and curating open content (https:
//github.com/callysto). This content forms the basis of project workshops, where teachers can work through the
materials interactively, before taking them back to their classrooms. The content links to a supporting JupyterHub
installation (integrated with the authentication systems for the networks of school districts) allowing easy access to
the materials and a Jupyter environment to learn and create in.

– Ian Allison

7.1.3 Quick switch: moving an existing course to Python and Jupyter (at the last minute)

For many years, our chemical engineering kinetics course had used software for differential equation and nonlinear
simultaneous equation solving to simulate reactors and solve design problems. The software, recommended and de-
scribed by the textbook, was installed in the college’s computer labs, but licenses for student-owned computers were
expensive and it was only available for Windows. In Spring 2015, I was informed my class now had 52 students, but
the largest computer lab had room for only 40. As the semester progressed and we neared the chapters that required
numerical simulation, I rewrote the examples using Python and SciPy and created Jupyter notebooks, walking stu-
dents through the steps involved in setting up and solving the problems. I found Lorena Barba’s open-source MOOC
materials online, and adapted these for my “getting started” notebooks. I had students install Anaconda on their own
computers, and got everyone up and running without any central infrastructure or support from the college’s IT staff.
I found the Jupyter Notebook format of including “lecture note” style commentary along with short, unintimidating,
snippets of code, to be extremely effective. A couple of years later I passed on the course to a new instructor, who
took my course materials, taught himself some Python, and continued to use Jupyter notebooks for content delivery
and assignments.

The first year was a bit rough around the edges as I introduced it quite late in the semester. Still, it is clear that
the approach resonated with students. An alumnus from my 2016 course wrote, “I thought that your course was
very successful, especially the use of Jupyter Notebook as a classroom and assignment tool. I still remember specific
problems that we went over in class (e.g., the microfluidic reactor array with heterogeneous catalysis), and I feel
that the use of Python to solve problems throughout the course greatly benefited my understanding of fundamental
concepts. Iwent on to use Python [in the pharmaceutical industry], where I built tools for bioinformatics data analysis,
mutation network profiling for protein engineering experiments, and RNA structure prediction from experimental
data and molecular thermodynamics.”

– Richard West

7.2 The “CFD Python” story: guiding learners at their own pace

“CFD Python” is a collection of Jupyter notebooks based on a practical module that I began using in class in my
Computational Fluid Dynamics (CFD) course at Boston University in 2009. The 5-week module develops worked
examples that build on each other to incrementally guide the learner to create a program to solve the Navier-Stokes
equations of fluidmechanics, in 12 steps. In 2013, I was invited to teach amini-course in the Latin-American School in
High-Performance Computing, in Argentina. The Jupyter notebooks platform allowedme to create a guided narrative
to support learners with different background experience and knowledge. For that event, we wrote notebooks based

https://callysto.ca/
https://github.com/callysto
https://github.com/callysto

7.3. ANALYZING MUSIC WITH MUSIC21 65

on the CFD course module, to use as instructional scaffolding in the 2-full-days of minicourse. Twenty students
worked through the notebooks as self-paced lessons, while I went from desk to desk asking and answering questions.
About four of the students completed all the lessons in the 2 days, a bulk of them achieved up to about Step 8, and a
few of them lagged behind in Steps 4 or 5 by the end of the course. For those who completed the full module, they
had achieved in 2 days what my regular students in the classroom normally took 5 weeks to do. Seeing that was an
eye-opening moment: both the power of worked examples in code, and the ability to allow learners to follow their
own pace made a remarkable difference in these learners.

REF — Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier–Stokes equations. Journal of Open Source
Education, 1(9), 21, https://doi.org/10.21105/jose.00021

Based on the experience developing the “CFD Python” learning module, we adopted this basic design pattern for
creating lessons using computable content:

1. Break it down into small steps
2. Chunk small steps into bigger steps
3. Add narrative and connect
4. Link out to documentation
5. Interleave easy exercises
6. Spice with challenge questions/tasks
7. Publish openly online

– Lorena A. Barba

7.3 Analyzing music with music21

I became interested in learning more about Python in 2013 after reading a tutorial by Luciano Ramalho as he was
writing Fluent Python. Since I tend to seek out projects that match my outside interests (music, art, and nature) I was
looking for Python projects with music and came across Myke Cuthbert’s music21 project. Music21, an open source
music theory and analysis library maintained by Professor Michael Cuthbert at MIT, provides a set of tools to answer
questions about music quickly and simply. Users can create, analyze, and share music with just a few lines of code.
Myke’s use of the notebook hooked me. Unlike many things that I had worked on before, the notebooks made it easy
to get started and to write small code snippets that did real work! The more I used the notebooks and showed them
to people that I taught at Fab Lab San Diego, the more that I saw the power of the notebook to engage a user and
empower them to explore and learn.

Music, a universal language, appeals to learners of all origins, ages, education levels, and interests. As a subject that
casts a wide appeal, music offers the opportunity to engage and delight learners. It’s an accessible subject that has a
low barrier to entry for learners from disciplines beyond computer science and engineering.

– Carol Willing

Education benefits

• lessons notebooks can be tailored to age appropriate content within music
• multisensory
• ability in K12 to align with the standards
• possibilities for bringing in multi-subject learning

– writing
– history
– math
– science

• accessibility through audio and braille

Misc quotes (perhaps pick a couple?):

https://doi.org/10.21105/jose.00021

66 CHAPTER 7. USAGE CASE STUDIES

“I think of music21 as being composed of two parts. The first is infrastructure, routines for reading, writing, and manipulating musical scores,
while the second consists of a higher-level analytical toolkit—generating a Roman numeral from a chord and key, putting chords into normal form,
checking for parallel fifths, identifying scales containing a given pitch or chord, and so on.” —Bruce Tymoczko, Professor of Music, Princeton

Inclusive

“It’s not exclusive, but inclusive, which is the whole spirit of jazz.” — Herbie Hancock

Education

“So, you can’t stay in one place, no matter how comfortable that place is. It’s all about growing.”—Mavis Staples

Universal

“Music in the soul can be heard by the universe.”—Lao Tzu

Communication

Music is the greatest communication in the world. Even if people don’t understand the language that you’re singing in, they still know good
music when they hear it.”—Lou Rawls

“In the beginner’s mind there are many possibilities. In the expert’s mind there are few.” –Shunryu Suzuki

7.4 Interactivity in computer science (high school and middle school)

Who

High school and middle school students at Cal Poly SLO’s EPIC program completed a two hour workshop on In-
teractivity in Computer Science. The workshop participants included dual language learners (English as a Second
Language) and students who have had limited access to computers prior to the workshop.

Why

Providing early access to at-risk groupswhomay not see themselves as capable of learning to code or use computation

Illustrate that there are many skills beyond math and science that are needed to create software applications

What

Two hourworkshop thatmaximizes “hands on” explorationwith the goal of building an ongoing interest in computer
science

• short lectures
– interactive discussion - LISTEN
– hands on - DO/APPLY This section is self-paced to engage different learning styles and prior knowledge
– recap - DISCUSS

• 8 or so projects with achievements outlined
• modern curriculum including p5.js, jupyter, binder, deep learning and machine learning with TensorFlow and

Magenta (art and music)
• Goal is to empower students to understand that they CAN use CS to solve real world problems

Instructor Approach

• Start with high quality engaging content
• Self contained notebooks
• Use widgets to add additional interactivity

7.5. INTERACTIVE GEOPHYSICS WITH JUPYTER 67

7.5 Interactive geophysics with Jupyter

The GeoSci.xyz project (https://geosci.xyz) is an effort to develop a community of scientists and educators around
learning resources and software for the geosciences. The project includesmultiple open-source textbooks, eachwhich
have associated Jupyter notebook “apps” that serve as interactive simulation engines for exploring concepts in geo-
physics. We have used these resources in an undergraduate course on applied geophysics at the University of British
Columbia; this course is primarily taken by by geologists and engineers (non-geophysics majors). In 2017, we deliv-
ered a 2 day short course for professionals, graduate students, and researchers in 26 different countries around the
world (https://disc2017.geosci.xyz). In both of these courses, the goal is to provide learners with an overview of the
various geophysical methods (e.g. magnetics, gravity, seismic, electromagnetics) and concepts governing the physics;
we do not dive into details of the math nor do we expect students to program or write any lines of code. The role of
Jupyter notebooks in these courses is to serve as a tool for visualizing and exploring the physics.

During a lecture, the notebooks as a presentation medium lend to a dynamic presentation style, where we as instruc-
tors can select model parameters based on student input. Concepts are reinforced as students then use these same
notebooks in labs and assignments. We have found that the notebook apps are most effective when students are first
asked to critically think about what they expect to see and then visualize the result. If the resultant image matches
their expectation, then they understand the concept, and if not, it is an opportunity to learn and further explore.

– Lindsey Heagy

7.6 Investigating hurricanes

Who

Middle school and high school students visiting Columbia’s School of Engineering and Applied Sciences on a field
trip

Why

Students often come through looking to tour labs and experience some of the research that is being done at the school.
Unfortunately certain fields, in this case computational mathematics and hurricane research, do not lend themselves
to these types of events.

What

Instead of a lab or lecture a computer lab was reserved for an hour and a Jupyter notebook used to walk students
through some basic visualizations and data analysis encouraging students to change the code displayed to answer
questions such as “Where did Hurricane Sandy go?” and “What storms occurred during 1981?”. This includes a
number of visualizations of hurricane tracks, coloring by strength of storms, and an analysis of average number of
storms per year. Notebook is available at https://github.com/applied-math/demos.

– Kyle T. Mandli

7.7 Riemann Problems and Jupyter Solutions

We first envisioned this project as a teaching aid to interactively illustrate difficult concepts for a graduate course
in numerical methods for conservation laws. These are physical laws in the form of first-order hyperbolic partial
differential equations that arise in wave propagation applications such as fluid dynamics, traffic flow, water waves
(like tsunamis), and electromagnetic waves among others. The Riemann problem corresponds to a conservation law
with a piecewise constant initial condition such that the problem is relatively simple to solve, while still capturing the
characteristic dynamics of the conservation law. Due to its discrete nature, its simplicity and its capability to encode
the dynamics, the Riemann problem is the key ingredient in modern numerical methods for conservation laws.

https://geosci.xyz
https://disc2017.geosci.xyz
https://github.com/applied-math/demos

68 CHAPTER 7. USAGE CASE STUDIES

Figure 7.1: Notebook “app” for exploring the direct current resistivity experiment over a two layer earth (https://em.
geosci.xyz/apps.html).

https://em.geosci.xyz/apps.html
https://em.geosci.xyz/apps.html

7.7. RIEMANN PROBLEMS AND JUPYTER SOLUTIONS 69

Figure 7.2: Visualization from the notebook at https://github.com/applied-math/demos demonstrating the paths of
Atlantic hurricane tracks from 1950-2012 with coloring demonstrating category of storm.

https://github.com/applied-math/demos

70 CHAPTER 7. USAGE CASE STUDIES

Figure 7.3: Visualization from the acoustics equations chapter of the book at https://github.com/clawpack/riemann_
book It shows an interactive visualization of the solution to the Riemann problem for acoustics equations, where the
initial condition emulates a shock tube.

The project naturally evolved into Jupyter notebooks with the idea of compiling an interactive book. Each chapter
aims to solve the Riemann problem for a specific application such as acoustics, shallow-water equations, and Euler
equations. We further wanted to use our book to encourage the reading and publication of interactive notebooks.
Therefore, we decided that our book should also have a printed and an HTML version in addition to notebooks
available for downloading, to attract more readers and to encourage more authors and publishers to explore this
interactive platform.

As one would expect, several new problems arose regarding how to make a book that is somewhat compatible across
all the different platforms in which we wanted to present the book, particularly since the notebooks make heavy use
of interactive widgets and animations. With the help of our publisher (SIAM) and several developers working on
Jupyter-based tools for publishing interactive books, we are close to finalizing the project. We are happy to say that
this project promoted the development of some of these tools and that is encouraging our publisher to delve more
into interactive book publication.

This book should be completed in the next fewmonths, and the current state can be viewed at http://www.clawpack.
org/riemann_book/index.html.

– David I. Ketcheson, Randall J. LeVeque, and Mauricio J. del Razo

https://github.com/clawpack/riemann_book
https://github.com/clawpack/riemann_book
http://www.clawpack.org/riemann_book/index.html
http://www.clawpack.org/riemann_book/index.html

Chapter 8

About the authors

8.1 Project lead

Lorena A. Barba

• George Washington University
• labarba@email.gwu.edu
• @LorenaABarba

Lorena A. Barba is Associate Professor of Mechanical and Aerospace Engineering at the George Washington Univer-
sity. She adopted Jupyter in 2013 and since then used it in every course she teaches. Her open course materials are
well known and used by thousands of learners: CFD Python and Numerical MOOC are the best examples.

8.2 Authors at the sprint

Lecia J. Barker

• University of Colorado Boulder
• lecia.barker@colorado.edu
• @leciab

Lecia Barker is anAssociate Professor andAssociateChair ofUndergraduate Studies in theDepartment of Information
Science at the University of Colorado Boulder. She is also a Senior Research Scientist for the National Center for
Women & IT. Her research group is studying the diffusion and adoption of teaching practices in undergraduate
computer science. Lecia holds a Ph.D. in Communication from CU Boulder and an MBA in Marketing from San
Diego State University.

Douglas Blank

• Bryn Mawr College
• dblank@brynmawr.edu
• @dougblank

Douglas Blank is Associate Professor in the Department of Computer Science at Bryn Mawr College, a small, all-
women’s college outside of Philadelphia, PA, USA. He has a joint Ph.D. in Cognitive Science and Computer Science
from Indiana University, Bloomington. For over 20 years, Douglas has taught all levels of Computer Science. For

71

mailto:labarba@email.gwu.edu
https://twitter.com/LorenaABarba
http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/
https://github.com/numerical-mooc/numerical-mooc
mailto:lecia.barker@colorado.edu
https://twitter.com/leciab
https://www.colorado.edu/cmci/people/information-science/lecia-barker
https://www.colorado.edu/cmci/infoscience
https://www.colorado.edu/cmci/infoscience
https://www.ncwit.org/
https://www.ncwit.org/
https://csteachingpractices.wordpress.com/
mailto:dblank@brynmawr.edu
https://twitter.com/dougblank
https://cs.brynmawr.edu/~dblank/
https://cs.brynmawr.edu/
http://brynmawr.edu/

72 CHAPTER 8. ABOUT THE AUTHORS

the last 4 years, he has used Jupyter notebooks exclusively in the classroom. Douglas has published in the areas of
Computer Science Education, Robotics, Artificial Intelligence, and Deep Learning. He is on the advisory board of
Engage-CSEdu.org, a joint project between Google and the National Center for Women and Information Technology
(NCWIT). Douglas also writes text and code at his website douglasblank.com.

Jed Brown

• University of Colorado Boulder
• jed@jedbrown.org
• @five9a2

Jed Brown is an Assistant Professor of Computer Science at the University of Colorado Boulder. He has been teach-
ing numerical and scientific computing courses using Jupyter Notebook and nbgrader for three years, and leads a
research group that develops computational methods and community software for computational science.

Allen Downey

• Olin College
• downey@allendowney.com
• @AllenDowney

Allen Downey is a professor of Computer Science at Olin College and the author of a series of open-source textbooks
related to software and data science, including Think Python, Think Bayes, and Think Complexity, published by O’Reilly
Media. These books, and the classes based on them, use Jupyter notebooks extensively. Prof Downey holds a Ph.D. in
computer science from U.C. Berkeley, and M.S. and B.S. degrees from MIT.

Tim George

• Project Jupyter
• tgeorgeux@gmail.com

Timothy George is the Lead UI/UX Designer for Project Jupyter, focusing primarily on JupyterLab. In addition to
his formal duties, Tim is also in working with Jupyter on design strategy, future products, governance, diversity and
inclusion. He studiedHCI at UC Irvine’s Donald Bren School of Informatics and Computer Sciencewhere he received
a Master’s Degree.

Lindsey Heagy

• University of California Berkeley
• lindseyheagy@gmail.com
• @lindsey_jh

Lindsey Heagy is a Postdoctoral Researcher at the University of California Berkeley working on Project Jupyter and
Jupyter in the geosciences. She recently completed her PhD at the University of British Columbia in geophysics. She is
a project leader of GeoSci.xyz, an effort to build collaborative, interactive, web-based textbooks in the geosciences, and
a core contributor to SimPEG, an open source framework for geophysical simulation and inversions. The GeoSci.xyz
project relies heavily on Jupyter for making the content come to life.

Kyle Mandli

• Columbia University
• kyle.mandli@columbia.edu

https://www.engage-csedu.org
http://douglasblank.com
mailto:jed@jedbrown.org
https://twitter.com/five9a2
https://jedbrown.org/
mailto:downey@allendowney.com
https://twitter.com/AllenDowney
http://www.allendowney.com/wp/
mailto:tgeorgeux@gmail.com
https://www.tgeorgeux.com/
https://jupyter.org/
mailto:lindseyheagy@gmail.com
https://twitter.com/lindsey_jh
https://www.lindseyjh.ca/
http://geosci.xyz
https://www.simpeg.xyz/
mailto:kyle.mandli@columbia.edu

8.2. AUTHORS AT THE SPRINT 73

• @KyleMandli

Kyle Mandli is an Assistant Professor in the Department of Applied Physics and Applied Mathematics at Columbia
University. He has developed a set of openly available course notes centered around Jupyter notebooks and uses
Jupyter for homework in conjunction with nbgrader. His other research interests include development of computa-
tional methods for coastal hazards such as storm surge and tsunamis.

Jason K. Moore

• University of California, Davis
• jkm@ucdavis.edu
• @moorepants

Jason K. Moore is an Assistant Teaching Professor of Mechanical and Aerospace Engineering at the University of Cal-
ifornia, Davis. He currently teaches dynamics and mechanical design related courses. He utilizes Jupyter notebooks
to teach modeling and simulation and is working on a textbook about Mechanical Vibrations. He is responsible for
the Jupyter related features in the LibreTexts project and is also a core developer of the SymPy and PyDy projects
which utilizes Jupyter for training workshops, e.g. PyDy Tutorial and SymPy Code Generation Tutorial. Jason has
PhD, MSc, and BSc degrees in mechanical engineering from UC Davis and Old Dominion University.

David Lippert

• Leidos

David Lippert is a software engineer at Leidos in Arlington, Virginia. He utilizes Jupyter notebooks primarily for
exploratory data analysis and for training and evaluating machine learning algorithms. He has written Jupyter note-
books to create new Dr. Seuss sonnets and to evaluate if the Rotten Tomatoes Tomatometer can be trusted. He has a
BA in computer science from Middlebury College.

Kyle E. Niemeyer

• Oregon State University
• kyle.niemeyer@oregonstate.edu
• @kyleniemeyer

KyleNiemeyer is anAssistant Professor ofMechanical Engineering in the School ofMechanical, Industrial, andManu-
facturing Engineering at Oregon State University. He teaches courses in numerical and analytical methods for solving
differential equations as well as gas dynamics, and recently developed a graduate course on software development
for engineering research. His research group develops and applies methods for modeling combustion and chemically
reacting fluid flows. He is also on the steering committee of the Cantera open-source project for chemical kinetics,
thermodynamics, and transport processes.

Ryan Watkins

• George Washington University
• rwatkins@gwu.edu
• @parsingscience

Ryan Watkins is a Professor of Educational Technology at George Washington University in Washington DC. He
leads the Human-Technology Collaboration (HTC) PhD program area, and he teaches courses in needs assessment,
instructional design, and research methods. Ryan’s research focuses on how people and organizations define and
assess needs. He is co-host of Parsing Science, a podcast where researchers share the stories behind their science. He
also developed the We Share Science platform for sharing video abstracts of research.

https://twitter.com/KyleMandli
http://www.columbia.edu/~ktm2132/
mailto:jkm@ucdavis.edu
https://twitter.com/moorepants
http://moorepants.info/
https://moorepants.github.io/resonance
http://libretexts.org
http://sympy.org/
http://pydy.org/
https://www.sympy.org/scipy-2017-codegen-tutorial/
https://github.com/pydy/pydy-tutorial-human-standing
https://www.leidos.com
https://www.rottentomatoes.com/about
mailto:kyle.niemeyer@oregonstate.edu
https://twitter.com/kyleniemeyer
https://niemeyer-research-group.github.io/
https://softwaredevengresearch.github.io/syllabus/
https://softwaredevengresearch.github.io/syllabus/
https://cantera.org/
mailto:rwatkins@gwu.edu
https://twitter.com/parsingscience
https://gsehd.gwu.edu/directory/ryan-watkins
https://go.gwu.edu/phd
https://parsingscience.org/
https://wesharescience.org/

74 CHAPTER 8. ABOUT THE AUTHORS

Richard H. West

• Northeastern University
• R.West@northeastern.edu
• @richardhwest

Richard West is Associate Professor of Chemical Engineering at Northeastern University in Boston. He leads a re-
search group in computational modeling for complex reacting systems like combustion or catalysis. He is a core
member of the Cantera open-source project. As well as in an elective on “computational modeling in chemical engi-
neering”, he has integrated Python and Jupyter into core classes on chemical kinetics and reactor design, at both the
undergraduate and graduate levels. As part of his NSF CAREER award, he is developing modules to teach students
to use Python and SciPy to solve chemical engineering problems.

Elizabeth Wickes

• University of Illinois at Urbana-Champaign
• wickes1@illinois.edu
• @elliewix

ElizabethWickes is a Lecturer at the School of Information Sciences at the University of Illinois at Urbana-Champaign.
She teaches foundational programming from an information and data sciences perspective, as well as other course-
work on open data and reproducibility. Her programming course lectures are written in Jupyter notebooks and the
class is taught via live coding.

Carol Willing

• Cal Poly San Luis Obispo
• willingc@gmail.com
• @WillingCarol

Carol Willing is a Research Software Engineer at Cal Poly San Luis Obispo working full-time on Project Jupyter. She
is a Python Software Foundation Fellow and former Director; a Project Jupyter Steering Council member; and a core
developer on CPython and Jupyter. Carol has anM.S. inManagement fromMIT and a B.S.E. in Electrical Engineering
from Duke.

Michael Zingale

• Stony Brook University
• Michael.Zingale@stonybrook.edu
• @Michael_Zingale

Michael Zingale is an Associate Professor and computational astrophysicist at Stony Brook University. He has a PhD
from University of Chicago (2000). He frequently teaches numerical methods and Python for scientific computing
graduate courses, relying on Jupyter notebooks and python for much of the presentation. He is an advocate for
open educational resources, as a founder of the Open Astrophysics Bookshelf project where he hosts his Introduction to
Computational Astrophysical Hydrodynamics text.

mailto:R.West@northeastern.edu
https://twitter.com/richardhwest
https://web.northeastern.edu/comocheng/
https://cantera.org/
mailto:wickes1@illinois.edu
https://twitter.com/elliewix
https://ischool.illinois.edu/people/elizabeth-wickes
mailto:willingc@gmail.com
https://twitter.com/WillingCarol
https://www.willingconsulting.com/about/
https://jupyter.org/
mailto:Michael.Zingale@stonybrook.edu
https://twitter.com/Michael_Zingale
http://www.astro.sunysb.edu/mzingale/
http://bender.astro.sunysb.edu/classes/numerical_methods/
http://bender.astro.sunysb.edu/classes/python-science/
https://github.com/Open-Astrophysics-Bookshelf/
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf

Chapter 9

Glossary

Anaconda: a free, open-source package manager, environment manager, Python distribution, and collection of over
1,500+ open source packages including and also Jupyter. https://www.anaconda.com/what-is-anaconda/

API (Application Programming Interface): a specification of what a programmer must write or define to interact
with a software library.

Binder: a hosted service that allows anyone to launch their own sandboxed notebook environment from a Git repos-
itory. https://mybinder.org

cell: the area in a Jupyter notebook where you can enter markdown, or computer code.

cloud, in the: used to describe software or documents hosted on a remote computer accessed over the internet.

CSV (Comma Separated Values): referring to a comma-separated value file. A plain-text file format such that each
line is a list of data separated by commas.

DataFrame A common tabular data structure with rows and columns available in R and in Python through Pandas.

execute: technical term for having the computer perform the instructions of your program. Alias for “run it.”

extension, Jupyter: in this instance, it is not a request for more time. Rather, a Jupyter extension is a bit of code, often
developed by a third-party, that adds additional functionality to Jupyter. For example, a popular extension is a Table
of Contents creator.

flipped classroom: a teaching style where students work on their own outside of class to learn new material (some-
times by watching recorded lectures or reading descriptive/interactive notebooks) and the come together in the class-
room to practice what they’ve learned through exercises or experiments.

Git: a popular version control system (VCS) used for keeping track of changes of files over time.

IDE (Integrated Development Environment): software that assists in the development of additional software.

Jupyter: The term “Jupyter” may refer to one of a couple of different things: a community of users and developers
focused on the open source software; the collection of tools and standards that, together, allowprojects like the Jupyter
Notebook to operate. The name refers to the three core programming languages supported: Julia, Python, and R.

JupyterHub: a cloud service that can provide access to Jupyter notebooks and environments to multiple users via a
modern web browser. http://jupyter.org/hub

kernel: In Jupyter, a kernel is the packaging up of a language, and related programs needed to run it. For example,
Python2 and Python3 are separate kernels.

LMS (Learning Management System): a cloud service that helps instructors manage aspects of classrooms.

load: how many students can a computer support?

75

https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://www.anaconda.com/what-is-anaconda/
https://mybinder.org
http://jupyter.org/hub

76 CHAPTER 9. GLOSSARY

Markdown: a text format that allows for basic formatting (headers, text styles, links) mixed inline with the text.
Markdown files usually have the extension .md and can be rendered natively by GitHub and other tools.

magic: a meta-command typically starting with one or two percent signs. Changes the meaning of the contents of a
line (one percent sign, %) or the cell (two percent signs, %%) from code to a particular meta-instruction. For example,
%%R indicates that the cell contents will be interpreted as commands to the R language. Magics are kernel-specific
(e.g., vary with the kernel in use).

nbgrader: a tool for creating, handling, and automatically grading assignments based on Jupyter notebooks. https:
//nbgrader.readthedocs.io

nbviewer: a web application for rendering Jupyter notebooks as static web pages, providing a URL to share and view
them with a modern web browser. https://nbviewer.jupyter.org

nbconvert: a tool for converting Jupyter notebooks into other formats such as PDF, HTML, LaTeX, Markdown, re-
StructuredText, and others. https://nbconvert.readthedocs.io

notebook hidden state: a technical term referring to the value of variables that may have surprising results due to
cells having been executed in a non-sequential order.

open source: software and documents that are created in a manner that give you rights to be able to use, and repro-
duce.

pattern: A “pattern” is a technical term referring to an abstract description of a labeled process. For example, “wash,
rinse, repeat” is a common pattern for cleaning various objects.

scaffold: A teaching and learning pattern that provides steps in the learning process that build on prior learned
knowledge.

script: a colloquial term for a computer program.

service, JupyterHub: JupyterHub can take advantage of additional separate, but integrated, software extensions.
These are called “services.”

software distribution: A collection of software that is typically installed in bulk and is designed to ensure interoper-
ability.

unit test: a technical term for a “test” for checking to see if software is operating correctly.

URL (Universal Resource Locator): the address of a resource (e.g., webpage) on the internet.

widget: a user interface (such as buttons, sliders, and checkboxes) that allow the easy control of hidden computer
code.

https://nbgrader.readthedocs.io
https://nbgrader.readthedocs.io
https://nbviewer.jupyter.org
https://nbconvert.readthedocs.io

References

Barba, L., & Forsyth, G. (2018). CFD Python: The 12 steps to Navier–Stokes equations. Journal of Open Source Education,
1(9), 21. https://doi.org/10.21105/jose.00021

Brenner, S. C., & Scott, L. R. (2008). The mathematical theory of finite element methods. Springer Verlag.

Chapelle, D., & Bathe, K. J. (1993). The inf-sup test. Computers and Structures, 47, 537–537. https://doi.org/10.1016/
0045-7949(93)90340-J

Chen, O., Kalyuga, S., & Sweller, J. (2015). The worked example effect, the generation effect, and element interactivity.
Journal of Educational Psychology, 107(3), 689. https://doi.org/10.1037/edu0000018

Coleman, E. G. (2012). Coding freedom: The ethics and aesthetics of hacking. Princeton University Press.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active
learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of
Sciences, 111(23), 8410–8415. https://doi.org/10.1073/pnas.1319030111

Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem students share with their teachers.
Methods of Psychological Research, 7(1), 1–20. Retrieved from http://www.dgps.de/fachgruppen/methoden/mpr-online/
issue16/art1/haller.pdf

LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge University Press.

Meurer, A., Smith, C. P., Paprocki, M., Čertıḱ, O., Kirpichev, S. B., Rocklin, M., … Scopatz, A. (2017). SymPy: Symbolic
computing in Python. PeerJ Computer Science, 3, e103. https://doi.org/10.7717/peerj-cs.103

Mishra, S., & Spinolo, L. V. (2015). Accurate numerical schemes for approximating initial-boundary value prob-
lems for systems of conservation laws. Journal of Hyperbolic Differential Equations, 12(01), 61–86. https://doi.org/10.1142/
S0219891615500034

Moore, M. G. (1989). Editorial: Three types of interaction. American Journal of Distance Education. https://doi.org/10.
1080/08923648909526659

OpenContent. (1998). About opencontent. Retrieved 18 December 2002 from http://opencontent.org/.

Raymond, E. S. (1996). The new hacker’s dictionary. MIT Press.

Roache, P. J. (2004). Building PDE codes to be verifiable and validatable. Computing in Science & Engineering, 6(5), 30–38.
https://doi.org/10.1109/MCSE.2004.33

Sweller, J. (2006). The worked example effect and human cognition. Learning and Instruction, 16(2), 165–169. https:
//doi.org/10.1016/j.learninstruc.2006.02.005

Trefethen, L. N., & Bau, D. (1997). Numerical linear algebra. Society for Industrial Mathematics.

77

https://doi.org/10.21105/jose.00021
https://doi.org/10.1016/0045-7949(93)90340-J
https://doi.org/10.1016/0045-7949(93)90340-J
https://doi.org/10.1037/edu0000018
https://doi.org/10.1073/pnas.1319030111
http://www.dgps.de/fachgruppen/methoden/mpr-online/issue16/art1/haller.pdf
http://www.dgps.de/fachgruppen/methoden/mpr-online/issue16/art1/haller.pdf
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1142/S0219891615500034
https://doi.org/10.1142/S0219891615500034
https://doi.org/10.1080/08923648909526659
https://doi.org/10.1080/08923648909526659
http://opencontent.org/
https://doi.org/10.1109/MCSE.2004.33
https://doi.org/10.1016/j.learninstruc.2006.02.005
https://doi.org/10.1016/j.learninstruc.2006.02.005

	Introduction
	Acknowledgments

	Why we use Jupyter notebooks
	Why do we use Jupyter?
	But first, what is Jupyter Notebook?
	Course benefits & anecdotes
	Student benefits
	Instructor benefits
	Conclusions

	Notebooks in teaching and learning
	Oh the places your notebooks will go!
	Before You Begin…

	A catalogue of pedagogical patterns
	Introduction
	Shift-Enter for the win
	Fill in the blanks
	Target Practice
	Tweak, twiddle, and frob
	Notebook as an app
	Win-day-one
	Top-down sequence
	Two bites at every apple
	Coding as translation
	Symbolic math over pencil + paper
	Replace analysis with numerical methods
	The API is the lesson
	Proof by example, disproof by counterexample
	The world is your dataset
	Now you try (with different data or process)
	Connect to external audiences
	There can be only one
	Hello, world!
	Test driven development
	Code reviews
	Bug hunt
	Adversarial programming

	Jupyter Notebook ecosystem
	Language support: kernels
	Using Jupyter notebooks
	Authoring Jupyter notebooks
	Tips and tricks
	Gotchas

	Getting your class going with Jupyter
	Local installation on students' or lab computers
	Jupyter on remote servers
	Distribution and collection of materials
	Assessing student learning with Jupyter notebooks
	How do you create Jupyter notebooks for reuse and sharing?
	Jupyter: a 21st Century genre of Open Educational Resources and practices

	Usage case studies
	Jupyter notebooks in support of scaling for large enrollments
	The ``CFD Python'' story: guiding learners at their own pace
	Analyzing music with music21
	Interactivity in computer science (high school and middle school)
	Interactive geophysics with Jupyter
	Investigating hurricanes
	Riemann Problems and Jupyter Solutions

	About the authors
	Project lead
	Authors at the sprint

	Glossary
	References

