Application of the Nonextensive Statistical Approach for High Energy Particle Collisions

Gábor Bíró
Wigner RCP of the HAS, Heavy Ion Research Group

Gergely Gábor Barnaföldi
Tamás Sándor Biró
Károly Ürmössy

MaxEnt 2016
Content

► Motivation
 ► Why do we need high energy collisions?

► Non-extensive statistics
 ► Small system, large fluctuations: Tsallis – Pareto distribution

► Fitting hadron spectra
 ► CM energy evolution of the parameters

► Summary
What is CERN doing? Bizarre clouds over Large Hadron Collider 'prove portals are opening
What is CERN doing? Bizarre clouds over Large Hadron Collider 'prove portals are opening

"Is it a coincidence they had just started the Awake experiment?"
Why do we need high energy collisions?

Image source: https://www.phy.duke.edu

Image source: arXiv:1308.3328
Why do we need high energy collisions?

- Quark-gluon plasma (QGP): strongly interacting hot, dense matter (and perfect fluid)
- Temperature: $\sim 10^{12}$ K
- Lifetime: $\sim fm/c$
- Hadronization is still "mystery"

Image source: http://icc.ub.edu/
Why high energy collisions?
Why do we need high energy collisions?
Small system, large fluctuations

- High energy physics: new particles from collisions
- Hadron spectra in pp collisions can be described by the Tsallis distribution
- π^+ spectra in pp collisions depends similarly on \sqrt{s} and on the multiplicity N

Small system, large fluctuations

- Spectrum:
 - low p_T (soft): Boltzmann – Gibbs
 - high p_T (hard): power-law tailed (pQCD)
 - the whole range is difficult

- # of particles in classical atomic matter: $\sim O(10^{24})$
- # of particles produced in heavy ion collisions: $\sim O(10^4 - 10^6)$
- # of particles produced in high energy pp collisions: $\sim O(10 - 100)$
Small system, large fluctuations

- Extensive Boltzmann–Gibbs statistics:

\[
S_{12} = S_1 + S_2 \quad \Rightarrow \quad S_B = - \sum_i p_i \ln p_i
\]

\[
E_{12} = E_1 + E_2
\]

- Non-extensivity due to fluctuations \(\Rightarrow\) generalized entropy

\[
\hat{L}_{12} = \hat{L}_1(S_1) + \hat{L}_2(S_2) \quad \Rightarrow \quad S_q = \frac{1}{q-1} \left(1 - \sum_i p_i^q\right) = - \sum_i p_i \ln_q p_i
\]

\[
L_{12} = L_1(E_1) + L_2(E_2)
\]

\[
S_{12} = S_1 + S_2 + (q - 1)S_1S_2
\]

\[
\ln_q p = \frac{p^{(1-q)} - 1}{1 - q} \quad e_q^p = (1 + (1 - q)p)^{1/(1-q)}
\]

Physica A 392 (2013) 3132
Small system, large fluctuations

- Boltzmann–Gibbs entropy as $q \to 1$ limit:

\[
S_1 = \lim_{q \to 1} S_q = \lim_{q \to 1} \frac{1}{q - 1} \left(1 - \sum_i p_i^q \right) \\
= \lim_{q \to 1} \frac{1}{q - 1} \left(1 - \sum_i p_i e^{(q-1) \ln p_i} \right) \\
= \lim_{q \to 1} \frac{1}{q - 1} \left(1 - \sum_i p_i \left(1 + (q - 1) \ln p_i + O((q - 1)^2) \right) \right) \\
= - \sum_i p_i \ln p_i
\]

- Maximizing the Tsallis entropy: the Tsallis–Pareto distribution can be obtained

\[
f(\varepsilon) = \left[1 + (q - 1) \frac{\varepsilon}{T} \right]^{-\frac{1}{q-1}}
\]
Small system, large fluctuations

- In high energy collisions: E fixed and $\epsilon \ll E$

$$q = \frac{\langle S'(E)^2 + S''(E) \rangle}{\langle S'(E) \rangle^2} = \frac{\langle N(N-1) \rangle}{\langle N \rangle^2} = 1 - \frac{1}{C} + \frac{\Delta T^2}{T^2}, \quad \frac{1}{T} = \langle S'(E) \rangle, \quad T = \frac{E}{\langle N \rangle}$$

where $C = \frac{dE}{dT} = \frac{E}{T}$

- The Tsallis-entropy: $S_q = \frac{1}{q-1} \left(1 - \sum_i p_i^q \right)$, if $q \to 1$:

$$\lim_{q \to 1} S_q = - \sum_i p_i \ln p_i = S_{BG}$$

- q: the measure of non-extensivity
 - If $q-1$ is large, that means that fluctuations due to small size effects are significant

Physica A 392 (2013) 3132
Small system, large fluctuations

Program:

- Fit spectra of identified hadrons measured in pp, pA and AA collisions
- Investigate the \sqrt{s} dependency of the fitted parameters (and other dependencies: mass, strangeness content, centrality, multiplicity...)
- Verification of the scale evolution
- Predictions for other collision energies (13-14 TeV) and for other quantities (v_2 anizotropic flow...)

\[
f(\varepsilon) = \left[1 + (q - 1) \frac{\varepsilon}{T} \right]^{\frac{-1}{q-1}}
\]

\[
q = \frac{\langle S'(E)^2 + S''(E) \rangle}{\langle S'(E) \rangle^2}
\]

\[
q = \frac{\langle N(N-1) \rangle}{\langle N \rangle^2}
\]

\[
q = 1 + \frac{\Delta T^2}{T^2} - \frac{1}{C}
\]

\[
\frac{E}{\langle N \rangle} = T_{BG}
\]

\[
\frac{E}{\langle N \rangle} = \frac{\int \varepsilon f_{T S}(\varepsilon)}{\int f_{T S}(\varepsilon)}
\]

Physica A 392 (2013) 3132
Results
Fitted pp→ PID hadron spectra

Data/Fits are good, $\chi^2/\text{NDF} \sim 1$

13 TeV: coming soon...
The evolution of fitted q and T parameters

- Predictions for 13 TeV (spoiler: quite good)
- q is increasing for mesons very similarly, but ~constant for protons (barions)
- T is increasing, but very differently for mesons/barions
 - T_2 for kaons and pions is similar, but T_1 is not \rightarrow strangeness?
T(q-1): $\sqrt{s} = 62$ GeV
T(q-1): $\sqrt{s} = 200$ GeV

$T(q-1) = A \left(1 + \frac{q-1}{T_0(m_T - m)}\right)^{-q}$

$q_{m-1}/q_{b-1} = 0.939 \pm 0.001$
T(q-1): $\sqrt{s} = 900$ GeV

Fitted T vs q-1, $\sqrt{s}=(62-900)$ GeV

- π^0
- Barion
- K^\pm
- p/\bar{p}
- Meson
- π^\pm
- K_s^0
- ρ^0

\[f(m_T) = A \left(1 + \frac{q-1}{T} (m_T - m) \right)^{q-1} \]

\[(q_m-1)/(q_b-1) = 0.951 \pm 0.012 \]
$T(q-1): \sqrt{s} = 2760$ GeV

Fitted T vs $q-1$, $\sqrt{s}=(62-2760)$ GeV

- π^0
- Barion
- K^\pm
- p/\bar{p}
- Meson
- π^\pm
- K_s^0
- ρ^0

$f(m_T)=A\left(1+\frac{q-1}{T}(m_T-m)^2\right)^{\frac{1}{q-1}}$

$(q_{m-1})/(q_{b-1})=1.221\pm0.007$
$T(q-1): \sqrt{s} = 7000$ GeV

Fitted T vs $q-1$, $\sqrt{s}=(62-7000)$ GeV

- π^0
- Barion
- K^\pm
- p/\bar{p}
- ρ^0

$$f(m_T) = A \left(1 + \frac{q-1}{T(m_T - m)} \right)^{q/4}$$

$$(q_m - 1)/(q_b - 1) = 1.328 \pm 0.014$$
T(q-1), all energies

\[T \text{ as effective temperature} \]

\[T_{eff} = T(q) = T_0 + (q - 1)T_v \]

- For AA: \(T_v \) can be negative
 - Soft+hard model...?

\[f(m) = A \left(1 + \frac{q-1}{T(m_T-m)} \right)^{q-1} \]

\[\frac{(q_m-1)}{(q_b-1)} = 0.969 \pm 0.001 \]

\[\sqrt{s} \]

Scaled $T(q-1)$, all energies

Coalescence:
Hadron distribution \rightarrow quark distribution

For $T_{\text{hadron}} = T_{\text{quark}}$:

$$\frac{q_m - 1}{q_b - 1} \sim \frac{3}{2}$$

Also shows strong \sqrt{s} dependency

Summary

- Maximizing Tsallis-entropy: thermodinamical expressions for particle spectra obtained in high energy pp collisions
 - The fluctuation of the number of particles is large
 - Fitted Tsallis – Pareto distributions describe the spectra very well
 - The q and T parameters show a strong CM energy dependence
 - Physical picture from the T vs $(q-1)$ function
- Similar behaviour in electron-positron, proton-nucleus and nucleus-nucleus collisions
 - Soft+hard model, transverse flow, coalescence…

Thank you!
References

