Structural judgements

Gert de Cooman

SYSTeMS Research Group
Ghent University
gert.decooman@UGent.be
http://users.UGent.be/~gdcooma

Fourth SIPTA School on Imprecise Probabilities
Durham, UK, 2 September 2010
Outline

1. General comments
2. Structural assessments
3. Irrelevance and independence
4. Modelling symmetry
Outline

1. General comments
2. Structural assessments
3. Irrelevance and independence
4. Modelling symmetry
General comments

Model for a random variable X assuming values in \mathcal{X}:

- **probability**: $P(X \in A)$ for all events $A \subseteq \mathcal{X}$
- **expectation**: $E(f(X))$ for all gambles $f : \mathcal{X} \rightarrow \mathbb{R}$

probability $P(\cdot)$ and expectation $E(\cdot)$ are equally expressive
General comments

Probability measure versus expectation functional

Model for a random variable X assuming values in \mathcal{X}:

- **Probability**: $P(X \in A)$ for all events $A \subseteq \mathcal{X}$
- **Expectation**: $E(f(X))$ for all gambles $f : \mathcal{X} \rightarrow \mathbb{R}$

Lower probability $P(\cdot)$ is less expressive than lower expectation $E(\cdot)$
Model for a random variable X assuming values in \mathcal{X}:

- Probability $P(X \in A)$ for all events $A \subseteq \mathcal{X}$
- Expectation $E(f(X))$ for all gambles $f : \mathcal{X} \rightarrow \mathbb{R}$

Lower probability $P(\cdot)$ is less expressive than lower expectation $E(\cdot)$

When working with imprecise probabilities,

use (lower) expectations and gambles
General comments

Lower expectation functional versus set of desirable gambles

Two types of imprecise-probability models:

- **Lower expectation** \(\underline{P}(f(X)) \) for all gambles \(f : \mathcal{X} \rightarrow \mathbb{R} \)
- **Set of desirable gambles** \(\mathcal{D} \subseteq \mathcal{L}(\mathcal{X}) \)

with

\[
\underline{P}(f) = \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D} \}
\]
Lower expectation functional versus set of desirable gambles

Two types of imprecise-probability models:

- **Lower expectation** $P(f(X))$ for all gambles $f : \mathcal{X} \to \mathbb{R}$
- **Set of desirable gambles** $\mathcal{D} \subseteq \mathcal{L}(\mathcal{X})$ with

\[
P(f) = \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D} \}
\]

Working with sets of desirable gambles \mathcal{D}:

- is simpler, more intuitive and more elegant
- is more general and expressive
- gives a geometrical flavour to probabilistic inference
- shows that probabilistic inference is ‘logical’ inference
All the most interesting and practical aspects of probabilistic reasoning are covered by (derivable from):

D1. if $f < 0$ then $f \notin \mathcal{D}$
D2. if $f > 0$ then $f \in \mathcal{D}$
D3. if $f, g \in \mathcal{D}$ then $f + g \in \mathcal{D}$
D4. if $f \in \mathcal{D}$ then $\lambda f \in \mathcal{D}$ for all real $\lambda > 0$

Precise models correspond to the special case that the cones \mathcal{D} are actually semi-spaces!
A coherent lower prevision \underline{P} on $\mathcal{L}(\mathcal{X})$ has the following interesting properties:

(i) $\inf f \leq \underline{P}(f) \leq \bar{P}(f) \leq \sup f$

(ii) $\underline{P}(\lambda f) = \lambda \underline{P}(f)$ if $\lambda \geq 0$ and $\underline{P}(\lambda f) = \lambda \bar{P}(f)$ if $\lambda \leq 0$

(iii) $\underline{P}(f) + \underline{P}(g) \leq \underline{P}(f + g) \leq \bar{P}(f) + \bar{P}(g) \leq \bar{P}(f + g) \leq \underline{P}(f) + \bar{P}(g)$

(iv) if $f \leq g$ then $\underline{P}(f) \leq \underline{P}(g)$ and $\bar{P}(f) \leq \bar{P}(g)$

(v) $\underline{P}(f + \mu) = \underline{P}(f) + \mu$ and $\bar{P}(f + \mu) = \bar{P}(f) + \mu$
Exercise on coherence

Problem 1

Consider a space with two elements: \(\mathcal{X} = \{a, b\} \).

1. Show that any linear prevision on this space can be written as

\[
P_\alpha(f) = \alpha f(a) + (1 - \alpha)f(b)
\]

for some \(\alpha \in [0, 1] \). Actually \(\alpha = P_\alpha(\{a\}) \) and \(1 - \alpha = P_\alpha(\{b\}) \).

2. Show that for any gamble \(f \):

\[
f = f(a) + [(f(b) - f(a)) I_{\{b\}} = f(b) + [(f(a) - f(b)) I_{\{a\}}
\]

3. Show that all coherent lower previsions \(P \) on \(\mathcal{L}(\mathcal{X}) \) are linear-vacuous mixtures: there are \(\alpha \) and \(\varepsilon \) in \([0, 1]\) such that

\[
P(f) = \varepsilon P_\alpha(f) + (1 - \varepsilon) \min f
\]

\[
= \varepsilon [\alpha f(a) + (1 - \alpha)f(b)] + (1 - \varepsilon) \min \{f(a), f(b)\}.
\]

[Hint: Let \(P(\{a\}) = \varepsilon \alpha \) and \(P(\{b\}) = \varepsilon (1 - \alpha) \).]
Outline

1. General comments
2. Structural assessments
3. Irrelevance and independence
4. Modelling symmetry
Local assessments

A subject gives values for

\[P(f) \text{ for all gambles } f \text{ in some subset } A \text{ of } \mathcal{L}(\mathcal{X}) \]

Structural assessments

The model \(P \) satisfies some properties besides coherence:

1. behaves in a certain way under some transformation or operation:
 - irrelevant or independent models
 - symmetrical models

2. zero on some structurally important set of gambles
Outline

1. General comments
2. Structural assessments
3. Irrelevance and independence
4. Modelling symmetry
Consider variables X_1 in \mathcal{X}_1 and X_2 in \mathcal{X}_2.

Marginal models

We have:

- a coherent model \mathcal{D}_1 for X_1, which is a subset of $\mathcal{L}(\mathcal{X}_1)$ and
- a coherent model \mathcal{D}_2 for X_2, which is a subset of $\mathcal{L}(\mathcal{X}_2)$.
Consider variables X_1 in \mathcal{X}_1 and X_2 in \mathcal{X}_2.

Marginal models
We have:
- a coherent model D_1 for X_1, which is a subset of $\mathcal{L}(\mathcal{X}_1)$ and
- a coherent model D_2 for X_2, which is a subset of $\mathcal{L}(\mathcal{X}_2)$.

Joint model
We want to combine D_1 and D_2 into a joint model D which is a subset of $\mathcal{L}(\mathcal{X}_1 \times \mathcal{X}_2)$:

\[
\text{marg}_1(D) := D \cap \mathcal{L}(\mathcal{X}_1) = D_1 \\
\text{marg}_2(D) := D \cap \mathcal{L}(\mathcal{X}_2) = D_2
\]
Irrelevance and independence
Natural extension

What this joint model looks like, will depend on what we know about the relation between X and Y.

No information specified
In this case the smallest joint is given by

$$\mathcal{D}_1 \boxtimes \mathcal{D}_2 := \text{posi} \ (\mathcal{L}^+ (\mathcal{X}_1 \times \mathcal{X}_2) \cup \mathcal{D}_1 \cup \mathcal{D}_2)$$

or in terms of lower previsions

$$P_1 \boxtimes P_2 (f) := \sup_{h_1 \in \mathcal{L}(\mathcal{X}_1)} \inf_{x_1 \in \mathcal{X}_1} \inf_{h_2 \in \mathcal{L}(\mathcal{X}_2)} \inf_{x_2 \in \mathcal{X}_2} \left[f(x_1, x_2) - \left[h_1(x_1) - P_1(h_1) \right] - \left[h_2(x_2) - P_2(h_2) \right] \right].$$
Suppose we have a joint model $\mathcal{D} \subseteq \mathcal{L}(\mathcal{X}_1 \times \mathcal{X}_2)$ for (X_1, X_2), then we can derive the conditional models

$$\mathcal{D}|_{x_1} := \{ h_2 \in \mathcal{L}(\mathcal{X}_2) : I_{\{x_1\}} h_2 \in \mathcal{D} \}, \quad x_1 \in \mathcal{X}_1$$

and

$$\mathcal{D}|_{x_2} := \{ h_1 \in \mathcal{L}(\mathcal{X}_1) : h_1 I_{\{x_2\}} \in \mathcal{D} \}, \quad x_2 \in \mathcal{X}_2$$

or in terms of lower previsions:

$$P_2(h_2|x_1) = \sup \{ \mu \in \mathbb{R} : h_2 - \mu \in \mathcal{D}|_{x_1} \}$$

$$= \sup \{ \mu \in \mathbb{R} : I_{\{x_1\}}[h_2 - \mu] \in \mathcal{D} \}$$
Irrelevance and independence

Irrelevance

Definition

We say that X_1 is **epistemically irrelevant** to X_2 when learning the value $X_1 = x_1$ of X_1 does not affect our beliefs about X_2.

For a joint model \mathcal{D} to express this:

$$\mathcal{D}[x_1] = \operatorname{marg}_2(\mathcal{D}) \text{ for all } x_1 \in X_1$$

An irrelevant joint \mathcal{D} of marginal models \mathcal{D}_1 and \mathcal{D}_2 satisfies the following structural judgements:

$$\operatorname{marg}_1(\mathcal{D}) = \mathcal{D}_1$$
$$\operatorname{marg}_2(\mathcal{D}) = \mathcal{D}_2$$

$$\mathcal{D}[x_1] = \operatorname{marg}_2(\mathcal{D}) = \mathcal{D}_2 \text{ for all } x_1 \in X_1.$$
Irrelevance and independence

Irrelevant natural extension

X_1 is epistemically irrelevant to X_2

In this case the smallest joint is given by

$$
D_1 \times_{1\to 2} D_2 := \text{posi} \left(L^+ (\mathcal{X}_1 \times \mathcal{X}_2) \cup \mathcal{D}_1 \cup \mathcal{A}_{1 \to 2} \right)
$$

$$
\mathcal{A}_{1 \to 2} := \text{posi} \left(\{ I_{\{x_1\}} h_2 : x_1 \in \mathcal{X}_1 \text{ and } h_2 \in \mathcal{D}_2 \} \right)
$$

$$
= \{ h \in \mathcal{L}_0 (\mathcal{X}_1 \times \mathcal{X}_2) : (\forall x_1 \in \mathcal{X}_1) h(x_1, \cdot) \in \mathcal{D}_2 \}
$$

$$
P_{1 \times_{1\to 2} 2} (f)
$$

$$
:= \sup_{h_1 \in \mathcal{L}(\mathcal{X}_1)} \inf_{x_1 \in \mathcal{X}_1} \sup_{h_2 \in \mathcal{L}(\mathcal{X}_1 \times \mathcal{X}_2)} \inf_{x_2 \in \mathcal{X}_2} \left[f(x_1, x_2) - \left[h_1(x_1) - P_1(h_1) \right] - \left[h_2(x_1, x_2) - P_2(h_2(x_1, \cdot)) \right] \right].
$$
Exercise on irrelevance

Problem 2

It can be shown that

\[P_1 \times_{1 \to 2} P_2(f) = P_1(P_2(f)) \]

where \(P_2(f) \) is defined the gamble on \(X_1 \) that assumes the value \(P_2(f(x_1, \cdot)) \) in \(x_1 \).

Show by means of a counterexample that not necessarily

\[P_1 \times_{1 \to 2} P_2(f) = P_1 \times_{2 \to 1} P_2(f) \], or in other words not necessarily \(P_1(P_2(f)) = P_2(P_1(f)) \).

Hint: use the simplest possible case for \(X = \{ a, b \} \) and remember Problem 1.
Definition

We say that \(X_1 \) and \(X_2 \) are **epistemically independent** when \(X_1 \) is epistemically irrelevant to \(X_2 \) and \(X_2 \) is epistemically irrelevant to \(X_1 \).

An **independent joint** \(\mathcal{D} \) of marginal models \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \) satisfies the following **structural judgements**:

\[
\begin{align*}
\text{marg}_1 (\mathcal{D}) &= \mathcal{D}_1 \\
\text{marg}_2 (\mathcal{D}) &= \mathcal{D}_2 \\
\mathcal{D} \big| x_1 &= \text{marg}_2 (\mathcal{D}) = \mathcal{D}_2 \text{ for all } x_1 \in X_1 \\
\mathcal{D} \big| x_2 &= \text{marg}_1 (\mathcal{D}) = \mathcal{D}_1 \text{ for all } x_2 \in X_2.
\end{align*}
\]
Irrelevance and independence

Independent natural extension

X_1 and X_2 are epistemically independent

In this case the smallest joint is given by

$$D_1 \times D_2 := \text{posi} \left(L^+ (X_1 \times X_2) \cup A_{2\rightarrow 1} \cup A_{1\rightarrow 2} \right)$$

$$A_{1\rightarrow 2} = \{ h \in L_0 (X_1 \times X_2) : (\forall x_1 \in X_1) h(x_1, \cdot) \in D_2 \}$$

$$A_{2\rightarrow 1} = \{ h \in L_0 (X_1 \times X_2) : (\forall x_2 \in X_2) h(\cdot, x_2) \in D_1 \}$$

$$P_1 \times P_2 (f) := \sup_{h_1 \in L (X_1 \times X_2)^1} \inf_{x_1 \in X_1^1} \inf_{h_2 \in L (X_1 \times X_2)^2} \inf_{x_2 \in X_2^2} \left[f(x_1, x_2) - [h_1(x_1, x_2) - P_1(h_1(\cdot, x_2))] - [h_2(x_1, x_2) - P_2(h_2(x_1, \cdot))] \right].$$
Irrelevance and independence

Precise products

Generally speaking, independent joints are not unique, and

\[P_1 \times_{1 \to 2} P_2 \neq P_1 \times_{2 \to 1} P_2 \]

\[P_1 \times_{1 \to 2} P_2 < P_1 \times P_2 \]

\[P_1 \times_{2 \to 1} P_2 < P_1 \times P_2 \]

When \(P_1 = P_1 \) and \(P_2 = P_2 \) are precise models:

\[P_1 \times_{1 \to 2} P_2 = P_1 \times_{2 \to 1} P_2 = P_1 \times P_2 \]

- is the only independent joint, and
- coincides with the usual independent product of probability measures.
Another independent joint of P_1 and P_2 is generally given by the

Strong product $P_1 \otimes P_2$

\[
P_1 \otimes P_2(f) := \min \{ P_1 \times P_2(f) : P_1 \in \mathcal{M}_1 \text{ and } P_2 \in \mathcal{M}_2 \}
\]

Generally speaking

\[
P_1 \times P_2 < P_1 \otimes P_2.
\]
Irrelevance and independence
Factorisation and external additivity

For coherent lower prevision P such that $P_1 \times P_2 \leq P \leq P_1 \otimes P_2$:

1. P is a coherent joint of the marginals P_1 and P_2
2. P is factorising: for all $f_1 \in \mathcal{L}(X_1)$ and all non-negative $f_2 \in \mathcal{L}(X_2)$,
 \[
P(f_1 f_2) = P_2(f_2 P_1(f_1)) = \begin{cases}
P_1(f_1)P_2(f_2) & \text{if } P_1(f_1) \geq 0 \\
P_1(f_1)\overline{P_2(f_2)} & \text{if } P_1(f_1) \leq 0
\end{cases}
 \]
3. P is externally additive: for all $f_1 \in \mathcal{L}(X_1)$ and all $f_2 \in \mathcal{L}(X_2)$,
 \[
P(f_1 + f_2) = P_1(f_1) + P_2(f_2).
 \]
Exercise on independence

Problem 2

Consider belief functions P_1 on $L(X_1)$ and $L(X_2)$, given by

$$P_1(f_1) = \sum_{k=1}^{n} m_1(F_k) \min_{x_1 \in F_k} f_1(x_1)$$

$$P_2(f_2) = \sum_{\ell=1}^{n} m_2(G_{\ell}) \min_{x_2 \in G_{\ell}} f_2(x_2)$$

and their Dempster product $P_1 \times_D P_2$ given by

$$P_1 \times_D P_2(f) = \sum_{k=1}^{n} \sum_{\ell=1}^{n} m_1(F_k)m_2(G_{\ell}) \min_{x_1 \in F_k} \min_{x_2 \in G_{\ell}} f(x_1, x_2).$$

Show that generally $P_1 \times_D P_2 \leq P_1 \times P_2$, so this Dempster product is generally incoherent (too conservative).

Hint: Show that $P_1 \times_D P_2 \leq P_1 \times_{1 \rightarrow 2} P_2$.
Irrelevance and independence

Further references

More information can be found in:

1. General comments
2. Structural assessments
3. Irrelevance and independence
4. Modelling symmetry
An example
Flipping a coin

I am going to flip a coin in the next room. How do you model your information (beliefs) about the outcome?

Situation A You have seen and examined the coin, and you believe it is symmetrical (not biased).

Situation B You have no information about the coin, it may be heavily loaded, it may even have two heads or two tails.

Evidence of symmetry
In Situation A, there is information that the phenomenon described is invariant under permutation of heads and tails.

Symmetry of evidence
In Situation B, your information (none) is invariant under permutation of heads and tails.
Modelling the available information

- We want a model for the available information or evidence: a belief model.
 - In Situation A, the belief model should reflect that there is evidence of symmetry.
 - In Situation B, the evidence is invariant under permutations of heads and tails, so the belief model should be invariant as well.

- Since the available information is different in both situations, the corresponding belief models should be different too!

- Belief models should be able to capture the difference between ‘symmetry of evidence’ and ‘evidence of symmetry’.

- This is not the case for Bayesian probability models.
What are we going to do?

- Explain how to model *aspects of symmetry* for such coherent lower previsions
 - symmetry of evidence,
 - evidence of symmetry.
- Argue that both aspects are different in general, but coincide for precise belief models.

Being able to deal with natural symmetries is often quite useful in applications, and is of fundamental theoretical importance.
Monoids of transformations

In mathematics (geometry, topology, linear algebra) symmetry is considered to be invariance under certain transformations.
Monoids of transformations

Transformations and permutations

A transformation T of \mathcal{X} is a map from \mathcal{X} to itself, i.e.,

$T : \mathcal{X} \rightarrow \mathcal{X} : x \mapsto Tx$.

\[
\begin{array}{c}
\mathcal{X} \\
\downarrow \\
\mathcal{X}
\end{array}
\]
A permutation π of X is a transformation of X that is onto and one-to-one.

\begin{tikzpicture}
 \node (X) at (0,0) {X};
 \node (Y) at (4,0) {X};

 \foreach \i in {1,2,3,4,5}
 \path[->,blue,thick] (X) edge (Y);
\end{tikzpicture}
Examples of transformations

Identity map

The **identity map** id_X, defined by $\text{id}_X(x) = x$, is a permutation.
Consider a monoid \mathcal{T} of transformations T of X (not necessarily permutations), i.e.,

- id_X belongs to \mathcal{T};
- if T and S both belong to \mathcal{T} then so does $TS := T \circ S$.

Symmetry is usually expressed as invariance with respect to every transformation T in a some relevant monoid \mathcal{T}.
Monoids of transformations

Lifting

Transformations T act on elements x of \mathcal{X}, but we are also interested in the corresponding transformations T that act on gambles f on \mathcal{X}.

Lifting T to gambles

For any gamble f, define the new gamble $T^tf := f \circ T$ by lifting:

$$(T^tf)(x) := f(Tx).$$

Lifting T to lower previsions

For any lower prevision $P : \mathcal{L}(\mathcal{X})$, define the new functional $TP := P \circ T^t$ by lifting again:

$$(TP)(f) := P(T^tf) = P(f \circ T).$$
Exercises on symmetry

Problem 4

\(\mathcal{X} = \{h, t\} \) and \(\pi \) is the permutation of \(\mathcal{X} \) such that \(\pi(h) = t \) and \(\pi(t) = h \). Consider the gamble \(f(h) = -1 \) and \(f(t) = 2 \).

1. What is \(\pi^t f \)?

2. If \(P \) is the uniform probability on \(\mathcal{X} \), then what is \(\pi P(f) \)?
Exercises on symmetry

Solution to Problem 4
Weak invariance of belief models

Definition

A coherent belief model is called weakly \mathcal{T}-invariant if the following equivalent conditions are satisfied:

W1. $T^t \mathcal{D} \subseteq \mathcal{D}$ for all $T \in \mathcal{T}$;
W2. $TP \geq P$ for all $T \in \mathcal{T}$;
W3. $TM \subseteq M$ for all $T \in \mathcal{T}$.

- A precise prevision is weakly \mathcal{T}-invariant iff $TP = P$, or equivalently

$$P(A) = P(T^{-1}(A))$$

for all $A \subseteq \mathcal{X}$ and all T in \mathcal{T}. This is the usual definition for invariance of a (probability) measure.
Weak invariance of belief models

Observations

<table>
<thead>
<tr>
<th>Symmetry of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak invariance states that belief models are symmetrical.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Existence guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are weakly \mathcal{T}-invariant coherent models for any monoid \mathcal{T}.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The vacuous lower prevision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{D}_v = {f : f > 0}$</td>
</tr>
<tr>
<td>$P_v(f) = \inf_{x \in \mathcal{X}} f(x)$</td>
</tr>
<tr>
<td>$\mathcal{M}_v = \text{the set of all precise previsions}$</td>
</tr>
</tbody>
</table>

is the only coherent belief model that is weakly invariant with respect to all transformations of \mathcal{X}. It models complete ignorance.
Strong invariance of belief models

Definition

Evidence of symmetry

How can we model that we believe there is symmetry, characterised by a monoid \mathcal{T}, behind the random variable X?

Consider a gamble f and its transform $T^t f$. Because of the symmetry, you should be willing to exchange f for $T^t f$ and vice versa:

$$f - T^t f + \delta \in \mathcal{D} \quad \text{for all } \delta > 0.$$

Definition

A coherent belief model is called strongly \mathcal{T}-invariant if the following equivalent conditions are satisfied:

S1. $\underline{P}(f - T^t f) \geq 0$ for all $T \in \mathcal{T}$ and $f \in \mathcal{L}(X)$;

S2. $\underline{P}(f - T^t f) = \overline{P}(f - T^t f) = 0$ for all $T \in \mathcal{T}$ and $f \in \mathcal{L}(X)$;

S3. All precise previsions in \mathcal{M} are (weakly) \mathcal{T}-invariant.
Consider $\mathcal{X} = \{h, t\}$ and the monoid (group) $\mathcal{I} = \{\text{id}_\mathcal{X}, \pi\}$. Observe that

$$
\{f - \pi^t f : f \in \mathcal{L}(\mathcal{X})\} = \{(f(h) - \pi^t f(h), f(t) - \pi^t f(t)) : f \in \mathcal{L}(\mathcal{X})\} = \{(f(h) - f(t), f(t) - f(h)) : f \in \mathcal{L}(\mathcal{X})\} = \{(x, -x) : x \in \mathbb{R}\}
$$

The only strongly permutation invariant belief model is the uniform precise model that assigns probability 1/2 to both h and t.

Hint: Use the solution to Problem 1.
Strong invariance of belief models

Observations

Evidence of symmetry versus symmetry of evidence

strong invariance captures ‘evidence of symmetry’.
weak invariance captures ‘symmetry of evidence’.

Strong invariance implies weak invariance:

$$0 = P(T^tf - f) \leq P(T^tf) - P(f).$$

For precise previsions, strong and weak invariance coincide:

$$0 = P(f - T^tf) = P(f) - P(T^tf).$$

Bayesian models cannot distinguish between ‘evidence of symmetry’ and ‘symmetry of evidence’.
Strong permutation invariance

A special case

Let X be a finite set and let \mathcal{P} be a (finite) group of permutations π of X, i.e. a monoid such that

- for all π in \mathcal{P} there is some inverse $\varpi \in \mathcal{P}$ such that $\pi \circ \varpi = \varpi \circ \pi = \text{id}_X$.

An event $A \subseteq X$ is \mathcal{P}-invariant if

$$\pi A = \{\pi x : x \in A\} = A$$
for all π in \mathcal{P}.

Fact

The smallest \mathcal{P}-invariant sets (atoms) constitute a partition of X:

$$[x]_\mathcal{P} := \{\pi x : \pi \in \mathcal{P}\},$$

and $\mathcal{A}_\mathcal{P} := \{[x]_\mathcal{P} : x \in X\}$ is the set of all \mathcal{P}-invariant atoms.
Strong permutation invariance

Invariant atoms

\(\mathcal{X} \)

\(A \)

\(A_1 \)

\(A_2 \)

\(A_3 \)

\(A_4 \)

\(A_5 \)

\(A_6 \)
Strong permutation invariance

Fundamental theorem

Theorem

A coherent lower prevision \mathbf{P} on $\mathcal{L}(\mathcal{X})$ is strongly \mathcal{P}-invariant if and only if it has the following form:

$$
\mathbf{P}(f) = \mathbf{Q}(\mathbf{P}^u(f|\cdot))
$$

where \mathbf{Q} is any coherent lower prevision on $\mathcal{L}(\mathcal{AP})$.

- $\mathbf{P}^u(f|\cdot)$ is a gamble on \mathcal{AP}, whose value in any invariant atom $A \in \mathcal{AP}$ is given by

$$
\mathbf{P}^u(f|A) = \frac{1}{|A|} \sum_{x \in A} f(x),
$$

so $\mathbf{P}^u(\cdot|A)$ is the precise prevision whose probability mass is distributed uniformly over the atom A.

Gert de Cooman (UGent, SYSTeMS)
Exercises on symmetry

Problem 6

Consider a space with two elements: \(\mathcal{X} = \{a, b\} \) and the set \(\mathcal{P} \) of all permutations of \(\mathcal{X} \).

1. What are the elements of \(\mathcal{P} \)?
2. What are the invariant atoms?
3. Show that all weakly \(\mathcal{P} \)-invariant coherent lower previsions \(P \) on \(\mathcal{L}(\mathcal{X}) \) are given by

\[
P(f) = \varepsilon P_{\frac{1}{2}}(f) + (1 - \varepsilon) \min f
\]

\[
= \varepsilon \frac{f(a) + f(b)}{2} + (1 - \varepsilon) \min \{f(a), f(b)\}.
\]

for some \(\varepsilon \) in \([0, 1] \).

4. Use the Fundamental Theorem on Strong Permutation Invariance to show (once again) that \(P_{\frac{1}{2}} \) is the only strongly \(\mathcal{P} \)-invariant coherent lower prevision on \(\mathcal{L}(\mathcal{X}) \).
Consider casting a die: $X = \{1, 2, 3, 4, 5, 6\}$ and suppose there is evidence of symmetry between all even outcomes, and between all odd outcomes: *you have reason not to distinguish between 2, 4 and 6 on the one hand, and 1, 3 and 5 on the other hand*. In other words, the invariant atoms are $\{1, 3, 5\}$ and $\{2, 4, 6\}$.

1. Characterise all the strongly invariant coherent lower previsions for this type of symmetry.

2. Characterise all the strongly invariant precise previsions for this type of symmetry.

[Hint: use the results of Problem 1, and the Fundamental Theorem on Strong Permutation Invariance]
Strong permutation invariance

More information about strong invariance, with ergodicity theorems and the special case of exchangeability can be found in:

