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Previous work has shown that networks of neurons with two coupled
layers of excitatory and inhibitory neurons can reveal oscillatory activ-
ity. For example, Börgers and Kopell (2003) have shown that oscillations
occur when the excitatory neurons receive a sufficiently large input. A
constant drive to the excitatory neurons is sufficient for oscillatory ac-
tivity. Other studies (Doiron, Chacron, Maler, Longtin, & Bastian, 2003;
Doiron, Lindner, Longtin, Maler, & Bastian, 2004) have shown that net-
works of neurons with two coupled layers of excitatory and inhibitory
neurons reveal oscillatory activity only if the excitatory neurons receive
correlated input, regardless of the amount of excitatory input. In this
study, we show that these apparently contradictory results can be ex-
plained by the behavior of a single model operating in different regimes
of parameter space. Moreover, we show that adding dynamic synapses in
the inhibitory feedback loop provides a robust network behavior over a
broad range of stimulus intensities, contrary to that of previous models.
A remarkable property of the introduction of dynamic synapses is that
the activity of the network reveals synchronized oscillatory components
in the case of correlated input, but also reflects the temporal behavior
of the input signal to the excitatory neurons. This allows the network to
encode both the temporal characteristics of the input and the presence of
spatial correlations in the input simultaneously.
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1 Introduction

The central nervous system can display a wide spectrum of spatially syn-
chronized, rhythmic oscillatory patterns of activity with frequencies in the
range from 0.5 Hz (δ rhythm), 20 Hz (β rhythm), to 40 to 80 Hz (γ rhythm)
and even higher up to 200 Hz (for a review, see Gray, 1994). In the past
two decades, evidence has been presented that synchronized activity and
temporal correlation are fundamental tools for encoding and exchanging in-
formation for neuronal information processing in the brain (Singer & Gray,
1995; Singer, 1999; Reynolds & Desimone, 1999). In particular, it has been
suggested that clusters of cells organize spontaneously into flexible groups
of neurons with similar firing rates, but with a different temporal correla-
tion structure. However, despite the fact that synchronization of groups of
neurons has been the subject of intense research efforts in many studies, the
functional role of synchronized activity is still a topic of debate (Gray, 1994;
Fries, 2005). A longstanding, fundamental question is when synchrony can
emerge and how cell properties, synaptic interactions, and network archi-
tecture interact to determine the nature of synchronous states in a large
neural network. Most theoretical studies have investigated synchroniza-
tion of neuronal activity in fully connected or sparsely connected networks
under assumptions of weak or strong coupling (see, e.g., Ariaratnam &
Strogatz, 2001; Mirollo & Strogatz, 1990; Ernst, Pawelzik, & Geisel, 1995;
Hansel & Mato, 1993; Hansel, Mato, & Meunier, 1995; van Vreeswijk, 2000).

Several experimental studies have shown that the grouping of neurons
with synchronized firing depends on stimulus properties and on instruc-
tion to the subject or on attention (Reynolds, Chelazzi, & Desimone, 1999;
Schoffelen, Oostenveld, & Fries, 2005). Therefore, both network proper-
ties, stimulus-driven feedforward (bottom-up) and feedback (top-down)
mechanisms, are involved and should be incorporated in an explanatory
model. These concepts are compatible with neurophysiological studies,
which have suggested that synchronous oscillatory activity may be en-
trained by synchronous rhythmic inhibition originating from fast-spiking
inhibitory interneurons (Buzsáki, Leung, & Vanderwolf, 1983; Lytton &
Sejnowski, 1991), which has been an important reason to study networks
with excitatory and inhibitory neurons.

Based on this insight, two different models have been proposed in the lit-
erature to explain the emergence of synchronized neuronal activity. Doiron,
Lindner, Longtin, Maler, & Bastian (2004) presented a network with a layer
of excitatory neurons with stochastic input and delayed inhibitory feedback
of the summed activity of the excitatory neurons to the excitatory neurons.
This model revealed the remarkable property that oscillations were ob-
served in the excitatory neurons in response to spatially correlated stimuli
but not to uncorrelated input. It was the spatial correlation in stimuli, not
the total power of the stimulus, that was essential for the network to dis-
play oscillatory activity. The frequency of oscillation was determined by
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the effective delay in the feedback loop and was not related to the temporal
properties of spatially correlated input.

Although the architecture with interacting populations of excitatory and
inhibitory neurons in the model by (Doiron, Chacron, Maler, Longtin, & Bas-
tian, 2003; Doiron et al., 2004) was similar to the architecture proposed by
Börgers and Kopell (2003), the behavior of the latter model, which was pro-
posed to explain oscillations in the gamma range (25–80 Hz), was different
from that proposed by Doiron et al. The Börgers and Kopell model consists
of two interacting layers of excitatory and inhibitory neurons without a pure
time delay in the feedback loop. This model assumes a considerably longer
time constant for the decay of inhibition than for the decay of excitation. It
reveals synchronous rhythmic spiking due to a constant excitatory drive to
the excitatory neurons. The excitatory neurons provide diverging input to
the inhibitory cells, which inhibit (by divergent feedback to the excitatory
neurons, where each inhibitory cell projects to multiple excitatory cells) and
thereby synchronize the excitatory cells. With the proper parameters, this
network starts to oscillate as soon as the power of the external input to the
excitatory neurons is sufficiently large, regardless of spatial correlations in
the input. This result may seem at odds with the results by Doiron et al.
(2003), since Doiron et al. describe that oscillations occur only for spatially
correlated input, regardless of the intensity of the external input. In our
study, we present a more general model and demonstrate that the models
by Doiron et al. (2003, 2004) and by Börgers and Kopell (2003) are a spe-
cial case of a more general model, which reveals a qualitatively different
behavior in different regimes of parameter space.

In order to understand the reasons for the apparent discrepancy, we
used the same architecture as Doiron et al. and Börgers and Kopell, with
a layer of excitatory neurons and a layer of inhibitory neurons. External
input is provided to the excitatory neurons, which feed their output to the
inhibitory neurons. In addition to the external input, the excitatory neu-
rons receive feedback from the inhibitory neurons. Regarding the type of
neuron, Börgers and Koppell used the theta model (Ermentrout & Kopell,
1986) whereas Doiron et al. (2003, 2004) used the leaky integrate-and-fire
(LIF) model. The LIF model is an approximation of the more physiological
Hodgkin-Huxley model, but the standard Hodgkin-Huxley neuron also can
well be approximated by the theta model (see, e.g., Ermentrout & Kopell,
1986; Hoppensteadt & Izhikevich, 1997; Gutkin & Ermentrout, 1998). In
this study we choose the LIF neuron, because Lindner et al. (Lindner
& Schimansky-Geier, 2001; Lindner, Schimansky-Geier, & Longtin, 2002;
Lindner, Doiron, & Longtin, 2005) provided a method for an analytical
analysis as an approximation for the dynamics of the LIF neuron. This al-
lowed us to derive analytical expressions, which could be compared with
the results of numerical analyses to explain the oscillatory behavior of the
network. We also did some simulations using the standard Hodgkin-Huxley
neuron, which gave the same results.
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In this study we add dynamic synapses (Tsodyks & Markram, 1997) to
the model. Experimental studies have shown that the efficacy with which
a synapse can transmit an action potential depends on the recent history of
the synapse itself. The model by Tsodyks, Pawelzik, and Markram (1998)
for dynamic synapses incorporates the property that presynaptic activ-
ity gives rise to depletion of neurotransmitter. This makes the synapse
less effective when the firing rate of presynaptic activity arriving at the
synapse increases. This dynamical behavior, called short-term depression,
has been explained and modeled in detail (Tsodyks et al., 1998). Tsodyks,
Uziel, and Markram (2000) and Pantic, Torres, and Kappen (2003) have
explained how temporal coding, synchronization, and coincidence detec-
tion are greatly affected by a time-varying synaptic strength. Based on
the results in the literature, we hypothesized that incorporating dynamic
synapses in the network should made the network behavior robust for
a relatively large range of input characteristics. Incorporating dynamic
synapses also gave another surprising result. The model by Doiron et al.
(2004) produced a resonance when the input was spatially correlated only
when the feedback gain was relatively small. With dynamic synapses, this
behavior became robust for a large range of feedback gains. Moreover,
the model with dynamic synapses both shows a resonance peak to indi-
cate spatial correlation at the input and preserves the temporal charac-
teristics of the spatially correlated input. This is a novel finding, which
is important for modeling sensory (e.g., visual) information processing
in combination with rhythmic activity (such as θ -, β-, and γ -rhythms) in
cortex.

2 Model Description

The basic architecture of our model is very similar to that of Doiron et al.
(2004) and is described in Figure 1: a population of leaky integrate-and-
fire (LIF) neurons labeled 1, 2, . . . , NE , with external inputs s1, . . . , sNE . In
this study, NE was equal to 100. The output of these neurons provides
excitatory input to another LIF neuron, which provides inhibitory feedback
with gain g to the excitatory neurons. In some of our simulations, the single
inhibitory LIF neuron was replaced by a set of 20 LIF neurons, which project
by inhibitory synapses with strength g/20 to each of the excitatory neurons.
One of differences between our model and that by Doiron et al. (2003, 2004)
is that the inhibitory feedback in the model by Doiron et al. (2004) was
obtained by convolution of a linear summation of action potentials of the
excitatory neurons, whereas we used the spike output of an LIF neuron (or
of 20 LIF neurons) as inhibitory feedback to the excitatory neurons. As we
will show later (see Figures 2 and 3), this affects only to a minor extent the
responses of the model, as long as the membrane time constant of the leaky
integrate-and-fire neuron is relatively long.
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Figure 1: Model architecture describing the external input si to the excitatory
neurons. The output of the excitatory neurons projects to the inhibitory neuron
with an effective input current IE I . The output of the inhibitory neuron is fed
back to the excitatory neurons by the inhibitory current IIE.

The dynamics of the membrane potential V of the LIF neurons satisfies

dV(t)
dt

= −(V(t) − Vr ) + I (t), (2.1)

where time is measured in units of the membrane time constant τm and the
membrane resistance is normalized to one. Every time the potential of the
jth neuron reaches the threshold value Vth , a spike is fired. This resets the
potential to the rest potential Vr and remains bound to this value for an
absolute refractory period τRe f . As in Doiron et al. (2003, 2004), we have set
Vr = 0, Vth = 1, and τRe f = 3 ms.

Each excitatory neuron j( j ∈ {1, . . . , NE }) receives an input I j (t),

I j (t) = µ + η j (t) + σ
⌊√

1 − cξ j (t) + √
cξG(t)

⌋
, (2.2)

which consists of a constant base current µ, internal gaussian white noise
η j (t) with intensity D, and a stimulus s j (t) = σ (

√
1 − cξ j (t) + √

cξG(t))
where ξ j (t) and ξG(t) are both gaussian white noise with zero mean and
unit power. Varying c increases or decreases the degree of spatial corre-
lation of the external stimuli, while the total input power to each neuron
remains constant. In addition to this input, the excitatory neurons receive
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inhibitory feedback (see Figure 1), which will be defined in equation 2.4
and the text following that equation.

The series of spikes s E
j (t) of neuron j in this layer of input neurons

provides excitatory input to the inhibitory LIF neuron, which has a constant
base current µ. The input current IE I to the inhibitory neurons due to input
from the excitatory neurons is given by the convolution of the sum of the
spike trains of the excitatory neurons and a standard α-function:

IE I (t) = K E
τ ∗ STE (t) =

∫ ∞

0
STE (t − τ )α2τ e−ατ dτ, (2.3)

where STE (t) = ∑NE
j=1 s E

j (t) is the sum of the spike trains of all excitatory
neurons.

The base current to the neurons is too small to reach threshold. Therefore,
neurons fire only in response to excitatory spike input.

Just like the excitatory neurons, the inhibitory LIF neuron has a con-
stant base current µ and internal noise η(t) with the same variance as that
for the excitatory neurons. In addition, it receives the input IE I (t), as de-
fined by equation 2.3. The action potentials s I (t) of the inhibitory neuron
provide an inhibitory synaptic current to the excitatory neurons after a
time delay τD. The shape of the postsynaptic potential in the excitatory
neurons due to input from the inhibitory neuron will be represented in
further equations by K I

τ , which will be defined after the introduction of
equation 2.4.

For the case of dynamic synapses, their effective strength is governed by
three parameters obeying the following equations (Tsodyks & Markram,
1997),

dx
dt

= z/τrec − Uxs I (t − τD)

dy
dt

=−y/τin + Uxs I (t − τD) (2.4)

dz
dt

= y/τin − z/τrec

where x, y, and z are the fraction of synaptic resources in the recovered,
active, and inactive state, respectively. Without any spike input, all neuro-
transmitter is recovered, and the fraction of available neurotransmitter is
one: x(t) = 1. After each spike arriving at the synapse, a fraction U of the
available (recovered) neurotransmitter is released. Note that the spike input
from the inhibitory neuron s I (t) is delayed by τD. The fraction y of active
neurotransmitter is then inactivated into the inactive state z. τin is the time
constant of the inactivation process, and τrec is the recovery time constant
for conversion of the inactive to the active state. With dynamic synapses,
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the total postsynaptic current IIE(t) is proportional to the fraction of neu-
rotransmitter in the active state, that is, IIE(t) = gy(t) (g < 0 because of the
inhibitory feedback). The total input to the excitatory neuron j is defined by
I j (t) + IIE(t), where I j (t) is defined in equation 2.2.

With this model, we can easily change to a situation with static synapses
by setting x(t) = 1 for all t (or, equivalently, τrec → 0). Note that equation
2.4 includes an exponential decay for the postsynaptic potential with a time
constant τin in response to each presynaptic action potential. This is true for
the case of both dynamic and static synapses.

We used the following parameter values in the model simulations: NE =
100; τm = 6 ms for all neurons except when explicitly mentioned otherwise;
base current µ = 0.5; intensity of the internal gaussian white noise D =
0.08; σ = 0.4; α = 18 ms−1; τin = 3 ms; τrec = 800 ms; and time delay in the
feedback loop τD = 6 ms. All simulations were integrated using a Euler
integration scheme with a time step of 0.05 ms.

Along similar lines as outlined in Doiron et al. (2004; see the appendix),
we obtain the following expression for the spike train power spectral
density of the excitatory neurons when feedback is provided by an LIF
neuron

〈
s E

j (ω)s∗E

j (ω)
〉
=

〈
s E

0, j (ω)s∗E

0, j (ω)
〉
+ σ 2|AE (ω)|2 + . . . + cσ 2|AE (ω)|2

× 2�(AE (ω)ge−iωτD K I
τ (ω)AI (ω)K E

τ (ω)) − |AE (ω)gK I
τ (ω)AI (ω)K E

τ (ω)|2
|1 − AE (ω)ge−iωτD K I

τ (ω)AI (ω)K E
τ (ω)|2

(2.5)

Here, s E
j (ω) and s E

0, j (ω) represent the spike train in the presence and ab-
sence, respectively, of the external stimulus and feedback. K E

τ (ω) and K I
τ (ω)

represent the postsynaptic dynamics as defined in equations 2.3 and 2.4,
respectively, in the frequency domain, and AE (ω) and AI (ω) represent the
susceptibility in the frequency domain with respect to the input of the ex-
citatory neurons and the inhibitory neurons, respectively (for details see
Doiron et al., 2004; Lindner & Schimansky-Geier, 2001; Lindner et al., 2002).
�(C) represents the real-valued part of the complex number C. This result
was obtained with the assumptions that 〈s E

0, j (ω)s∗E

k (ω)〉 = 〈s E
0, j (ω)I ∗

j (ω)〉 =
〈s E

j (ω)ξ ∗
k (ω)〉 = 0 for j 
= k and for N → ∞ so as to neglect terms of order

1/N and higher. A derivation of equation 2.5 is given in the appendix. Res-
onance is obtained when the denominator of the last term in equation 2.5
is minimal, which depends mainly on the effective time delay (i.e., the sum
of the pure time delay τD, the frequency-dependent phase shifts due to the
dynamics AE (ω) and AI (ω) of the LIF neurons, and the synaptic functions
K E

τ (ω) and K I
τ (ω)) in the feedback loop.
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Figure 2: Spike train power spectra (defined by equation 2.5) of an excitatory
neuron for spatially correlated (c = 1) and uncorrelated (c = 0) input when
inhibition is provided by an LIF neuron (filled symbols) and for correlated
input when inhibition is provided by a linear unit (LIN, open symbols), as in
Doiron et al. (2003) for g = −1.2. All other parameters as described in the text.

3 Results

We start by analyzing the model by Doiron et al. (2003, 2004) and demon-
strate that replacing the linear summation in the model by an LIF neuron
affects the behavior of this model only to a minor extent. We then explore
the behavior of the model for various gain values of the inhibitory feedback
loop and show that we obtain the behavior of the model by Börgers and
Kopell (2003) for large feedback gains. We discuss the effect of feedback
gain for both static and dynamics synapses.

Figure 2 shows the results of computer simulations for the spike train
power spectral density of an excitatory neuron from the network with de-
layed feedback described in Figure 1 in case of fully spatially correlated
(c = 1) and fully uncorrelated (c = 0) input for a feedback gain g = −1.2.
Since the statistics of action potential firing are the same for all excitatory
neurons, it suffices to show the spectra for one neuron. For uncorrelated
input (c = 0), the last term in the expression of equation 2.5 is zero, and we
obtain a spectrum that increases slightly in the range from zero to 120 Hz.
The input signal is gaussian noise with a flat spectrum, and the slight
increase in spike train power spectral density reflects the dynamics of the
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Figure 3: Spike train power spectra of an excitatory neuron for spatially corre-
lated input when inhibition is provided by a single LIF neuron (dashed line) or
a population of 20 inhibitory LIF neurons (solid line). All other parameters as
in Figure 2.

excitatory LIF neurons and the effect of feedback. When the gaussian noise
to the input units is fully correlated (c = 1), the results show a clear reso-
nance near 40 Hz for the spatially correlated case. The resonance is absent
in the absence of spatial correlation. For reference, the power spectrum of
an excitatory neuron from the model with linear summation, as in Doiron
et al. (2004), is shown for the case of fully correlated input. The peak in
the power spectrum falls at a slightly lower frequency for the model with
the inhibitory LIF neuron (filled circles, our model), which is due to the
additional delay stemming from the dynamics of the inhibitory LIF neuron.
Otherwise extensive simulations show that replacing the linear summation
in the model by Doiron et al. (2004) by an LIF neuron gives very similar re-
sults, as long as the time constant of the inhibitory LIF neuron is sufficiently
large (further explained in Figure 8).

The results in Figure 2 were obtained with a single inhibitory neuron, as
in the study by Doiron et al. (2004). Adding more inhibitory neurons did not
affect the results, as shown in Figure 3. The reason is that when the model
starts to oscillate (as pointed out by Börgers and Kopell, 2003, who did their
simulations with a population of inhibitory neurons), the activity of the
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inhibitory neurons synchronizes. In that case, a mean-field approximation
is allowed, which explains why the population of inhibitory neurons can be
replaced by a single inhibitory neuron. In further simulations, we use one
inhibitory neuron.

The behavior of the network depends on the membrane time constant of
the inhibitory neuron and the feedback gain. Varying these two quantities
results in similar effects: a smaller membrane time constant gives rise to a
higher firing rate of the inhibitory neuron, leading to a higher effective gain
of the feedback. There is another effect related to the value of the mem-
brane time constant τm,I of the inhibitory LIF neuron: when it is small, the
inhibitory neuron behaves as a coincidence detector, whereas for large val-
ues of τm,I , the neuron becomes an integrator (in agreement with Rudolph
& Destexhe, 2003). In the former case, the neurons spike only when there
is a sufficiently large number of input spikes within a time window, small
with respect to the membrane time constant. If the interval between input
spikes is large relative to the membrane time constant, any effect of the
single-spike inputs decays, and the neuron does not spike. The effect of the
feedback gain and the membrane time constant will be discussed separately
in the following.

The fact that the network oscillations in Figure 2 do not depend on power
of the stimulus, differs from the results by Börgers and Kopell (2003), who
report that a sufficiently large input power is required to cause oscilla-
tions. This apparent discrepancy can be understood if the feedback gain g
is increased (more negative values). Large values of g lead to network oscil-
lations in case of uncorrelated input (see Figure 4, left panels). Each spike
of the inhibitory neuron (lower left panel) inhibits the excitatory neurons
after a delay of about 15 ms in the feedback loop. The explanation for the
apparent discrepancies with the results by Doiron et al. (2003, 2004) in the
case of uncorrelated input is that equation 2.5 was obtained using linear
response theory for the LIF neuron, as outlined by Doiron et al. (2003) and
Lindner, Doiron et al. (2005). For large, synchronized inputs and when the
inhibitory neuron acts like a coincidence detector, the linear response ap-
proximation for the LIF is no longer valid, and the behavior changes from
that illustrated in Figure 2 into the behavior reported by Borgers and Kopell
(2003). Therefore, the model in Figure 1 can reproduce the results by both
Doiron et al. (2004) and Börgers and Kopell (2003) for different values of
the feedback gain g.

It is worth stressing that the feedback gain values are not excessive or
unrealistic, since the value of |g| is always within the limits of the self-
consistent equation for the effective base current,

µeff =µ − gr0(µeff), with r0(µeff)

=
[
τr + √

π

∫ (µeff−vR)/
√

D

(µeff−vT )/
√

D
ex2

erfc(x)dx

]−1

, (3.1)
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Figure 4: Superposition of spikes of all excitatory neurons (top panels) and of
the inhibitory neuron (bottom panels) in case of uncorrelated gaussian white
noise input with static (left) and dynamic synapses (right) for g = −3.6. Note
that with static synapses, each action potential of the inhibitory neuron is fol-
lowed by complete inhibition of the excitatory neurons after a time delay of
about 15 ms.

where erfc is the complementary error function. (For more detailed infor-
mation about the relevance of the effective base current and the derivation
of r0(µeff), see Lindner, Doiron et al. 2005.)

At this point it is useful to consider the effect of dynamic synapses. As
is evident from Figure 4 (right panels), the presence of dynamic inhibitory
synapses prevents complete silencing of the excitatory neurons as observed
for static synapses in the case of a high feedback gain. We thus want to
evaluate the effect of the feedback gain on the one hand and of the presence
of dynamic synapses on the other, and explore how these two parameters
change the capacity of the system to detect spatially correlated input. In
order to do so, we measure the power of the spike train around the resonance
frequency.

The behavior of the model is explained in more detail in Figure 5, which
shows the power spectra of spiking of the excitatory neurons for the model
with static synapses (left panels) and for dynamic synapses (right panels)
for the case of uncorrelated gaussian white noise input (c = 0, upper panels)
and for correlated input (lower panels, c = 1) for two values of feedback
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Figure 5: Spectra of the excitatory neurons for uncorrelated input (c = 0; upper
panels) and for correlated input (c = 1; lower panels) for the model with static
synapses (left panels) and dynamic synapses (right panels) for two different
gains in the inhibitory feedback loop: g = −2 (solid line), g = −4 (dashed line).
The input signal was gaussian white noise with a flat frequency spectrum up
to 120 Hz. The units along the vertical axis are in spikes2/s. However, in order
to compare the shape of the spectra for static and dynamic synapses and for
correlated and uncorrelated input, the spectra were normalized.

gain. Variations in feedback gain cause changes in the firing rate of the
excitatory and inhibitory neurons. Therefore, the power spectral density
of the responses of the excitatory neurons (in spikes2 per s as in Figure 2)
differs for different feedback gains. In Figures 5 and 8, we normalized the
power spectral density to allow a better comparison of the shape of the
spectra. The variations in firing rate are discussed later (see Figure 11).

When the input is correlated (lower panels) a resonance peak appears
near 40 Hz for both the static and dynamic synapses for g = −2 and g =
−4. For the uncorrelated noise with g = −2, the model does not show a
significant resonance peak for the static or dynamic synapses. Therefore,
the model is able to detect spatially correlated input for g = −2 with both
static and dynamic synapses. However, when the feedback gain is increased
to g = −4, the network with static synapses resonates also in the absence of
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Figure 6: Power spectra of the excitatory neurons for the model with dynamic
synapses for different values of correlated input. Gains in the inhibitory feed-
back loop: g = −2. The input signal was gaussian white noise with a flat fre-
quency spectrum up to 120 Hz. In order to compare the shape of the spectra,
the units along the vertical axis were normalized.

spatially correlated input (upper left panel). These results demonstrate that
we can reproduce the results of Doiron et al. (2003, 2004) for static synapses
as long as the feedback gain is relatively small and obtain the results of
Börgers and Kopell (2003) for relatively high feedback gains. When dynamic
synapses are included in the model, the model behavior does not depend
on feedback gain, since there is no resonance for physiological feedback
gains when the input is uncorrelated (upper-right panel). If the input is
correlated, there is a peak near 40 Hz as soon as there is feedback in the
model.

For simplicity, we have considered only the extreme cases of fully corre-
lated (c = 1) or fully uncorrelated (c = 0) input in Figure 5. Values of c in
the range between 0 and 1 yield results that are intermediate between the
two extremes described above. This is illustrated in Figure 6, which clearly
illustrates that the resonance peak decreases with decreasing values of c.
Notice that for c = 1 we find a peak near 40 Hz, but a decrease in the power
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spectrum in the range between 50 and 80 Hz. This can be understood by the
fact that the term ge−iωτD K E

τ (ω)K I
τ (ω)AE (ω)AI (ω) in the denominator in the

last term in equation 2.5 contains a factor e−iωτ D related to the time delay τD

in the feedback loop. When the term ge−iωτ D K E
τ (ω)K I

τ (ω)AE (ω)AI (ω) is max-
imal, it causes a peak in the spectrum near 40 Hz. For higher frequencies, the
term e−iωτD changes sign, which, together with the frequency dependence
of the susceptibility A and synaptic transfer function K, changes the sign of
ge−iωτD K E

τ (ω)K I
τ (ω)AE (ω)AI (ω), causing a decrease in the spectrum.

For our choice of time constants (membrane time constant 6 ms for
excitatory and inhibitory neurons), there will or will not occur a resonance as
indicated by the peak in Figure 2 depending on the strength of the feedback
coupling, the characteristics of the input signal, and the dynamics of the
synapse. The amplitude of the resonance can be quantified introducing the
statistics 
 f1, f2 = ∫ f2

f1
S( f )d f , where the power spectrum of the spike train of

the excitatory neurons is represented by S( f ). As in Doiron et al. (2003, 2004),
we quantify the resonance by 
FB = 
30,50 − 
2,22, comparing the value of

 near the resonance frequency to the value of 
 in a low-frequency region.

Figure 7 (upper panel) shows that for relatively small values of the feed-
back gain, the value 
FB increases for small values of g (−2 < g < 0) for fully
correlated input to the excitatory neurons for both the static and dynamic
synapses, indicating increasing peak values of oscillations in the presence
of fully correlated input. However, 
FB remains small for uncorrelated in-
put as long as −2 < g < 0. For g < −2, the network also starts to oscillate
for uncorrelated input (c = 0) for the case of static synapses. The spike train
power near the resonance frequency rapidly reaches the same value as that
for the correlated input case. This is not the case for the model with dynamic
synapses, which shows a very robust behavior for both uncorrelated and
correlated input over the whole range of feedback gains studied.

To quantify this situation even better, we introduce a discrimination
index,

ρ0−1 = 
FB(c = 1) − 
FB(c = 0)

FB(c = 1) + 
FB(c = 0)

. (3.2)

This index indicates to what extent the network is able to distinguish be-
tween a fully spatially correlated and a fully uncorrelated input. The lower
panel of Figure 7 shows that dynamic synapses (filled symbols) guarantee
a clear and constant discrimination for all feedback gain values, whereas
the model with static synapses (open symbols) detects the correlated in-
put only at intermediate feedback gains (range from −1 to −2) but cannot
distinguish correlated and uncorrelated inputs for feedback gains g < −2.

It has been shown (Whittington, Traub, & Jeffreys, 1995; Traub,
Whittington, Colling, Buzsaki, & Jeffreys, 1996) that gamma oscillations
in hippocampal interneurons are sensitive to the decay time constant of the
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Figure 7: (Top) Power 
FB = 
30,50 − 
2,22 near the resonance peak (30–50 Hz)
relative to that in the frequency range between 2 and 22 Hz in the presence
of correlated (c = 1; circles) and uncorrelated (c = 0; triangles) input, with
static synapses (SS; open symbols) and dynamic synapses (DS; filled symbols).
(Bottom) Ability to discriminate correlated and uncorrelated input ρ0−1 (see
equation 3.2) for static (SS, open symbols) and dynamic (DS, closed symbols)
synapses as a function of the inhibitory gain.

GABAA synapse in the sense that the oscillation frequency decreases for
increasing values of that time constant. This is compatible with the fact that
the oscillation frequency in the models by Börgers and Kopell (2003) and
by Doiron et al. (2003, 2004) depends on the effective time delay in the feed-
back loop, which includes the time delay (absent in the Börgers and Kopell
model), the dynamics of the synapses, and the dynamics of the inhibitory
LIF neurons. Since changing the time constant of the inhibitory LIF neuron
changes both the effective delay in the feedback loop and the behavioral
characteristics of the LIF neuron (integrator versus coincidence detector),
we have analyzed the behavior of the model for various time constants τm,I

for the inhibitory LIF neuron.
As mentioned before, the neurons in the network start to oscillate with

synchronized firing of the excitatory neurons when the membrane time
constant of the inhibitory neuron is small. This synchronization is inde-
pendent of the nature of the external stimulus as long as the intensity is
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Figure 8: Ability to discriminate correlated and uncorrelated input ρ0−1 (see
equation 3.2) for static (SS, open symbols) and dynamic (DS, filled symbols)
synapses versus the membrane time constant of the inhibitory neuron, with
g = −1.2.

sufficiently large and when the time constant τm,I is small (see Figure 8).
For time constants larger than 15 ms, the linear approximation of the in-
hibitory LIF neuron is valid, and the network behaves as in Doiron et al.
(2004, 2004). When dynamic synapses are included in the model, the separa-
tion between correlated and uncorrelated input is also preserved for small
values of τm,I ; the index ρ0−1, which represents the ability to discriminate
between correlated and uncorrelated input, is constant for all values of the
membrane time constantτm,I .

Another novel aspect of the model with dynamic synapses relates to
the ability to preserve the frequency content of the input signal. In the
study by Börgers and Kopell (2003), the oscillation frequency depends on
only the effective time delay in the feedback loop between excitatory and
inhibitory neurons and is present as long as the power of the input signal
is sufficiently large. In the model by Doiron et al. (2003), the presence of
oscillations depends on the presence of spatially correlated input, and the
oscillation frequency depends on the effective delay in the feedback loop,
not the temporal properties of the input. With dynamic synapses, the system
also preserves the temporal information contained in the input. This is
illustrated in Figure 9, which shows the spectra of the spike responses of
the excitatory neurons in response to bandpass filtered gaussian noise with a
center frequency at 60 Hz—a frequency well above the resonance peak near
40 Hz. The bandpass filtered noise is obtained by filtering gaussian white
noise with a flat spectrum up to 150 Hz with a second-order Butterworth
bandpass filter with passband between 53 and 67 Hz. After filtering in the
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Figure 9: Spectra of the excitatory neurons for uncorrelated input (C = 0; upper
panels) and for correlated input (C = 1; lower panels) for the model with static
synapses (left panels) and dynamic synapses (right panels) for three different
gains in the inhibitory feedback loop: g = 0 (solid line), g = −2 (dashed line)
and g = −4 (dotted line). The input signal was bandpass filtered gaussian white
noise, centered at 60 Hz. The units along the vertical axis are in spikes2/s. In
order to compare the shape of the spectra, the spectra were normalized.

forward direction, the filtered sequence is reversed to ensure a zero-phase
shift. The power of the bandpass filtered signal is normalized such that the
power of the input signal is the same in all conditions.

Without feedback (g = 0) the solid lines show the spectra of the re-
sponses to the bandpass filtered noise with a clear peak near 60 Hz. For
the static synapses (left-hand panels), the amplitude of the peak near 60 Hz
decreases with increasing feedback gain. If the input is spatially correlated,
a resonance peak appears near 40 Hz, consistent with the results of Doiron
et al. (2003, 2004) and with the results in Figure 5 and Figure 7, which show
that a resonance peak is found for intermediate feedback gains only if the
input is correlated. If the bandpass filtered noise at the input is spatially
uncorrelated (c = 0; upper left panel), a peak near 40 Hz also appears for
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the high feedback gain of −4, in agreement with our previous results (see
Figure 5). If the bandpass filtered noise for the excitatory input units is spa-
tially correlated (c = 1; lower left panel), the peak near 60 Hz disappears
and a peak near 40 Hz appears, for a feedback gain of −4.

The spectra of the spike output of the excitatory neurons for the model
with dynamic synapses differ from those for the static synapses in two
aspects. The first difference is that the spectra for the model with dynamic
synapses are almost identical for the uncorrelated bandpass filtered noise
for all feedback gain values (c = 0, upper right panel). The almost identical
shape of the spectra reflects the robustness of the model behavior with
dynamic synapses. If the bandpass filtered noise is correlated (c = 1, lower
right panel), a peak appears near 40 Hz, but in addition, the peak at the
input near 60 Hz is preserved. This finding reflects that the model with the
dynamic synapses has two important advantages over the model with static
synapses: the responses of the excitatory neurons are robust for changes in
feedback gain and the spectra preserve the spectra of the input, in addition
to the peak in the spectrum indicating correlated input.

In order to explore the effect of the feedback gain on the spike responses
near the input frequency, we have explored the ratio 
52.5,67.5


72.5,87.5
, which relates

the power of the excitatory neurons near the bandpass filtered input at
60 Hz to the value of power near 80 Hz, which is in a region where the
power spectrum is not affected by feedback or resonance. A high value for
this ratio reflects large response amplitudes near the input frequency of
60 Hz, whereas small values indicate that the input signal is not present in
the spike responses. With feedback gain equal to zero, there is no difference
between static and dynamic synapses (see Figure 10). As illustrated in
Figures 5, 7, and 9, the ability to discriminate between spatially correlated
and uncorrelated input is about the same for small feedback gains for
dynamic and static synapses. For the range of feedback values between
−1 and −2, we reproduce the behavior reported by Doiron et al. (2004)
for static synapses; there is a resonance peak for spatially correlated input
(see Figure 9, lower left panel), but the characteristics of the input signal
are almost lost. This explains why for the static synapses, the ratio 
52.5,67.5


72.5,87.5

is smaller in the range −2 < g < −1 than for g = 0. For values of g < −2,
the system starts to oscillate at 40 Hz for the static synapses regardless of
spatial correlation of the input (see Figures 5, 7, and 9), which explains the
decrease of 
52.5,67.5


72.5,87.5
to values near 1 for static synapses. Quite remarkably,

the ratio 
52.5,67.5

72.5,87.5

remains approximately constant for the dynamic synapses
for all values of g, indicating a preservation of the input characteristics in
the firing rate of the excitatory neurons.

The robustness of the model responses with the dynamic synapses is
reflected not only in the spectra (see Figures 8, 9, and 10) but also in the firing
rates of the excitatory and inhibitory neurons in the model. This is illustrated
in Figure 11, which shows the firing rate of the excitatory (E) and inhibitory
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Figure 10: Discrimination index ρI F to discriminate the input frequency near
60 Hz in the responses of the excitatory neurons, defined as the power around
60 Hz divided by the power around 80 Hz ( 
52.5,67.5


72.5,87.5
) for static (open symbols, SS)

and dynamic (filled symbols, DS) synapses.

Figure 11: Firing rate of excitatory (E) and inhibitory (I) neurons for the models
with static and dynamic synapses. Data at left (right) hand correspond to model
with inhibitory LIF neuron with leak time constant of 6 (18) ms. Except for
differences in time constant of inhibitory neuron, static versus dynamic synapses
and feedback gain, all other parameters were the same for all conditions.

(I) neurons for the models with static and dynamic synapses for the various
feedback gains and for two different time constants of the inhibitory neurons
(6 and 18 ms). For the static synapses, the firing rate of the excitatory
neurons decreases with increasing feedback gain. The difference in firing
rate for g = 0 and g = −4 is typically about 30%. A similar decrease in firing
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rate is observed for the inhibitory neurons. However, for the model with
dynamic synapses, the firing rates of the excitatory and inhibitory neurons
depend only weakly on the feedback gain. Note that this phenomenon is
independent of the time constant of the inhibitory neurons.

4 Discussion

The main results of this study can be summarized in two conclusions. The
first is that the different results, reported by Börgers and Kopell (2003) and
by Doiron et al. (2003, 2004), who used models with the same architec-
ture but with a qualitatively different behavior, can be explained by the
responses of a single model with different feedback gains. The simulations
presented here show that the same architecture with pools of excitatory
and inhibitory neurons can display a different behavior when the param-
eter values are in a different range. For small and intermediate feedback
gains, the model starts to oscillate if the input to the excitatory input units
is spatially correlated. Without correlation, the resonance peak in the spike
responses is absent. The resonance in the model, as reported by Börgers and
Kopell (2003), which appears as soon as the input to the excitatory neurons
is sufficiently large (regardless of correlation between input to the neurons),
is obtained if the feedback gain is sufficiently large, in agreement with the
conditions for resonance in their study. Another difference between the
models by Börgers and Kopell (2003) and Doiron et al. (2003, 2004) is that
the latter has only one inhibitory unit, whereas Börgers and Kopell have
a population of inhibitory neurons. In this study we have shown that the
behavior of the model by Doiron et al. (2003, 2004) does not change if the
linear unit, which sums the spikes of the excitatory neurons and which feeds
the feedback loop, is replaced by an LIF neuron. Figure 3 shows that the
results are not affected either, when several inhibitory neurons are added in
parallel. Börgers and Kopell (2005) also report that the qualitative behavior
of the model is the same if several inhibitory neurons are added. In their
study, suppression of excitatory cells can occur for asynchronously firing
inhibitory cells. In our study, the inhibitory cells fire in synchrony for spa-
tially correlated input (c = 1) and for high feedback gains. For c = 0 and
for small feedback gains, the inhibitory neurons in our model do not fire in
synchrony, and neither do the excitatory cells. However, if there are several
inhibitory neurons, the network models starts oscillations at slightly higher
feedback gains than for a single inhibitory neuron. In summary, the behav-
ior of the model is qualitatively the same for a single inhibitory neuron and
for the case of several inhibitory neurons.

The second conclusion of our study is that replacing synapses with a con-
stant efficacy by dynamic synapses has two major implications: the model
behavior becomes robust for changes in feedback gain and in time constant
of the inhibitory LIF neuron. The resonance peak appears only for corre-
lated input stimuli. Moreover, the model with dynamic synapses preserves
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the characteristics of the input in the spike responses. From a biological
perspective, this is highly relevant since it allows transmission of the tem-
poral properties of the input signal while the resonance provides a label
to indicate whether the input is spatially correlated. In visual cortex cells,
responses reflect the temporal properties of the stimulus in the receptive
field, but in addition can reveal gamma-frequency components (see, e.g.,
Reynolds & Desimone, 1999; Roelfsema, Lamme, & Spekreijse, 2004). In
addition, several studies (e.g., Baker, Pinches, & Lemon, 2003; Schoffelen
et al., 2005) have shown that multiple EEG rhythms can occur simultane-
ously, which is in contradiction with the behavior of some models in the
literature (see, e.g., Börgers & Kopell, 2003; Doiron et al., 2004), which reveal
oscillations only at one particular frequency.

The finding that the activity of the network can reflect both the tem-
poral characteristics of the input signal (frequency of input modulations),
which drives the network, and synchronous oscillations at one particular
frequency is new. Previous studies modeling neurons as coupled oscilla-
tors have shown that when the width of the distribution of the intrinsic
frequencies is small compared to the coupling strength, all oscillators be-
come phase-locked (Ariaratnam & Strogatz, 2001). When the distribution
of intrinsic frequencies becomes larger, the network can reveal a broad
spectrum of dynamics, such as frequency locking at a single frequency,
incoherent firing with a broad range of frequencies, oscillator death, and
hybrid solutions that combine two or more of these states, depending on
the coupling strength. Tsodyks, Mitkov, and Sompolinsky (1993) studied a
system of globally coupled oscillators with pulse interactions (mimicking
coupling by presynaptic action potentials). In such a system, the completely
phase-locked state is unstable to weak disorder. For a small inhomogeneity,
the oscillators are divided in two populations, one of which exhibits phase-
locked periodic behavior, whereas the other consists of unlocked oscillators,
which exhibit aperiodic patterns that are only partially synchronized. In this
context it is important to stress, that the spectra shown in Figures 5, 6, and
9 are representative for all excitatory neurons. That is, the oscillations and
the input characteristics can be found in each neuron and do not reflect a
partitioning within the pool of excitatory neurons.

The novel finding that a group of neurons can code both the correlation
between parallel neuronal input channels and the temporal characteristics
of input signals is relevant for several reasons. As explained in section 1,
the phenomenon of oscillations in neuronal activity in groups of neurons
has long been known. However the functional significance is yet the subject
of speculation (see, e.g., Fries, 2005). Moreover, the neuronal mechanisms,
which are responsible for the initiation of oscillatory activity, are barely
known. It is well known that cells in visual cortex can fire in synchrony at
frequencies near 40 to 60 Hz and at the same time can reproduce the tem-
poral dynamics of changes in the light in the receptive field. For example,
Fries, Reynolds, Rorie, and Desimone (2001) report typical changes in firing
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rate at a latency of about 25 ms in cat primary visual cortex, related to onset
and offset of a visual stimulus in the receptive field of these neurons. At the
same time, they find a correlated oscillatory activity at frequencies in the
range between 40 and 70 Hz. This clearly illustrates that the activity of cells
in cat primary visual cortex reflects simultaneously temporal changes in
light falling in the receptive field as well as correlated oscillatory activity at
40 to 70 Hz. Similarly, cells in visual areas V2 and V4 reflect the dynamics of
stimuli in the receptive field, but at the same time reveal correlated activity
in the γ -range (Reynolds & Desimone, 1999). As far as we know, our study
is the first to show that the temporal dynamics of activity in a population
of neurons can reflect both changes in the stimulus that drives the cells and
oscillatory activity.

van Vreeswijk and Hansel (2001) studied the emergence of synchronized
burst activity in networks of neurons with spike adaptation. They showed
that networks of tonically firing adapting excitatory neurons can evolve
to a state where the neurons burst in a synchronized manner. These au-
thors showed that synchronized bursting is robust against inhomogeneities,
sparseness of the connectivity, and noise. In networks of two populations,
one excitatory and one inhibitory, they found that decreasing the inhibitory
feedback can cause the network to switch from a tonically active, asyn-
chronous state to the synchronized bursting state. In our study, we had
dynamic synapses instead of spike adaptation, as in the study by van
Vreeswijk and Hansel (2001). Another difference is that the latter study did
not consider external input but studied tonically active neurons instead.
Our study therefore is a further extension of the work of van Vreeswijk
and Hansel by showing the effect of external input on the stable states
of a network with excitatory and inhibitory neurons coupled by dynamic
synapses.

In the model shown in Figure 1, the dynamic synapses were imple-
mented in the feedback (i.e., the I → E) path. If the firing rate of the in-
hibitory neuron increases, the efficacy of the dynamic synapses decreases,
which acts like an automatic gain control. This explains partly why the
responses of the model with dynamic synapses hardly depend on the feed-
back loop gain. This finding is in agreement with Pantic et al. (2003), who
demonstrated that dynamic synapses can perform good coincidence de-
tection over a large range of frequencies for one suitably chosen threshold
value, whereas static synapses require an adaptive frequency-dependent
threshold value for good detection. In fact, the adaptation is done by the
synapses themselves. Dynamic synapses in the feedforward loop have also
been discussed in several studies. The common message of these studies
(see, e.g., Natschlager, Maas, & Zador, 2001; Senn, Segev, & Tsodyks, 1998;
Pantic et al., 2003) is that dynamic synapses in the E → I path are very
effective in allowing a correct coincidence detection for a wide range of
firing rates of the excitatory neurons without changing the base current to
the inhibitory neurons.
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Initially it came as a surprise that the model shown in Figure 1 revealed
oscillations also for uncorrelated noise (c = 0) for large feedback gains. The
last term in equation 2.5 is zero for c = 0. The explanation for the unexpected
resonance is that equation 2.5 was derived using linear-response theory
(see Doiron et al., 2004, and Lindner, Chacron, & Longtin, 2005, where the
assumptions and mathematical analyses are explained in detail). However,
the linear approximations of an LIF neuron are valid only for relatively long
time constants of the neuron, where it operates mainly as an integrator. This
approximation is no longer valid when the time constant of the LIF neuron
is short, transforming the neuron into a coincidence detector. Similarly, a
high-feedback gain gives rise to full inhibition of the excitatory neurons
for each action potential of the inhibitory neuron (see Figure 4, left panel),
followed by a release of excitatory output. The large inhibitory input to
the excitatory neurons synchronizes the excitatory neurons (precisely as
in Börgers & Kopell, 2003), leading to a burst of activity to the inhibitory
neuron. For such volleys of synchronized input, the linear approximation
for the LIF neuron also fails.

Appendix

This appendix gives a derivation of equation 2.5. It mainly follows the lines
set out in Doiron et al. (2004) and in Lindner, Chacron et al. (2005) and
Lindner, Doiron et al. (2005).

The input to the excitatory neurons is split into two parts. The first part
consists of the base current µ, the internal neuron-specific noise ηi (t), and
the time-independent mean of the feedback (g〈STI (t)〉 with g < 0) from the
inhibitory neuron to the excitatory neuron. The second part consists of the
external input σ�√1 − cξ j (t) + √

cξG(t)� and the time-dependent part of the
feedback from the inhibitory neurons.

Using a linear response approximation for a leaky integrate-and-fire
neuron with susceptibility AE (ω) and AI (ω) (see Lindner & Schimansky-
Geier, 2001; Lindner, Schimansky-Geier, & Longtin, 2002) for the excitatory
neurons and inhibitory neurons, respectively, the spectrum of the spike
train of the excitatory neuron is given by

s E
j (ω) = s E

0, j (ω) + AE (ω)
[

I j (ω) + g
N

e−iωτD K I
τ (ω)s I (ω)

]
, (A.1)

where s E
j (ω) and s E

0, j (ω) represent the spike train of the jth excitatory neuron
in the presence and absence, respectively, of the external stimulus and
feedback. K I

τ (ω) represents the postsynaptic dynamics for the synapses
from the inhibitory to the excitatory neurons as defined in equation 2.4 in
the frequency domain, and AE (ω) and AI (ω) represent the susceptibility in
the frequency domain with respect to the input of the excitatory neurons
and the inhibitory neurons, respectively (for details, see Doiron et al., 2004;
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Lindner & Schimansky-Geier, 2001; Lindner et al., 2002). The term e−iωτD

is the Fourier representation of the time delay in the inhibitory feedback
loop. For the activity of the inhibitory neuron in the frequency domain, we
obtain

s I (ω) = AI (ω)KE
τ (ω)

NI∑
j=1

s E
j (ω). (A.2)

Inserting equation A.2 in equation A.1 and with I j (ω) as the Fourier trans-
form of I j (t) = µ + η j (t) + σ�√1 − cξ j (t) + √

cξG(t)� gives for the power
spectrum of the spike train of the jth excitatory neuron

〈
s̃ E

j s̃∗E

j

〉
=

〈
s̃ E

0, j s̃
∗E

0, j

〉
+

〈
ÃE Ĩ j s̃∗E

0, j

〉
+ 〈

Ã∗E Ĩ ∗
j s̃ E

0, j

〉

+
〈

s̃ E
0, j Ã∗E g

N
eiωτD K̃ I ∗

τ ÃI ∗
K̃ E∗

τ

NI∑
k=1

s̃ E∗
k

〉

+
〈

s̃ E∗
0, j ÃE g

N
e−iωτD K̃ I

τ ÃI K̃ E
τ

NI∑
k=1

s̃ E
k

〉
+

〈∣∣ÃE
∣∣2 ∣∣ Ĩ j

∣∣2
〉

+
〈∣∣ÃE

∣∣2
Ĩ j

g
N

eiωτD K̃ I ∗
τ ÃI ∗

K̃ E∗
τ

NI∑
k=1

s̃ E∗
k

〉

+
〈∣∣ÃE
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j
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e−iωτD K̃ I
τ ÃI K̃ E

τ

NI∑
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s̃ E
k

〉

+
〈∣∣ÃE
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( g
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τ

∣∣2 ∣∣ÃI
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τ
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NE∑
k,l

s̃ E
k s̃ E∗

l

〉
, (A.3)

where x̃ represents the Fourier transform of x.
Using that 〈s E

0, j (ω)s∗E

k (ω)〉 = 〈s E
0, j (ω)I ∗

j (ω)〉 = 〈s E
j (ω)ξ ∗

k (ω)〉 =
〈ξG(ω)ξ ∗

k (ω)〉 = 0 for j 
= k explains why the second and third terms
on the right-hand side of the equal sign are equal to zero.

Substitution of equation A.2 in A.1 and solving for
∑NI

j=1 s E
j (ω) gives

NE∑
k=1

s̃ E
k =

NE∑
j=1

s̃ E
0, j + ÃE

NE∑
j=1

Ĩ j

1 − ÃE ge−iωτD K̃ I
τ ÃI K̃ E

τ

. (A.4)
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Substitution of equation A.4 in A.3 and using that 〈s E
0, j (ω)s∗E

k (ω)〉 =
〈s E

0, j (ω)I ∗
j (ω)〉 = 〈s E

j (ω)ξ ∗
k(ω)〉 + 〈ξG(ω)ξ ∗

k(ω)〉 = 0 for j 
= k and for N → ∞
so as to neglect terms of order 1/N and higher, we obtain for the power
spectrum of the spike train of the excitatory

〈
s E

j (ω)s∗E

j (ω)
〉
=

〈
s E

0, j (ω)s∗E

0, j (ω)
〉
+ σ 2|AE (ω)|2

+ . . . + cσ 2|AE (ω)|2 2�(
ÃE ge−iωτD K̃ I

τ ÃI K̃ E
τ

) − ∣∣ÃE gK̃ I
τ ÃI K̃ E

τ

∣∣2

|1 − ÃE ge−iωτD K̃ I
τ ÃI K̃ E

τ |2 .
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