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Abstract

Psychological network approaches propose to see symptoms or questionnaire items as

interconnected nodes, with links between them reflecting pairwise statistical dependencies

evaluated on cross-sectional, time-series, or panel data. These networks constitute an

established methodology to visualize and conceptualize the interactions and relative

importance of nodes/indicators, providing an important complement to other approaches

such as factor analysis. However, limiting the representation to pairwise relationships can

neglect potentially critical information shared by groups of three or more variables (higher

order statistical interdependencies). To overcome this important limitation, here we

propose an information-theoretic framework to assess these interdependencies and

consequently to use hypergraphs as representations in psychometrics. As edges in

hypergraphs are capable of encompassing several nodes together, this extension can thus

provide a richer account on the interactions that may exist among sets of psychological

variables. Our results show how psychometric hypergraphs can highlight meaningful

redundant and synergistic interactions on either simulated or state-of-the-art, re-analyzed

psychometric datasets. Overall, our framework extends current network approaches while

leading to new ways of assessing the data that differ at their core from other methods,

enriching the psychometrics toolbox, and opening promising avenues for future

investigation.
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An information-theoretic approach to build hypergraphs in psychometrics

Introduction

The last decade has seen the growth of various network approaches that allow

researchers to probe and exploit potential interdependencies of observable variables

associated with a given construct, or between constructs themselves (Borsboom & Cramer,

2013; Borsboom et al., 2021; Golino & Epskamp, 2017; Marsman et al., 2018; Schmittmann

et al., 2013; Van den Bergh et al., 2021). These approaches build networks where nodes

represent measurable variables and links reflect relationships between them, with the

purpose of focusing not on common underlying factors but on the structure of the

inter-dependencies between the observables. Recently some approaches have been

developed to include also factor nodes in the network (Haslbeck et al., 2021), see below for

further details. Such psychometric networks are capable of reflecting dynamical

processes (Schmittmann et al., 2013), and can consider lagged relationships that can reveal

dynamics leading to the emergence of symptoms (Borsboom & Cramer, 2013). Crucially,

these networks often reveal non-trivial features of the groups of variables they represent,

which can be identified by leveraging tools of network science such as measures of

centrality (Bringmann et al., 2019; Epskamp et al., 2018) or community detection

(Van den Bergh et al., 2021). Furthermore, it has been argued that important outgoing

effects or events can be identified from an examination of either the overall network or part

of it — e.g. how interdependencies between certain symptoms may create a vicious circle

triggering a series of negative events along the way (Schmittmann et al., 2013).

An illustrative case of the potential of network approaches can be found in the work

on comorbidity (Fried et al., 2017), i.e. constructs that share multiple observables (e.g.

depression and anxiety, which are sometimes considered as different facets of

neuroticism (Lovibond & Lovibond, 1995; Van den Bergh et al., 2021), and can be studied

in terms of common edges or nodes, without limitations coming from modelling these sets

via multiple latent variables (Cramer et al., 2010; Jones et al., 2019).
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While network properties such as centrality and modularity provide valuable

information about the overall topology of a network (Borsboom et al., 2021), traditional

network approaches are limited in a fundamental yet often unacknowledged way: as their

construction is based solely on pairwise links, they cannot give account of potential higher

order (i.e. beyond pairwise) interdependencies that involve three or more

observables (James & Crutchfield, 2017; McGill, 1954; Rosas et al., 2016). In effect, the

interdependencies between three or more variables are often nontrivial, poorly understood

and, yet, can play fundamental roles in driving complex systems (Battiston et al., 2021).

From a statistical perspective, a pairwise approach assessing the relation between two

variables (conditioned on other variables or not) cannot inform on the existence of

synergistic or redundant interdependencies, which by definition involve three or more

variables (McGill, 1954; Williams & Beer, 2010). To sketch an example of redundancy in

psychometrics, suppose one has three items that try to measure depression. All items

measure the same thing, so they overlap substantially. Pairwise correlations will typically

be high, but partial correlations will typically be low, because if you condition on another

very similar item, there is not much (residual) information left, and the ’shared’ residual

information between two items (i.e. their partial correlation) will be small. As far as

synergy is concerned, suppose that two uncorrelated items are influencing a third one.

These two uncorrelated items would become correlated if, seeking for a mechanism, one

would condition on the effect. An example of a synergistic triplet could be reading ability

at age 9, IQ, and hours of practice per week. “Knowing” the values of two variables

simultaneously, would tell us something about the third one. Importantly, in this paper we

showed that the term “higher order” implies more than two variables, and it’s not related

to two-way interdependencies where the “third” variable is for example the product of the

other two (i.e. moderation). Recent work is revealing how higher order interdependencies

play key roles in diverse hallmark aspects of complex systems, including

self-organisation (Rosas et al., 2018), emergence (Rosas, Mediano, et al., 2020),
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synchronisation (Skardal & Arenas, 2020; Tabar et al., 2024), percolation (Iacopini et al.,

2019).

Hypergraphs are the natural extension of pairwise networks that can properly give

an account of higher order interdependencies. In effect, analogously as graphs, hypergraphs

are composed of nodes and hyperedges (or hyperlinks) connecting them, with the key

difference that hyperedges can connect more than two nodes (Battiston et al., 2020; Bick

et al., 2023; Boccaletti et al., 2023). Hyperedges can represent e.g. co-authors (Milojević,

2014), components of an ecosystem (Bairey et al., 2016), brain regions (Hindriks et al.,

2024; Santoro et al., 2023),or financial entities, or individuals sharing a social or physical

space in contagion models (Santoro et al., 2023; St-Onge et al., 2022). It is worth

mentioning another relevant representation of interactions between three or more variables

is the simplicial complex (Bianconi, 2021; Torres et al., 2021; Zhang et al., 2023), whose

use we will not explore here. As an example, Figure 1 depicts a hypergraph where each

node is a scholar, and each hyperlink (represented as a colored region encompassing the

nodes) is a quite popular paper on network psychometrics. Translated to the approach

presented here, the nodes would be the observables, and the hyperlinks would be a

significant amount of joint information among all the observables. And as it happens with

co-authorship, sometimes the paper contains more knowledge than the sum of the

knowledge of the single authors (synergy), sometimes the overlap prevails (redundancy),

and sometimes the individual contributions are simply independent. And a hyperlink

(these three or more people co-authored a paper) can be more informative than pairwise

links (these two people were co-authors in some paper). It is important to stress that this

example is meant to show what an hypergraph is, but that the links in the example are

directly quantifiable (co-authorship).

In the present work we put forward a framework that proposes hypergraphs to

represent higher order statistical interdependencies. This approach is complementary to the

pairwise one. Pairwise networks would still be obtained by (Pearson/Spearman)
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correlations and partial correlations, or by mutual information and conditional mutual

information (Cover & Thomas, 2012) to stay in theme with the proposed approach, or by

one of the many other methods proposed over the years to assess statistical dependencies.

To put this more in context, the extension that we propose in terms of the first sentence of

the abstract of the recent primer on network psychometrics (Borsboom et al., 2021):

In recent years, network analysis has been applied to identify and analyse

patterns of statistical association in multivariate psychological data. In these

approaches, network nodes represent variables in a data set, and edges represent

pairwise conditional associations between variables in the data, while

conditioning on the remaining variables.

can be described as:

...network nodes represent variables in a data set, and hyperedges represent the

joint informational contribution of groups of variables in the data to the typical

patterns of the system, without the need for conditioning on the remaining

variables.

Crucially, we do not propose to model mechanisms of “higher order

interdependencies” as typically done in Markov Random Field models familiar to network

psychometrics, as described for example in Haslbeck et al. (2021). To illustrate how our

approach is different, consider a simple linear regression Y ∼ X1 + X2. It could be that

the triplet (Y, X1, X2) exhibits redundancy, synergy, or independence. According

to Haslbeck et al. (2021), a second-order model would be Y ∼ X1 + X2 + X1 ∗ X2,

involving the addition of more information/variables (product terms). Having as a goal to

verify that the relationship between y and x1 changes depending on x2 this second-order

model would need a 4x4 covariance matrix, while our approach would find a synergistic

triplet containing Y, X1, and X2 with a 3x3 covariance matrix, and would do so regardless

the model that resulted in that covariance matrix. In other words, the two perspectives are
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complementary, and they can be combined, but they refer to different phenomena. Rather

than these "higher order mechanisms" we seek "higher order statistical dependencies", here

by investigating the properties of the multivariate probability distributions. This point of

view, aimed at disambiguating higher order mechanisms and higher order behaviors, is

expressed in a recent correspondence (Rosas et al., 2022).

In the chosen formulation, the analysis of the marginal probability distributions

leads to the fundamental distinction between predominantly redundant and predominantly

synergistic dependencies, where the former would correspond to shared randomness being

higher than collective constraints, and vice versa for the latter. As such, our proposed

framework can be conceived as an extension of existing psychometric network approaches

that, in turn, enable a systematic investigation of the role of interdependencies in

psychometric scenarios, proposing to complement current representations based on pairwise

interdependencies. In doing this, our approach is not necessarily overlapping, but rather

complementary to the discovery of underlying structures such as latent factors and

interdependencies used in psychometric models.

Defining and computing synergy is not a straightforward approach nor one on which

all scholars agree. Among the different recipes, we choose the O-information (Rosas et al.,

2019), an approach that in our opinion has the advantage of intuitively grasping the balance

between the concepts of synergy and redundancy, and the ability to parsimoniously scale

with the number of variables. The common information shared in groups of three or more

variables computed via this metric is validated against null distributions, and against the

possibility of this shared information resulting from lower-order interdependencies instead

of containing new information. The proposed framework is illustrated on synthetic datasets

where higher order behavior is generated according to one of several possible mechanisms is

provided, and on standard datasets already analyzed in network psychometrics studies.
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Methods

The state of the art: Exploratory Data Analysis and Networks

Let us consider n measurable variables X1, . . . , Xn, which could correspond to

symptoms of a condition of interest or items in a questionnaire. An attractive way to

describe the interdependencies between these variables is to represent them as a

network (Vasiliauskaite & Rosas, 2020). In general, networks are defined by two elements:

(a) a set of nodes/vertices denoted by V , and (b) a collection of links/edges between the

nodes denoted by E. Individual edges are usually denoted as eij, where i and j represent

the indices of two nodes. A network of observables typically represents each variable as a

node and uses links to depict relationships between the variables.

Among the simplest and most used ways for establishing a relationship between two

continuous random variables, one finds the partial Pearson correlation, conditioned against

all other considered variables (Epskamp & Fried, 2018). Specifically, network analyses

typically consider networks whose links are given by the precision matrix C = ∑−1 with ∑
being the correlation matrix, which allows calculating partial correlations via

ρij = − Cij√
(CiiĊjj)

. It is worth mentioning that accurate estimations of the precision matrix

are non-trivial and prone to biases, but adequate techniques have been developed in recent

years (Epskamp et al., 2018). In particular, it is common to use regularization techniques

such as the LASSO (Foygel & Drton, 2010; Friedman et al., 2008; Meinshausen &

Bühlmann, 2006) to restrict the number of non-zero entries in the precision matrix.

Information theory

Entropy and Mutual Information

Random variables are a mathematical tool to model scenarios that include

randomness and uncertainty. If a model considers a variable X that can display different

values when measured according to factors outside of our control, we usually model the

frequency of occurrence of each possible outcome via a probability distribution p(x). The

amount of information associated with each possible outcome is given by another function
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h(x) which has the following properties: (i) it is a monotonic function of the probability

p(x) (less likely events are more informative), and (ii) two statistically independent events

{X = x} and {Y = y} together provide the sum of the information given by each, i.e.

h(x, y) = h(x) + h(y). From such considerations, one can shown that h(x) = − log2 p(x),

where the negative sign ensures that information is positive or zero (Shannon, 1948).

The mean value of information h(x), denoted by H(X) = E
{
h(X)

}
, is called

entropy, and measures the average amount of information that one would gain when

measuring X. Similarly, the entropy of (a vector of) two variables can be calculated via

H(X, Y ) = E
{
h(X, Y )

}
. In general, the entropy of two variables is less than the sum of

their entropies when measured separately — or, equivalently, the information provided by

two variables together is less than the sum of the information provided by each separately.

Hence, the difference I(X; Y ) := H(X) + H(Y ) − H(X, Y ), known as Shannon’s mutual

information (Shannon, 1948), is precisely how much information is shared by both

variables. An alternative formula is given in terms of conditional entropies by

I(X; Y ) = H(X, Y ) − H(X|Y ) − H(Y |X).

Higher order interdependencies via Total Correlation and Dual Total

Correlation

While Shannon’s mutual information provides an encompassing account of the

interdependencies between two (sets of) variables, it is unable to fully explore the rich

interplay that can take place within triple or higher order interdependencies (James &

Crutchfield, 2017; McGill, 1954; Rosas et al., 2016). Two popular multivariate extensions

of the Shannon mutual information are the Total Correlation (TC) (Watanabe, 1960) and

the Dual Total Correlation (DTC) (Te Sun, 1978), which can be calculated as

TC(X1, . . . , Xn) :=
n∑

i=1
H(Xi) − H(X1, . . . , Xn), (1)

DTC(X1, . . . , Xn) := H(X1, . . . , Xn) −
n∑

j=1
H(Xj|X1, . . . , Xj−1, Xj+1, . . . , Xn). (2)
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On the one hand, the TC follows the idea of calculating the difference between the sum of

the information provided by each variable separately and the information provided by them

together, extending the formula I(X1; X2) = H(X1) + H(X2) − H(X1, X2). On the other

hand, the DTC captures the information in each variable that cannot be extracted from

other variables (captured by the terms in the form of H(Xj|X1, . . . , Xj−1, Xj+1, . . . , Xn))

and subtract it to the total information H(X1, . . . , Xn), generalising the formula

I(X1; X2) = H(X1, X2) − H(X1|X2) − H(X2|X1). Both the TC and DTC are non-negative

quantities that are zero if and only if all variables X1, . . . , XN are jointly statistically

independent — i.e. if p(X1, . . . , Xn) = ∏n
i=1 p(Xi). However, while they are both equal to

the mutual information for n = 2, they are in general different when n ≥ 3. One way to

understand their difference is by noting that while the DTC measures the amount of shared

randomness between the variables (i.e. the information that can be collected in one

variable that also refers to the activity of another), the TC accounts for the effect of

collective constraints (i.e. joint patterns that the system is precluded to explore). For

example, if X1, X2, X3 are three binary variables satisfying X1 = X2 = X3, this means that

they hold relatively little shared randomness (just the entropy in one of them) while they

have strong shared constraints, as there are many configurations that are prohibited to the

system (namely, all in which some of the variables are not equal); therefore, for this

example TC > DTC. For more details about this interpretation, we refer the reader to

Rosas et al. (2019, Sec. 2).

A noteworthy case is the three-variable setting. Let’s consider the expression of

DTC in this case:

DTCN=3 = I(X1; X2|X3) + I(X2; X3|X1) + I(X3; X1|X2) + I(X1; X2; X3). (3)

The last term is known as interaction information McGill, 1954) and can be defined in

term of entropies as:

I(X1; X2; X3) :=H(X1) + H(X2) + H(X3) − H(X1, X2) − H(X2, X3)

− H(X1, X3) + H(X1, X2, X3) (4)
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=I(X1; X2) − I(X1; X2|X3) . (5)

This quantity indicates the amount of information shared by three variables (Ince et al.,

2017). The relation between DTC, (conditioned) mutual information, and interaction

information for three variables is depicted in figure 2.

Let us illustrate how these measures differ in some simple examples. First, let’s

consider three fair coins that are always equal, i.e. X1 = X2 = X3 with X1 distributed as a

Bernoulli variable with parameter p = 0.5. Then, a simple calculation shows that TC = 2

while DTC = 1, which means that while the system obeys many collective constraints (i.e.

there are many things the system cannot do) while having little shared randomness (only

one bit). To contrast, let us consider a system made of two independent fair coins X1 and

X2, and make X3 = X1 + X2(mod2) be an exclusive-OR (XOR) of them. Then, a direct

calculation shows that TC = 1 while DTC = 2, showing that this system has relatively

fewer collective constraints while having more shared randomness. In fact, the first system

can be better described via its shared randomness (the three variables share the same bit),

while the second is better described by its collective constraint (the third variable has to be

an XOR of the other two).

Measuring higher order effects via the O-information

An attractive way to exploit these complementary views is then by considering their

difference,

Ωn(X1, . . . , Xn) = TC(X1, . . . , Xn) − DTC(X1, . . . , Xn) . (6)

which is known as the O-information (Rosas et al., 2019). Put simply, the O-information

compares how hard is to describe the interdependencies of a system as collective

constraints or as shared randomness — being positive if the former would lead to a more

parsimonious description, and negative if the latter would be preferable. Importantly, it

has been shown that this leads to an effective way to account for the balance between high-

and low-order statistical constraints in a system: Low-order constraints impose strong

restrictions on the system and allow a little amount of shared information between
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variables, while higher order constraints impose collective restrictions that enable large

amounts of shared randomness. By construction, Ω(X1, . . . , Xn) < 0 implies a

predominance of higher order constraints within the system of interest, a condition that is

usually referred to as statistical synergy. Conversely, Ω(X1, . . . , Xn) > 0 implies that the

system is dominated by low-order constraints, which imply redundancy of information.

From the example in the previous paragraph, it is evident that O-information and

interaction information are equivalent for three variables, although they generally differ for

four or more variables. For more details related to the O-information and its

interpretation, we refer the reader to Rosas et al. (2019). It is important to stress that the

entropy, the mutual information, and related techniques can be calculated using different

kinds of estimators, the classical ones being based on binning of the data or measuring

their distance in the space of all possible realizations (embedding), while other ones are

often preferred due to their convenient tradeoff between loss of accuracy and simplicity of

calculation. These methods are reviewed in Ince et al. (2017). Here we perform rank-based

normalization of the data using the inverse complementary error function and use an

estimator based on the covariance matrix, in line with what is still the most used estimator

for pairwise networks in psychometrics (Epskamp & Fried, 2018). Furthermore, this

estimator is particularly parsimonious, analytically tractable, and robust for distributions

that moderately deviate from gaussianity.

Measuring higher order effects on data

Consider a scenario where we have data from n variables of interest, denoted by

X1, . . . , Xn. It is important to note that the O-information of the whole, Ω(X1, . . . , Xn),

only provides information about the overall balance of synergy and redundancy, and hence

it is also interesting to calculate the O-information of multiplets, i.e. subsets of variables, as

they can show a different balance that may be buried among other patterns.

Following these considerations, we employ the following analytical pipeline:

1. Calculate the O-information for multiplets of sizes from 3 to m (with m ≤ n; the
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multiplet with n=2 represents pairwise mutual information).

2. Partition the multiplets depending on the sign of the O-information into positive

(redundant) and negative (synergistic).

3. Evaluate the bias-corrected and accelerated confidence intervals of the O-information

values via nonparametric bootstrap with replacement (Davison & Hinkley, 1997;

DiCiccio & Efron, 1996; Efron & Tibshirani, 1994).

4. Compare the bootstrap confidence interval of each multiplet with subsets of its

components one order below. Multiplets are discarded if the confidence intervals

overlap, as this indicates that they do not display additional synergy or redundancy.

5. Build two hypergraphs with the significant multiplets: one with hyperedges of

positive O-information related to dominantly redundant interdependencies, and

another with hyperedges of negative O-information associated with synergy.

The maximum size of the multiplet can be chosen according to the scientific

question, and be limited by computational constraints. When considering and statistically

testing all possible multiplets, as we do here, the computational complexity is of the order

of (nboot + 1) × nm. Another possibility is to choose a greedy approach, building the

multiplets each time adding the variables providing a significant increase in information,

which scales as (nboot + 1) × n × m. The outputs of this pipeline are redundancy and

synergy hypergraphs, which give an overview of the structure of interdependencies in the

system by encoding the multiplets whose interdependencies are dominantly redundant or

synergistic, respectively. These two hypergraphs can then be used to perform further

analysis related to their topology, including centrality or clustering analyses.

In this paper, step 1 is carried out by transforming the data to obtain standard

normal samples with the same empirical cumulative distribution function value as the

input as described in Ince et al. (2017), providing the advantages of Gaussian parametric
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estimation for variables with different marginal distributions. Here we choose a covariance

based estimator for a clearer comparison with previous estimators on pairwise networks in

psychometrics, and because it allows a parsimonious yet robust estimation of the

O-information, but it is important to stress that this choice does not require the variables

to be normally distributed and that the framework itself is independent of the type of

estimator used. The loss in accuracy for datasets which deviate from gaussianity is in our

experience, for the dimensionality and distribution of the data most often encountered in

network psychometrics, less severe than the problems encountered by other estimators.

The bootstrap replicates the data structure by building covariance matrices obtained

shuffling the observables, and the distribution of bootstrapped data allows for a meaningful

definition of the confidence interval. The significant multiplets are those with a

bias-corrected and accelerated bootstrap confidence interval not containing zero and have

an associated p-value smaller than a fixed significance level, e.g. 0.01), corrected for

multiple comparisons using the Bonferroni-Holm false discovery rate (FDR). In larger

datasets, where the number of possible multiplets can become very high, one can choose to

focus on those with a higher value and thus validate via bootstrap only the n most

informative ones. Concerning step 4, an alternative approach is to compare O-information

values estimated on the same cardinality, by means of surrogates of the samples of the

variables which is added to the rest of the system, as described in Scagliarini, Marinazzo,

et al. (2022). After step 4 is completed, the output will be a collection C of multiplets of

different lengths, X1, . . . , Xm with m < n, featuring any of the n variables under analysis.

This collection C can then be interpreted as a list of hyperlinks indicating non-overlapping

higher order interdependencies between the considered variables. For illustration, the

analyses presented in this paper focus on multiplets of order 3, 4, and 5.

Generating higher order behaviors on synthetic data

In order to evaluate our approach, this section provides a simple possible procedure

to generate synthetic data with specific levels of higher order information. It is crucial to
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stress once more that the approach that we propose here is aimed to find higher order

behavior (or higher order effects), and that these might originate from different

mechanisms (or causes), which can be themselves higher order, or not. We appreciate that

for colleagues more used to generative and causal models this might seem dissonant, but we

think that this is an important complementary mindset. We thus employ a general

approach based on three steps, which are described as follows. First, we construct triplets

of variables generically named x,y,z with a pre-specified level of higher order information —

specifically, we focus on multivariate Gaussian systems and build 3 × 3 covariance matrices

that exhibit the desired level of higher order information. These covariance matrices are

then stacked on the diagonal of a n × n covariance matrix, where n is the total number of

nodes in the system. As the second step, we build connections between some of these

triplets (if desired) by setting the corresponding elements of the off-diagonal covariance

matrix to non-zero values. As the final step, we use the resulting covariance matrix to

generate multivariate Gaussian data. To reduce the corresponding degrees of freedom, we

set the means to zero. Moreover, as the scale is not important we standardize each of the

variables — so that the covariance matrix of the resulting data is in fact a correlation

matrix. The most challenging step of this process is the construction of 3 × 3 correlation

matrices with a pre-specified level of higher order information, and is described below.

From Eqs. (6), (1), and (2), the O-information between three variables (X, Y, Z)

(coinciding with the interaction information) can be calculated as

Ω(X; Y ; Z) = I(X; Y ) − I(X; Y |Z), (7)

Moreover, if we assume (X, Y, Z) follow a multivariate Gaussian distribution, then their

O-information can be calculated from their correlation matrix as follows:

Ω(X; Y ; Z) = 1
2 log 1 − ρ(X, Y |Z)2

1 − ρ(X, Y )2 = 1
2 log |Σ|

|ΣxyΣyzΣxz|
, (8)

The first equality in equation 8 uses the fact that for multivariate Gaussian

variables I(X; Y ) = −1
2 log(1 − ρ(X, Y )2) and I(X; Y |Z) = −1

2 log(1 − ρ(X, Y |Z)2), where

ρ(X, Y ) is the Pearson correlation between X and Y and ρ(X, Y |Z) is the conditional
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Pearson correlation of X and Y given Z, which can be calculated as

ρ(X, Y |Z) = ρ(X, Y ) − ρ(X, Z)ρ(Y, Z)√
1 − ρ(X, Z)2

√
1 − ρ(Y, Z)2

. (9)

The second equality can be directly verified, and |Σ| denotes the determinant of the

correlation matrix of (X, Y, Z) and |Σij| the determinant of the submatrix of the

corresponding variables.

Overall, the second expression shows that the O-information is transformation

invariant (i.e. it does not depend on the mean values or variances of its arguments but only

on the three correlations ρxy, ρyz, and ρxz), and the latter that it is symmetric on its three

arguments.

While finding the O-information that corresponds to three correlation values is

straightforward, the reverse operation is highly non-trivial. To facilitate this process, we

will use a parameterization based on factor analysis. The factor model with a single factor

and n indicators yk, k = 1, 2, . . . , n, can we written as

yk = λkη + ϵk (10)

where η is a latent random variable, λk ∈ R is the factor loading for indicator k, and ϵ is

additive Gaussian noise with covariance matrix Θ with components θi,j. For simplicity we

set Var(η) = 1, E(ϵk) = 0, and Cov(η, ϵk) = 0 for all k = 1, . . . , n. Then it follows that the

covariance matrix of y1, . . . , yn, denoted by Σ, is given by

Σ = λλT + Θ, (11)

where λ = (λ1, . . . , λn).

If we have a triplet of three variables X, Y and Z, the factor model can be

expressed by the equations:

X = λxη + ϵx

Y = λyη + ϵy

Z = λzη + ϵz.

In order to create a correlation matrix that either exhibits redundancy, independence, or

synergy, we will first fix the factor loadings to apriori chosen constants. Several choices are
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possible, but we have used λx =
√

0.99, λy =
√

0.70 and λz =
√

0.30. To ensure that the

resulting covariance matrix has a unit diagonal, we set the value of θx, θy and θz to

(1 − 0.99), (1 − 0.70) and (1 − 0.30) respectively. The only parameter that we will vary is

the error covariance (ecov) Cov(ϵy, ϵz). All other off-diagonal elements of Θ are fixed to

zero. The possible range of this ecov parameter is about [−0.458, +0.458] as determined by
√

1 − 0.70 ×
√

1 − 0.30. Otherwise, the correlation matrix would no longer be positive

definite. Changing this ecov parameter allows us to set the level of O-information. For

example, if we let ecov to be −0.14849, the level of O-information is smaller than 1e-07,

implying independence. If we let ecov to be −0.39 or 0.22, the level of information is about

−0.58 (indicating synergy) and 0.175 (indicating redundancy) respectively.

Table 2, Table 3 and Table 1 report the correlations, the partial correlations, and

the difference of their squared values for the cases above, where we use A.x, A.y and A.z to

refer to the three variables that make up the triplet A.

As a straightforward consequence of equation (8), the difference between the

squared correlation and the squared partial correlation will have positive nondiagonal

entries for redundancy, negative for synergy, and zero for independent interaction (zero

O-information).

Obviously, the level of O-information will be reflected also in the partial

correlations. As a result, if we apply the graphical lasso to these triplets and visualize them

using the qgraph package, they result in different patterns as can be seen in Figure 3.

A final model can combine several triplets, each with its own value for the ecov

parameter. The full covariance matrix is then constructed by placing the model-implied

covariance (correlation) matrices of the triplets on the main diagonal. In addition, we can

allow for variables to be connected by setting the corresponding off-diagonal elements of

the covariance matrix to a non-zero value. An example covariance matrix for three

connected triplets is shown in Table 4.
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A.x A.y A.z

A.x 1

A.y 0.832 1

A.z 0.545 0.678 1

A.x A.y A.z

A.x 1

A.y 0.832 1

A.z 0.545 0.310 1

A.x A.y A.z

A.x 1

A.y 0.832 1

A.z 0.545 0.068 1

A.x A.y A.z

A.x 1

A.y 0.751 1

A.z -0.048 0.483 1

A.x A.y A.z

A.x 1

A.y 0.832 1

A.z 0.545 -0.310 1

A.x A.y A.z

A.x 1

A.y 0.951 1

A.z 0.883 -0.823 1

A.x A.y A.z

A.x 0

A.y 0.129 0

A.z 0.295 0.226 0

Table 1

Redundancy, ecov = 0.22.

Top: correlation.

Middle: Partial correlation.

Bottom: squared correlation

minus squared partial

correlation.

A.x A.y A.z

A.x 0

A.y 0 0

A.z 0 0 0

Table 2

Zero II, ecov = −0.14849.

Top: correlation.

Middle: Partial correlation.

Bottom: squared covariance

minus squared partial

correlation.

A.x A.y A.z

A.x 0

A.y -0.211 0

A.z -0.483 -0.684 0

Table 3

Synergy, ecov = −0.39.

Top: correlation.

Middle: Partial correlation.

Bottom: squared covariance

minus squared partial

correlation.

A visualization of the pairwise and partial correlation networks estimated from this

covariance matrix via the EBICglasso function with default parameters from the qgraph

package is presented in Figure 4.
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A.x A.y A.z B.x B.y B.z C.x C.y C.z

A.x 1

A.y 0.832 1

A.z 0.545 0.678 1

B.x 0 0 0 1

B.y 0 0 0 0.832 1

B.z 0 0 0.150 0.545 0.308 1

C.x 0 0 0 0 0 0 1

C.y 0 0 0 0 0 0 0.832 1

C.z 0 0 0.150 0 0 0.150 0.545 0.068 1
Table 4

Covariance matrix representation of the example displayed in Figure 4 including

off-diagonal covariances in bold.

Results

Synthetic datasets

The simulations described above where implemented in lavaan (Rosseel, 2012).

Having discussed the basic elements of our procedure, we now present several potential

model variations, changing the level of O-information for one or more triplets. For this

purpose, each of the suggested models has been scaled up to include between nine and

twelve triplets. All of the following layouts will use one particular set of residual

correlations, meaning that only residual correlations are used between z-variables. These

layout designs are depicted in figure 5 and show how each node from a triplet can be

connected to two, three or four nodes belonging to other triplets. For the results below we

simulated 2000 observables. We first analysed a system composed of 27 variables arranged

into nine triplets with various covariance structures, which were — as triplets —

independent of each other. We considered three covariance structures, which give zero,
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positive, and negative O-information, respectively (we informally refer to the

O-information of these triplets as “triplet information”). Our analysis pipeline identifies

redundant and synergistic interdependencies in multiplets of order 3, but nothing in higher

orders, see figure 6. The areas representation of the hypergraphs are obtained with a

modified version of the HyperNetX package (Praggastis et al., 2019).

As a second step, we analysed scenarios where three groups of three triplets each

were linked through their z variables (layout 2 in Figure 5). These links through the z

variables in each triplet — weaker than the inter-triplet links — resulted in the appearance

of redundant multiplets in the independent case, see figure 7. For the case of positive

triplet information, these links result in new redundant triplets connecting the z variables

of different triplets, generating a more connected hypernetwork. This is a clear example of

a higher order behavior emerging from pairwise links. Even if the triplets have zero

O-information in their covariance matrices, the coupling between them gives rise to

redundant triplets. The synergistic triplets are not much disturbed by these links, while

one multiplet of order 4 appears. Interestingly, while the resulting hypergraph of redundant

hyperedges follows the pairwise structure, it is much less straightforward to derive the

resulting synergistic hyperedges with the current approaches. When two triplets of

variables are coupled (i.e. six variables that are strongly correlated within two disjoint

groups of two, and two variables each from a different triplet have a weak residual

correlation), then one can expect to observe interdependencies involving multiplets of

cardinality 4 or more. For example, colliders to a given node then become colliders also for

variables in the other triplet. Hence, it is not surprising to find synergistic circuits of 4

variables in these cases. On the other hand, depending on the sample size and on the

details of the internal correlations of triplets, just some of the synergistic circuits of order

>3 will be detected. This is completely different from LASSO, because the latter aims to

get a description of the system "in economy", hence it will discard the weak residual

correlation between triplets and it detects only the triplet’s dependencies. By contrast, the
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information-based approach can instead also detect subtle dependencies of order higher

than three.

Finally, we analysed scenarios with three groups of four triplets linked through the z

variables, see layout 3 in Figure 5. The results are in figure 8. The between-triplets links

result in synergistic multiplets of order 3 also in the cases when the covariance matrices are

designed to give zero or positive O-information. In the synergistic case, synergy extends to

order 4 maintaining the same integration of linked multiplets. Overall, the inclusion of

larger cliques produces a richer array of higher order interdependencies, resulting in

redundant and synergistic hypergraphs that emerge more clearly compared to the

corresponding pairwise network.

Influence of sample size

We retrieved the informational multiplets from the simulated data (layouts 1 and 2

described above) as we varied the sample size from 50 to 2000, randomly selecting a subset

of the original dataset constituted by 2000 samples, repeated 100 times, and then averaging

the number of retrieved multiplets for each type and size. Figure 9 reports the numbers of

multiplets retrieved after analyzing data generated according to layout 1 (left column) and

layout 2 (right column). The types of interdependencies explicitly sought by structuring

the covariance matrix to have a certain amount of O-information (zero for neither synergy

nor redundancy, positive for redundancy, negative for synergy) are all retrieved starting at

less than 200 observables. This is the case for both models. Additionally, we see how more

subtle effects arising from inter-triplet coupling (redundancy with negative or zero

intra-triplet O-information, synergy with positive intra-triplet O-information compatible

with zero) need more observables to become evident. For example, in the case of variables

coupled in a group of three with zero O-information, the first redundant multiplets to

become detectable are the internal ones, followed by the ones corresponding to the z

variables connected by black lines in panel 2 of Figure 5.

Again, there is no "ground truth", even if some lower and upper limits to the
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number of multiplets of variables with higher order behavior exist (e.g. zero for

independent triplets with no O-information, 12 for the case described above).

Reanalysis of the Empathy dataset — Briganti et al. (2018)

We re-analysed the psychometric data presented in Briganti et al., 2018 around the

construct of empathy (N = 1973). In this case we focused on a maximum of 50 most

informative multiplets for each type and order. We find (figure 10) that the O-information

can identify significant synergistic and redundant interdependencies co-existing within the

hypergraph representation of the construct. Interestingly, multiplets of orders 3 and 4

identify the same major factors obtained with the pairwise psychometric network

construction — namely fantasy, perspective taking, personal distress, and empathic

concern Briganti et al. (2018). Since network embeddings tend to place at the center items

engaging in more multiplets at once, our hypergraph visualisations contribute to conveying

visually Briganti and colleagues’ findings that empathic concern represents a pivotal

dimension of empathy, engaging with several other nodes/items. However, this happens

only for redundant interdependencies up to order 3 and 4: at higher multiplet orders,

fantasy becomes a more relevant major factor. This highlights higher order

interdependencies between cognitive-related projection abilities into fictional characters,

measuring fantasy, and more emotionally-focused items relative to distress, empathy, and

anticipation of the future. Please note that these distinct trends could not have been

retrieved by pairwise psychometric networks.

These results relate with recent independent studies indicating a

stronger-than-expected interplay between fantasy and emotions in regulating

empathy (Brown et al., 2017; Nomura & Akai, 2012; Stotland et al., 1978). Interestingly,

synergistic interdependencies highlight items 3 and 24 as pivotal. Whereas item 3 relates to

the ability to see things from the perspective of other individuals, and is thus evidently

crucial for synergistic interdependencies relative to empathy, item 24 (“I tend to lose

control during emergencies”) is relative to emotional regulation and distress. These results
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suggest that emotional regulation — the ability to exert control over emotional responses

— provides information over the whole construct but only when combined with items of all

other four factors, thanks to hyperedges.

The retrieved informational hyperedges could be interpreted also as quantitative

indications that emotional regulation and empathy greatly overlap with each other, mainly

in terms of understanding emotions, as also pointed out in independent studies (Stotland

et al., 1978; Thompson et al., 2019; Zaki, 2020). Although the causal directionality

between empathy and emotion regulation has not been clearly assessed, exploratory studies

have shown how a lack of empathy can trigger emotional dysregulation in young

adults (Schipper & Petermann, 2013), further underlining the relevance of the synergistic

centrality of emotion regulation found in our hypergraph representation.

The issue of visualization

One of the reasons why networks are used is that they offer an appealing visual

representation of the system under study, complementing our knowledge of it. In some

cases (proteomics, large social networks, etc.) networks involve hundred or thousands of

nodes, a moment arrives (sooner or later depending on the sparsity of the network) when

the nodes and the links are no longer all visible. Even a "hairball" network can arguably be

visually appealing, and more importantly, its local and global network properties remain

well-defined, even if they cannot be easily eyeballed from a figure. In hypergraphs, this

"visual curse of dimensionality" necessarily arrives earlier, as it is also evident from the

figure chosen as an example in the paper describing XGI (Landry et al., 2023), a recent

Python package for the analysis and display of higher order networks. It is also well

represented in this paper by the "crop circles" appearance of some of the figures shown so

far.

We don’t think this is necessarily a problem, even more so for the approach

presented here, which is by construction non-parsimonious: again what matters is to find

groups of variables sharing information.
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Possible mitigation strategies could be interactive figures or notebooks in which

users can toggle to evidence or hide certain nodes, labels, or hyperlinks. On the other hand

we do not recommend thresholding, since the output of the algorithm contains multiplets

that have all been already statistically validated.

Complementary to the network visualization, one could visualize for each variable

the number of multiplets it is involved in, and the (averaged) informational value across

these, as exemplified in figure 11.

Also for this dataset, we studied the effect of sample size, observing that redundant

multiplets emerge earlier, and the maximum value is reached with a few hundred

observables or less. More subtle effects (synergy) become more evident with an increasing

number of observables (figure 12).

Reanalysis of the PTSD dataset — (Armour et al., 2017)

As a second re-analysis, we studied the PTSD dataset (Armour et al., 2017) which

includes information about N = 221 U.S. veterans. Also in this case we focused on a

maximum of 50 most informative multiplets for each type and order. Our analyses did not

identify significant synergistic interdependencies between variables, see Figure (13), which

reflects a lack of higher order interdependencies across items in the four major factors —

which include elements as distinct as intrusions, avoidance, cognitive and mood alterations,

and arousal and reactivity alterations. In contrast, several redundant interdependencies

were found among items in multiplets of orders 3 and 4. This finding suggests that the

above factors may be driven by similar underlying components. The redundant

O-information hyperedges identify items about nightmares, flashbacks, physiological cue

reactivity, and avoidance of reminders as being highly central. This combination of

behavioral, emotional, and memory-related patterns underlines the complexity of PTSD as

a condition affecting not only the emotional and cognitive spheres of individuals, but also

their behavior and physiology, as pointed out by recent reviews (Armour et al., 2020;

Bisson et al., 2021).



INFORMATION-BASED HYPERGRAPHS IN PSYCHOMETRICS 25

The lack of a clearer internal structure and of synergistic interdependencies might

be due not only to the intrinsic complexity of the construct but also to sample size issues,

or other methodological issues. To better understand this, we re-analysed the same dataset

while using a larger number of variables (Armour et al., 2017) to include covariates, see

Figure (14). In this second hypergraph, clinical covariates like anxiety and depression levels

were identified as being pivotal for redundant interdependencies across multiplet orders 3,

4, and 5. This indicates that anxiety and depression levels overlap significantly with

behavioral, emotional, and physiological symptoms of PSTD, in agreement with

independent studies (Armour et al., 2020; Bisson et al., 2021). The addition of clinical

covariates polarised the hypergraph structure and led to a more pronounced separation

between intrusion variables and others. Furthermore, intrusive thoughts were found to be

an item bridging multiplets at order 4 in terms of redundant information. Hence, our

quantitative analysis indicates that intrusive thoughts play a key role in PSTD disorders

since they possess richly redundant information and are thus relevant for understanding the

whole construct.

Our findings relate with other studies highlighting intrusive thoughts as key signs of

PTSD (Brooks et al., 2019; Ressler et al., 2022), potentially rising from a maladaptive

thought suppression, i.e. a conscious, imperfect, cognitive-driven suppression of a negative

thought can enhance the prominence and recurrence of the thought itself, causing worry

and rumination. The persistence of intrusive thoughts has documented consequences over

behavior and emotional wellbeing (Armour et al., 2020; Brooks et al., 2019; Ressler et al.,

2022), which support the redundancy higher order patterns found in our work.

Interestingly, synergistic interdependencies are missing even in this expanded set of items.

Future research should investigate whether this pattern is due to sample size issues or other

methodological aspects of PTSD measurements.
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Discussion

We proposed a novel approach to capture higher order interdependencies, in the

sense of effects, or behavior, rather than in the sense of mechanisms, between observables

in psychometrics and described them in the form of hypergraphs. In particular, we

introduced an analysis pipeline that builds two hypergraphs reflecting redundant and

synergistic interdependencies. This approach capitalizes on recent advances in multivariate

information theory, which have provided data-efficient metrics to capture these phenomena

in multiplets of different sizes, and has the scope to build up and extend existent network

approaches to psychometrics. Current network approaches to psychometrics are based on a

key assumption: that relationships between variables can most of the time be represented

as pairwise networks — either in cases of having a common cause or effect, or being linked

by a directed flow of influences (i.e. as a directed acyclic graph) or an Ising-like

structure (Borsboom et al., 2021). This assumption, in turn, leads to the adoption of

pairwise random Markov fields as a natural modelling choice for identifying the

interdependencies between variables. However, recent work (Grasso et al., 2021; Mediano

et al., 2021; Williams, 2011) has convincingly shown the relevance of higher order

interdependencies, in which relationships often take place between groups of variables in a

way that cannot be reduced to a set of pairwise links. Building on these insights, our

proposed framework aims to relax these assumptions along two axes, extending and

complementing, not substituting, the pairwise approach.

On the first axis, we propose to disentangle the analysis of higher order mechanisms

(and structures) from the higher order behaviors that can emerge in complex systems. As

described in Rosas et al. (2022) in the context of physical systems, there is a fundamental

distinction between mechanisms that address how the system is structured and behaviors

that correspond to emergent properties related to what the system “does.” Furthermore,

the existence of higher order mechanisms do not imply higher order behaviors or vice-versa.

Consequently, our proposed approach focuses on the analysis of higher order patterns in
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the data, while explicitly acknowledging that this does not bring straightforward

implications on how the data was generated in the first place.

The second axis relates to possible confounding effects and their nature. Variables

sharing information, yet considered as individual or pairwise interacting units, can pose

problems for proper network reconstruction and in assigning a given centrality score to an

individual variable. The presence of a variable could either enhance or deteriorate

statistical dependencies between other variables, possibly influencing results for network

estimation when using established centrality indices of strength, betweenness, and

closeness (Hallquist et al., 2021). Analogous issues of deteriorated model validity would

hold also for other approaches like factor analysis (Tuccitto et al., 2010). Another

possibility could be the existence of a statistical dependency between two variables which is

considered insignificant in an exploratory analysis (Epskamp et al., 2018; Golino &

Epskamp, 2017). This issue increases the concern of detecting false positives regarding

statistical dependencies during estimation. While some efforts have been done in this

direction, e.g. Haslbeck et al. (2021), correlations can persist even after conditioning on a

latent variable, a phenomenon known as local dependency (McDonald, 2013). Our work

contributes quantitatively to this direction while exploiting the powerful statistical

framework of higher order interdependencies in complex networks (Rosas et al., 2022).

Considering higher order interdependencies involving the observables only, and thus

transferring these directly to hyperedges may let network approaches to be even more

complementary to classical factor analysis. Crucially this approach could reconcile two

competing points of view on shared variance and unique covariance between

variables (Forbes et al., 2021; Waldorp & Marsman, 2022). The instructive debate in these

two papers clearly shows how a representation in mere terms of pairwise networks entails

difficulties of interpretation that are instead naturally addressed considering the functional

hyperlinks. Indeed the covariance matrix is obviously pairwise, and neglects the higher

order correlations; the partial covariance matrix is a pairwise network where there is a
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peculiar (and rigid) way of stripping all the rest of the system while evaluating the

interdependence between two variables. The correspondence cited above shows that even in

the simplest cases several clarifications are in order to get to the right interpretations of the

results, and that one would probably need to look at both covariance and partial

covariance matrix to draw conclusions. Using our formalism (functional hyperlinks)

situations like those described in the papers (unidimensional latent variable model) are

handled in a natural way, recognizing for example that in figure 1 of Waldorp and

Marsman (2022) that the three variables form a redundant triplet. In addition to

redundancy, our approach would similarly and with the same efficiency address the

possibility of synergy, incorporating the notion of suppressors.

The approach presented here may also be helpful for detecting latent factors and

correctly attribute observables to them, which is also the goal of recent work aimed at

modelling local dependency as a trace for redundancy (Christensen et al., 2020; Golino,

Christensen, et al., 2021; Golino, Moulder, et al., 2021; Vijayakumar et al., 2022).

Redundancy comes from the fact that within a latent variable model, locally dependent

variables contain less information than the one predicted by the (inflated) model

parameters. Christensen and colleagues (Golino, Christensen, et al., 2021) measured

redundancy and local dependency by considering psychometric networks of pairwise

relationships enriched with weighted topological overlap, i.e. a metric estimating how

similarly connected any two nodes are in a network. Their innovative approach showed how

considering “higher order” interactions through network overlap provided superior factor

estimation compared to IRT modelling. Our approach adopts a different perspective,

substituting the pairwise psychometric network with a hypergraph structure in which

higher order interdependencies are naturally captured by information-theoretic hyperlinks.

Thus, it is worth noting that the terms “higher order,” “redundancy” or “3-way

interactions” can have a different flavor or even some different definitions than the ones

used so far. An important difference is that the structures simulated in the papers cited
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above do indeed generate redundancy (in the sense of higher order informational content),

but not synergy (see Appendix A in the Supplementary Material). Whereas redundancy

can be captured by local dependency between variables, synergy must be interpreted in

different terms (Stramaglia et al., 2016), i.e. as the amount of information available only

when variables are jointly considered. Our approach enables the quantification of

synergistic interdependencies also within psychometric networks, extending to

psychological representations a measure originally devised for brain data and networks.

A note here is in order on the choice of Gaussian variables in the simulations.

Readers more familiar with the random Markov field (RMF) approach could object that

Gaussian distributions by definition cannot encode higher interdependencies than two-way

interdependencies, as the presence of an interaction with three or more variables would

break Gaussianity. On the other hand, it has been shown that Gaussian multivariate

processes may show nontrivial properties of marginal distributions, i.e. higher order

dependencies, like synergy and redundancy (Barrett, 2015). The fact that higher order

dependencies can take place in the absence of higher order interaction in the RMF sense is

highly non-trivial. As a matter of fact, the same synergistic triplets of the

covariance-Gaussian-based layout 1 in Figure 5, reported in the bottom right part of figure

6 would be obtained by explicitly modelling a variable with a multiplicative relationship

between the other two.

The presented framework uses the O-information in its basic form, but there is a

number of variations of it that can be used for future work. In effect, recent work has

introduced multiple extensions of the O-information, including dynamical

versions (Stramaglia et al., 2021) that provide an expansion of Transfer Entropy (or

Granger Causality in the Gaussian case Barnett et al. (2009)), point-wise extensions which

provide O-information values for each individual pattern (Scagliarini, Marinazzo, et al.,

2022), and a spectral decomposition that resolve the O-information into different frequency

bands (Faes et al., 2022). These tools could be used to build hypergraphs extending
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temporal psychological networks, as that presented in Fried et al. (2022). Please note that

the metrics introduced in Stramaglia et al. (2021) can be used to calculate conditional

O-information metrics, which provide a close simile to the conditional correlation that is

often used in the network psychometric literature. Other interesting avenues for future

work include leveraging recent algorithms to identify hypergraph centrality (Tudisco &

Higham, 2021) and modularity (Chodrow et al., 2021; Kamiński et al., 2020), and also

harmonic analysis and dimensionality reduction (Medina-Mardones et al., 2021).

On top of the ubiquitous yet elusive nature of the concept of synergy, different

approaches to compute it have been developed, each one with its challenges, and without a

true consensus among the different scholars working on the topic. For a sample of the

proposed approaches and debates see Lizier et al. (2018), Olbrich et al. (2015), Quax et al.

(2017), Rosas, Mediano, et al. (2020), and Williams and Beer (2010). One limitation of the

O-information (and any other coarse-grained metric over an information decomposition, see

references above) is that a multiplet is labelled synergistic or redundant depending on its

sign, and in this sense, it reflects the net balance between the two quantities and only

acknowledges the dominant one. Note that redundancy might originate from underlying

psychological correlations, for instance, two or more symptoms might overlap rather than

cause one another, thus bringing more redundancy within the analysis (Epskamp et al.,

2018). For these reasons redundancy is prevalent in real datasets — where it is most likely

to be found by experimental design or construction, and hence this could cover synergistic

interdependencies making them harder to find. One solution could be to first reduce the

redundancy in the sense of common factors (Golino, Christensen, et al., 2021), or consider

implementing a full partial information decomposition e.g. as proposed in Bertschinger

et al. (2014), James et al. (2018), and Rosas, Mediano, et al. (2020)) where redundancy

and synergy can be considered as distinct information atoms that can be assessed entirely

separately.

In the introduction we mentioned simplicial complexes (Bianconi, 2021) as an



INFORMATION-BASED HYPERGRAPHS IN PSYCHOMETRICS 31

alternative representation of higher order networks. In simplicial complexes, if

interdependencies exist at a higher order, they must exist at all lower orders. In this sense

we think that simplicial complexes are not the most appropriate way to describe higher

order statistical dependencies as we see them here, since adjacency matrices of statistical

dependencies are full by definition. With our approach we separate different orders by

explicitly checking that a higher order multiplet contains more new information with

respect to the lower order ones.

Regarding the (visual) representation of hypergraphs, in addition to the dedicated

subsection of the results section, from the more conceptual point of view, a recent

study (Scagliarini, Nuzzi, et al., 2022) has proposed lower order descriptors of higher order

dependencies, quantifying the variation of the O-information when a smaller (as low as one

or two) number of variables are added to the rest of the system to form these groups,

allowing a mapping from higher order interactions to lists and pairwise networks.

To conclude, by taking inspiration from complex systems whose behavior is not

equal to the one resulting from the sum of its parts, here we asked ourselves whether the

interdependencies observed in psychometric data could be described in a way that could

account for beyond-pairwise (albeit conditioned), higher order interdependencies. Our

proposed framework builds hyperlinks directly from the multivariate distribution of the

data, identifying multiplets with a dominantly redundant or synergistic role. These

analyses may ultimately inform on which kind of information is being shared by different

behavioral variables or symptoms, and how these informational multiplets change in time.

This higher order perspective complements current network approaches, leading to ways of

assessing the data that greatly differ from what can be attained by other methods such as

factor analyses. By doing this, the proposed approach enriches the toolbox of

psychometricians and opens promising avenues for future investigation.
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Figure 1

Illustrative example of an hypergraph, where each node is a scholar, and each hyperlink

(represented as a colored string encompassing the nodes) is a quite popular paper on

network psychometrics co-authored by the nodes.
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Figure 2

Venn diagram of information theoretic measures for three variables x, y, and z. The dual

total correlation is represented by the union of the three mutual information terms and is

shown in the diagram by the yellow, magenta, cyan, and gray regions. The gray region

represents the interaction information. From

https://en.wikipedia.org/wiki/Dual_total_correlation.

https://en.wikipedia.org/wiki/Dual_total_correlation
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Figure 3

qgraph visualizations of the triplet. Both color intensity and edge thickness represent edge

weight. Red indicates negative edge weight, blue indicates positive edge weight. Left:

redundancy; Middle: Zero interaction information; Right: synergy.
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Figure 4

qgraph network visualizations of three triplets with residual correlations between triplets.

Triplet A includes redundancy; triplet B includes zero O-information; triplet C includes

synergy. The primary link between the triplets are done via the variables A.z, B.z and C.z.

Residual correlations were set at 0.15. Left: pairwise correlations; Right: partial

correlations



INFORMATION-BASED HYPERGRAPHS IN PSYCHOMETRICS 48

Figure 5

Visual overview of the presented model layouts. Each triplet, indicated by a capital letter

and a circle, is a set of three variables originating via the same latent variable. Black lines

represent residual correlation linking different triplets. The colors are used as a further way

of differentiating the variables within each triplet in the following figures. 1) Nine

independent triplets. 2) Three clusters of three triplets. All triplets within a cluster are

connected to two others via their z-variables. 3) Expansion of Model Layout 2. Three

clusters of four triplets. Each triplet within a cluster is connected to the three other related

triplets via the z-variables.
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Figure 6

Results obtained from layout 1 in Figure 5 when implemented with zero (i.e. independent),

positive (i.e. redundant), and negative (i.e. synergistic) O-information in each triplet. Top

row: network obtained with EBICglasso (Epskamp et al., 2018) and represented with

qgraph (Epskamp et al., 2012), where both color intensity and edge thickness represent edge

weight. Red indicates negative edge weight, blue indicates positive edge weight. Left: Zero

interaction information; Middle: redundancy; Right: synergy. Middle row: significant

multiplets of redundant O-information. Bottom row: significant multiplets of synergistic

O-information.
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Figure 7

Analogous results as shown in Figure 6 but for Model 2 in Figure 5.
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Figure 8

Analogous results as shown in Figure 6 but for Model 3 in Figure 5.
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Figure 9

Average number of redundant and synergistic informational multiplets of size 3 and 4,

obtained by computing the O-information on datasets simulated according to layout 1 and

layout 2, varying the number of observables.
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Figure 10

Empathy dataset from Briganti et al. (2018). Colors indicate membership of a component

of items, as in the reference paper. Top row: network obtained with EBICglasso. Middle

row: significant multiplets of redundant O-information. Bottom row: significant multiplets

of synergistic O-information.
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Figure 11

From the Empathy dataset from Briganti et al. (2018). Bar plots depicting the number of

times each variables is involved in a multiplet (blue), and the average informational value

(red)
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Figure 12

Average number of redundant and synergistic informational multiplets of size 3 and 4,

obtained by computing the O-information on the Empathy dataset (Briganti et al., 2018).
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Figure 13

PTSD dataset from Armour et al. (2017). Colors indicate membership in a class of items.

Top row: network obtained with EBICglasso. Bottom row: significant multiplets of

redundant O-information.
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Figure 14

PTSD dataset from Armour et al. (2017). Colors indicate membership in a class of items.

Grey items are the covariates. Top row: network obtained with EBICglasso. Bottom row:

significant multiplets of redundant O-information.
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