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a b s t r a c t

A great improvement to the insight on brain function that we can get from fMRI data can come from
effective connectivity analysis, in which the flow of information between even remote brain regions is
inferred by the parameters of a predictive dynamical model. As opposed to biologically inspired models,
some techniques as Granger causality (GC) are purely data-driven and rely on statistical prediction and
temporal precedence. While powerful and widely applicable, this approach could suffer from two main
limitations when applied to BOLD fMRI data: confounding effect of hemodynamic response function
(HRF) and conditioning to a large number of variables in presence of short time series. For task-related
fMRI, neural population dynamics can be captured by modeling signal dynamics with explicit exogenous
inputs; for resting-state fMRI on the other hand, the absence of explicit inputs makes this task more dif-
ficult, unless relying on some specific prior physiological hypothesis. In order to overcome these issues
and to allow a more general approach, here we present a simple and novel blind-deconvolution technique
for BOLD-fMRI signal. In a recent study it has been proposed that relevant information in resting-state
fMRI can be obtained by inspecting the discrete events resulting in relatively large amplitude BOLD signal
peaks. Following this idea, we consider resting fMRI as ‘spontaneous event-related’, we individuate point
processes corresponding to signal fluctuations with a given signature, extract a region-specific HRF and
use it in deconvolution, after following an alignment procedure. Coming to the second limitation, a fully
multivariate conditioning with short and noisy data leads to computational problems due to overfitting.
Furthermore, conceptual issues arise in presence of redundancy. We thus apply partial conditioning to a
limited subset of variables in the framework of information theory, as recently proposed. Mixing these
two improvements we compare the differences between BOLD and deconvolved BOLD level effective net-
works and draw some conclusions.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

We can learn a lot on the functioning of the human brain in
health and disease when we consider it as a large-scale complex
network, whose properties can be analyzed using graph theoretical
analysis (Bullmore and Sporns, 2009). With the advent of miscella-
neous and noninvasive MRI techniques, this connectome has been
mainly characterized by either structural or functional connectiv-
ity. Structural connectivity is commonly based on white matter
tracts quantified by diffusion tractography (Hagmann et al.,
2008); functional connectivity relies on the other hand on statisti-
cal dependencies such as temporal correlation (Salvador et al.,

2005). An important addition to this framework can come from
effective connectivity analysis (Stephan and Roebroeck, 2012), in
which the flow of information between even remote brain regions
is inferred by the parameters of a predictive dynamical model.

For some techniques, such as dynamic causal modelling (DCM)
and structural equation modelling (Büchel and Friston, 1997;
Friston et al., 2003), these models are built and validated from spe-
cific anatomical and physiological hypotheses. Other techniques
such as Granger causality analysis (GCA) (Bressler and Seth,
2011), are on the other hand data-driven and rely purely on statis-
tical prediction and temporal precedence. While powerful and
widely applicable, this last approach could suffer from two main
limitations when applied to blood-oxygenation level-dependent
(BOLD)-functional MRI (fMRI) data: confounding effect of hemody-
namic response function (HRF) and conditioning to a large number
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of variables in presence of short time series. Early interpretation of
fMRI based directed connectivity by GCA always assumed homoge-
neous hemodynamic processes over the brain; several studies have
pointed out that this is indeed not the case and that we are faced
with variable HRF latency across physiological processes and dis-
tinct brain regions (Roebroeck et al., 2011; Valdes-Sosa et al.,
2011). Recently, a number of studies have addressed this issue pro-
posing to model the HRF according to several recipes (Bakhtiari
and Hossein-Zadeh, 2012; Havlicek et al., 2011, 2010; Ryali et al.,
2011). As well, a recent study has proposed that it would still fea-
sible to infer connectivity at BOLD level, under the assumption that
Granger causality is theoretically invariant under filtering (Barnett
and Seth, 2011) and that the HRF can be considered as a filter. It is
still unclear whether and how specific effects related to HRF dis-
turb the inference of temporal precedence. In addition a simulated
or experimental ground truth is difficult to obtain, though some
studies on simulated fMRI data have tried to reveal the relationship
between neural-level and BOLD-level causal influence (Deshpande
et al., 2010; Smith et al., 2011). A considerable help to obtain the
HRF for deconvolution could come from multimodal imaging
where the high temporal resolution of EEG is combined to the high
spatial resolution of fMRI, but this experimental approach is still
far from being optimal and widely applicable. HRF has been stud-
ied almost since the early days of fMRI (Handwerker et al., 2012).
For task-related fMRI, neural population dynamics can be captured
by modeling signal dynamics with explicit exogenous inputs
(Friston et al., 2008; Riera et al., 2004), i.e. deconvolution according
to the explicit task design is possible in this case (Buxton et al.,
1998; Friston et al., 2000; Glover, 1999). For resting-state fMRI
on the other hand, the absence of explicit inputs makes this task
more difficult, unless relying on some specific prior physiological
hypothesis (Friston et al., 2008; Havlicek et al., 2011). In order to
overcome these issues and to allow a more general approach, here
we present a simple and novel blind-deconvolution technique for
BOLD-fMRI signal.

Coming to the second limitation, in order to distinguish among
direct and mediated influences in multivariate datasets it is neces-
sary to condition the analysis to other variables. A bivariate analy-
sis would indeed lead to the detection of many false positives. In
presence of a large number of variable and short time series, a fully
multivariate conditioning could lead to computational problems
due to the overfitting. Furthermore, conceptual issues would arise
in presence of redundant variables (Angelini et al., 2010;
Marinazzo et al., 2010). In this paper we thus apply partial
conditioning for Granger Causality (PCGC)1 to a limited subset of
variables, as recently proposed (Marinazzo et al., 2012) for
reconstructing the BOLD and deconvolved BOLD level effective
connectivity network (ECN) and compare them.

2. Materials and methods

2.1. Blind-deconvolution in resting-state fMRI data

Hemodynamic deconvolution of BOLD signal is performed as
described in David et al. (2008) and Glover (1999). Under the
assumption that the transformation from neural activation to
BOLD response can be modeled as a linear and time invariant sys-
tem, measured fMRI data b(t) can be seen as the result of the con-
volution of neural states s(t) with a HRF h(t):

bðtÞ ¼ sðtÞ � hðtÞ þ �ðtÞ ð1Þ

where t is the time and � denotes convolution. � (t) is the noise in
the measurement, which we assume to be white. Since the right
side of the above equation includes three unobservable quantities,
in order to solve the equation for h(t) we need to substitute s(t) with
a hypothetical model of the neural activation for s(t). Here we em-
ploy a simple on–off model of activation to model s(t):

ŝðtÞ ¼
X1
s¼0

dðt � sÞ ð2Þ

where d(t � s) is the delta function. This allows to fit the HRF h(t)
according to ŝðtÞ using a canonical HRF (two gamma functions)
and two derivatives (multivariate Taylor expansion: temporal
derivative and dispersion derivative) (Friston et al., 2000), as is
common in most fMRI studies.

Once calculated h(t), we can obtain an approximation ~sðtÞ of the
neural signal from the observed data using a Wiener filter

~sðtÞ ¼ dðtÞ � bðtÞ ð3Þ

Let H(x), B(x), E(x), and D(x) be the Fourier transforms of h(t), b(t),
�(t), and d(t), respectively. Then

DðxÞ ¼ H�ðxÞ
jHðxÞj2 þ jEðxÞj2

ð4Þ

where � denotes complex conjugate. The estimation ~sðtÞ of the neu-
ral states s(t) is then given by

~sðtÞ ¼ FT�1fDðxÞBðxÞg ¼ FT�1 H�ðxÞBðxÞ
jHðxÞj2 þ jEðxÞj2

( )
ð5Þ

where FT�1 is the inverse Fourier transform operator.
For task-related fMRI, the stimulus function provides the prior

expectations about neural activity and a generative model whose
inversion corresponds to deconvolution; this is in principle not
the case for resting-state fMRI. Nonetheless there is increasing
evidence of specific events and neural states that govern the
dynamics of the brain at rest (Deco and Jirsa, 2012; Petridou
et al., in press). Furthermore, Tagliazucchi et al. proposed that
these events are reflected by relatively large amplitude BOLD sig-
nal peaks and thus that such fluctuations could encode relevant
information from resting-state fMRI recordings (Tagliazucchi
et al., 2011, 2012). Inspired by their work, we consider resting-
state fMRI as spontaneous event-related, and we propose to extract
the HRF from those pseudo-events. After doing this, we can em-
ploy the deconvolution model in the same way as described
above. It is known that the BOLD response is much slower than
the neural activation that is presumed to drive it. Consequently,
the peak of the BOLD signal lags behind the peak of neural acti-
vation (i.e. by j points). So here we assume that these events
are generated from ŝðtÞ.

Glover pointed out that the noise spectrum in task-related fMRI
can be obtained from time series measurements in nonactivated
cortical regions (Glover, 1999); here we extend the model to cope
with resting-state fMRI for which there is no explicit activation. In
this study we assumed covariance of noise � equal to
cov½bðtÞ � ŝðtÞ � hðtÞ�.

In order to obtain a value for j, we search all integer values in
the interval [0 jmax], where jmax is an arbitrary maximum value,
choosing the one for which the noise error covariance is smallest
as the onset. By this method we can perform deconvolution on
all BOLD signals, requiring no information on timing or a priori
spatial information of events; furthermore, the time series could
be the average of time series over a region of interest with any
scale, or series extracted by independent or principal component
analysis. A flow chart for BOLD signal deconvolution is shown in
Fig. 1.

1 Please note that this approach is different from partial Granger causality (PGC)
(Guo et al., 2008. Journal of Neuroscience Methods, 172, 79).
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This is the pseudo-code for our procedure.

Pseudo-code
i. Preprocess time series (e.g. detrend, normalize, etc.).
ii. Find a time set S in which the BOLD values exceed a given

threshold around a local maximum.
iii. Choose a maximum time delay jmax

FOR n = 0 to jmax

Sn = S � n
ŝnðtÞ ¼ 1; t 2 Sn; ŝnðtÞ ¼ 0; t R Sn.
Fit a general linear model using ŝn and canonical HRF with

time and dispersion derivatives.
END FOR

iv. Let �j ¼min06n6jmaxf�ng, where
�n ¼ cov ½bðtÞ � ŝnðtÞ � hnðtÞ�.

v. Follow Eqs. (4) and (5), using HRF hj and �j for
deconvolution, get ~sðtÞ.

The code is available at http://users.ugent.be/dmarinaz/
code.html

2.2. Partially conditioned Granger causality

Here we employ a methodology proposed in Marinazzo et al.
(2012) which allows to compute Granger causality conditioned
to a limited number of variables in the framework of information
theory. The idea is that conditioning on a small number of vari-
ables, chosen as the most informative for the candidate driver var-
iable, is sufficient to remove indirect interactions for sparse
connectivity patterns.

We consider n covariance-stationary variables {xi(t)}i=1,. . .,n,
denoting the state vectors as:

XaðtÞ ¼ ðxaðt �mÞ; . . . ; xaðt � 1ÞÞ ð6Þ

m being the model order. Let �(xajY) be the mean squared error pre-
diction of xa on the basis of the vectors Y. The partially conditioned
Granger causality index c(b ? a) is defined as follows:

cðb! aÞ ¼ log
�ðxajZÞ

�ðxajZ [ XbÞ
ð7Þ

where Z ¼ fXi1 ; . . . ;Xind
g is a set of the nd variables, in {X1, X2,

. . . , Xn}nXb, which are most informative for Xb. We adopt the follow-
ing approximate strategy for Z: given the previous Zk�1, the set Zk is
obtained adding the variable with greatest information gain. This is
repeated until nd variables are selected.

2.3. Simulated datasets: NetSim

A method for establishing a ground truth for BOLD fMRI data
has not reached a general consensus. Recently a benchmark data-
set, NetSim (Smith et al., 2011) has attracted a lot of attention. In
that study the simulations (50 separate realizations of 200 time
points) are performed with the Directed Causal Modeling (DCM)
fMRI forward network model and the nonlinear balloon model
for the vascular dynamics, the BOLD data is sampled with a TR of
3 s. Previous studies have shown that lag-based methods perform
very poorly on these datasets; it is anyway worthy to mention that
these data, apart from being simulated in the peculiar DCM frame-
work, contain no reciprocal connections and only Gaussian noise,
limiting their universality as ground truth. Here we analyzed the
largest of these datasets, consisting of 50 nodes. Since we know
the ground truth for these simulated data, we can define the per-
formance in terms of sensitivity (true positives detected) and spec-
ificity (true negatives detected). After deconvolution the sensitivity
improved significantly, increasing from 20% to 30%. Also the spec-
ificity improved from 88% to 94%. This does not render GC the
method of choice for these data, for which we also have to point
out that ’’neural events’’ and noise are not distinguishable, but
gives nonetheless an indicative result for the usefulness of decon-
volution of the BOLD signal.

2.4. Resting-state fMRI datasets

In order to investigate the role of repetition time (TR) on the
deconvolution procedure and on the effective network reconstruc-
tion, our analyses were performed on a resting-state fMRI dataset
which has been publicly released in the ‘‘1000 Functional Connect-
omes Project’’.2 All participants had no history of neurological and
psychiatric disorders and all gave the informed consent approved
by local Institutional Review Board. During the scanning participants
were instructed to keep their eyes closed, not to think of anything in
particular, and to avoid falling asleep.

Two data sets with different TR (TR = 1.4 s and TR = 0.645 s)
were acquired on Siemens 3T Trio Tim scanners using developed
multiplexed echo planar imaging (Feinberg et al., 2010). As speci-
fied in detail below, two resting-state fMRI data are included in
the protocol-a TR = 0.645 s (3 mm isotropic voxels, 10 min) to pro-
vide optimal temporal resolution and TR = 1.4 s (2 mm isotropic
voxels, 10 min) to provide optimal spatial resolution. The third

Fig. 1. Flow chart for blind-deconvolution procedure. (1) The pre-processed (detrended and normalized) observed BOLD signal is evaluated against a given threshold
obtaining several sets of putative onsets for pseudo-events. (2) The time deviation of the timing sets is adjusted; the set with smallest noise error covariance will represent
the event. (3) The observed BOLD signal is deconvolved into a neural signal by using the corresponding HRF.

2 http://fcon_1000.projects.nitrc.org, accessed March 2012.
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data set, acquired on a 4T scanner, contains standard resting-state
fMRI acquisitions with a longer TR (TR = 3, 4 mm isotropic voxels,
5 min). For more detail on subject and data information, please
see website (see 2).3

2.5. Data preprocessing

Preprocessing of resting-state images was performed using the
Statistical Parametric Mapping software (SPM8, http://www.fil.io-
n.ucl.ac.uk/spm). The preprocessing included slice-timing correc-
tion relative to middle axial slice for the temporal difference in
acquisition among different slices, head motion correction, spatial
normalization into the Montreal Neurological Institute stereotaxic
space, resampling to 3-mm isotropic voxels. 8(9) subjects were ex-
cluded from the dataset with TR = 0.645 s (TR = 1.4 s) because
either translation or rotation exceeded ±1.5 mm or ±1.5�, resulting
in 16 (TR = 0.645 s) and 15 (TR = 1.4 s) subjects each one scanned
in two sessions which were used in the analysis. One subject
whose data were too noisy was excluded from the TR = 3 dataset,
resulting in 10 subjects used in the analysis. In order to avoid intro-
ducing artificial local spatial correlations between voxels, no spa-
tial smoothing was applied for further analysis, as previously
suggested (Zhang et al., 2011; Salvador et al., 2005; Liao et al.,
2011).

2.6. Anatomical parcellation and analysis

The functional images were segmented into 90 regions of inter-
est (ROI) using automated anatomical labeling (AAL) template as
reported in previous studies. For each subject, the representative
time series of each ROI was obtained by averaging the fMRI time
series across all voxels in the ROI (Salvador et al., 2005). Several
procedures were used to remove possible spurious variances from
the data through linear regression. These were (i) six head motion
parameters obtained in the realigning step, (ii) signal from a region
in cerebrospinal fluid, (iii) signal from a region centered in the
white matter, (iv) global signal averaged over the whole brain.
The BOLD time series were deconvolved into neural state signal
using the above mentioned approach.

2.7. Effective connectivity network analysis

The topological properties of the effective connectivity network
were defined on the basis of a 90 � 90 binary directed graph G,
consisting of nodes and directed edges:

eij ¼
1; Fi!j > T;

0; otherwise

�
ð8Þ

where eij refers to the directed edge from ROI i to ROI j in the graph.
T indicates the threshold. In a directed graph eij is not necessarily
equal to eji. Considering that the graph we focused on is directed,
all topological properties were calculated on incoming and outgoing
matrix, respectively. Graph theoretical analyses were carried out on
the effective connectivity network from the datasets with
TR = 0.645 s and TR = 1.4 s using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010).

2.8. Threshold selection

As previous studies suggested that the brain networks of each
subject normally differ in both the number and weighting of the
edges (Zhang et al., 2011; Liao et al., 2011), we applied a matching
strategy to characterize the properties of effective connectivity

network. Both the global and local network efficiencies have a pro-
pensity for being higher with greater numbers of edges in the
graph (Wen et al., 2011). Modifying the sparsity values (number
of edges) of the adjacency matrix also altered the graph’s structure.
As a consequence it was suggested that the graphs to be compared
must have (a) the same number of nodes and (b) the same number
of edges (Bullmore and Bassett, 2011). The cost was defined as the
ratio of the number of existing edges divided by the maximum pos-
sible number of edges in a network. Since there is currently no for-
mal consensus regarding selection of cost thresholds, here we
selected a range of 0.05 to 0.14 with step = 0.01 for subsequent
network analyses. The lower bound was chosen following the
argument given in Achard and Bullmore (2007) as the one yielding
a sparse graph with mean degree P2ln(90) (total number of edges
P405 where 405/902 = 0.05). The upper threshold corresponded to
the smallest significant value of Granger causality (F-test with
p = 0.05) across all subjects from the datasets having TR = 0.645
and 1.4 s (same subjects).

2.9. Network metrics

For effective connectivity network at each cost threshold, we
calculated both overall topological properties and nodal character-
istics (Rubinov and Sporns, 2010). The overall topological proper-
ties included (i) small-worldness (r), related to normalized
clustering coefficient (c) and normalized characteristic path length
(k) and (ii) network efficiency, divided in local efficiency (Eloc) and
global efficiency (Eglob). The nodal characteristics included (i) the
nodal degree, that quantifies the extent to which a node is relevant
to the graph and (ii) the nodal efficiency, that quantifies the impor-
tance of the nodes for the communication within the network
(Bassett and Bullmore, 2006). Furthermore we calculated the area
under the curve (AUC) across all cost values for the above men-
tioned network properties. This quantity represents a summarized
scalar for topological characterization of brain networks indepen-
dent of single cost threshold selection.

3. Results

3.1. Reconstruction of HRF

We tested the proposed deconvolution method on resting-state
fMRI data; following the procedure summarized in the box, firstly
we set a maximum time lag from a given threshold crossing, and
obtain an optimal value for this lag, denoted with j. The histo-
grams for j, reported in Fig. 2 show a maximum around 4–6 s,
which is consistent with a previous study according to which the
latency delay is 4–8 s in gray matter (Lee et al., 1995). It is worth
to mention that the lower TR could allow a more accurate estima-
tion of the lag.

To assess the effect of deconvolution, we compared the shape of
voxel based HRF over the whole brain using different TRs. We fo-
cused on three parameters: response height, time-to-peak, and
full-width at half-max (FWHM) as potential measures of response
magnitude, latency, and duration. Using principal component anal-
ysis we determined the average intersubject variability of HRF
maps. We found that the first component of HRF accounted for
81.7 ± 2.9% (response height), 98.1 ± 1.2% (time to peak) and
95.6 ± 3.5% (FWHM) of the variance. Furthermore, the spatial dis-
tribution is very similar to the mean group map. The mean group
results are plotted in Fig. 3. The response height, time to peak
and FWHM of HRFs differ across brain regions, as a consequence
of multiple factors including neural activity differences, global
magnetic susceptibilities, vascular differences, baseline cerebral
blood flow, and slice timing differences (Handwerker et al.,3 http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/FrontPage.html.
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Fig. 2. Histogram of the values of time deviation j. (⁄:without regression of global signal).

Fig. 3. Spatial distribution of HRF shape: response height, time to peak and full-width at half-max (all values have been normalized, keeping range from 0 to 1). (⁄:without
regression of global signal).
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2004). The plots appear more noisy for the dataset with TR = 3 s, in
particular for the FWHM (as well as a consequence of the reduced
number of subjects for this dataset). Of course the deconvolution
approach suffers from the low sampling rate, together with any
other possible insight on the dynamics and on the connectivity.
Nonetheless our approach is able to retrieve an HRF-like function
with height and time to peak comparable to those obtained with
shorter TRs from point processes also in this case, not only impos-
ing a canonical shape, but also when the sole impulse response
function is considered.

3.2. Variance stability of causality matrix

As another indicator of the stability of the proposed joint of
deconvolution and PCGC approach we tested the variance of cau-
sality matrix across all subjects. We calculated the variance of
the Granger causality matrix obtained both on the BOLD and
deconvolved BOLD level signal. Firstly, we converted the matrix
to Z-scores, then we calculated the variance of each matrix ele-
ment, finally summing up the all these values into an overall var-
iance index. The variance of Granger causality matrix obtained
from the deconvolved signal is much lower than the one of the
BOLD level matrix for all TR values (Fig. 4). Also, PCGC method kept
the variance lower than full conditioned GC method. This result
was confirmed testing a network at another scale using 1024 nodes
(Fig. 4, the native AAL segmentation was parcellated into 1024 mi-
cro regions of interest of approximately identical size across both
hemispheres (Zhang et al., 2011); in this case we could not test full
conditioned GC due to small number of samples).

3.3. Global signal regression

As shown in previous studies, several sources of spurious vari-
ance should be removed by regression: motion artifacts, white
matter and ventricular time courses. Still, the effects of regression
against the global signal, calculated by averaging across all voxels
within a whole brain mask, are debated. In order to evaluate this
effect on our data we calculated spatial correlation between the
group mean image of HRF (response height, time to peak, FWHM)
with and without regression of global signal in the preprocessing
step, obtaining high Pearson correlation between them: r = 0.97

(response height), 0.90 (time to peak), 0.88(FWHM). We can thus
conclude that regression against global signal still preserved the
spatial distribution. This analysis is reported as an example from
the dataset with TR = 1.4 s.

3.4. Effective connectivity network recovery with partial conditioning

When trying to reconstruct effective connectivity networks, we
are faced with the problem of coping with a large number of vari-
ables, when the application of multivariate Granger causality may
be questionable or even unfeasible, whilst bivariate Granger cau-
sality would detect also indirect interactions. Conditioning on a
large number of variables requires an high number of samples in
order to get reliable results. Reducing the number of variables that
one has to condition over would thus provide better results for
small data-sets. In the general formulation of Granger causality,
one has no way to choose this reduced set of variables; on the
other hand, in the framework of information theory, it is possible
to individuate the most informative variables one by one.

The optimal model order m (order of the autoregressive model
in Granger causality, embedding dimension in transfer entropy) for
deconvolved BOLD and BOLD signal was determined by leave-one-
out cross-validation, and was found to be 3 for TR = 0.645 s, 2 for
TR = 1.4 s and 1 for TR = 3 s. Under the Gaussian assumption, we
constructed effective connectivity network using PCGC method.
We firstly have to determine the number of variables upon which
conditioning. To do this we look at how much uncertainty we elim-
inate adding an extra variable, letting the number of conditioning
variables included nd vary from 1 to 20. This uncertainty can be ex-
pressed in terms of the information that we gain adding an extra
variable. In Fig. 5, we plot the information gain as a function of
nd; as expected, both this quantity and its increment decrease
monotonically with nd.

We can observe that the knee of the curves occurs when six
variables are considered. This happens also when we consider dif-
ferent brain prior templates with 17 or 160 nodes (Wu et al., 2012).
This could be connected to the fact that the average number of
modules which explain the equal-time correlations of resting brain
is close to six (Marinazzo et al., 2010; Salvador et al., 2005), there-
fore picking one variable from each module is sufficient to have
most of the information, about a given channel, that can be ob-

Fig. 4. Total variance of causality matrix across all subjects. Full conditional Granger causality (CGC) and PCGC combined with BOLD and deconvolved BOLD level signal were
used for construction of causality matrix.
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tained from the remaining channels, and this independently on the
number of nodes. The effect of deconvolution, for the information
gain, is to qualitatively raise the curve for TR = 0.645 s, and to low-
er them for TR = 1.4 s. This trend (not statistically significant)
might be the result of two competing effects, the fact the deconvo-
lution may remove spurious correlations and/or restore genuine
correlations obscured by noise.

Synthesizing the knee of the curves, sensitivity and specificity,
we consider nd = 10 as the most appropriate number of most infor-
mative variables to include in the conditioning procedure.

3.5. Global characteristics of ECN

The global topological properties of brain ECN at deconvolved
BOLD and BOLD level rely on the choice of thresholds. We used
multiple cost thresholds and the AUC to evaluate the stability of
the topological organization (Table 1). An higher number of differ-
ences between the two networks was found with a (relatively)
longer TR (TR = 1.4 s). Specifically, the AUC of small-worldness

(r), normalized clustering coefficient (c), clustering coefficient
(Cp) and local efficiency (Eloc) displayed the most significant differ-
ences, similar to what emerged with TR = 0.645 s. For the data set

Fig. 5. The mutual information gain (Dy), when the (nd + 1)th variable is included, is plotted versus nd. The information gain is averaged over all the variables.

Table 1
Comparison of AUC between deconvolved BOLD and BOLD. nd = 10, Y: p < 0.05, FDR
corrected; N: otherwise; ": deconvolved BOLD � BOLD; ;: deconvolved BOLD �
BOLD;.

Global network parameter AUC difference

TR = 0.645 s TR = 1.4 s

Incoming Outgoing Incoming Outgoing

Sigma (r) Y" N Y" Y"
Lambda (k) N N N N
Gamma (c) Y" N Y" Y"
Characteristic path length

(Lp)
N Y" Y" N

Clustering coefficient (Cp) Y" N Y" Y"
Global efficiency (Eglob) N Y; Y; N
Local efficiency (Eloc) Y" N Y" Y"
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with shorter TR we found significant differences in the characteris-
tic path length and global efficiency of the outgoing network,
whereas the most relevant differences were found for the incoming
network with the longer TR.

3.6. Nodal characteristics of ECN

Comparing the two networks on nodal degree, nodal global effi-
ciency and nodal local efficiency revealed modifications in decon-
volved BOLD and BOLD level (Fig. 6). The patterns of nodal
degree modifications resembled to those of nodal global efficiency
in incoming network in both TR = 0.645 s and TR = 1.4 s fMRI data
sets. In addition, more brain regions showed modified nodal degree
and (global/local) efficiency in TR = 0.645 s rather than TR = 1.4 s
data.

4. Discussion

In this study we proposed a novel methodology to achieve
deconvolution in resting state data using spontaneous pseudo
events, and to apply partially conditioned Granger Causality to
the analysis of fMRI data. In our opinion this joint approach is
the most convenient to infer effective connectivity with Granger
Causality from resting state fMRI data.

In the absence of a well defined ground truth, and in the light of
the still active and unresolved debate on the usefulness of HRF
deconvolution Granger causality based connectivity, we limit our-
selves to validate the stability of the proposed method and indicate
a possible path for the continuation of this debate, quantifying and
comparing the overall topological properties of large-scale ECNs on
deconvolved BOLD-level versus BOLD-level signals, investigating
also the effect of different time resolutions (TR = 0.645 s and
TR = 1.4 s).

Previous discussions on evaluating effective connectivity from
fMRI data reached the conclusion that it is better to use state-space
model for inferring causality on hidden neural states (Valdes-Sosa
et al., 2011; Ryali et al., 2011; Bakhtiari and Hossein-Zadeh, 2012).
A pioneering EEG-fMRI study provided the first experimental sub-
stantiation of the theoretical possibility to improve interregional

coupling estimation from hidden neural states of fMRI (David
et al., 2008). Though promising (Friston, 2009), these implications
are still limited by the fact that multimodal recording is invasive
and not applicable to healthy controls. As a consequence, data-
driven methods for substantiating the confounding variability of
haemodynamics have been developed. The two available types of
state space models in estimation of HRF (Valdes-Sosa et al.,
2011): the generic (linear canonical/spline HRF) (Glover, 1999,
2003) and biophysically informed models (DCM nonlinear HRF)
(Friston et al., 2000). Generic models are widely applicable but lack
specific biophysical constraints (Glover, 1999; Marrelec et al.,
2003), while biophysically informed models are constrained by
the hypothesis itself (Friston et al., 2000). A recently proposed, bio-
physically informed bind deconvolution approach based on the
state-of-the-art Cubature Kalman filtering could be a useful tool
for resting-state fMRI (Havlicek et al., 2011). In the present study,
however, we use a simpler approach which employs the generic
linear canonical HRF for deconvolution. It is worth to point out that
the significant differences between BOLD-and deconvolved BOLD-
level effective connectivity found in complex network measures
cannot absolutely exclude the misestimation of HRF. Furthermore
HRF latency effect does not always critically affect the evaluation
of mutual influence, so ECNs on BOLD and deconvolved BOLD level
could have important consistencies (Supekar and Menon, 2012).

Findings from brain connectivity studies have now demon-
strated that the human brain network exhibits robust small-world
topological properties, not only in the anatomical connectivity
(reconstructed by diffusion tractography) (Hagmann et al., 2008)
and functional connectivity network (Eguiluz et al., 2005;
Salvador et al., 2005), but also in effective connectivity network
(Liao et al., 2011). The current results also suggested that the
ECNs obtained from BOLD and deconvolved data, with shorter
and longer TR, have prominent small-world attributes, which
would thus be confirmed as a general signature of robust organi-
zation of complex brain networks. Small-worldness indicates in-
deed an optimal balance between segregated and integrated
organization to process the information (Bassett and Bullmore,
2006). For relatively longer TR we found significant differences
between BOLD and deconvolved ECNs. Although an explanation
based on precise neurobiological mechanisms is still not evident,

Fig. 6. Z-scores for Area under Curve from regional nodal parameters (deconvolved BOLD vs BOLD), p < 0.05, FDR corrected, (nd = 10). Blue indicate negative values, red
positive values. The point size is proportional to the absolute Z value. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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we can suggest that the BOLD effect results from a more complex
sequence of effects linking neuronal activity, vascular changes and
MRI signal (Logothetis, 2008). Hemodynamic delay, and hence the
correct onset of the events is indeed hard to capture with a long
TR (Laufs et al., 2008).

In complex networks organization, the normalized clustering
coefficient and the clustering coefficient are two key measures.
They quantify the extent of local cliquishness or of local efficiency
of information transfer of a network (Bullmore and Bassett, 2011),
reflecting the local properties of network topologies. For longer TR,
we observed significant differences between the two level ECNs.
Thus the short-scale or local-scale network properties are indeed
affected by deconvolution. Moreover, the normalized characteristic
path length and the characteristic path length quantify global effi-
ciency or the capability for parallel information propagation of a
network (Bullmore and Sporns, 2009). These two measurements
along with global efficiency are mainly associated with long-range
connections ensuring effective interactions or rapid transfers of
information (He et al., 2009). It is widely accepted that long-range
axonal connectivity being an important indicator of the functional–
anatomical organization of the human cortex (Knösche and Tittge-
meyer, 2011). This study reported no differences in long-range net-
work organization.

It is known that resting-state functional connectivity studies
using either seed functional connectivity or independent compo-
nent analysis benefit from higher sampling rates to adequately
sample undesirable respiration and cardiac effects (Birn et al.,
2008), while for event-related fMRI, faster sampling could allow
for a better characterization of the hemodynamic response. The
same applies to GCA. The previous simulations showed that accu-
racy of Granger causality depends on volume TR, faster sampling
interval increased the detection capacity of GCA of fMRI data to
neural causality (Deshpande et al., 2010; Roebroeck et al., 2005).
In this paper, we focus on resting-state fMRI data with
TR = 0.645 s and 1.4 s to maximally escape information loss due
to low sampling. Considering the limitation of acquisition se-
quence, the conventional fast TR data acquisition brings to the loss
of the fine spatial resolution (Huettel et al., 2004; Kim et al., 1994).

Other methodological considerations are worth to be men-
tioned. The first one concerns data preprocessing. As a general
idea spatial smoothing can reduce the noise and increase sig-
nal-to-noise ratio, therefore improving the accuracy of detecting
of neural event (Huettel et al., 2004). Here we do not include this
step. As we used AAL template, spatial smoothing would blur the
boundary among these regions, which may affect the GC infer-
ence. Temporal filtering is frequently a necessary step for func-
tional connectivity analysis of resting-state fMRI data. In line
with previous studies that considered a low model order in GCA
(Hamilton et al., 2010; Liao et al., 2011), we did not performed
low-pass filtering.

Secondly, graph theoretic approach is one of the most power-
ful and flexible approaches to investigate functional and struc-
tural brain connectome; still some controversies remain,
concerning the definition of network nodes and edges (Bullmore
and Bassett, 2011; Wig et al., 2011). Different node definitions
by prior anatomic brain templates (Wang et al., 2009) or node
scales (Fornito et al., 2010; Zalesky et al., 2010) could produce
different results. In future works, more brain templates and more
node scales comparison for effective connectivity network should
be explored.

Code

The code for the deconvolution procedure is available at the
website http://users.ugent.be/	dmarinaz/code.html.
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