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Kernel Granger Causality Mapping Effective
Connectivity on fMRI Data

Wei Liao, Daniele Marinazzo, Zhengyong Pan, Qiyong Gong, and Huafu Chen*

Abstract—Although it is accepted that linear Granger causality
can reveal effective connectivity in functional magnetic resonance
imaging (fMRI), the issue of detecting nonlinear connectivity has
hitherto not been considered. In this paper, we address kernel
Granger causality (KGC) to describe effective connectivity in
simulation studies and real fMRI data of a motor imagery task.
Based on the theory of reproducing kernel Hilbert spaces, KGC
performs linear Granger causality in the feature space of suitable
kernel functions, assuming an arbitrary degree of nonlinearity.
Our results demonstrate that KGC captures effective couplings
not revealed by the linear case. In addition, effective connectivity
networks between the supplementary motor area (SMA) as the
seed and other brain areas are obtained from KGC.

Index Terms—Effective connectivity, functional magnetic reso-
nance imaging (fMRI), kernel Granger causality (KGC).

1. INTRODUCTION

UNCTIONAL magnetic resonance imaging (fMRI) is

widely used in neuroimaging research to detect changes
in the level of activation of brain areas in response to specific
tasks. In order to better understand the interactions among dis-
tributed activated brain areas in terms of functional integration,
it is necessary to distinguish between two types of functional
integration among different brain areas: one is functional con-
nectivity, which investigates the correlation between measured
time series [1]; the other is effective connectivity, which refers
explicitly to the influence that one neuronal system exerts over
another, either at a synaptic or population level, either directly
or indirectly [1]. Effective connectivity research has become
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increasingly important, because it can provide the possible
directions of influence between time series of different brain
areas, or between fMRI signals that are primarily caused by the
blood oxygenation level-dependent (BOLD) effect. In recent
years, many methodological advances have made possible the
detection of the effective connectivity between brain areas, in-
cluding covariance structural equation modeling [2], Bayesian
estimation of deterministic state-space models [3], and Granger
causality mapping [4]-[9].

Granger causality, proposed and formalized by Granger [10],
[11], is defined as follows: one series is said to have an influence
on if the prediction of made by a linear model is improved when
information on is added. Exploring whether and how two time
series exert dynamic causal influences on each other is a topic
which is becoming increasingly important. Assuming that the
hemodynamic response function (HRF) is the same throughout
the entire brain, the predictive power of this technique can also
be used to detect effective connectivity in the field of cognitive
neuroscience [9]. In recent years, Granger causality has been
used to detect effective connectivity on both electroencephalog-
raphy (EEG) data [12]-[16], characterized by high temporal res-
olution, and fMRI data, characterized by high spatial resolution
[4]-[9]. In these latter studies, vector autoregressive modeling
of fMRI time series has been used in order to evaluate linear
Granger causality in direct, indirect, and instantaneous relation-
ships between a reference region and other brain regions in the
time domain [4]-[6], [9] or frequency domain [7], [8].

Despite good results obtained with linear Granger causality
[4]1-[7], [9] in order to interpret correctly the influence that a
brain region exerts over another, it is important to consider the
physiological basis of the signal, which is likely to be mainly
nonlinear and non stochastic [8]. Logothetis et al. [17], [18]
suggest that fMRI BOLD response, like the neural responses,
could be also a nonlinear function of stimulus contrast; fMRI
experiments frequently measure the relationship between stim-
ulus energy and the BOLD response. In general, this relation-
ship is nonlinear-the BOLD response increases according to a
compressive, nonlinear, saturating function of stimulus energy.
In addition, the mapping from input stimulus sequence to mea-
sured BOLD series is recognized as being more complicated
than something that can be represented by a set of HRFs that
combine linearly to form the observed signal [19]. Changes
in physiological states with fMRI experiment, cerebral blood
flow, cerebral blood volume, and total deoxyhemoglobin con-
tent caused by neuronal activity, are examples of nonlinear func-
tions of physiological parameters [19], [20]. Previous studies
investigated the functional connectivity of fMRI data [8], [21],
and study [21] performed statistical tests on different fMRI data
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sets to infer the nature of the interactions still after defining non-
linear and interaction models in the framework of general linear
models; [8] introduced the nonlinear effective connectivity in
fMRI data revealed by linear Granger causality. However, non-
linear Granger causality has not yet been applied in fMRI data
to assess effective connectivity of brain directly [22].

In this paper, aimed to investigate the nonlinear connectivity
of the brain, using fMRI signals [8], we use a kernel Granger
causality (KGC) method [23], [24] to explore effective connec-
tivity during a motor imagery task in order to detect the possible
directions of influence in the dominant supplementary motor
areas (SMA) to other parts of the brain. Previous studies [23],
[24] have exploited the properties of kernels to provide non-
linear measures of bivariate or multivariate Granger causality
[23]: linear Granger causality has been reformulated, and a sta-
tistical procedure to handle overfitting in the linear case has been
introduced. This formulation has been generalized to the non-
linear case by means of the kernel trick, thus obtaining a method
with the following three main features: 1) KGC captures effec-
tive couplings not revealed by the linear case; 2) the nonlinearity
of the regression model can be controlled by choosing the kernel
function; and 3) the problem of false causalities is addressed by
a selection strategy of the eigenvectors of a reduced Gram ma-
trix whose range represents the additional features due to the
second time series.

This paper is organized as follows. The proposed method for
KGC is introduced in the second section. A simulation test and
the fMRI experiment are then described in the third and fourth
sections, respectively. Finally, a discussion and conclusions are
presented.

II. KGC METHOD

To understand KGC as a generalization of the linear case, we
first review the linear case briefly. The temporal dynamics of a
stationary time series {z(¢) }+=1,., N +4m, can be described using
an autoregressive model based on the past values of the time se-
ries x,, = Z;.”:l a;T,—; + ey; in order to include information
from a simultaneously recorded time series {y(¢)}t=1.... N+m.>
we could consider instead a bivariate autoregressive model
[4]-[6], [23], [24] which also takes into account the past values
of y

m m

/ /

ITp = E aj.’ll'n,j + E bjyn,j—}—en
i=1 i=1

where the matrices a’ and b are called the autoregression co-
efficients and the e’ is (multivariate) white noise. The coeffi-
cients of the models are estimated using a standard least squares
optimization; m is the order of the autoregressive model and
is usually chosen according to Bayesian information criterion
(BIC) [25] that we used in this work, or other order selection
criteria (Akaike Information criterion, Hannan-Quinn criterion,
and Schwartz criterion).

The concept of Granger causality [10], [11] is that y
Granger-causes x if the variance of innovations of €’ is signifi-
cantly smaller than the variance of innovations of e, as happens
when the coefficients b are all significantly different from zero
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[4]-[6], [26]. An index measuring the strength of the causal
interaction is then defined as

(e?)

- (e?)
where (-) denotes averaging over n (note that () = (e’) = 0).
Exchanging the roles of the two series, we could evaluate the
causality index in the opposite direction (z — y).

As in previous studies [23], [24], we use the following short-
hand notations:

§=1 ey

Xi:(ilii,...
Yi = (yi, .-

7a7i+m—1)T

s Yigme1) "

We treat these quantities as N realizations of the stochastic
variables X and Y. Then, let X be an m X N matrix having vec-
tors X; as columns, and Z be a 2m x NN matrix having vectors
Zi = (XF, V") " as columns. The values of o are organized in
avector & = (T14m,...,TNym) . Without any loss of gener-
ality we can assume that each component of X and Y has zero
mean, and that vector « has zero mean and is normalized, i.e.,
ata = 1.

Now, foreachi = 1,..., N, the vectors X = (Z1,...,4n)"
and X' = (&,...,&)" are the estimated values by linear re-
gression, in two cases. It is easy to show that X and X’ have the
following geometrical interpretation. Let H C RY be the range
of the N x N matrix K = X7X. Then X is the projection of
a on H. In other words, calling P the projector on the space
H, we have x = Pa. Let us define u = o — Pa. Analogously
%' = P’a, P’ being the projector on the 2m-dimensional space
H' C R, equal to the range of the matrix K’ = ZTZ. We now
note that H C H’; hence, we may decompose H' as follows:
H' = H ® H*+, where H- is the space of all vectors of H' or-
thogonal to all vectors of H. H' corresponds to the additional
features due to the inclusion of y variables. Calling P the pro-
jector on , we can write linear Granger causality index as

_ et

T 1 -%Tx’

6 @

Linear Granger causality is usually assessed according
to well-known test statistics; see, e.g., [27]. Instead of as-
sessing the presence (or not) of causality by means of a single
statistical test, and in view of the nonlinear extension, we
introduce a causality index which by construction is not af-
fected by overfitting. We note that 2 is the range of the matrix
K = K -K'P-P(K'-K'P)= K'-PK'-K'P +PK'P.

It follows that H~ is spanned by the set of eigenvectors, with
nonvanishing eigenvalues, of K. Calling these eigenvectors, we
have

3)

where 7; is the Pearson correlation coefficient of « and ¢;. We
evaluate the probability p; that r; is due to chance using Fisher’s
r-to-z transformation [28] that can convert the r; value to the
z; value with zero mean, unit variance, Gaussian distributions
under the null hypothesis of no correlation. In order to avoid
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false causalities and compensate the threshold of significance
for multiple comparison, we use the false discovery rate (FDR)
correction [29] to select the eigenvectors t;, correlating to v,
with the expected fraction of false positives equal to 0.05. Then
we calculate a new causality index by summing only the {r; }
that pass the FDR test, thus obtaining, what we call, a filtered
linear Granger causality index

oy — 1) = 313 )

It is assumed that 6 measures the causality y — z. By ex-
changing the roles of the two time series, we may evaluate the
causality index 6p(z — y).

The nonlinear Granger causality derived from the linear
case has been described completely in previous studies [23],
[24], and is based on the theory of reproducing kernel Hilbert
spaces. Given a kernel function K, with spectral representation
K(X,X") =, Ada(X)pa(X'), we consider H, the range
of the N X N Gram matrix K with elements K;; = k(X;, X;).

While using both X and Y to predict «,, we evaluate the
Gram matrix K’ with elements K}, = k(Z;, Z;). The regres-
sion values now form the vector 2’ equal to the projection of «
on 7', i.e., the range of K’. In the following we consider two
choices for the kernel: the inhomogeneous polynomial (IP) of
integer order p, and the Gaussian kernel.

A. IP Kernel

The IP kernel [23], [24] of integer order p is K,(X, X') =
(14+ XTX")P. Along the same lines as described for the linear
case, we construct the kernel Granger causality taking into ac-
count only the eigenvectors of K that pass the FDR test

o =3 . 5)

B. Gaussian Kernel

The Gaussian kernel [23], [24] is defined as

oy

K,(X,X") =exp <—

and depends on the width o, which controls the complexity of
the model: the dimension of the range of the Gram matrix de-
creases as o increases. As in previous cases, we may consider
H, the range of the Gram matrix K and H’, the range of K’, but
in this case the condition H C H' does not necessarily hold.
Therefore, some differences in the approach are necessary. We
call L the m-dimensional span of the eigenvectors of K, the
eigenvalues of which are not smaller than g ,.x, Where Anax
is the largest eigenvalue of K and p is a small number (we use
10~%). We evaluate X = Pa, where P is the projector on L.
After evaluating the Gram matrix K’, the following matrix is
considered:

K* =Y pwiw, @)
=1
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where {w} are the eigenvectors of K, and the sum is over the
eigenvalues {p; } not smaller than y times the largest eigenvalue
of K’. Then we evaluate K = K* - PK* —K*P + PK*P, and
denote by P+, the projector onto the m3-dimensional range of
K. Note that the condition mo = mq + ms may not be strictly
satisfied in this case. The kernel Granger causality index for
the Gaussian kernel is then constructed as in the previous case
[see (5)].

C. Multivariate Kernel Causality

Another important extension of Granger’s original definition
of causality is the consideration of the multivariate case: for
three or more simultaneous time series, the causal relation be-
tween any two of the series may be direct, may be mediated
by a third one, or may be a combination of both (see also the
conditional causality proposed by Geweke [30]). To this end, a
previous study [24] has handled the multivariate case in more
detail. Here, we denote

X(e)i = (@(c)ss. .

forc=1,...,Mandi = 1,..., N. In order to the causality

’ ’

{z(a)} — {z(b)}, we define, fori = 1,..., N

2 (C)igm-1)"

Zi=(X(1)},...

2

X (a)},. ..

17

containing all the input variables, and

X = (x7T,...,. x(m)5)"

7 12

containing all the input variables but those related to
{z(a)}. Gram matrices K and K’ are then evaluated:
Kij = k(X;,X;) and K}; = k(Z;, Z;). The target vector is
now a = (z(b)14m,---,2(b)N+m)T. Also in this case, both
for IP kernel or the Gaussian one, we calculate the causality
index as in (5); in this case, all the available variables are taken
into account.

III. SIMULATION STUDY

A. Nonlinear Model Data

In line with previous linear Granger causality studies on fMRI
data [4]-[6], [9], the BOLD fMRI signal can be approximately
obtained from a low-pass filtered and subsampled version of
local filed potentials (LFPs) based on the conception of the high
correlation between LFPs and BOLD fMRI signal [17], [18]. We
considered three time series obtained from each of the following
coupled autoregressive processes [23], [24]:

z1(t) =(1—e) (1 —azi(t —1))
+e (1 —az3(t—1)) +sm(t)
To(t) =1 — ax3(t — 1) + sma(t)
z3(t) = (1 —e) (1 — azi(t — 1))
+e(1—azi(t—1)) + sm3(t) 8)
where a = 1.8, s = 0.02, e = 0.2, and the 7’s are unit variance

Gaussian noise terms. The causal relationships implemented in
these equations are 2 — 1 and 1 — 3. Analyzing segments of
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Fig. 1. GC value with different IP order and Gaussian width for the nonlinear (8) and linear (9) time series. The causal index of 1 — 3 both for the nonlinear and
linear model data with m = 1 chosen by the BIC. (a) The IP kernel with various values of p. (b) Gaussian kernel with various values of ¢. Vertical bars indicate

estimated standard errors.

length N = 1000, we use the IP kernel with various values of p
and the Gaussian kernel with various values of o to show how
the two parameters affect the causality index. Then we evaluate
the bivariate causality for all pairs of maps within the 100 times
simulation with a random 7 and some fixed p and o to verify the
validity of KGC.

B. Linear Model Data

Here we compare the performance of KGC introduced
here and Geweke’s (linear) Granger causality analysis, that is
Geweke’s dependence measure F), , [26], which from now
on we will abbreviate with GC, that was widely used in fMRI
data [4]-[9] for linear data, we also generated three linear time
series, similar to those described by Baccala and Sameshima
[31]

z1(t) =0.95v2z (t — 1) — 0.902521 (t — 1) + 0.57(t),
.TQ(t) = 0.8$1(t — 1) + 0.57‘2(t),

il?g,(t) = —0.7$1(t — 1) + 0.57’3(t) 9)
where the 7’s are unit variance Gaussian noise terms. The causal
paths modeled in these equations are 1 — 2 and 1 — 3. We also
evaluate the bivariate causality for all pairs of maps within 100
times simulation using GC [4]-[6], [9].

C. Results

The results of the IP kernel with various values of p and the
Gaussian kernel with various values of ¢ are shown in Fig. 1. For
the 100 times simulation, the optimal order of the model, m, is
chosen by the BIC criterion [25]. The optimal order is always
equal to 1 for linear and almost always equal to 1 (more than
90% of the times) for the nonlinear model, so we stick to this
values of m for all the simulations. Fig. 1(a) shows that when
p = 1 (which corresponds to GC), the causality index of 1 — 3
of the nonlinear model data (solid diamond) is very low. How-
ever, it is significantly higher (up to about 0.7) with a p value be-
tween 2 and 6. On the other hand, the causality index of 1 — 3
of the linear model data (clear diamond) is relatively higher (up

to about 0.35) when p = 1. However, it is relatively lower with
a p value between 2 and 6. This results suggest that when p = 1
KGC method also can effectively evaluate the Granger causality
for the linear time series; when the P > 2 this KGC method
properly evaluated the Granger causality for the nonlinear time
series.

For Gaussian kernel Granger causality method, Fig. 1(b)
shows that with ¢ = 1 to 6, the causality index (up to about 0.8)
is consistent with the given influence assumption for nonlinear
model data.

Based on the results of the simulation study using different
values of p and o, we then select a fixed value of p = 2 for
the IP kernel and a fixed value of ¢ = 6 for Gaussian kernel
for each pair of simulated data including both the linear and
nonlinear model data mentioned above. To compare the validity
of detecting causality, the results of the p = 1 (linear Granger
causality) are also evaluated. The six pairwise causality indices
computed by each method for each time series are displayed in
Fig. 2. Fig. 2(a) shows that IP kernel, p = 1 (linear Granger
causality) can evaluate the given influences 1 — 2and 1 — 3
[(9)], which are also revealed by the p = 2 and Gaussian kernel
method. However, the Fig. 2(b) clearly shows that both the IP
kernel, p = 2, and Gaussian kernel method can evaluate the
given influences 2 — 1 and 1 — 3 [(8)], which are not revealed
by the p = 1. Also, both the IP kernel, p = 2, and Gaussian
kernel methods reveal the influence 2 — 3, for which the kernel
Granger causality index is significant lower than in the influ-
ences 2 — 1 and 1 — 3. Although the causal relationships of
2 — land 1 — 3 are defined in the simulated data, indeed,
the influence 2 — 3 is actually mediated by 1. Furthermore, the
lower indirect influence value of 2 — 3 is revealed by KGC.

It is well known [15] that a pairwise evaluation for multi-
variate data has the limits that one cannot discern whether the
influence between two time series is direct or is mediated by the
other [30]. Fig. 3 shows that the influences 2 — 1 and 1 — 3 in
both bivariate and multivariate analysis. The bivariate analysis
revealed also a slight causal influence 2 — 3, while the multi-
variate analysis labelled it as non significant (the causality index
was equal to zero).
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Fig. 2. Comparison of the three GC models with simulated data including the nonlinear (8) and linear (9) time series. (a) The causal relationships between all
pairs of linear time series are evaluated along with rn = 1 chosen by the BIC. (b) The causal relationships between all pairs of linear time series are evaluated
along with m = 1 chosen by the BIC. Vertical bars indicate estimated standard errors.
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Fig. 3. Comparison of the bivariate and multivariate GC model. The causal
relationships between all pairs of voxels compared between the bivariate and
multivariate analysis. Here rn = 1 is chosen by the BIC, the IP kernel is used
with p = 2. Vertical bars indicate estimated standard errors.

IV. FMRI DATA TEST

A. Experimental Paradigm and Data Acquisition

Ten subjects perform a left hand motor imagery task. After a
stimulus lasting for 4 s, subjects try to imagine that they are tap-
ping their fingers in the same rhythm as defined by the stimulus.
Subjects continue imagining the finger tapping for 10 s until a
cue stimulus informs them to actually perform what they have
imagined. The actual finger tapping lasts for 6 s. After that, the
subjects rest for 10 s. All visual stimuli are presented on a com-
puter monitor. Each run includes 10 trials and each trial lasts for
30 s (4 s to present the sequence, 10 s for the imagery, 6 s for
the tapping, and 10 s to rest). In total, each run contains 155 vol-
umes. Functional imaging data was gathered on a 3.0 T scanner,
GE-Signa (Huaxi MR Research Center, Chengdu, China) with
a T2x-weighted the gradient echo, echo-planar-imaging (EPI)
sequence parameters as follows: 30 transverse slices, TR =
2000 ms, TE = 30 ms, FOV = 24 cm, matrix = 64 x 64, voxel
size = 3.75 x 3.75 x 5 mm?(without gap), flip angle = 90°.
A structural image was also acquired in the interval during the

first and second run (volume size 512 x 512 x 156 with a voxel
size of 0.47 x 0.47 x 1 mm?).

B. Data-Processing Procedure

The experimental data were preprocessed using statistical
parametric mapping software (SPM2, http://wwwfil.ion.ucl.uk/
spm). To allow for magnetization equilibrium, the first five
images with no stimulus were discarded. The remaining 150
images were first corrected for the acquisition time delay among
different slices, and then the images were realigned to the first
volume for head-motion correction. Second, a high-pass filter
with a cutoff of 1/128 Hz was used to remove low-frequency
noise. Third, the data were spatially normalized into standard
stereotaxic space at 2 x 2 X 2 mm?, using Montreal Neurolog-
ical Institute EPI template of SPM2 software. The data were
then spatially smoothed to each brain’s 3-D volume by convo-
lution with an isotropic Gaussian kernel (FWHM = 8 mm) to
increase the MR signal to noise ratio. Fourth, linear trends were
removed from the data to eliminate the effect of gross signal
drifts, which could be caused by scanner instabilities and/or a
gross physiological change in the subject. Finally, in this paper,
the region of interest (ROI) was defined as a sphere within the
activated area located in the supplementary motor area (SMA),
centered at the voxel of the highest statistical value and a radius
of 10 mm [6].

C. Effective Connectivity Analysis

In this paper, we only paid attention to the effective connec-
tivity of the motor imagery condition; therefore, the other three
phases (sequence informing, motor execution, and resting) in
the time series of fMRI BOLD signals for each subject were
excluded by regression. Several other preprocessing steps for
fMRI time series were implemented to reduce spurious vari-
ances. First, regression of six head motion parameters was per-
formed. That is, each regional mean time series was further cor-
rected for the effect of head movement by regression on the
translations and rotations estimated in the image realignment
procedure. The residuals of these regressions constituted the set
of regional mean time series used for further analyses. Second,
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TABLE 1
SUMMARY OF THE RESULTS OF GROUP ANALYSIS FOR IP (p = 2) KGC

MNI Coordinates
Significantly connected Hem BA X Y z Volume Max. values
area (cm®)
the regions influenced by the seed (SMA) ( X->Y )

Cerebellum L -24 -86 -32 0.31 0.0481
SMarg L 40/42 -56 -32 24 0.30 0.0455
CMA L 23/24 0 -4 44 3.18 0.0950

R 23/24 2 -4 44 1.93 0.0863

Postcentral L 1/2/3/4 -12 -38 82 0.25 0.0512

R 1/2/3/4/5 28 -48 72 5.23 0.0735

Precentral R 3/4/6 46 2 38 1.78 0.0546
IPL R 39/40 46 -36 56 0.31 0.0456

SPL L 5/7/40 -28 -56 70 2.14 0.0643

R 2/5/7/40 26 -48 72 3.62 0.0702

SMA L 6/23/24/32 0 2 46 1.75 0.082

R 6/23/24/32 0 -2 46 1.02 0.082
Paracentral lobule L 3/4/5 -2 -38 74 1.33 0.0634
R 4/5 2 -38 74 1.74 0.0599

Putamen L 48 -26 6 0 0.93 0.0504

R 34/48 30 4 -10 0.34 0.044

the regions influencing the seed ( Y—->X )

Cerebellum L -12 -84 -34 1.34 0.0466
SMarg L 2/3/40/41/48 =52 -40 28 0.77 0.0398
CMA L 23/24/32 0 8 32 0.21 0.0354

R 23/24/32 2 6 30 0.17 0.0361

Postcentral L 1/2/3/4 -52 -8 44 3.88 0.0528

R 3/4 58 -6 38 0.52 0.0408

Precentral L 3/4/6 -20 -20 76 2.09 0.0644

R 4/6 12 -20 80 0.53 0.0458

IPL L 39/40 -48 -56 40 1.18 0.0382

SPL L 2/7/40 -24 -64 58 1.54 0.0414

R 5/7 18 -68 64 0.77 0.0385

SMA L 6 0 -10 56 0.23 0.0388

R 4/6 12 -16 74 1.31 0.0412

Paracentral lobule R 4/5/6 10 -22 80 0.94 0.0514

Abbreviations: BA=Brodmann’s area, Hem=hemisphere, L=left, R=right, CMA=cingulate motor area, IPL=inferior parietal lobule, SMA=supplementary

motor area, SPL=superior parietal lobule, SMarg=SuparaMarginal.

the time series in blood vessels and the cerebrospinal fluid was
regressed.

For the effective connectivity analysis, a seed = was first de-
fined as the average signal of all the activated voxels within
such a ROI. Then, the seed z was chosen to accomplish ef-
fective connectivity assessment of the SMA against the rest of
the voxels in whole brain separately for each subject using the
bivariate IP and Gaussian KGC and GC [4]-[6], [9] method.
And, the optimal order for the fMRI data is also used selected
by BIC like the simulations. Moreover, the optimal order is al-
most always equal to 1 for real fMRI data. Subsequently, in
order to extend inference of individual statistical analyses to
the general population from which the subjects were drawn,
a group analysis was performed by averaging the ten maps of
F,_., across ten subjects to get the averaged fzﬁy map for
F,_.,, as well as for F,_,,, in line with our previous paper
[6]. Since the distribution of the indices was unknown, to as-
sess the significance of Granger causality at the group-level,
we used the framework of a parametric estimation based on
bootstrap methodology [32] for both GC and KGC. This ap-
proach was widely employed in the analysis of fMRI studies [5],
[6], [9]. The major steps were as follows. 1) F,:_,yi, which has
the same size of F',_,,, was obtained from randomly sampling
Fm_,y for N times (N was the size of Fz_)y) with repetition.

2) Step 1) was repeated for a large number B of times, so that
F_,ﬁyg, - ,F,ﬁyB were calculated. B = 1000 was used in
our study. In general, the value of B = 200 ~ 5000 is suffi-
cient [32]. 3) Fosy1, Foeay2, Fursys, - - ., Fuy Were pooled
together to acquire the null distribution of F,_,,, which is rea-
sonable to approximation to the Gaussian distribution under the
large samples, so that we gained the p value for F;_,, of each
voxels.

When performing simultaneous statistical tests for all voxels,
we assessed the significance thresholds by correcting for mul-
tiple comparisons using the FDR [29], so that an expected pro-
portion of false positives among all tests was rejected by the null
hypothesis F;,_,, = 0. This was favorable for dealing with mul-
tiple comparison problems while retaining considerable power
in the detection of effects and adapting to the noise level in the
data. The FDR corrected thresholds corresponding to the syn-
chronization difference index for the term being nonnegative
Fmﬁy at an accepted FDR level ¢ were acquired from the set of
p values obtained by the bootstrap methodology over all voxels.
These p values obtained at a given difference term were then re-
garded as the proportion of larger values in the null distribution.
Subsequently, the FDR corrected threshold was achieved from
the p values as follows: Given the ordered collection of p values,
let 7 be the largest 4 for which p[i] < (i/N) x (¢/(c¢(NN))), then
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Fig. 4. Kernel Granger causality map of the regions influenced by the seed
(SMA) (a) and the regions influencing the seed (SMA) (b) for real fMRI data
using IP kernel with p = 2. (L: left, R: right. A: cerebellum; B: left putamen; B':
right putamen; C: suparaMarginal; D: cingulate motor area; E: left precentral;
E’: right precentral; F: supplementary motor area; G: paracentral lobule; H:
left inferior parietal lobule; H': right inferior parietal lobule; I: left postcentral;
I"prime: right postcentral; J: left superior parietal lobule; J’: right superior
parietal lobule).

the threshold was set at the value corresponding to the p value
p[r]. Where ¢(N) was a constant determined by assumptions on
the joint distribution of p values over all voxels. In this paper, it
was setto ¢(N) = In(N)+r, where r = 0.5772 is Euler’s con-
stant, which applied to any distribution of p values over voxels
[29]. More details for this approach could be found in a previous
fMRI study [5]. It is worth to remark that the FDR correction
was applied a posteriori only for GC, because FDR correction
is already implemented in KGC when we select the eigenvec-
tors ¢; which are correlated with y [see (4)].

D. IP Kernel Results

Table I shows a summary of the group analysis results for IP
kernel with p = 2 along with order m = 1 for the effective
connectivity between the seed (SMA, BA 6) and other brain
regions during the left-hand motor imagery. The coordinates of
the center of the significantly interacting areas, along with the
cluster size, are characterized in detail.

Fig. 4 shows two influence measures, the F,_,, and F,_,,
maps (FDR corrected, p = 0.01) using the IP kernel with p =
2. In the map of F,_,, (Fig. 4(a)), the bilateral superior pari-
etal lobule (SPL, BA 5,7,40), cingulate motor area (CMA, BA
23,24), postcentral (BA 1,2,3,4), paracentral lobule (BA 4,5)
and putamen (BA 48); the contralateral inferior parietal lobule
(IPL, BA 39,40) and precentral (BA 3.4,6) and the ipsilateral
SuparaMarginal (SMarg, BA 40,42) and cerebellum were exten-
sively influenced by the seed (SMA, BA 6). The map of F,_,,
[Fig. 4(b)] shows the regions directly influencing the seed. Be-
sides the bilateral SPL, CMA, SMA, postcentral and precentral,
the influence of the following regions can be clearly observed:
the contralateral paracentral lobule and the ipsilateral SMarg
and cerebellum.
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Fig. 5. Kernel Granger causality map of the regions influenced by the seed
(SMA) (a) and the regions influencing the seed (SMA) (b) for real fMRI data
using Gaussian kernel with o = 6.

0.079

E. Gaussian Kernel Results

Fig. 5 also shows two influence measures, the F,_,, and
F,_,, maps (FDR corrected, p = 0.01) using Gaussian kernel
with o = 6. In the map of F,,_,, [Fig. 5(a)], the bilateral SPL,
SMarg, CMA, SMA, postcentral, precentral, paracentral lobule,
putamen and the superior temporal lobe (STL, BA 38,42); the
contralateral cerebellum were extensively influenced by the
seed. The map of F,_,, [Fig. 5(b)] shows the regions directly
influencing the seed. Besides the bilateral SPL, SMarg, CMA,
SMA, postcentral and precentral, the influence of the following
regions can be clearly observed: the contralateral paracentral
lobule and the ipsilateral putamen and cerebellum.

F. Comparisons of the Causality Results Obtained With KGC
and GC

We compare the causal connectivity results showing the
F,_,, and F,_,, maps (FDR corrected, p = 0.01), obtained
from KGC (IP kernel with p = 2), and KC method. The brain
regions which were involved in causal influences revealed by
both methods are listed in Table II. The coordinates of the
center of the significantly interacting areas, along with the
cluster size, are characterized in detail. In Fig. 6 we display
three Granger causality sub-maps: brain regions found only by
KGC (shown in red), brain regions found only by GC (shown in
green), and common brain regions (the regions found by KGC
intersecting the regions found by GC) (shown in yellow). In the
map of the regions influenced by the seed (SMA) [Fig. 6(a)],
we find that the significant causal influences from the seed to
the bilateral CMA, SMA, SPL, paracentral lobule, putamen,
and the contralateral postcentral were found by KGC only. Sig-
nificant influences from the seed to the bilateral IPL and SMA
were detected only with GC. Regarding the regions influencing
the seed (SMA) [Fig. 6(b)], KGC detected strong influences
from the bilateral SPL and the contralateral postcentral and
precentral. GC only found that the part of SMA extensively
influenced the seed.
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TABLE 1II
CAUSAL INFLUENCES FOUND BY BOTH KGC AND GC

MNI Coordinates
Significantly connected Hem BA X Y VA Volume Max. values
area (cm®)
the regions influenced by the seed (SMA) (X =Y )
Cerebellum 0 -36 -16 0.12 0.0539
Postcentral R 1/2/3/4/5 28 -48 72 1.55 0.0735
SPL R 2/5/7/40 26 -48 72 1.23 0.0702
SMA L 6 0 2 54 0.27 0.0568
R 6 2 0 56 0.12 0.0471
the regions influencing the seed ( Y- X )
Cerebellum L -10 -86 -32 0.21 0.0415
SMA L 6 0 -10 56 0.19 0.0388
R 4/6 4 -6 60 0.59 0.0404

Abbreviations: BA=Brodmann’s area, Hem=hemisphere, L=left, R=right, SMA=supplementary motor area, SPL=superior parietal lobule.

KGC only

BN KGC&GC

= GConly

Fig. 6. Granger causality map of the regions influenced by the seed (SMA)
(a) and the regions influencing the seed (SMA) (b) for real fMRI data. Three
Granger causality submaps: brain regions found only by KGC (shown in red),
brain regions found only by GC (shown in green), and common brain regions
(the regions found by KGC intersecting the regions found by GC) (shown in
yellow).

V. DISCUSSION

A. Kernel Granger Causality

We have used a recently proposed approach to Granger
causality, based on kernel methods [23], to analyze effec-
tive connectivity. In this paper, in line with the definition of
nonlinear kernel Granger causality, our approach allows the
analysis of the possible directions of influence between time
series of different brain areas on fMRI data [6]. The linear
Granger causality has been widely used to map directed influ-
ence over the brain using fMRI data [4]-[7], [9] and EEG data
[12]-[16]. A hemodynamic response has been associated with
changes in physiological states, including cerebral blood flow,
cerebral blood volume and total deoxyhemoglobin content,
caused by neuronal activity, all of which are nonlinear functions
of physiological parameters [19], [20]. Linear models of the
estimation of causal pathways in fMRI data are necessarily
limited in their ability to capture the characteristics of an
intrinsically nonlinear signal. To our knowledge, therefore,
this is the first study that proposed kernel Granger causality

characterizing the effective connectivity on fMRI data. In the
simulation study, our approach that including the bivariate and
multivariate analysis measures Granger causality of time series,
assuming an arbitrary degree of nonlinearity, while controlling
overfitting, and thus avoids the problem of false causalities
(Fig. 3). More importantly, our approach can efficiently detect
causal relationships under the assumption of nonlinearity of
fMRI data.

B. Spurious Causalities

On the other hand, it is important to eliminate spurious
causalities [11] that may appear when time series are both
influenced by the other external sources that are not taken
into account from the Granger causality analysis. To detect
causal processes correctly, it is important to take into account
a possible time lag between the measurements of the two time
series. A recent study based on partial Granger causality [16]
has tackled this issue, revealing the underlying interactions
among elements in a network in the presence of exogenous
inputs and latent variables.

This problem is particularly important in fMRI time-series:
A certain area A can cause a response in another area B
through neuronal activity, but the hemodynamic responses
in A might appear much later than those in B. This would
imply that B Granger-caused A. This is not an issue for
EEG data [12]-[16], because in this case one does not have
to consider regional variations in the HRF. For our kernel
Granger causality analysis, we had to assume that the HRF
is exactly the same everywhere in the brain [6]. This raises
the hypothesis that interregional variability of the HRF might
generate spurious inferences of connectivity [7]. However,
the impact of variable hemodynamic delays between regions
is tolerable in practice with a TR of up to 2 s, which is
quite realistic in many fMRI studies [7]. In this work, like
in previous studies [4]-[6], [9], we performed a whole brain
voxels-wise analysis using only bivariate KGC. Indeed, the
presence of much more variables (voxels) than observations
(the length of fMRI time series) makes whole brain voxels-wise
approach a mathematically ill-posed problem for multivariate
KGC analysis. The number of variables would be greatly
reduced using ROIs rather than the whole brain data [7],
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[8]. Our opinion is that there are some limits in ROI-based
method, where the selection of those ROI in advance must
imply a prior knowledge of the problem that could lead to
the lost of potentially interesting brain areas. On the other
hand, using bivariate analysis in this study meant that our
assessment of effective connectivity could possibly ignore the
influences of other areas when assessing the coupling between
the reference region and any particular voxel. A subsequent
analysis, that we plan to further pursue, could consist of two
successive steps: first, a whole brain voxels-wise bivariate
KGC will be performed, in order to individuate clusters of
voxels which seem to belong to the same causal flow, and
then multivariate KGC on time series representative of these
clusters will be performed to gain insight on the directions
of influence through the whole brain.

C. Effective Connectivity Network Between the SMA and
Other Brain Regions

In this study, we mainly focused on the effective connectivity
of the motor imagery condition; the time series of fMRI BOLD
signals in those three phases (sequence informing, motor execu-
tion, and resting) for each subject were excluded by regression
[33]. So we consider the remaining signal after regression, the
contribution from them should be reasonably small. Therefore,
it should be reasonable to regard the identified connectivity net-
works as the effective connectivity of the motor imagery condi-
tion.

Our results showed a forward and backward effective con-
nectivity loop between the SMA and SPL (Fig. 4 and Table I).
This conjunction is consistent with previous neurophysiolog-
ical studies, which showed matching patterns of neuronal ac-
tivity within the frontal and parietal cortices [34]. As in studies
of monkeys, the human frontal and parietal areas are organized
as a tightly coupled functional system with highly specific con-
nections between their respective anatomical subdivisions [34].
Moreover, the parietal cortex has been found to play a role in
generating mental movement representation supported by neu-
ropsychological examination [35] and in sensorimotor mapping
of temporal and spatial relations. Also, the connectivity between
the SMA and SPL in our study could be verified by the study
of Rizzolatti et al. [36], in which area F3 of the monkey brain,
which is homologous to the SMA of humans, was found to be
strongly connected with the SPL.

In addition, a forward and backward effective connectivity
loop was also detected from the SMA to the postcentral that
is mostly considered as the primary somatosensory cortex (S1)
[Fig. 4(a) and Table I]. These results corroborate that the S1 is
influenced by the SMA, as shown in a previous motor imagery
fMRI study [37]. As during a motor task, SMA activity occurs
before S1 activity [38]. However, several motor imagery studies
considered that the S1 only participated in motor execution. A
loop of effective connection was also found within the SMA
and bilateral postcentral cortex during the left motor imagery.
These findings are demonstrated by the study of Matsumoto et
al. [39], which detected bi-directional connectivity between the
SMA and S1.
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D. Different Effective Connectivity Results Between KGC and
GC

GC [4]-[6], [9] is based on linear vector autoregression
models. Nonetheless, there is evidence that the hemodynamic
processes associated with changes in physiological states,
including cerebral blood flow, cerebral blood volume and
total deoxyhemoglobin content are nonlinear [19]-[22]. For
instance, it is known that the putamen plays an important role
in motor imagery using fMRI [34], [35]; in our study we found
strong influences from the seed to the bilateral putamen only
using KGC method. These influences have not been detected by
GC. However, the most recent data suggest that performance of
a sequence is mediated by a striatal-cortical circuit that includes
motor cortical regions (SMA), cerebellar dentate, thalamus,
and putamen [40]. Our causality connectivity analysis between
those two brain regions also reveals this circuit when imaging
a sequence. Although KGC will be able to identify additional
regions not identified by GC, the neurobiological basis for
those nonlinear directions is not explained well. One possible
explanation may be that many complex systems, including the
brain, are complex, nonlinear, and operate far from equilibrium
[41]. That is why KGC are maybe appropriate to model it than
linear methods to characterize the nonlinear causal influence in
the brain. GC only found that the bilateral IPL. and SMA were
extensively influenced by the seed [Fig. 6(a)], and that the part
of SMA extensively influenced the seed [Fig. 6(b)]. In our study
we find some remarkable differences between causal influences
evaluated with KGC and GC. GC found that some parts of the
SMA influenced the seed [slices 44-56 Fig. 6(b)] while KGC
found that some parts of the SMA in the same slice location are
influenced by the seed [Fig. 6(a)]: here we could assume that
the causal influences could be mainly linear in one direction and
mainly nonlinear in the other. Furthermore we can assume that
noise levels and significance tests play here an important role:
as noise increases, and for a given time series length, nonlinear
influences become more difficult to detect, and their statistical
significance decreases more rapidly than for linear influences
[23]. We do not state which method is better using the fMRI
data to characterize the effective networks in motor imagery.
Rather, KGC method captures effective couplings not revealed
by GC. More extensive biologically meaning explanations of
effective connectivity of supplementary motor areas during
motor imagery using the conventional GC will be reported
elsewhere (Chen et al. [42]).

E. Limitations and Future Works

Several limitations are also important to mention. It is impor-
tant that the effective connectivity between neural processes and
the observed BOLD signal is a convolution of these processes by
a HRF [4], [5], [17], [18]. Logothetis et al. [17] suggested that,
like the neural responses, fMRI BOLD response was also found
to be a nonlinear function of stimulus contrast [43], [44]; how-
ever, a linear systems analysis on the fMRI responses predicted
alinear relationship between the BOLD and neural activity [43].
So, many of the more recent effective connectivity approaches
are based on stochastic or deterministic dynamic models, and
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capable of capturing temporal structure. Volterra series repre-
sentation [45] characterizes interactions in a nonlinear convo-
lution model relating multiple inputs to a single output. Thus
dynamic nonlinear influences on a single region can be char-
acterized. So, more realistic (physiologically) simulations will
be needed to explore in future works (Balloon, Windkessel, or
Volterra models) to characterize interactions in a nonlinear con-
volution model relating multiple inputs to a single output.

An additional development of Granger’s causality idea is re-
markable. Natural time series, including ones from economics
and neurobiology, contain oscillatory aspects in specific fre-
quency bands [46]. Thus, frequency domain Granger causality
[71, [8] is desirable to have a spectral representation of causal
influence. Major progress in this causal direction has been
made by Geweke [26], [30]. According to Geweke’s variance
decomposition at a particular frequency, total power includes
an intrinsic power and a casual power. Time domain Granger
causality is the integral of the frequency domain causality
over the entire frequency range. In this sense, the time domain
Granger causality, which was used in the current study, may
result from strong spectral peak(s). Future work, however, will
be also needed to explore whether there is a power spectrum
peak for a significant direction, which would provide more
insights on the effective connectivity.

VI. CONCLUSION

We have proposed kernel Granger causality to detect effective
connectivity between different brain areas using fMRI data. The
validity of this algorithm has been also tested in a simulation
study. The results show that our method can identify pathways
of causal influence between nonlinear time series and thus could
provide new insights on the effective connectivity between brain
regions.
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