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Summary

Motivations: Physiological systems are ruled by mechanisms operating across multi-
ple temporal scales. A recently proposed approach, multiscale entropy analysis,
measures the complexity at different time scales and has been successfully applied to
long term electrocardiographic recordings. The purpose of this work is to show the
applicability of this methodology, rooted on statistical physics ideas, to short term
time series of simultaneously acquired samples of heart rate, blood pressure and lung
volume, from healthy subjects and from subjects with chronic heart failure. In the
same spirit, we also propose a multiscale approach, to evaluate interactions between
time series, by performing a multivariate autoregressive (AR) modeling of the coarse
grained time series.
Methods: We apply the multiscale entropy analysis to our data set of short term
recordings. Concerning the multiscale version of the multivariate AR approach, we
apply it to the four dimensional time series so as to detect scale dependent patterns of
interactions between the physiological quantities.
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Results: Evaluating the complexity of signals at the multiple time scales inherent in
physiologic dynamics, we find new quantitative indicators which are statistically
correlated with the pathology. Our results show that multiscale entropy calculated on
all the measured quantities significantly differs (P< 10�2 and less) in patients and
control subjects, and confirms the complexity-loss theory of aging and disease. Also
applying the multiscale autoregressive approach significant differences were found
between controls and patients; in the sight of finding a possible diagnostic tools,
satisfactory results came also from a receiver-operating-characteristic curve analysis
(with some values above 0.8).
Conclusions: The multiscale entropy analysis can give useful information also when
only short term physiological recordings are at disposal, thus enlarging the applic-
ability of the methodology. Also the proposed multiscale version of the multivariate
regressive analysis, applied to short term time series, can shed light on patterns of
interactions between cardiorespiratory variables.
# 2007 Elsevier B.V. All rights reserved.
1. Introduction

Physiological systems are ruled bymechanisms oper-
ating across multiple temporal scales. Many
approaches have been developed in the last years
to analyze these complex signals, including, for
example, studies of: Fourier spectra [1,2], chaotic
dynamics [3,4], scaling properties [5,6], multifrac-
tal properties [7,8], correlation integrals [9], 1= f
spectra [10,11], synchronization properties [12],
and multivariate autoregressive (AR) methods
[13,14]. A deep insight on the fundamental mechan-
isms of biological systems can be achieved by study-
ing complexity, one of the key features of
physiological time series. The underlying dynamics
of such systems spans a great range of frequencies,
therefore a complete analysis must include a multi-
ple time-scale approach. A recently proposed
approach, multiscale entropy (MSE) analysis [15],
has been applied to heart rate dynamics [16], human
gait [17] and neuronal behavior [18]. Furthermore,
another measure aimed to calculate complexity at
different time scales has been introduced in [19]. In
[15], the degree of complexity of time series is
compared at varying temporal scale, and MSE ana-
lysis is applied to 24 h electrocardiographic record-
ings of healthy subjects, subjects with congestive
heart failure, and subjects with atrial fibrillation.
Healthy and young dynamics are the most complex
(see also [20—22]): these results support the general
complexity-loss theory, according to which de-com-
plexification of systems is a common feature of
pathological conditions, as well as of aging; when
physiologic systems become less complex, their
information content is degraded. As a result, they
are less adaptable and less able to cope with the
exigencies of a constantly changing environment.

On the other hand, obtaining long time series may
be difficult and expensive in some applications; a
method working also on short time series (not longer
than 10 min) would allow a larger applicability in
those cases. In particular, use of short time series
would allow the realization of devices able to record
and process the signals in real time.

In this paper we show that MSE analysis may also
be successfully applied to short term physiological
recordings, still obtaining relevant information
about the underlying mechanisms. In particular,
we consider simultaneous recordings of electrocar-
diogram, respiration signal and arterial blood pres-
sure, and discuss the ability to diagnose chronic
heart failure (CHF), a disease associated with major
abnormalities of autonomic cardiovascular control.

Besides entropy-based methods, interactions
between time series have been widely studied with
linear predictive models [13,14]. We thus imple-
ment the multiscale paradigm in this frame by con-
sidering a multiscale version of the classical
multivariate AR analysis of time series, to find
scale-dependent patterns of interactions between
the physiological time series here considered.

In the next section we describe MSE and multi-
scale AR methods, and the short term physiological
data here analyzed. In Section 3 the results obtained
on our data set are reported. These findings are
discussed in Section 4. Some conclusions are drawn
in Section 5.
2. Methods and data

2.1. The multiscale entropy (MSE) analysis

We briefly recall the multiscale entropy (MSE)
method [15]. Given a one-dimensional discrete time
series, consecutive coarse grained time series, cor-
responding to scale factor t, are constructed in the
following way. First, the original time series is
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Figure 1 Multiscale entropy for rri time series of dif-
ferent lengths, extracted from Santa Fe data, vs. t,
averaged over 200 trials. Squares: length 1000 points;
circles: length 5000 points; triangles: length 10,000
points. The values of t for the three cases have been
slightly shifted for better visualization.

1 http://www.physionet.org (accessed 15 May 2007).
divided into non-overlapping windows of length t,
where the length is defined in unit of samples; then,
data points inside each window are averaged, so as
to remove fluctuations with time scales smaller than
t. For scale one, the coarse grained time series is
simply the original time series; the length of each
coarse grained time series is equal to the length of
the original time series divided by the scale factor t.
Finally an entropy measure SE is calculated for each
coarse grained time series and plotted as function of
the scale factor t. SE coincides with the parameter
SEðm; rÞ, introduced by Pincus [23] and Richman and
Moorman [24], see also [25], termed sample
entropy, and given by

SEðm; rÞ ¼ �ln
A

B

� �
: (1)

For clarity’s sake we recall here how A and B are
defined. For a time series of N points, the vector
xmðiÞ is made ofm consecutive recordings starting at
index i, with i running from 1 to N �m; for each i,
Br
i ðmÞ is then defined as the number of vectors xmð jÞ

within r of xmðiÞ, for i 6¼ j, multiplied by
ðN �m� 1Þ�1. In the same way, Ar

i ðmÞ is defined
as the number of vectors xmþ1ð jÞ within r of xmþ1ðiÞ
(i 6¼ j), multiplied by ðN �m� 1Þ�1. B is given by
½ðN �m� 1Þ=2�

PN�m
i¼1 Br

i ðmÞ, and A is given by
½ðN �m� 1Þ=2�

PN�m
i¼1 Ar

i ðmÞ.
This sample entropy is related to the probabil-

ity that sequences from the time series, which are
close (within r) for m points, remain close at the
subsequent data point. In the original proposal
both the sequence length m and the tolerance
parameter r were kept fixed as t was varied, so
that changes in SE on each scale were depending
both on the regularity and the variability of the
coarse grained sequences [26,27]. In the present
work we take r, at each t, inversely proportional
to the standard deviation (S.D.) of the coarse
grained time series, and consider separately
how the S.D. of signals varies with the time scale.
As we show in Section 4, similar results are
obtained applying the original prescription of
Costa et al. [15]. Thus, as far as it concerns this
application, it is not possible to state which meth-
odology is the best.

Our goal is the processing of short time series; the
dependence of sample entropy on the time series
length has been already addressed in [28] with
respect to white noise and 1= f noise. For N ¼
1000 and white noise the discrepancy between
the numerical and the mean value of SE was found
to be less than 1%, while being approximatively 12%
in the case of 1= f noise. These findings suggest that
stationarity is a fundamental requirement while
dealing with short time series.
Now we test the robustness of the proposed
methodology on a benchmark problem from the
Physionet data bank.1

We consider the recordings of lung volume (ilv)
and R—R interval (rri) of a sleeping human suffering
from sleep apnea, part of data set B of the Santa Fe
Institute time series contest held in 1991. From the
full time series, sampled at 2 Hz, we randomly
extract segments of data with varying length
(N ¼ 1000, 5000 and 10,000 points) and evaluate
the sample entropy for each realization. In Fig. 1,
for the rri signal, we report SE versus t for the three
values of N. The mean values are almost indepen-
dent of N, whilst the standard deviation decreases
as N increases. These results encourage applying the
MSE approach on short term time series, as we will
describe in the next section.

2.2. The multiscale AR analysis

We quantify the interactions between the time
series at different time scales, in the frame of linear
predictive models. To do so, we implement a multi-
scale version of AR modeling of time series. For each
scale factor t, we denote x ¼ ðrri; sap; dap; ilvÞ the
four-dimensional vector of the coarse grained time
series of R—R interval (rri), systolic (sap) and dia-
stolic (dap) blood pressure, and the instantaneous
lung volume (ilv). At each scale, all coarse grained
time series are normalized to have unit variance
(see, e.g. [29]). A multivariate AR model of unity

http://www.physionet.org
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order is then fitted (by standard least squares mini-
mization) to data:

xðnÞ ¼ Cxðn� 1Þ; (2)

C is a 4� 4 matrix, depending on t, whose element
Ci j measure the causal influence of jth time series
on the ith one. Note that, unlike the typical AR
modeling and in the spirit of the multiscale
approach, here the order of the AR model is kept
fixed and small: m ¼ 1. Indeed information from
longer and longer time scales is processed, in the
AR fitting, as t is increased, and the variations with t

of the elements of matrix C describe interactions
between time series as a function of the scale.

We have applied the multiscale AR approach to
the Physionet benchmark bivariate time series
described in the previous subsection, on randomly
extracted segments of data with varying length N.
Matrix C is 2� 2n this case. Fig. 2 shows the plot of
coefficient C12 (describing the action of ilv on rri)
versus t, and C21 (rri! ilv), for N ¼ 1000, 5000 and
10,000. The interaction between these two time
series has been already analyzed in [30], by means
of the transfer entropy, and the strength rri! ilv
was found to be slightly stronger than the reverse
strength ilv! rri. The transfer entropy approach is a
non-parametric method to evaluate interactions
between time series, at a single scale, correspond-
ing to t ¼ 1; on the other hand the AR method is a
linear and parametric method. Changing t and
applying the AR method on the resampled time
series, one may look at different time scales. Now
we describe our findings. We find that, at every t,
Figure 2 Causal relationships between heart rate and
respiration from Santa Fe data set, averaged over 200
trials. Above: influence of respiration on heart rate;
below: influence of heart rate on respiration. Squares:
length 1000 points; circles: length 5000 points; triangles:
length 10,000 points. The values of t for the three cases
have been slightly shifted for better visualization.
the influence of ilv on rri is negative, whilst the
influence of rri on ilv is positive, see Fig. 2. At t ¼ 1,
the only value at which comparison with transfer
entropy is possible, our results are consistent with
those in [30]. For values of t in the range [2,5] the
modulus of C12 is higher and thus the interaction
strength ilv! rri is dominant. This example shows
that themultiscale ARmodeling may put in evidence
interdependencies, between time series, acting on
different time scales.

2.3. Data

Our data are from 47 healthy volunteers (age: 53� 8
years;M/F: 40/7) and275 patientswith chronic heart
failure (CHF) (age: 52� 9 years; left ventricular
ejection fraction: 28� 8%; New York Heart Associa-
tion class: 2:1� 0:7; M/F: 234/41), caused mainly by
ischemic or idiopathic dilated cardiomyopathy (48%
and 44%, respectively), consecutively referred to the
Heart Failure Unit of the Scientific Institute of Mon-
tescano, S. Maugeri Foundation (Italy) for evaluation
and treatment of advanced heart failure. Concerning
the second group, cardiac death occurred in 54 (20%)
of the patients during a 3-year follow-up. The cardi-
orespiratory data were collected both in conditions
of spontaneous breathing (basal condition), and in
regime of paced breathing [31,32]. Paced breathing
is a simple experimental procedure that allows a
better standardization in the measure of spectral
indexes of cardiovascular variability (see for example
[33] for a detailed in Section 4). After instrumenta-
tion and calibrationwere completed, the subjects, in
supine position, carried out a session of familiariza-
tion with the paced breathing protocol. They were
instructed to follow recorded instructions to breath
in and out at a frequency of 0.25 Hz. After an initial
trial, the subject were asked whether they felt com-
fortable with the paced breathing frequency, and an
adjustment was made within �10% of the target
value. After signal stabilization, all the subjectswere
told to breath spontaneously,while they underwent a
10 min recording of ECG, lung volume (Respitrace
Plus, Non-Invasive Monitoring Systems), and nonin-
vasive arterial blood pressure (Finapres 2300,
Ohmeda). The recordings were then repeated, again
for 10 min, in the regime of paced breathing. R—R
interval (resolution 1 ms), and systolic and diastolic
arterial pressure values were obtained from the
ECG and arterial pressure signals using custom made
software [34]. The lung volume, R—R interval, sys-
tolic and diastolic pressure time series were re-
sampled at a frequency of 2 Hz using a cubic spline
interpolation. Part of this data set (the sap time
series) has been already analyzed in [35] using a
different approach.
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Figure 3 Standard deviations are plotted vs. t for the coarse grained time series, in basal condition. Empty squares are
the averages over the 47 healthy subjects, full circles are the averages over the 275 CHF patients, and empty circles are
the averages over the 54 patients for whom cardiac death occurred. Top left: S.D. of rri time series. Top right: S.D. of dap
time series. Bottom left: S.D. of sap time series. Bottom right: S.D. of ilv time series.
3. Results

Nowwe turn to the application to the data described
in Section 2.3. In Fig. 3 we depict the standard
deviations of the coarse grained time series in basal
condition. Due to the short length of the samples at
our disposal, we consider t � 10 so as to have
sufficient statistics at each scale; this implies that
our analysis will be limited to part of the high
frequency (HF) band (0.15—0.45 Hz), the band in
which the respiratory rhythm of most people lies. It
is worth to stress that the use of paced breathing
greatly reduces the spectral leakage of the respira-
tory components in other bands. In all cases, on
average the standard deviation is a decreasing func-
tion of the scale; healthy subjects show greater
variability than patients, except for ilv signals,
where patients on average have the highest varia-
bility. Similar patterns of standard deviations are
obtained in paced breathing conditions.

3.1. MSE results

As already stated, to extract the sample entropy
from these signals, we take r equal to a fixed
percentage (15%) of the standard deviations of
the coarse grained time series; we take m ¼ 1.
We found this choice optimal for our short time
series; however similar results were obtained using
m ¼ 2 as in [15]. In Fig. 4 we depict the average SE of
rri time series of controls, patients and dead
patients, in basal condition (high) and paced breath-
ing (low). On the right we depict, as a function of the
scale factor t, the probability that rri entropy values
from controls and patients were drawn from the
same distribution, evaluated by non-parametric
Mann—Whitney test [36]: the discrimination is
excellent at intermediate t’s. It is worth mentioning
that here we compare subjects from the same age
group, so that the decrease in heart rate variability
cannot be accounted to age rather than disease. In
the case of paced breathing the three curves get
closer and the discrimination, between patients and
controls, is decreased: thus paced breathing, in the
case of rri entropy, reduces differences between
patients and controls. We note that, on average,
patients for whom cardiac death occurred show
further reduced SE with respect to the remaining
CHF patients, thus suggesting that the complexity-
loss paradigm also applies to the severity of the
pathology.

In Fig. 5 we depict SE of systolic arterial pressure
(sap) time series. We find that at low t patients have
higher entropy, whilst at large t they have lower
entropy than controls. The crossover occurs at t ¼ 3
in basal conditions, and t� 6 for paced breathing.
The complexity-loss paradigm, hence, here holds
only for large t. This may be explained as an effect
of respiration, whose influence becomes weaker as t

increases. This effect is more evident in conditions
of paced breathing, due to synchronization [32,37].
Our results are consistent with those obtained in
[35] using a different approach and with t ¼ 1. It is
interesting to observe that curves corresponding to
dead patients are farther, from the controls curve,
than the average curve from all patients, up to
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Figure 5 Sample entropy of sap time series plotted vs. t. Empty squares are the averages over the 47 healthy subjects,
full circles are the averages over the 275 CHF patients, and empty circles are the averages over the 54 patients for whom
cardiac death occurred. Top left: SE in basal condition. Top right: the probability that basal SE values from controls and
patients were drawn from the same distribution, evaluated by non-parametric test. Bottom left: SE in paced breathing
condition. Bottom right: the probability that paced breathing SE values from controls and patients were drawn from the
same distribution, evaluated by non-parametric test.

Figure 4 Sample entropy of rri time series plotted vs. t. Empty squares are the averages over the 47 healthy subjects,
full circles are the averages over the 275 CHF patients, and empty circles are the averages over the 54 patients for whom
cardiac death occurred. Top left: SE in basal condition. Top right: the probability that basal SE values from controls and
patients were drawn from the same distribution, evaluated by non-parametric test. Bottom left: SE in paced breathing
condition. Bottom right: the probability that paced breathing SE values from controls and patients were drawn from the
same distribution, evaluated by non-parametric test.
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Figure 6 Sample entropy of dap time series plotted vs. t. Empty squares are the averages over the 47 healthy subjects,
full circles are the averages over the 275 CHF patients, and empty circles are the averages over the 54 patients for whom
cardiac death occurred. Top left: SE in basal condition. Top right: the probability that basal SE values from controls and
patients were drawn from the same distribution, evaluated by non-parametric test. Bottom left: SE in paced breathing
condition. Bottom right: the probability that paced breathing SE values from controls and patients were drawn from the
same distribution, evaluated by non-parametric test.
t ¼ 7; departure from the controls curve appears to
be connected with the severity of the disease.

In Fig. 6 we consider diastolic arterial pressure
(dap) time series. We find a similar pattern to sap:
Figure 7 Sample entropy of ilv time series plotted vs. t. Em
full circles are the averages over the 275 CHF patients, and em
cardiac death occurred. Top left: SE in basal condition. Top rig
patients were drawn from the same distribution, evaluated b
condition. Bottom right: the probability that paced breathing
same distribution, evaluated by non-parametric test.
patients have higher entropy at low t and lower
entropy than controls at large t. Again the crossover
occurs at t ¼ 3 in basal conditions, and t ¼ 6 for
paced breathing.
pty squares are the averages over the 47 healthy subjects,
pty circles are the averages over the 54 patients for whom
ht: the probability that basal SE values from controls and
y non-parametric test. Bottom left: SE in paced breathing
SE values from controls and patients were drawn from the



244 L. Angelini et al.

Figure 9 Sample entropy of shuffled rri time series in
paced breathing regime plotted vs. t. Empty squares are
the averages over the 47 healthy subjects, full circles are
the averages over the 275 CHF patients, and empty circles
are the averages over the 54 patients for whom cardiac
death occurred.
Now we turn to consider ilv time series, as
depicted in Fig. 7. In the basal case, controls have
higher entropy at small scales. On the other hand
controls show lower entropy than patients at t> 7:
patients pathologically display fluctuations of ilv at
larger scales than healthy subjects. Under paced
breathing, controls are characterized by reduced
fluctuations at high t; at t ¼ 4, when the window
size is half of the respiration period, controls show a
local minimum of the entropy. These phenomena are
not observed for patients, where paced breathing is
less effective in regularizing the ilv time series.

At this point, a comment is worth about the
choice of parameters m and r for the calculation
of sample entropy. The value of r determines the
level of accepted noise; in the multiscale approach,
m is kept fixed and small so that the influence of
longer and longer time scales is probed as t is
increased. We verify that our results do not depend
on the choice ofm and r. Indeed, we find that as the
value of r increases (m increases) the values of SE,
for both patients and controls, decrease. However
the consistency of SE values is preserved (see, e.g.
Fig. 8, which refers to sap time series for paced
breathing and t ¼ 1: SE is always greater for
patients, independently of r andm). For a discussion
of the optimal selection of m and r see [38].

In order to show now that the dynamics of the
system is actually being measured, this analysis is
applied to surrogate data, obtained by random
shuffling of the temporal ordering of data samples.
Fig. 9 reports the sample entropy for shuffled rri
time series in paced breathing regime: it is clear
that any structure and any discrimination between
the three classes of subject is lost in this case.
Figure 8 Sample entropy of sap time series plotted vs. r,
in conditions of paced breathing and t ¼ 1, form ¼ 1 (top)
andm ¼ 2 (bottom). Empty squares are the averages over
the 47 healthy subjects, full circles are the averages over
the 275 CHF patients.
Similar results are obtained with the other quanti-
ties in both regimes.

The statistical separation between patients and
controls, according to a given indicator, refers to the
probability that its values are drawn from the same
distribution. This definition is not connected with
the diagnostic power of the indicator, which is to be
quantified by other means. To evaluate the diag-
nostic power of the indicators above described, we
measure the area under the receiver-operating-
characteristic (ROC) curve [39], a well-established
index of diagnostic accuracy; the maximum value of
1.0 corresponds to perfect assignment (unity sensi-
tivity for all values of specificity) whereas a value of
0.5 arises from assignments to a class by pure
chance. The results concerning the entropic indica-
tors are reported in Table 1.

3.2. AR results

Coming to the AR analysis, in Table 2 we list the
causal relationships which we find to be the most
Table 1 Area under ROC curve for MSE analysis

Series t Area

rri, basal 5 0.7612
rri, paced breathing 8 0.6222
sap, basal 1 0.6884
sap, paced breathing 1 0.7388
dap, basal 1 0.7705
dap, paced breathing 1 0.7882
ilv, basal 9 0.6642
ilv, paced breathing 7 0.7258
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Table 2 Causal relationships (averaged over controls, patients and dead patients)

Interaction t Controls Patients Dead patients P-value

rri! sap, basal 1 �0.0614 0.0128 0.0004 1:17� 10�09

rri! sap, paced breathing 1 �0.0721 0.0088 0.0076 5:76� 10�11

dap! rri, basal 1 0.0645 0.0092 0.0299 1:61� 10�05

6 0.0787 �0.0552 �0.0665 5:54� 10�09

dap! rri, paced breathing 1 0.0981 0.0264 0.0321 5:63� 10�05

6 0.1080 0.0121 0.0077 8:75� 10�06

rri! ilv, basal 4 0.0032 �0.0092 �0.0150 3:76� 10�05

rri! ilv, paced breathing 4 0.0129 �0.0101 �0.0049 2:09� 10�05

ilv! rri, basal 2 �0.2546 �0.2786 �0.2781 8:13� 10�06

rri! rri, basal 8 0.4430 0.6380 0.6680 6:50� 10�09

rri! rri, paced breathing 8 0.4470 0.5810 0.6120 8:22� 10�04

dap!dap, basal 1 0.9470 0.7500 0.7250 1:61� 10�05

dap!dap, paced breathing 1 0.9170 0.7380 0.7550 5:63� 10�05

sap! dap, basal 1 �0.0030 0.1070 0.1090 5:86� 10�09

sap! dap, paced breathing 1 0.0320 0.1470 0.1420 1:96� 10�08

8 �0.2790 �0.0993 �0.1030 5:39� 10�07

ilv! sap, paced breathing 4 �0.2818 �0.2218 �0.1550 5:32� 10�04
discriminating between patients and the healthy
subjects (controls). Firstly we consider the interac-
tions between heart rate and blood pressure. In
physiological conditions heart rate and arterial pres-
sure are likely to affect each other as a consequence
of the simultaneous feedback baroreflex regulation
from sap—dap to rri and feedforward mechanical
influence from rri to sap—dap [40].

For t ¼ 1 the causal relationship rri! sap for
controls is negative, both in basal and paced breath-
ing conditions. Patients are characterized by weaker
interaction, and at t ¼ 1 the corresponding mean is
positive. The difference between patient and con-
trols is highly significant especially in paced breath-
ing regime (P-value less than 10�10). For dead
patients the interaction is even weaker. The coeffi-
cient rri! dap shows a behavior very similar to
those of rri! sap, i.e. it is negative and is stronger
for controls.

The interaction dap! rri, as extracted by our
approach, shows high discrimination between con-
trols and patients both at low and high t, see
Table 1. In basal conditions, and for t ¼ 6, this
coefficient is positive for controls and negative
for patients. Moreover, its strength is always smaller
for patients with respect to controls.

Human respiration interacts with heart rate, ori-
ginating the well known phenomenon of respiratory
sinus arrhythmia [41,37,42]. We find that the inter-
action rri! ilv is significantly (P< 10�4) stronger in
controls than patients, under paced breathing and
using t ¼ 4. We also find that the interaction
ilv! rri is negative and significantly (P< 10�5)
stronger in patients, in basal conditions and at high
frequencies (t � 4).

Let us now turn to consider self interactions of
time series. The matrix element A11 describes how
much the rri signal depends on its value at the
previous time. As it is shown in Table 1, both in
basal and paced breathing conditions A11 is signifi-
cantly lower for controls, especially at high t. Also
the self interaction of dap time series gives rise to an
interesting pattern. It is stronger for controls, espe-
cially at low t, leading to high discrimination
between controls and patients at low t.

The interaction of systolic and diastolic arterial
pressure in healthy subjects has been recently stu-
died in [43]. In the present analysis we find signifi-
cant differences between patients and controls
when the interaction sap! dap is considered, see
Table 1. For controls, this coefficient is negative in
basal conditions for t ¼ 1, whereas it is positive and
weaker in paced breathing regime, again for t ¼ 1,
becoming negative and stronger for t ¼ 8.

It is known that respiration interacts in an open
loop way with arterial pressure, mainly through a
mechanical mechanism [44]. Our findings confirm it;
indeed we find no significant sap! ilvinteraction,
but significant (P< 10�3) differences between
patients and controls are found when the interac-
tion ilv! sap is considered: controls show increased
interaction w.r.t. patients.

Also for AR modeling we have applied the ROC
analysis: for the two classes of controls and
patients, in many cases we find fair discrimination
(area between 0.7 and 0.8) or good discrimination
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(between0.8 and0.9). ThebestROCarea is 0.874and
obtained using the values of dap! dap interaction at
t ¼ 1 and in basal conditions. Excellent (i.e.,
between 0.9 and 1) discrimination performances
are obtained considering pairs of indicators and using
Fisher linear discriminant (FLD) analysis to find the
best linear combination of the two indicators; for
example combining basal dap! dap interaction at
t ¼ 1 (alone provides 0.874 ROC area) and basal
rri! sap interaction at t ¼ 1 (alone provides 0.778
ROC area), leads to a FLD with 0.941 ROC area.

The separating performances in this case are
poor. The indicators leading to the best ROC areas,
as far as the discrimination between dead and alive
patients is concerned, are dap! sap interaction in
paced breathing conditions at t ¼ 1 (0.622 ROC
area) and dap sample entropy in paced breathing
conditions at t ¼ 10 (0.620 ROC area). Considering
pairs of indicators do not improve much the perfor-
mances: FLD resulting from the combination of
ilv! sap interaction and dap entropy and at
t ¼ 10, both in paced breathing conditions, leads
to a ROC area 0.671.
4. Discussion

In the present paper we have presented the MSE
analysis of short term physiological time series. We
Figure 10 Sample entropy of rri time series plotted vs. t, k
squares are the averages over the 47 healthy subjects, full circ
circles are the averages over the 54 patients for whom cardiac
the probability that basal SE values from controls and patients
parametric test. Bottom left: SE in paced breathing conditio
values from controls and patients were drawn from the same
have tested the robustness of our method for dif-
ferent lengths of the time series, and we have shown
that the analysis of [15] can be successfully per-
formed also on short rri recordings, still leading to
separation between controls and patients. In the
basal case, we have observed that controls have
significantly higher entropy than CHF patients along
wide scales intervals, and that dead patients show
slightly less complex rri time series than the average
over all patients. The severity of the pathology
appears to be correlated with the loss of entropy.
This picture is in agreement with findings in [15],
corresponding to controls and subjects with conges-
tive heart failure in sinus rhythm, except for a
different form of the entropy curve for patients,
which indeed depends on the pathology. Concerning
the recalculation of the tolerance parameter r, we
applied the prescription by Nikulin and Brismar [26],
but similar results are obtained using the original
prescription by [15]; in Figs. 10—13 we show the
values of the entropy and of the probability that
basal SE values from controls and patients were
drawn from the same distribution, evaluated by
non-parametric test, versus t; comparison with
Figs. 4—7 reveals no significant differences in the
curves and in the performance of the two methods.
The usefulness of MSE as a tool in diagnosis and
predictions has been tested with a ROC curve ana-
lysis, showing that, though performing quite fairly in
eeping the tolerance parameter r fixed as in [15]. Empty
les are the averages over the 275 CHF patients, and empty
death occurred. Top left: SE in basal condition. Top right:
were drawn from the same distribution, evaluated by non-
n. Bottom right: the probability that paced breathing SE
distribution, evaluated by non-parametric test.
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Figure 11 Sample entropy of sap time series plotted vs. t, keeping the tolerance parameter r fixed as in [15]. Empty
squares are the averages over the 47 healthy subjects, full circles are the averages over the 275 CHF patients, and empty
circles are the averages over the 54 patients for whom cardiac death occurred. Top left: SE in basal condition. Top right:
the probability that basal SE values from controls and patients were drawn from the same distribution, evaluated by non-
parametric test. Bottom left: SE in paced breathing condition. Bottom right: the probability that paced breathing SE
values from controls and patients were drawn from the same distribution, evaluated by non-parametric test.
separation, this analysis cannot be used as a diag-
nostic tool for single cases.

We extended the analysis by considering simul-
taneously acquired recordings of sap, dap and ilv.
Figure 12 Sample entropy of dap time series plotted vs. t,
squares are the averages over the 47 healthy subjects, full circ
circles are the averages over the 54 patients for whom cardiac
the probability that basal SE values from controls and patients
parametric test. Bottom left: SE in paced breathing conditio
values from controls and patients were drawn from the same
We have also proposed a multiscale approach to
evaluate interactions between time series, by per-
forming a multivariate AR modeling of the coarse
grained time series. This analysis has put in evidence
keeping the tolerance parameter r fixed as in [15]. Empty
les are the averages over the 275 CHF patients, and empty
death occurred. Top left: SE in basal condition. Top right:
were drawn from the same distribution, evaluated by non-
n. Bottom right: the probability that paced breathing SE
distribution, evaluated by non-parametric test.
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Figure 13 Sample entropy of ilv time series plotted vs. t, keeping the tolerance parameter r fixed as in [15]. Empty
squares are the averages over the 47 healthy subjects, full circles are the averages over the 275 CHF patients, and empty
circles are the averages over the 54 patients for whom cardiac death occurred. Top left: SE in basal condition. Top right:
the probability that basal SE values from controls and patients were drawn from the same distribution, evaluated by non-
parametric test. Bottom left: SE in paced breathing condition. Bottom right: the probability that paced breathing SE
values from controls and patients were drawn from the same distribution, evaluated by non-parametric test.
interesting patterns of interactions between time
series, while providing several new quantitative
indicators which are statistically correlated with
the CHF pathology, and which can be employed
for diagnosis of CHF patients.

Two mechanisms determine the feedforward
influence rri! sap. Firstly the Starling law, stating
that when the diastolic filling of the heart is
increased or decreased with a given volume, the
volume of blood which is then ejected from the
heart increases or decreases by the same amount.
More blood in: more blood out. This mechanism
favors an increase of sap—dap as the rri interval
increases, i.e. a positive coefficient rri! sap. The
second mechanism is diastolic decay, described by
the Windkessel model of the capacitative property
of arteries; as rri interval increases, this effect
tends to lower sap—dap values and gives a negative
contribution to the coefficient rri! sap. Our finding
suggests that the second mechanism is dominant.
Evaluation of baroreflex regulation sap�dap! rri is
an important clinical tool for diagnosis and prognosis
in a variety of cardiac diseases [45]. Recent studies,
see, e.g. [46] and references therein, have sug-
gested that spontaneous fluctuations of arterial
pressure and rri offer a noninvasive method for
assessing baroreflex sensitivity without use of pro-
vocative tests employing injection of a vasoconstric-
tive drug or manipulation of carotid baroreceptor. It
is worth stressing that the interaction dap! rri,
evaluated by the present approach, has only little
relation with the baroreflex sensitivity index con-
sidered, e.g. in [46]; indeed the procedures for
evaluating these quantities differ in several steps.
For example in our approach all time series are
centered and normalized, hence the interaction
between arterial pressure and rri is described only
qualitatively.

Separating dead patients from alive patients is a
very important task, since a good estimation of the
probability of surviving of a given patient would be
valuable when a decision has to be made with
respect to the therapy to be undertaken. The separ-
ating performances provided by our indicators in
this case are not good as those obtained separating
patients and controls. Further work must be done to
deal with the separation between dead patients and
alive patients.
5. Conclusions

We have successfully extended the MSE analysis to
short term time series coming from a cardiovascular
care center. Furthermore we have shown that the
multiscale approach is useful also when applied to
multivariate AR modeling. Both types of analysis
have indeed proved useful in separating patients
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affected by CHF from control subjects. Our findings
also suggest that the complexity-loss paradigm
can be extended to the severity of the cardiac
pathology.
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