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On the detailed modelling of high temperature nanoparticles synthesis 1

On the detailed modelling of high temperature nanoparticles synthesis

M. Kraft1

New findings and models of high temperature nanoparticle synthesis and, in par-
ticular, particle formation and growth from gas phase precursors are presented. The
model construction starts by identifying possible chemical species relevant to the syn-
thesis and growth of nanoparticles. Subsequently, a detailed chemical mechanism is
proposed. The chemical mechanism is then reduced and coupled to a stochastic parti-
cle system which describes the evolution of nanoparticles from clusters of molecules to
aggregates of nano-size. In order to do this we use automated modelling techniques,
advanced stochastic algorithms and statistical methods. The following systems will be
discussed: silicon nanoparticle synthesis from silane, titania nanoparticles from tita-
nium tetra-isopropoxide (TTIP) and titanium tetrachloride (TiCl4) and silica nanoparti-
cles from of tetraethoxysilane (TEOS).
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Introduction

The authors have previously launched a model for the sedimentation process of the secondary clarifier in
wastewater treatment plants (Bürger et al., 2011). The model originates from the conservation of mass
and can be stated as a scalar, nonlinear partial differential equation (PDE) for the sludge concentration as
function of depth and time. A special feature of this PDE is that it is parabolic wherever the solution exceeds
a certain critical concentration of sludge and hyperbolic for lower concentration values. Thus, this equation
is called strongly degenerate parabolic or parabolic-hyperbolic. Note that the location of the type-change
interface is not known beforehand. Moreover, due to the nonlinear and degenerate nature discontinuities
appear and special techniques for the numerical solution have to be used. The mathematical foundation of
the model by Bürger et al. (2011) is provided by Bürger et al. (2005).

Sedimentation is often modeled under the assumption that no reaction takes place. However, there is
an interest to model and simulate reactive settling, for example, in sequencing batch reactors (SBRs) (Alex
et al., 2011; Kazmi and Furumai, 2000a,b; Keller and Yuan, 2002; Maruejouls et al., 2012). It is the purpose
of this contribution to make a first step towards extending the advances made by Bürger et al. (2011) for
the numerical treatment of non-reactive settling to the reactive case. To this end, we focus on a heavily
reduced-order problem as a first approach to reactive settling partly in SBRs, and partly in the secondary
clarifier. Despite the simplicity of the model, it accounts for three constitutive assumptions that determine its
mathematical nature: i) the hindered settling of the flocculated particles; ii) compression of the flocculated
particles at high concentrations when a network is formed; iii) a growth rate kinetic function.

Governing model

We study one-dimensional batch sedimentation of suspended particles in a closed vessel of height L with
a constant cross-sectional area. The depth z is measured from the suspension surface downwards. The
particulate microorganisms (biomass) may be active or inert with the concentrations Xa and Xi, respectively.
The biomass is assumed to be flocculated into large particles, having the concentration X = Xa +Xi. Each
particle is assumed to settle with a velocity v = v(X,Xz) given by a constitutive assumption involving the
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local concentration X and its gradient Xz := ∂X/∂z. The active biomass consumes the substrate, which is
soluble in the water and has the concentration S. For simplicity, the spatial movement of the substrate is
assumed to be caused by diffusion and some dispersion due to the movement of the particles, both captured
by a single diffusion coefficient ε.

A batch settling experiment starts naturally with a homogeneous suspension of particles at the concen-
tration X0 and substrate at the concentration S0. Each particle consists of a certain percentage p0 of active
biomass and the remaining is inert. The conservation of mass yields the following initial-value and zero
boundary-flux problem for 0 < z < L and t > 0:

∂Xa

∂t
= − ∂

∂z

(
v(X,Xz)Xa

)
+
(
µ(S,X)− b

)
Xa, (1)

∂Xi

∂t
= − ∂

∂z

(
v(X,Xz)Xi

)
+ bXa, (2)

∂S

∂t
= ε

∂2S

∂z2
− µ(S,X)

Y
Xa, (3)

Xa(z, 0) = p0X0, Xi(z, 0) = (1− p0)X0, S(z, t) = S0, (4)

v(X,Xz)X|z=0 = v(X,Xz)X|z=L = 0 = Sz(0, t) = Sz(L, t). (5)

where Y is a dimensionless yield factor and b [s−1] is a constant decay rate. The growth rate function is the
following:

µ(S,X) := µmax
S

Ks +KCX + S
, (6)

where µmax is the maximum specific growth rate and Ks,KC ≥ 0 are constants. The common special case of
Monod kinetics is obtained for KC = 0, whereas Ks = 0 gives the one by Contois. The constitutive function
for the particle velocity is assumed to take into account both hindered settling and compression and is of
the following form (Bürger et al., 2011):

v(X,Xz) =




vhs(X) for X < Xc,

vhs(X)

(
1− ρsσ

′
e(X)

Xg∆ρ

∂X

∂z

)
for X > Xc.

Here, vhs(X) is the hindered settling velocity function, σe the effective solids stress, ρs the density of the
solids, ∆ρ the density difference between solids and liquid, and Xc is a critical concentration above which
the particles touch each other and form a network which can bear a certain stress.

Numerical example

For the numerical simulation, we note that the sum of (1) and (2) gives an equation, which apart from the
reaction term µ(S,X)Xa, only contains derivatives of the total concentration X. This means that we can
utilize the numerical method presented by Bürger et al. (2012a, 2013). Hence, in each discrete time step in
the numerical method, this equation is updated first. This means, in particular, that the total numerical
flux is known between the computational cells during the discrete time step. With this, the (numerical
approximate) velocity v(X,Xz) is known and it is straightforward to update Eqs (1)–(3). In the figure, we
show a simulation where the Monod growth kinetics have been used with the initial data X0 = 4 kg/m3,
Xa(z, 0) = 0.9X0 and S0 = 1 kg/m3.
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Figure 1: Simulation of reactive settling of an initially homogeneous suspension: (top left) total biomass
(solids) concentration X, showing formation of a sediment with downwards-increasing concentration and
slowly increasing sludge blanket, (top right) corresponding substrate concentration S, showing the consump-
tion of substrate within the sediment, (bottom left) concentration Xa of active biomass, whose total amount
slowly decreases in time, and (bottom right) concentration Xi of inert biomass, whose total amount increases
in time.
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Introduction	
  
Hydrocracking (HCK) is one of the most versatile petroleum refining processes. It usually converts a heavy, 
low quality feedstock (VGO: Vacuum Gas Oil) into lighter, valuable transportation fuels, contributing 
significantly to the overall profitability of the refinery [1]. A robust kinetic model allows the optimal process 
design and operating conditions to be chosen to maximize the desired cuts and product characteristics. 
Hydrocracking of VGO residue performed in a two-step process: 1) a hydrotreatment step in the first reactor, 
which serves mainly to remove nitrogen and sulfur from the feed; 2) a hydrocracking step in the second 
reactor, which performs the main hydrocracking reactions on a zeolite-type catalyst. A kinetic model is 
defined by its structure and its parameters, which are estimated from collected data. The main difficulty is 
the parameter fit on real data. The aim of this paper is to compare several optimization algorithms on a 
continuous lumping model of the hydrocracking step. It is structured as follows: 

• Case study description, 
• Description of the chosen optimization algorithms, 
• Results. 

Case	
  study:	
  hydrocracking	
  
The experimental runs presented in this study were performed in a pilot plant at IFP Energies Nouvelles, 
Solaize, France. The hydrocracking step was performed on a commercial zeolite cracking catalyst. The plant 
consists of a number of fixed beds, up-flow reactors, designed to mirror the operating conditions in industrial 
hydrocracking units. A series of mass balances with different operating conditions is thus taken from each 
experimental run. Each mass balance corresponds to a single experimental point.  
Analyses were performed on the feedstocks, the liquid and gaseous effluents. The most relevant 
measurements in this study were the feed sulfur and nitrogen contents, the partial pressures of NH3, H2S, and 
H2 gasses, as well as the simulated distillation (SIMDIS). 
A calibration database, consisting of 29 mass balances, was compiled. This database was used for the 
identification of the empirical parameters in a continuous lumping model originally developed for the first 
reactor but extended to the second one [2]. The range of the main operating conditions, temperature and 
liquid hourly space velocity (LHSV) is classical: T∈[370;400°C], LHSV∈[0.5;3 h-1]. The conversion of the 
370°C fraction (X370+) is between 50 to 90%w/w. 

Optimization	
  method	
  tested	
  
The parameter fit problem is formulated as the following least-square minimization problem 

𝐦𝐢𝐧  
𝒍!𝒙!𝒖

𝒎𝒊(𝒙) − 𝒅𝒊
𝝈𝒊

𝟐𝑵𝒅

𝒊!𝟏

 ( 1 ) 

with  
o 𝑥, vector of model parameters to be tuned, 
o 𝑙, 𝑢, lower and upper bounds of  𝑥, 
o 𝑁!, size of experimental data, 
o 𝑚! 𝑥 ∈ ℝ!! ,  vector of simulated data to be compared with experimental data, 
o 𝑑! ∈ ℝ!!, vector of experimental data to be fit, 
o 𝜎!, weights modeling the measure uncertainties. 
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This optimization problem belongs to the class of derivative free or black-box optimization problems. 
Indeed, the simulator associated with the kinetic model computes the simulated data to be compared with 
experimental ones but does not provide the associated derivatives with respect to the parameters. 
Classical optimization methods, namely gradient based methods, require those derivatives: therefore, when 
they are not available as simulator outputs, they are usually estimated by finite difference scheme, which 
requires NP simulations for each gradient computation (NP being the number of parameters). The associated 
computational cost may thus become too high when the number of parameters increases. Moreover, the 
tuning of the perturbation step may be cumbersome in practice when numerical noise is present in the 
simulation.  
An alternative is derivative free optimization methods which have become very popular with the emergence 
of adapted trust region methods [3,4]. SQA, developed by [5] at IFPEN, is a trust region method coupled 
with interpolating quadratic models. It has been applied successfully on several industrial applications [6,7] 
and has shown better performances than gradient based methods with finite difference estimate of 
derivatives. This method is an extension of the method proposed by Powell in [3] to nonlinear constrained 
problems. The main principle of the method is the following: in order to save simulations, quadratic 
interpolating models are used as surrogate of the simulator responses. These quadratic models are minimized 
and updated thanks to additional simulations performed along the optimization process iterations. For least-
square formulations, the quadratic models approximate the residuals (differences between experimental and 
simulated data) instead of the single objective function, in order to improve the accuracy of the 
approximation. 
In the following section, SQA method is compared to the Gauss-Newton method implemented in Port library 
(DN2FB method) [8]. For this latter method, the Jacobian matrix (derivatives of simulated data with respect 
to parameters) is estimated by finite differences.  

Results	
  
The performances of the SQA and Port algorithms for the Hydrocracking model parameter identification 
have been compared. The continuous lumping model  requires a total of NP=28 experimental parameters to 
be identified. A target function, based on the yield structure (standard cuts: <150°C, 150-250°C, 250-370°C, 
>370°C and C1-C4 gas) is defined. The same target function and initial parameters were used for both 
algorithms.  
The SSQ is decreased by an order of magnitude, from 1.7x109 to 4.1x108 by the Port algorithm and to 
4.2x108 by the SQA algorithm. The evolution of the sum of square residuals with the number of function 
evaluations for the SQA and Port (DN2FB) algorithms are shown in figure 2. Both methods attain a 
minimum. The gradient base method (DN2FB) reached a minimum after around 240 function calls. The 
response-surface based method (SQA) reached a minimum after 190 function calls. The decrease of the SSQ 
is very gradual for the DN2FB algorithm. The SQA algorithm first constructs the interpolation of the 
response surface for a total of 2xNP+1 = 57 function calls. This is characterized by an exploration phase 
around the initial value of the SSQ. Once the response surface has been constructed, the algorithm rapidly 
descends towards the minimum (about 60 function calls). The baseline of the SSQ does not decrease 
significantly after this step. A number of oscillations can be observed, as the algorithm refines the search for 
the local minimum.  
Both of the local optimization algorithms, DN2FB and SQA are found to converge to a local minimum with 
the same square residual. The trust-region method (SQA) shows better performance on the test case than the 
gradient based-method with finite difference approximation (DN2FB). Once the response surface has been 
constructed (i.e. exploration around initial point in Figure 1), the SQA algorithm rapidly attains the local 
minimum. The DN2FB algorithm decreases the residuals much more gradually. Furthermore, the parameter 
space is explored much more thoroughly by the SQA algorithm, which is illustrated by the large spikes in 
Figure 1. The finite difference algorithm perturbs only slightly the parameters around each iterate for 
gradient estimation. This feature makes SQA less likely to be caught in a local minimum. 

Conclusion	
  
This paper compares two optimization methods for fitting kinetic model parameters. In this example, the 
SQA method proves to be more efficient than classical gradient method. 
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The fact that two different sets of parameters yield to the same sum of square residuals suggests the presence 
of local minima. Adding chemical/physical a-priori  information can help to constrain the system and to 
remove this under-determination. 

 

Figure	
  1	
  :	
  Sum	
  of	
  Square	
  Residuals	
  (SSQ)	
  with	
  function	
  evaluations	
  for	
  SQA	
  and	
  Port	
  (DN2FB)	
  algorithms	
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1. Introduction 
Multiphase catalytic reactions, including hydrocracking and hydrodesulphurization, are of 

great importance in the chemical industry. Despite their significance, modeling remains a very 
complicated process. The overall process consists of diffusion, viscous flow, reaction, 
multilayer adsorption, capillary condensation, and pore blocking; besides, it involves vapour, 
liquid, and solid phases. Hence, simulating the whole process is still challenging, in particular 
how pore blocking affects multiphase reactions. 

Pore blocking phenomenon is well studied in adsorption/desorption processes at the 
particle level. How pore blocking affects the sorption hysteresis has been investigated in 
numerous works; however, how pore blocking affects multiphase reactions has not been 
reported up to now, although a similar reaction hysteresis phenomenon has been observed in 
numerous experiments. In multiphase reaction catalysts, some liquid-filled pores, which are 
supposed to empty at low pressure or high temperature, can be blocked by the adjacent liquid-
filled pores during the evaporation. This is the pore blocking phenomenon. Pore blocking can 
change the wetting level of catalysts, and subsequently influence the apparent reaction rate, 
because the reaction rate in vapor phase can be different from the one in liquid phase. To 
study the pore blocking effects, a proper model should be established. 

We build a discrete model to probe pore blocking effects on reaction hysteresis, because 
only the discrete models can include pore blocking. The proposed model can describe coupled 
mass transfer, reaction, phase transition, and pore blocking in internally and partially wetted 
catalysts. Benzene hydrogenation into cyclohexane is taken as the reaction system because of 
its industrial and academic significance. 

2. Discrete Model 
2.1 Pore Network 

The pore network is generated by occupying an area with uniformly distributed nodes, and 
then inscribing cylindrical pores between two adjacent nodes according to the connectivity. 
The amount of nodes increases until obtaining consistent simulation results [1, 2]. The radius 
of the pores is randomly assigned, following a Gaussian distribution. 

2.2 Phase Transition and Pore Blocking 
Capillary condensation occurs in narrow pores during the multiphase reaction, resulting in 

the internally and partially wetted catalysts. The phase state in each pore can be predicted by 
using the critical pore radius of capillary condensation (rc), which is calculated by Eq. (1). 

                     c kr t r= +                                                              (1) 

                                                
* Corresponding author. Tel.: +86-21-64253509. Fax.: +86-21-64253528. Email address: xgzhou@ecust.edu.cn 
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where t is layer thickness obtained from Halsey equation and rk is Kelvin radius. The pores 
are vapor-filled when their radius is larger than rc during the condensation, but not all the 
pores with r>rc are vapor-filled because of the pore blocking effects during the evaporation. 
These blocked pores are identified by using the extended Hoshen-Kopelman algorithm [3]. 
2.3 Mass Transfer and Reaction 

In individual pores, the continuity equation involving diffusion and reaction is given by 
2

, 2 0
2

i n
i eff i

n

d C rD R
dl

− =                                                    (2) 

In the inner nodes, there is no adsorption and chemical reaction because the node volume is 
assumed to be zero. Therefore, Kirchhoff’s law is satisfied, i.e., 

2 2
,1 1

0n Z n Z i
n n n i effn n

n

dCr J r D
dl

π π
= =

= =
= − =∑ ∑

                              (3) 
As to the boundary nodes, the boundary condition is given as follows 

0iC C=                                                              (4) 

2.4 Monte Carlo Simulation 
The simulations are carried out by using a Monte Carlo method, details of which can be 

found elsewhere [1, 2]. 

3. Results and Discussion 

3.1 Validation with Experiment 
The proposed discrete model is validated by comparing with the continuum model [4] and 

experiments in the literature [4], as shown in Fig.1. The effectiveness factors calculated by the 
discrete model are much closer to experimental ones, and therefore better than the ones 
predicted by the continuum model. The continuum model cannot include pore blocking, 
which could be the reason why the discrete model is better. 

 
Figure 1. (a): An illustration of constructed spherical pore network, (b): comparison of the experimental 
effectiveness factors [4] with the predicted ones by the continuum model [4] and the proposed discrete model. 
(The arrows indicate the direction of bulk pressure change of benzene.) 

3.2 Pore Blocking Effects on Reaction Hysteresis 
The proportion of reaction hysteresis loop area caused by pore blocking (fPB) is proposed 

as the evaluation criterion to quantify the effects of pore blocking on reaction hysteresis, as 
illustrated in Fig. 2. Pore blocking affects reaction hysteresis largely, indicating that pore 
blocking must be included in the models when simulating multiphase reactions in porous 
catalysts. 

The relationships between pore blocking effects and pore network parameters are also 
investigated, as shown in Fig. 3. The fPB increases significantly with the decrease of 
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connectivity and the increase of standard deviation, indicating that pore blocking effects are 
strengthened with poorly-connected pore network or wide distribution of pore size; the fPB is 
not sensitive to the volume-averaged pore size. 

 
Figure 2. The illustrations of the hysteresis loop area caused by the pore blocking effects (fPB). (a): the 
effectiveness factor as a function of the bulk pressure of benzene, (b): the effectiveness factor as a function of the 
bulk temperature. (The arrows indicate the direction of bulk pressure change of benzene or bulk temperature 
change.)  

 
Figure 3. The relationships between fPB and pore network parameters. (a)-(c): based on the reaction hysteresis 
caused by varying bulk pressure of benzene; (d)-(f): based on the reaction hysteresis caused by varying bulk 
temperature. 

4. Conclusion 
A discrete model, which combines mass transfer, reaction, capillary condensation, and 

pore blocking, is proposed to probe the pore blocking effects on multiphase reaction 
hysteresis. The model is solved by using the Monte Carlo method, and validated by 
comparing with the experiment. The simulation results show that pore blocking affects 
reaction hysteresis significantly, and these effects can even be strengthened when the pore 
network connection is poor or the distribution of pore size is wide. 
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Simulation	
   of	
   (bio)-­‐chemical	
   processes	
   have	
   always	
   been	
   an	
   active	
   field	
   of	
   interest	
   and	
   innovation,	
  
inspiring	
   researchers	
   from	
   various	
   specializations	
   to	
   use	
   different	
   approaches	
   for	
   optimal	
   design	
   and	
  
control.	
   Increased	
   availability	
   of	
   computational	
   resources	
   have	
   facilitated	
   such	
   research	
   and	
   opened	
  
new	
  dimensions	
  for	
  process	
  optimization.	
  Representation	
  of	
  (bio)-­‐chemical	
  systems	
  at	
  various	
  levels	
  of	
  
details	
  give	
  different	
   insights.	
  Although	
  an	
  equation-­‐based	
  system	
  provides	
  an	
  overall	
  characteristic	
  of	
  
the	
  system,	
  it	
  usually	
  overlooks	
  the	
  effect	
  of	
  the	
  intrinsic	
  parameters	
  that	
  influence	
  the	
  behaviour	
  of	
  the	
  
system.	
  On	
  the	
  other	
  hand,	
  a	
  rule-­‐based	
  system	
  such	
  as	
  Cellular	
  automata	
  (CA)	
  is	
  often	
  considered	
  as	
  an	
  
alternative	
  approach	
  and	
  complements	
  the	
  existing	
  mathematical	
  basis.	
  The	
  state	
  variables	
  are	
  always	
  
discrete	
  but	
  the	
  numbers	
  of	
  degrees	
  of	
  freedom	
  are	
  large	
  (Wolfram,	
  1984).	
  Since	
  CA	
  consists	
  of	
  space	
  
and	
  time,	
  it	
  is	
  essentially	
  equivalent	
  to	
  a	
  dynamical	
  system	
  that	
  is	
  discrete	
  in	
  both	
  space	
  and	
  time.	
  The	
  
evolution	
   of	
   such	
   a	
   discrete	
   system	
   is	
   governed	
   by	
   certain	
   updating	
   rules	
   rather	
   than	
   differential	
  
equations.	
  

Previous	
  study	
  on	
  a	
  generalized	
  CA	
  model	
  (Dutta	
  et	
  al.,	
  2015)	
  possessed	
  the	
  flexibility	
  to	
  model	
  reaction	
  
interactions	
   of	
   all	
   possible	
   two-­‐agent	
   combinations	
   on	
   both	
   reactant	
   and	
   product	
   side.	
   In	
   Kar	
   et	
   al.	
  
(2014)	
   the	
   authors	
   have	
   optimized	
   the	
   probability	
   parameters	
   using	
   a	
   widely	
   used	
   multi-­‐objective	
  
genetic	
   algorithm	
   (MOGA)	
   called	
   NSGA-­‐II.	
   However,	
   due	
   to	
   high	
   sensitivity	
   of	
   these	
   parameters,	
   the	
  
authors	
  have	
  concluded	
  that	
  further	
  studies	
  need	
  to	
  be	
  carried	
  out	
  in	
  order	
  to	
  find	
  a	
  suitable	
  algorithm	
  
regarding	
  the	
  optimality	
  of	
  the	
  solution	
  (set	
  of	
  the	
  probability	
  parameter	
  values)	
  as	
  well	
  as	
  the	
  time	
  of	
  
computation.	
   For	
   this	
   purpose,	
   along	
   with	
   NSGA-­‐II,	
   three	
   more	
   recently	
   developed	
   and	
   popular	
  
optimization	
   algorithms	
   based	
   on	
   Genetic	
   Algorithm	
   (GA)	
   called	
   AbYSS	
   (Nebro	
   et	
   al.,	
   2008),	
   and	
  
MOEA/D	
   (Zhang	
   et	
   al.,	
   2007)	
   have	
   been	
   considered	
   for	
   investigation	
   in	
   this	
   study	
   using	
   various	
  
performance	
  measuring	
  parameters.	
   Ideally,	
  an	
  optimal	
  solution	
  that	
   is	
   insensitive	
  to	
  these	
  parameter	
  
variations	
  is	
  desirable.	
  The	
  goal	
  of	
  a	
  robust	
  optimization	
  is	
  to	
  optimize	
  the	
  performance	
  and	
  at	
  the	
  same	
  
time	
  minimize	
  its	
  sensitivity	
  to	
  parameter	
  variations	
  (Deb	
  et	
  al.,	
  2006).	
  If	
  variation	
  in	
  the	
  parameter	
  or	
  
variable	
   space	
   is	
   unavoidable,	
   search	
   for	
   robust	
   solutions	
   (Bui	
   et	
   al.,	
   2012)	
   is	
   required.	
   Again,	
   this	
  
perturbation	
  affects	
  the	
  degree	
  of	
  optimality	
  of	
  the	
  solutions.	
  In	
  this	
  work,	
  similar	
  to	
  the	
  previous	
  work,	
  
the	
  same	
  CA	
  model	
  representing	
  a	
  (bio)-­‐chemical	
  kinetic	
  reaction	
  system	
  is	
  used	
  as	
  the	
  basis	
  to	
  find	
  a	
  
robust	
  optimization	
  algorithm	
  based	
  on	
  GA.	
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Abstract 

During the last few decades, the Droplet Population Balance Model (DPBM) development 
constituted a comprehensive mathematical framework for modeling and simulation of the discreet 
and multiphase flow problems. The DPBM takes into account different physical and chemical 
phenomena that lead to the evolution of the discrete particulate phase. These phenomena include 
droplet growth, breakage and coalescence, which results in a coupled hydrodynamics and inter-
phase mass transfer. This allows the prediction of droplet size distribution (DSD), holdup and 
mass transfer along the column height and provides more realistic information about flooding 
conditions. The DPBM is a geometrical dependent transport equation with highly nonlinear 
source terms and hence it has no general analytical solution. As a result of this, accurate and 
robust numerical algorithms with low computational cost are needed. In this contribution, the 
Sectional Quadraure Method of Moments (SQMOM) [1] is implemented and extended in the 
physical space with a 1D finite volume scheme for grid refinement with flux vector splitting 
technique. The resulting discreet Ordinary Differential Equation (ODE) system is solved using 
the standard MATLAB ODE solvers. The required quadrature nodes and weights are calculated 
based on the analytical solution (for two unequal quadraure points) derived by Attarakih et al. [1]. 
The SQMOM performance has been tested at two different levels namely: Numerical and 
experimental levels. At the numerical level, the SQMOM results are compared with the PPBLAB 
detailed population balance solver, which is based on the extended fixed pivot technique [2]. At 
the experimental level, the SQMOM is validated using the available steady state experimental 
data for two different EFCE chemical test systems: Toluene-acetone-water and butyl acetate-
acetone-water. The only adjusted model parameter is the pre-exponential parameter in the droplet 
coalescence model. Figure (1) shows a comparison between the simulated and experimental [3] 
mass transfer profiles in a Kühni extraction column at two different rotational speeds: 150 and 
200 rpm respectively. 

 

Figure (1): Comparison between simulated and experimental [3] steady state mass transfer profiles responses in a 
Kuhni extraction column at two different rotational speeds: 150 and 200 rpm. 
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It is known that trajectories of a reacting system, when represented in the concentrations space, may 
rapidly approach hypersurfaces, named Slow Manifolds (SMs), and remain in their neighbourhood 
up to equilibrium. By considering that the dimensionality of the SMs may be much smaller than that 
of the whole space, such mutual correlation between species concentrations on the “slow tail” of the 
system evolution can be exploited to achieve a simplification (in the sense of reduction of 
dynamical variables) in the description of the kinetics. 
In recent communications [1, 2] we have proposed a definition of SM which spontaneously 
“emerges” from the intrinsic properties of a universal quadratic format into which the system of 
Ordinary Differential Equations (ODEs) of any mass-action-based kinetic scheme (with N species 
and  M  elementary steps/reactions) can be transformed, regardless of the degree of non-linearity.  
The global transformation consists in turning from the set of volumetric concentrations of the 

species, jx  for  1,...,j N= , to the following N M×  rate-variables which are mutually correlated by 

non-linear constraints (such that only N of them are independent), 
( ')

, '

' ' '

( ') ( ') ( )
, ' ' , ' '( )

m
i jRi

j j j

m m m
jm j m j j m iP R R

i

V k x
υ δ

υ υ δ υ
−   = − −       ∏x     (1) 

where ( )
j

m
Rυ  and ( )

j

m
Pυ  are the stoichiometric coefficients of species j as reactant and product, 

respectively, in the m-th elementary step/reaction, and mk  is the kinetic constant. By introducing the 

cumulative index ( , )Q j m=  for the pair species-step, the evolution of these rates is specified by the 

quadratic ODEs system 

' ' ' ''
''

QQ QQ Q Q
Q

V V V= − ∑ɺ          (2) 

A backward transformation ( )→V x x  then allows one to retrieve the actual state of the system in 

the concentrations space.  
In ref. [2] we have shown that the following rates  

Slow Manifolds identification for dimensionality reduction of chemical kinetics 15



'
'

( ) : ( )Q QQ
Q

z V=∑x x           (3) 

and their time-derivatives ( ) ( ( )) ( ( )) /n n n
QQz t d z t dt=x x  are strictly related to the SM feature. Namely, 

by means of phenomenological inspections we formulated the conjecture that a “typical” trajectory 
for a “typical” kinetic scheme enters an “Attractiveness Region” (AR) which includes the SM. We 

then defined the SM as that hypersurface where ( ) ( ) 0n
Qz =x , for all Q, as n → ∞  (while the stronger 

and exact condition ( 1)( ) 0n
Qz

≥ =x  holds on the equilibrium manifold). In practice, it would suffice to 

search for local minima of the Euclidean norm ( ) ( )nz x  along relevant directions (to be defined), or 

to find points where the values of such norm fall below a given threshold (to be fixed). Apart from 
ambiguities to be removed, the crucial problem lies in the fact that “spurious solutions” (possibly 
very many) must be excluded a posteriori by checking if the candidate points belong or not the AR. 
Unfortunately, a simple and direct way to guess the dimensionality, the location and the boundaries 
of the AR in the whole concentrations space is still missing. Also considering that the computation 

of the derivatives ( ) ( )n
Qz x  becomes cumbersome (although a recursive scheme can be employed [1]) 

and possibly inaccurate as the order n increases, some low-computational-cost route is required. 
The idea is to devise a strategy which yields only an acceptable approximation of the SM  but with 
a lower computational effort.  
Our work in such a direction is still in progress. Here we only sketch out the essential traits to give 
the qualitative picture behind the formal treatment. The starting point is to note that Eqs (2) and (3) 
yield directly the following system of ODEs  

= −z V zɺ            (4) 

which appears in a pseudo-linear format, where the term “pseudo” recalls that the matrix V is point-

dependent. Suppose that the dynamics in the concentrations space, ( )tx , are such that the vector 

( ) ( ( ))t t≡z z x , in the extended space, is brought to be confined into a subspace of eigenvectors of V. 

Then Eq. (4) states that zɺ , and hence z at the next step of the trajectory, is still confined into such a 
subspace. Now consider that the components of z are nothing but the rates of evolution of the 
matrix V through Eq. (2), and hence, ultimately, they control the evolution of its 

eigenvalues/eigenvectors. Thus, the condition of small Euclidean norm z  enforces the 

confinement of z itself on the subspace of  the “slow” eigenvectors of V. These two facts, taken 

together, lead to invoke the smallness of the norm zɺ . By considering the mapping between matrix 

V and state-point x via backward transformation [1], the guess is that points x which fall in the 
neighbourhood of the SM could be found by operating with these two norms. As a whole, a 

tentative recipe is to find points where z  takes small values and then, starting from each of these 

points, find the closest one where zɺ  has a minimum. As side-note, consider that condition of 

smallness of zɺ  resembles a quasi-stationary-state approximation applied to the evolution of the 

Qz  functions in the ODEs of Eq. (4).  

We have tested this idea on some simple kinetic schemes, namely  the benchmark case studied by 
Fraser in ref. [3] (Lindemann-Hinshelwood mechanism) and a fictitious scheme where elementary 
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steps up to the fourth order are added. The two-step minimization of norms ( )z x  and ( )z xɺ  has 

been made by selecting initial points ( , )x y=x  at random within a box spanning 8 orders of 

magnitude in both directions, and then moving either at fixed x or at fixed y. Powell’s method has 
been employed for the minimization. The results are displayed in the figure. Solid lines are 
trajectories of the reacting system, while the coloured marks are the outcomes of the algorithm. 
 

 

 
Kinetic schemes for model calculations: the Lindemann-Hinshelwood mechanism with Fraser’s parameterization 
(top) and a fictitious fourth-order mechanism (bottom). The panels show two-dimensional projections on the 
reactants concentrations subspace. Solid lines are trajectories from points generated at random; coloured marks are 
candidate points (expected to fall close to the perceived SM, but to be “screened”) which are produced by the 
route here proposed. Volumetric concentrations and time are expressed in arbitrary units cs and ts. 
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We see that for the Lindemann-Hinshelwood scheme, the produced points fall on the perceived SM. 
For the second scheme, the majority of the produced points are very close to the perceived SM, but 
some spurious solutions also appear. These spurious solutions should be automatically recognized 
(with acceptable likelihood) and filtered-out a posteriori in a proper way to be conceived. Both 
panels display 1000 produced points. Generation of the whole set of points for the second scheme 
took about 5 seconds on a PC.   
These illustrative tests encourage us to pursue such a route, and check if the same idea works well 
even with kinetic schemes of higher complexity. The work on the theoretical foundation of such a 
kind of low-order strategy is currently underway. 
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For reactions involving a low number of particles (like processes occurring in micro-reactors or in 
the cellular membranes and interior), the deterministic mass-action law which is suited for 
macroscopic size systems has to be abandoned in favour of a stochastic description of the kinetics 
[1-3]. In such a context, each elementary reaction, or elementary step of a mechanism, is associated 

to the so-called “propensity function” which quantifies, once multiplied by a time-step δt, the 
probability that the given reaction occurs. Under the assumption that the propensity functions can 
be indeed specified for any of the elementary processes, the progression of the system towards 
equilibrium, at fixed temperature and volume, is expressed by the evolution of the conditioned 

probability 0( , ,0)P tx x  of finding the system in the state x at time t (x is an array which collects the 

actual number of particles of each species) if it was initially observed in the state x0. The evolution 
of such probability is governed by the partial-derivatives equation termed as Chemical Master 
Equation (CME), whose solution is known to be a quite hard task [1-3]. Considering such a 
technical difficulty, together with the need to handle kinetic schemes with very many species 
involved (e.g., in biochemical networks), one aims to devise likely routes to reduce the complexity 
of the mathematical modelling of stochastic reactions. This means to work out some reduced but 
accurate description (i.e., with few relevant dynamic variables) able to catch the essential traits of 
the whole system with lower computational cost and a more transparent level of representation. 
Several efforts are currently devoted to this aim, especially from the scientific community working 
in the context of complex biochemical networks. Just to mention one recent communication on 
methodological issues, in ref. [4] the authors propose a route to simplify the CME by applying 
concepts borrowed from the Information Theory. 
In this communication we illustrate that the reduction of stochastic chemical kinetics could be faced 
by considering that a feature known at the deterministic level, namely the presence of the so-called 
Slow Manifolds (SMs), is somehow found even for the stochastic counterpart. In deterministic 
kinetics, where volumetric concentrations are the dynamic variables, a SM is a subspace (of the 
whole concentrations space) in whose neighbourhood the slow tail of the evolution towards 
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equilibrium takes place. The mutual correlation between species concentrations held on the SM 
allows one, in principle, to achieve the desired reduction of the system description. By means of 
simulations performed by us on simple kinetic schemes, it turned out that 1) an analogous of the 
SM indeed exists for the stochastic counterpart, and 2) a suitable state-dependent descriptor allows 
one to localize the SM in the space of the numbers of molecules. Simulations have been performed 
for several schemes by means of the basic Gillespie’s stochastic algorithm [1-3] which allows the 

generation of an ensemble of trajectories ( )tx  as alternative to solve directly the CME. By plotting 

together several trajectories it is possible to note that, on average, they indeed tend to bundle on a 
common subspace.  
Here we illustrate such behaviour for the following scheme:  
 

 

Model kinetic scheme with two reactants (X and Y) and a product (P) irreversibly formed. The coefficients which 
enter the expressions of the propensity functions according to notation of ref. [1] have been set to c1=2, c2=1, 
c3=20, c4=3, c5=10 (they are meant to be expressed in units ts

-1 where ts is a time unit). The arrows in the right 
panel show the variations of the reactants particle numbers when the possible reactions occur.    

 
The figure below shows some stochastic trajectories. The underlying smoothed lines are average 
trajectories obtained from an ensemble of trajectories all departing from the same points. One may 
see that a SM-like phenomenology emerges when considering the average trajectories.  

 
Examples of stochastic and average trajectories (beginning from the same starting points), projected on the 
reactants plane, for the kinetic scheme given above.  
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As a step beyond, we have considered a set of candidate descriptors to be employed to localize such 

a SM in the space of the numbers of molecules. Presently, the best descriptor, ( )ε x  here below, 

turned out to be the simple Euclidean norm of the “weighted average move” that the system can 
take from the actual state (where the weights are provided by the normalized  propensity functions). 

Namely, the figures below show that some features of the ( )ε x  landscape (its high-curvature 

“groove”) may allow the delimitation of the perceived SM.   
 

 
Contour plot (left) and landscape (right) of the dimensionless descriptor ( )ε x for the kinetic scheme given 

above. The immaterial product species is ignored in this representation.  

 
 
These preliminary inspections, mainly of phenomenological kind and targeted to stimulate the 
scientific community active in this field of research, suggest that a proper formal definition and 
construction of Slow Manifolds in the context of stochastic chemical kinetics might be of use to 
achieve a simplification of the kinetics description itself. 
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 Photochemistry is interested in chemical reactions induced by light.1 The 

kinetics of such processes differs very characteristically from the kinetics of thermally 

activated reactions because light intensity and light absorption play major parts in 

determining reaction rates. Classical kinetic studies in photochemistry are typically 

based on monitoring a short-lived excited state species after a substantial pulse of light. 

The role of this pulse light is only to generate an intermediate species in this approach, 

but the process itself can be fully described by conventional kinetics as the detection 

only begin after the light pulse is over and the sample is not illuminated in this period. 

Another common classical source of information is spectrofluorimetry, but this is 

typically carried out under steady state conditions where no substantial chemical change 

occurs in the solution. A third approach is based on sampling and offline chemical 

analysis of a reaction carried out in a photoreactor, which can rarely yield high-quality 

kinetic data for evaluation.  

 Recently, some efforts have been devoted to monitoring the major chemical 

changes during a photochemical reaction by online detection.2-5 The solid evaluation of 

such experiments requires the theoretical calculation of concentration changes occurring 

under illumination. Earlier studies in this field2-5 have attempted to develop a 

specialized solution to this problem, but more general sequences of thought are clearly 

needed.  

 This poster will present analytical and numerical methods to solve differential 

equations following from the kinetic description of photochemical processes. The 

general form of such ordinary differential equations is as follows: 

 ( )∫ λ
∑+

∑−
ΦΦ

−= −− d
εε

ε

Vdt

d

ii,λ,λ

,λlεlελλ,P ii,λ,λ

][B[A]

[A]
101

[A]

A

A][B[A]A  

In this equation, A is the photoactive species, Bi are various non-photoactive species 

that absorb light, [A] signifies the concentration of the species A, ΦP,λ is the spectral 

photon flux of the illumination, Φλ is the differential quantum yield, V is the volume of 

the reactor, l is the optical pathlength, whereas εA,λ and εi,λ are the molar decadic 
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absorption coefficients of the respective species. The terminology used here follows the 

current recommendations of IUPAC.6 The quantities shown with the subscript λ are 

dependent on the wavelength and the integration is done for the entire wavelength range 

of the illumination. 

 The ordinary differential equation shown above is further complicated by the 

fact that concentrations [Bi] are also dependent on time and their change is governed by 

a separate but coupled ordinary differential equation. The only analytical solution 

available in the previous literature7 is for the very simple case when illumination is 

monochromatic (eliminating the need for integration) and all εi,λ values are zero (none 

of the other components have absorption). This solution is of the following form: 

 ( )[ ]0[A]

A

101101ln
10ln

[A] lεltε/VtΦΦ

,λ

A,λA,λλP,λ

lε

−−− −+=  

  The poster will present a number of further analytical solutions for other special 

cases and will also shows how numerical solution methods can be used. In a few cases, 

actual experimental examples will also be used. 
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Theory	
  
Diffusion	
   and	
   reaction	
   problems	
   are	
   of	
   great	
   importance	
   both	
   in	
   theory	
   and	
   practice.	
   Nature	
  
abounds	
  with	
   distinct	
   phenomena	
   that	
   can	
   be	
  modelled	
   by	
   closely	
   analogous	
   or	
   even	
   identical	
  
differential	
   equations	
   so	
   the	
   usefulness	
   of	
   many	
  models	
   usually	
   go	
   beyond	
   only	
   one	
   branch.	
   I	
  
show	
  only	
   three	
   interesting	
   and	
   important	
   cases	
   for	
   all	
   technologies	
   using	
   porous	
   structures	
   in	
  
which	
  reaction	
  occurs:	
  (i)	
  heterogeneous	
  catalysis,	
  (ii)	
  biochemical	
  processes	
  of	
  different	
  type	
  e.g.	
  
for	
   processes	
   in	
   which	
   a	
   biofilm	
   is	
   penetrated	
   by	
   oxygen;	
   (iii)	
   various	
   technologies	
   of	
   the	
  
development	
  of	
  accumulators	
  as	
  the	
  electrodes	
  using	
  porous	
  materials,	
  especially	
  in	
  the	
  projects	
  
associated	
   the	
   alternative	
   power	
   engineering	
   (hydrogen	
   power	
   engineering).	
   The	
   considered	
  
problem	
  will	
  be	
  presented	
  from	
  a	
  catalysis	
  standpoint.	
  A	
  steady-­‐state	
  diffusion	
  with	
  an	
  irreversible	
  
isothermal	
   chemical	
   reaction	
  A→R	
  with	
  power	
   law	
   type	
  kinetic	
  equation	
   is	
  described	
  equations	
  
presented	
   in	
   Table	
   1.	
   External	
   mass	
   transfer	
   resistances	
   are	
   not	
   negligible.	
   For	
   simplicity,	
   the	
  
model	
  for	
  which	
  concentration	
  in	
  the	
  pellet	
  center	
  is	
  greater	
  than	
  zero	
  “the	
  regular	
  model”	
  will	
  be	
  
called,	
  while	
  the	
  model	
  for	
  which	
  concentration	
  inside	
  the	
  pellet	
  reaches	
  zero	
  for	
  0<x=xdz<1	
  -­‐	
  “the	
  
dead	
  zone	
  model”.	
  

Table	
  1.	
  Mathematical	
  foundations	
  

	
   “regular	
  model”	
   “the	
  dead	
  zone	
  model”	
  
mass	
  balance	
  

02
2

2
=Φ− nc

dx
cd 	
  

BC	
  1	
   ( )( )11
1

cBi
dx
dc

m
x

−=
=

	
  

the	
  boundary	
  condition	
  for	
  	
  
0

0
=

=xdx
dc 	
  

	
  

the	
   boundary	
   condition,	
   if	
  
concentration	
   inside	
   the	
  
pellet	
  reaches	
  zero	
  for	
  x=xdz	
  

	
  
0=

= dzxxdx
dc 	
  

additional	
  condition	
   	
   ( ) 0=dzxc  

The	
  regular	
  model	
  is	
  most	
  commonly	
  used,	
  and	
  even	
  from	
  time	
  to	
  time	
  it	
  is	
  overused	
  by	
  authors	
  
(namely	
   it	
   is	
   used	
   instead	
   of	
   the	
   dead	
   zone	
   model;	
   e.g.	
   Scott	
   Fogler	
   in	
   his	
   commonly	
   known	
  
textbook,	
  example	
  5.9B	
  in	
  the	
  second	
  edition,	
  made	
  this	
  mistake).	
  It	
  can	
  produce	
  even	
  large	
  errors	
  
because	
  a	
  mass	
  flux	
  at	
  x=0	
  in	
  steady	
  state	
  is	
  not	
  equal	
  to	
  zero.	
  The	
  problems	
  result	
  from	
  a	
  lack	
  of	
  
the	
  sufficient	
  conditions	
   for	
   the	
  applicability	
  of	
   the	
  dead	
  zone	
  model	
   (there	
  are	
  known	
  only	
   the	
  
necessary	
   conditions	
   of	
   the	
   dead	
   zone	
   formation	
   for	
   some	
   types	
   of	
   kinetic	
   equation).	
   From	
  
practical	
   standpoint	
   this	
  means	
   that	
   for	
   the	
  same	
  kinetic	
  equation	
  can	
  be	
  used	
   for	
  both	
   regular	
  
and	
  dead	
  zone	
  model	
  depending	
  on	
  Thiele	
  modulus	
  value.	
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2	
  
	
  

Table	
  2.	
  Table	
  of	
  solutions;	
  the	
  first	
  equation	
  in	
  a	
  cell	
  gives	
  concentration	
  profile,	
  from	
  the	
  second	
  and	
  the	
  third	
  ones	
  c0	
  and	
  cs	
  should	
  be	
  calculated	
  
n>1	
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c=0	
   (trivial	
   solution)	
   –	
   reaction	
   runs	
   on	
   the	
  
outer	
  surface	
  only	
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c=0	
   (trivial	
   solution)	
   -­‐	
   reaction	
   runs	
   on	
   the	
  
outer	
  surface	
  only	
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2F1	
  -­‐	
  Gauss	
  hypergeometic	
  function;	
  c0=c(0)	
  is	
  reagent	
  concentration	
  in	
  the	
  pellet	
  center	
  cs=c(1)	
  is	
  reagent	
  concentration	
  on	
  the	
  pellet	
  surface	
  
NOTES:	
  	
  	
   (i)	
  some	
  transformation	
  of	
  Gauss	
  hypergeometric	
  function	
  were	
  made	
  to	
  obtain	
  convergence	
  for	
  all	
  n-­‐values	
  

(ii)	
  well-­‐known	
  solutions	
  of	
  the	
  linear	
  reaction-­‐diffusion	
  problems	
  (n=1	
  or	
  n=0	
  )	
  are	
  omitted;	
  	
  
(iii)	
  all	
  expressions	
  which	
  include	
  hypergeometric	
  Gauss	
  function	
  and	
  imaginary	
  error	
  function	
  (erfi(x))	
  can	
  be	
  easily	
  handled	
  using	
  
mathematical	
  programs	
  as	
  Maple,	
  Mathematica,	
  Matlab	
  etc.	
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3	
  
	
  

Theoretically,	
   the	
   validity	
   of	
   the	
   model	
   should	
   be	
   examined	
   but	
   in	
   practice	
   many	
   author	
  
mishandled	
  it.	
  

Results	
  and	
  discussion	
  
The	
   solutions	
   is	
   based	
   on	
   proposed	
   by	
   Polyanin	
   and	
   Zaitsev	
   (Handbook	
   Of	
   Exact	
   Solutions	
   For	
  
Odes,	
  CRC	
  Press,	
  1995)	
  first	
  integral	
  of	
  mass	
  balance	
  equation	
  

1
1

22

1
2 Cc
ndx

dc n =
+
Φ

−⎟
⎠

⎞
⎜
⎝

⎛ + 	
   	
  

The	
   C1	
  was	
   determined	
   using	
   boundary	
   condition.	
   The	
   resulting	
   equation	
   is	
   separable	
   ordinary	
  
differential	
   equation.	
   Integration	
   of	
   it	
   gives	
   results	
   presented	
   in	
   Table	
   2	
   while	
   in	
   Fig.1	
   are	
  
presented	
  effectiveness	
  factor	
  values	
  for	
  selected	
  n	
  values	
  vs	
  Thiele	
  modulus.	
  

	
  

Fig.	
  1.	
  Effectiveness	
  factor	
  vs.	
  Thiele	
  modulus	
  
for	
  selected	
  n	
  values,	
  Bim→∞;	
  MSS	
  –	
  multiple	
  
steady	
  states	
  region	
  

	
  

	
  

	
  

Fig.	
  2.	
  Diagram	
  existence	
  of	
  solutions;	
  R.	
  sol.	
  
=	
  regular	
  model	
  solution,	
  DZ.	
  sol.=dead	
  zone	
  
model	
   solution,	
  Φc	
   –	
   critical	
   value	
   of	
   Thiele	
  
modulus,	
  Φmax	
   -­‐	
   Thiele	
   modulus	
   value,	
   for	
  
which	
   lower	
   and	
   upper	
   branch	
   solutions	
   of	
  
the	
  regular	
  model	
  coincident.	
  

	
  

The	
  analysis	
  of	
   the	
   results	
   is	
   as	
   follows:	
   (i)	
   if	
   n≥1	
   then	
   the	
  unique	
   solution	
  exists	
   for	
   any	
  Thiele	
  
modulus	
   value	
   and	
   c0	
   is	
   greater	
   than	
   0	
  while	
  Φc→∞.	
   The	
   regular	
  model	
   should	
   be	
   used;	
   (ii)	
   if	
  
0≤n<1	
  then	
  the	
  unique	
  solution	
  exists	
  for	
  any	
  Thiele	
  modulus	
  value;	
  for	
  Φ<Φc	
  the	
  regular	
  model,	
  
while	
  for	
  Φ>Φc	
  the	
  dead	
  zone	
  model	
  should	
  be	
  used;	
  (iii)	
  if	
  -­‐1<n<0	
  then	
  the	
  unique	
  solution	
  exists	
  
for	
  0<Φ≤	
  Φc	
  (the	
  regular	
  model	
  should	
  be	
  used)	
  and	
  for	
  Φ>Φmax	
  (the	
  dead	
  zone	
  model	
  should	
  be	
  
used).	
   For	
   Φc<Φ≤	
   Φmax	
   the	
   multiple	
   solutions	
   exist.	
   In	
   this	
   region	
   two	
   solutions	
   (stable	
   and	
  
unstable)	
  gives	
  the	
  regular	
  model	
  and	
  one	
  solution	
  (stable)	
  gives	
  the	
  dead	
  zone	
  model;	
  (iv)	
  if	
  n≤-­‐1	
  
then	
   the	
  multiple	
   solutions	
  exist	
   and	
   for	
  0<Φ≤Φmax	
   (Φc→0).	
   In	
   this	
   region	
   two	
   solutions	
   (stable	
  
and	
  unstable)	
   gives	
   the	
   regular	
  model.	
   The	
  dead	
   zone	
  extends	
  over	
   the	
   entire	
   space	
   inside	
   the	
  
catalyst,	
   the	
   reaction	
   occurs	
   on	
   the	
   pellet	
   surface	
   only.	
   Scheme	
   on	
   existence	
   of	
   solutions	
   is	
  
presented	
  in	
  Fig.2.	
  If	
  external	
  resistances	
  grows	
  then	
  Φc	
  and	
  Φmax	
  moves	
  towards	
  smaller	
  values.	
  

On	
   basis	
   of	
   presented	
   results	
   the	
   knowledge	
   on	
   regular	
   and	
   irregular	
   phenomena	
   was	
  
systematized	
  and	
  some	
  misinterpretations	
  will	
  be	
  corrected	
  (presented	
  in	
   literature	
  opinion	
  that	
  
for	
  Φ>Φc	
  the	
  regular	
  model	
  is	
  usefulness	
  is	
  not	
  true	
  for	
  n<0).	
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Theory	
  
The	
  Laplace	
  transform	
  is	
  an	
  important	
  integral	
  transform	
  with	
  many	
  applications	
  in	
  mathematics,	
  
physics,	
   engineering	
   etc.	
   The	
   Laplace	
   transform	
   is	
   powerful	
   tool	
   of	
   solving	
   computational	
  
problems.	
   It	
   is	
   not	
   often	
  met	
   in	
   chemical	
   engineering	
   because	
   it	
   is	
   essentially	
   limited	
   to	
   linear	
  
systems.	
  However,	
  in	
  such	
  cases,	
  the	
  advantages	
  are	
  evident	
  analysis	
  and	
  solution	
  of	
  models	
  are	
  
significantly	
  simpler.	
  
Here,	
  application	
  of	
  Laplace	
  transform	
  technique	
  for	
  analysis	
  of	
  the	
  process	
  of	
  two	
  gases	
  mixing	
  
on	
  the	
  basis	
  of	
  signal	
  given	
  by	
  TCD-­‐type	
  detector	
  is	
  presented.	
  The	
  actual	
  investigation	
  have	
  two	
  
main	
   aims.	
   The	
   first	
   one	
   is	
   determination	
   of	
   gas	
  mixing	
   in	
   the	
   continuous	
   flow	
   vessel.	
   And	
   the	
  
second	
   one	
   is	
   checking	
   out	
   the	
   hypothesis	
   that	
   the	
   Laplace	
   transform	
   makes	
   easier	
   solution	
  
finding	
  and	
  the	
  analysis	
  of	
  the	
  answer	
  of	
  the	
  analytic	
  system.	
  
	
  
	
  
	
  
	
  

	
  
Fig.	
  1.	
  The	
  scheme	
  of	
  the	
  measuring	
  unit.	
  
	
  
	
  

The	
   unit	
   consists	
   of	
   the	
   following	
   elements,	
  
the	
  4-­‐way	
  valve,	
  u-­‐shape	
  vessel	
  (empty	
  in	
  the	
  
actual	
   investigations),	
   thermal	
   conductivity	
  
detector	
   (TCD)	
   and	
   pipes	
   connected	
   the	
  
mentioned	
  elements.	
  The	
  system	
  was	
  divided	
  
onto	
   five	
   zones;	
   they	
   are	
   distinguished	
   on	
  
basis	
   of	
   geometry	
   and/or	
   its	
   the	
   function:	
  
<Zone	
  0>:	
  the	
  pipe	
  connected	
  inlet	
  of	
  gas	
  and	
  
the	
   4-­‐way	
   valve;	
   the	
   length	
   of	
   the	
   zone:	
  
0.75dm,	
  the	
  diameter	
  of	
  the	
  zone:	
  0.0125dm;	
  
<Zone	
   1>:	
   the	
   pipe	
   connected	
   the	
   4-­‐way	
  
valve	
   and	
   a	
   column	
   inlet;	
   the	
   length	
   of	
   the	
  
zone:	
   1.8	
   dm,	
   the	
   diameter	
   of	
   the	
   zone:	
  
0.0125	
   dm;	
   <Zone	
   2>:	
   empty	
   vessel;	
   the	
  
length	
   of	
   the	
   zone:	
   1.0	
   dm,	
   the	
   diameter	
   of	
  
the	
   zone:	
   0.056	
   dm;	
   <Zone	
   3>:	
   the	
   pipe	
  
connected	
   a	
   column	
   outlet	
   and	
   the	
   4-­‐way	
  
valve;	
   the	
   length	
   of	
   the	
   zone:	
   4.0	
   dm,	
   the	
  
diameter	
   of	
   the	
   zone:	
   0.0125dm;	
   <Zone	
   4>:	
  
the	
  pipe	
  connected	
  the	
  4-­‐way	
  valve	
  and	
  TCD	
  
detector;	
  the	
  length	
  of	
  the	
  zone:	
  0.75dm,	
  the	
  
diameter	
  of	
  the	
  zone:	
  0.0125dm.	
  

In	
  order	
  to	
  identify	
  the	
  type	
  of	
  mixing,	
  each	
  zone	
  were	
  divided	
  into	
  n	
  cells.	
  Number	
  of	
  cells	
  in	
  each	
  
zone	
  may	
  be	
  different.	
  One	
  cell	
   in	
  the	
  zone	
  corresponds	
  to	
  the	
  ideal	
  mixing	
   in	
  this	
  zone.	
   Infinite	
  
number	
  of	
  cells	
  in	
  the	
  zone	
  corresponds	
  to	
  the	
  plug	
  flow.	
  
The	
  study	
  was	
  conducted	
  as	
  follows.	
  The	
  system	
  was	
  flushed	
  for	
  10	
  minutes	
  with	
  a	
  constant	
  flow	
  
of	
  helium	
  (flow	
  rate	
  of	
  0.04	
  dm3/min).	
  Then	
  the	
  valve	
  was	
  closed	
  the	
  4-­‐way	
  valve	
  leading	
  to	
  shut	
  
off	
   the	
   flow	
   of	
   the	
   gas	
   through	
   the	
   vessel	
   (Zone	
   1,	
   2,	
   3).	
   For	
   the	
   next	
   15	
  minutes	
   the	
   system	
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(beside	
  the	
  vessel)	
  was	
  purged	
  with	
  a	
  nitrogen	
  (flow	
  rate	
  of	
  0.01dm3/min)	
  until	
  a	
  stable	
  base	
  TCD	
  
signal	
  was	
  reached.	
  After	
  about	
  seven	
  minutes	
  of	
  stabilizing	
  the	
  system	
  again	
  turned	
  over	
  the	
  4-­‐
way	
  valve	
  to	
  allow	
  a	
  constant	
  flow	
  of	
  nitrogen	
  with	
  the	
  volumetric	
  flow	
  rate	
  of	
  0.01dm3/min	
  or	
  
0.04	
  dm3/min	
   through	
   the	
  vessel.	
   In	
   result	
   '	
   trapped	
   '	
  helium	
  was	
   removed	
  and	
  TCD	
  signal	
  was	
  
generated	
  and	
  recorded.	
  
	
  
Model	
  
	
  
Assumptions:	
  

• The	
  system	
  is	
  operated	
  under	
  isothermal	
  conditions	
  at	
  constant	
  pressure.	
  
• Gases	
  satisfy	
  the	
  equation	
  of	
  state	
  of	
  an	
  ideal	
  gas.	
  

	
  
Mass	
  balance	
  of	
  the	
  nitrogen	
  in	
  the	
  individual	
  zones	
  and	
  for	
  the	
  number	
  of	
  cells	
  of	
  n	
  leads	
  to	
  the	
  
following	
  equations:	
  
Zone	
  1:	
  c1,k 0 = cT;𝑘 = 1. .𝑛1	
  ;	
   (1)	
  
Zone	
  2:  c!,! 0 = c!;   𝑘 = 1. .𝑛2	
  ;	
   (2)	
  
Zone	
  3:  c!,! 0 = c!;   𝑘 = 1. .𝑛3	
  ;	
   (3)	
  
Zone	
  4:  c!,! 0 = 0;   𝑘 = 1. .𝑛4	
  	
   (4)	
  
Initial	
  conditions:	
  
	
  
Zone	
  1:	
  c1,k 0 = cT;𝑘 = 1. .𝑛1	
  ;	
   (5)	
  
Zone	
  2:  c!,! 0 = c!;   𝑘 = 1. .𝑛2	
  ;	
   (6)	
  
Zone	
  3:  c!,! 0 = c!;   𝑘 = 1. .𝑛3	
  ;	
   (7)	
  
Zone	
  4:  c!,! 0 = 0;   𝑘 = 1. .𝑛4	
  	
   (8)	
  

Inlet	
  concentration	
  is	
  described	
  by	
  𝑐𝑖𝑛 =
0  𝑓𝑜𝑟  𝑡 < 0
𝑐𝑇  𝑓𝑜𝑟  𝑡 ≥ 0;	
  time	
  delay	
  by	
  𝑡! =

!!
!
;	
  and	
  c! =   

!
!!·!·!"!

	
  

	
  
Analysis	
  of	
  the	
  model	
  and	
  its	
  solution	
  
	
  
Presented	
  in	
  previous	
  section	
  model	
  is	
  simple,	
  but	
  obtaining	
  a	
  solution	
  can	
  be	
  a	
  little	
  difficult.	
  The	
  
variable	
  of	
  interest	
  is	
  c4,n4	
  as	
  measurable	
  concentration.	
  For	
  different	
  values	
  of	
  n1,	
  n2,	
  n3	
  and	
  n4	
  the	
  
model	
  consist	
  various	
  number	
  of	
  equations.	
  Moreover	
  the	
  values	
  of	
  n1..n4	
  have	
  to	
  be	
  determined	
  
using	
  trial	
  and	
  error	
  method	
  to	
  obtain	
  the	
  best	
  fit	
  between	
  model	
  solution	
  and	
  experiments.	
  For	
  
this	
  reason	
  it	
  is	
  necessary	
  to	
  solve	
  the	
  system	
  repeatedly,	
  the	
  system	
  can	
  contain	
  large	
  number	
  of	
  
equations,	
   and	
   finally	
   the	
   number	
   of	
   equations	
   changes	
   for	
   each	
   try.	
   It	
   is	
   very	
   inconvenient	
  
situation.	
  One	
  can	
  try	
  to	
  eliminate	
  variables	
  out	
  of	
  interest	
  from	
  the	
  system,	
  but	
  as	
  a	
  result	
  high	
  
order	
  differential	
  equation	
  will	
  be	
  obtained	
  and	
  the	
  order	
  of	
  equation	
  will	
  changes	
   for	
  each	
  try.	
  
Due	
  to	
  mentioned	
  reasons	
  we	
  paid	
  our	
  attention	
  on	
  well-­‐known	
  tool	
  of	
  analysis	
  and	
  solution	
  of	
  
non-­‐stationary	
   models	
   namely	
   Laplace	
   transform.	
   Model	
   transformed	
   into	
   algebraic	
   equations	
  
model	
  one	
  can	
  easily	
  solve	
  with	
  respect	
  to	
  variable	
  c4,n4.	
  

𝑐4,𝑛4 =
1
𝑠 ∙

𝑞
𝑛4∙𝑉𝑐4∙𝑠+𝑞

𝑛4 𝑞
𝑛3∙𝑉𝑐3∙𝑠+𝑞

𝑛3 𝑞
𝑛2∙𝑉𝑐2∙𝑠+𝑞

𝑛2 𝑞
𝑛1∙𝑉𝑐1∙𝑠+𝑞

𝑛1
∙ 𝑐𝑖𝑛 +

𝑞
𝑛4∙𝑉𝑐4∙𝑠+𝑞

𝑛4
∙ 𝑐𝑖𝑛 ∙ 𝑒−𝑡𝑑𝑠

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   (9)	
  

It	
  is	
  noteworthy,	
  that	
  initial	
  conditions	
  and	
  time	
  delay	
  are	
  considered	
  in	
  the	
  equation.	
  	
  
It	
  is	
  expected,	
  that	
  above	
  equation	
  for	
  real	
  conditions	
  will	
  be	
  of	
  high	
  order.	
  In	
  that	
  case	
  a	
  solution	
  
will	
   contain	
  many	
   terms	
   and	
   its	
   obtaining	
   would	
   arduous.	
   But	
   currently	
   there	
   exists	
   computer	
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programs,	
  usually	
  called	
  Computer	
  Algebra	
  Systems	
  which	
  can	
  help	
  to	
  obtain	
  model	
  solution.	
  We	
  
are	
  use	
  one	
  of	
  this	
  type	
  program,	
  namely	
  Maple®.	
   It	
  operates	
  Laplace	
  transform.	
  Trial	
  and	
  error	
  
method	
  calculations	
  were	
  made	
  fast	
  and	
  evaluation	
  of	
  n1..n4	
  coefficients	
  and	
  thereby	
  evaluation	
  
of	
  the	
  mixing	
  did	
  not	
  cause	
  problems.	
  
	
  

	
  
a)	
   	
   	
   	
   	
   	
   b)	
  

Fig.	
  2.	
   Experimental	
   and	
   theoretical	
  profiles	
  gas	
   concentrations	
   for	
  a)	
  q=0.04dm3/min	
  and	
  n1=1,	
  
n2=40,	
  n3=1,	
  n4=1;	
  b)	
  q=0.01dm3/min	
  and	
  n1=1,	
  n2=12,	
  n3=1,	
  n4=1	
  .	
  
	
  
The	
  best	
  fit	
  the	
  smaller	
  gas	
  flow	
  is	
  presented	
  in	
  Fig.	
  2a	
  and	
  for	
  the	
  larger	
  gas	
  flow	
  in	
  Fig.	
  2b.	
  The	
  
best	
  fit	
  was	
  determined	
  on	
  the	
  basis	
  of	
  minimal	
  value	
  of	
  sum	
  of	
  squares	
  of	
  differences	
  between	
  
calculations	
  and	
  experiments.	
  Differences	
  results	
  from	
  the	
  simplicity	
  of	
  the	
  used	
  model	
  which	
  do	
  
not	
  consider	
  all	
   theoretically	
  predicted	
  phenomena	
   (axial	
  dispersion).	
  As	
  a	
   result	
  of	
  dispersion	
  a	
  
slope	
   of	
   a	
   recorded	
   curve	
   is	
   not	
   as	
   sharp	
   as	
   theoretical	
   one.	
   In	
   our	
   opinion	
   precision	
   of	
   the	
  
presented	
  model	
   is	
   satisfactory,	
   especially	
   for	
   the	
   higher	
   gas	
   flow.	
   Consideration	
   of	
   dispersion	
  
phenomenon	
   in	
   model	
   results	
   in	
   much	
   complicated	
   system	
   of	
   equations,	
   more	
   difficult	
   for	
  
solution.	
  Expected	
  in	
  this	
  case	
  improvement	
  of	
  fit	
  is	
  rather	
  not	
  large.	
  
	
  
Following	
  conclusion	
  can	
  be	
  drawn	
  on	
  the	
  basis	
  presented	
  investigations:	
  

1. The	
   theoretical	
  model	
   fits	
   experimental	
   results	
   pretty	
  well.	
   It	
   shows	
   that	
   the	
   presented	
  
model	
  of	
  the	
  process	
  is	
  correct.	
  The	
  fitting	
  is	
  better	
  for	
  larger	
  gas	
  velocity.	
  

2. Gas	
  in	
  the	
  pipes	
  is	
  perfectly	
  mixed;	
  in	
  the	
  column	
  the	
  flow	
  approaches	
  the	
  plug,	
  especially	
  
for	
  larger	
  gas	
  velocity.	
  

3. The	
  main	
  advancement	
  of	
  Laplace	
  transform	
  method	
  application	
  for	
  solving	
  such	
  class	
  of	
  
problems	
   is	
   its	
   higher	
   efficiency	
   and	
   convenience	
   of	
   calculations	
   comparing	
   to	
   classical	
  
methods.	
  

4. Using	
  of	
  CAS-­‐type	
  program	
  (Maple®)	
  significantly	
  makes	
  calculations	
  simpler	
  and	
  faster.	
  
	
  
	
  
This	
  work	
  was	
  supported	
  by	
  The	
  National	
  Centre	
  for	
  Research	
  and	
  Development	
  (Poland)	
  under	
  a	
  
grant	
  PBS1/A1/6/2012.	
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Quadrature-Based Moment Methods in Chemical

Engineering

Rodney O. Fox
Anson Marston Distinguished Professor in Engineering

Department of Chemical and Biological Engineering
Iowa State University, USA

Population balance models are a useful mathematical framework for de-
veloping models that account for complex physics. For many applications,
direct solution of the population balance equation is intractable due to the
high-dimensionality of the phase space. Thus a key challenge is to reduce
the dimensionality of the problem without losing the underlying physics. At
the same time, the reduced description must be numerically tractable and
possess the favorable attributes of the original population balance equation.
Starting from the seminal work of McGraw on the quadrature method of
moments (QMOM), we have developed a general closure approximation re-
ferred to as quadrature-based moment methods. The basic idea behind these
methods is to use the local (in space and time) values of the moments to
reconstruct a well-defined local distribution function (i.e. non-negative, com-
pact support, etc.). The reconstructed distribution function is then used to
close the moment transport equations (e.g. spatial fluxes, nonlinear source
terms, etc.). In this talk, I will review the underlying theoretical and numer-
ical issues associated with quadrature-based reconstructions. The transport
of moments in real space, and its numerical representation in terms of fluxes,
plays a critical role in determining whether a moment set is realizable. Using
selected examples from chemical engineering applications, I will describe our
work on realizable high-order flux reconstructions developed specifically for
finite-volume schemes.
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Coping with heterogeneity and stochasticity in microbial
processes

D. Pischel ∗1, R. J. Flassig†2 and K. Sundmacher‡1,2

1Otto-von-Guericke University Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany

2Max Planck Institute for Dynamics of Complex Technical Systems,
Sandtorstr. 1, 39106 Magdeburg, Germany

April 22, 2015

The shift from fossil to renewable biomass feedstock is driving an emerging economy of
microbial production based on rationally designed biochemical processes. The rational
comes from recent acquired knowledge in the field of systems bio(techno)logy and ad-
vances in tools for engineering efficient and sustainable processes that transform biomass
into chemicals, material and electricity. Although microorganisms hold a diverse spec-
trum of valuable products, they often come at very low yield. Further process stability
and scale-up or -down can be hampered by unaccounted adaptation or interaction mech-
anisms: Especially the interplay between heterogeneity of a microbial cell population and
stochasticity at the individual cell level can lead to unexpected behavior. Heterogeneity
of a cell population refers to individual cell state differences determined by various inter-
and extra-cellular factors (protein amounts, cell viability, cell cycle state, nutrients).
The origin of heterogeneity is a complex interplay of external, extrinsic and intrinsic
noise (5, 1). External noise refers to fluctuations of external environmental factors such
as inlet flows or flow composition, but also local environmental fluctuations, e.g. nutrient
supply or stress conditions as a consequence of mixing effects in the bioreactor. On the
cell level, extrinsic noise is linked to fluctuations in the amount of proteins, which may
also result from external noise. Finally, intrinsic noise results from stochasticity in gene
expression (low copy number effects), which is propagated on several temporal and spa-
tial scales. Importantly to note, external noise increases with system size, whereas ex-
and intrinsic noise decrease and vice-versa. Besides system size, external factors leading
∗pischel@mpi-magdeburg.mpg.de
†flassig@mpi-magdeburg.mpg.de, corresponding author
‡sundmacher@mpi-magdeburg.mpg.de
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to extrinsic noise are important tuning targets for engineering a competitive microbial
process, e.g. large product yields at high growth rates.
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Figure 1: Effects of intrinsic (stochasticity) and extrinsic/external noise on sigmoidal-
like system response (Hill kinetics). We see that stochasticity (left) alone can alter the
distribution shape (left/right tailed) of a population response, e.g. size distribution,
growth rate or yield. On the other hand, fluctuations in the input can result into a
bimodal response (right, see contour plot for increasing noise strength=level of standard
deviations of the input signal). Colour levels of the contour plots correspond to frequency
of occurrence (=density) of a specific response.

However as by now, the complex interplay between external, extrinsic and intrinsic fluc-
tuations and its consequences for microbial process design is poorly understood (2, 1).
The potential for bioprocess design is therefore also hard to be exploited by engineers.
This is due to the fact that experimental monitoring as well as numerical modeling
of the temporal evolution of a heterogeneous cell population remains challenging (1).
Therefore, in our contribution we present a hybrid approach for modeling distributed
stochastic processes modeled by means of stochastic ordinary differential equations. Our
approach is based on a combination of the sigma point method and Haseltine-Rawlings
algorithm (4, 3). Whereas the former one allows to efficiently describe external and ex-
trinsic fluctuations as stochastic inputs to the model equations, the latter provides an
efficient approximation to the solution of the chemical master equation for describing
stochasticity in the biochemical reactions. In this way, we have an effective simulation
and analysis tool to rapidly study and exploit the interplay between external, extrinsic

2
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and intrinsic fluctuations for microbial process design.
We apply our approach to several instructive examples including synthetic examples
(see Fig. 1, where we give a flavor of effects one may observe for intrinsic and extrin-
sic/external noise for a simple sigmoidal response-curve), simple and complex biochemical
reaction networks from the life- and bio-science. The results of this work pave the way
to a bioprocess design and analysis tool that explicitly accounts for fluctuating factors
in microbial processes.
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THE SWITCHING POINT BETWEEN KINETIC AND  

THERMODYNAMIC CONTROL OF COMPETITIVE REACTIONS 
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Ghent University, Galglaan 2 S22 9000 Gent (www.cage.ugent.be/wa) 

 A new definition is proposed for the switching point ts between the kinetic and 

thermodynamic control regimes of two competitive reactions: the time at which the rates of 

formation of the competing products are equal. According to this definition, the kinetic control 

regime is present from the beginning of the reaction, and is valid as long as the rate of 

formation of the kinetic product is larger than the rate of formation of the thermodynamic 

product. At the switching point ts, both rates of formation are equal, so, from this switching 

point the thermodynamic product has a larger rate of formation, and the thermodynamic 

control is settled until the end of the reaction.  

 Given the following system of first order competitive reactions: 

 �		��⇄��
	�						�		��⇄�	

	
 

where A, B and C are chemical species, and ki are kinetic constants, the solution consists of the 

functions that describe the temporal evolution of the concentrations of the chemical species 

involved. Assuming initial and equilibrium concentrations of A, B and C as Ao, Bo and Co, and 

Aeq, Beq and Ceq, respectively, it is possible to write the time dependent concentration of the 

chemical species accordingly; for example, for A: 

�(�) = ��� + ��� − ��� − �������	� + ������	� 				(1) 

where αp and αm, αp > αm, are: 

��,			�!	 = 1
2 #�� + �� + �� + �	 ± %(�� + �� + �� + �	)� − 4(���	 + ���� + ���	)'		(2) 

and a new term Ax appears: 

�� = �! #(�����)()*
+,(-,(., ��� + (�����)()/

+,(-,(., 
�� − (�� + ��)' �� + 2����(�! − �	) + 2
��	(�! − ��)
2�!��� − �!� 	(3) 

 

Similar expressions to Eq. (1) can also be written to describe the temporal evolution for the 

concentrations of the products B and C. The expressions Bx and Cx consist of a collection of 

terms comprising kinetic constants and both initial and equilibrium concentrations of all 

chemical species, similar to the expression for Ax given in Eq. (3). Opposed to the typical set up 

experiment devised to present the definition of the kinetic vs thermodynamic competition in 

the basic and organic chemistry textbooks, where Bo = Co = 0, in our study the initial 
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concentrations of both competing products are valid parameters and are not restrained to 

these values.  

 The classical definition of the switching point corresponds to the value of time when 

the concentration profiles of both competing products intersect, i.e., B(t) = C(t). This 

intersection point is impossible to express in an exact, closed form, but can only be calculated 

in a numerical, approximated form; numerical methods to calculate this switching point has 

been proposed elsewhere [see Caravaca M. et. al., Phys. Chem. Chem. Phys., 16 (2014) 25409]. 

We propose a new definition of the switching point: the time ts when the rate of formation of 

both competing products is the same. So, the kinetic product is the one which is produced 

faster at the beginning of the reaction, and the kinetic control regime extends until the 

proposed switching point is reached. The rate of formation of the kinetic product is larger not 

only at t = 0, but as long as the kinetic control regime prevails. At the switching point ts, no 

actual crossing occurs in both concentration profiles, but in both rate of formation – time 

curves, as seen in Fig. 1b. After this time, and until equilibrium is achieved, the rate of 

formation of the thermodynamic product is larger, so eventually his concentration will reach 

and surpass the concentration of the kinetic product. Then, the thermodynamic control 

regimes extends from the proposed switching point ts until the end of the reaction.  

 We can obtain a closed form expression for the switching time ts, equating the time 

derivatives of the corresponding concentration – time expressions for the competing products 

B and C, similar to Eq. (1), at t = ts: 

�1 = 234 5 ���6
���67

�� − �! 			(4) 

where: 

∆= ���! 9 ���� − ��� − �
�� − 
��
(���� − ����) − (���� − 
��	):				(5) 

 

If the initial concentrations are Ao ≠ 0, Bo = Co = 0, Eq. (5) is reduced to: 

∆	= ���!�� <��� − 
���� − �� =				(6) 

 

 It is interesting to study the fraction inside the parentheses in Eq. (6): the denominator 

corresponds to the difference between the initial rates of formation of the competing 

products, whereas the numerator corresponds to the difference between the equilibrium 

concentrations. In order to observe both control regimes, the product with the largest initial 

rate of formation should have the smallest equilibrium concentration (and viceversa; the given 

description corresponds to the kinetic product), so the value of the fraction inside the 

parentheses, and therefore the value of ∆, must be strictly negative. This conclusion can also 

be extended to the case where Bo ≠ Co ≠ 0; this is, the value of the fraction enclosed in 

parenthesis in Eq. (5) is also negative. In this case, both equilibrium concentrations are 

referred to their corresponding initial concentrations, so, for example, the difference Beq - Bo 

accounts for the amount of B produced in the reaction. Therefore, if Bo ≠ Co ≠ 0, not the 
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equilibrium concentration, but the amount produced of the thermodynamic product must be 

larger than the amount produced of the kinetic product.  

 In Fig. 2 is shown a plot of the value of the proposed switching time ts, normalized to a 

constant corresponding to the time ts(∆ = 0) = log(αp/αm) when ∆ = 0, as a function of the value of 

∆. Given that ∆ is restricted to negative values, the maximum value of ts corresponds to that 

when ∆ = 0: 

�1	(6?@) = �1	(ABC) = 234 5 ��
��7

�� − �! 			(7) 

so the value of the switching time ts is bounded between zero (when ∆ tends to large negative 

values) and ts(max).  

 Further studies were performed where the initial concentrations of one or both of the 

competing products are not zero. Restrictions for the maximum values of the initial 

concentrations were settled, in order to guarantee the presence of both competing control 

regimes and the existence of at least a crossing point between the concentration profiles of 

the competing products. For example, starting from the top value for the initial concentration 

of the thermodynamic product, the intersection of both concentration profiles is unique and 

will occur at a time equivalent to the switching time ts. Besides, the inconvenience of the 

classical definition of the switching point, where the crossing points are also control regime 

switching points, is evident when the initial concentration of the thermodynamic product is 

non-zero; being this the case, two crossing points will occur between the concentration 

profiles, therefore we can identify three consecutive control regimes: thermodynamic, 

followed by kinetic, and then thermodynamic control until the end of the reaction. Finally, we 

extended the definition proposed of the switching time to a different initial set up: the 

decomposition of two competing reagents, for instance B and C, to give an unique product A; 

we demonstrated that the expression given for the switching time ts, Eq. (4), can be used as it 

is and without change. 
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Fig 1. a) Concentration profiles for A (dotted line), B (solid line) and C (dashed line). b) Rates of formation as a function of time for 

the products B (solid line) and C (dashed line). Ao = 1.0; Bo = Co = 0; k1 = 2.0; k2 = 0.6; k3 = 0.75; k4 = 0.1. 

 

 

 

 

 

 

 

 

  Fig 2. Value of the switching time ts /ts(max), as a function of ∆. Ao = 1.0; Bo = Co = 0; k1 = 2.0; k2 = 0.6; k3 = 0.75; k4 = 0.1. 
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Introduction 
A fundamental understanding of the intrinsic reaction kinetics of heterogeneously catalyzed 
reactions is of great importance for the chemical industry. Insight in the effect of reaction conditions 
on catalyst activity and selectivity is indispensable for the design and safe operation of chemical 
reactors and even entire processes. In the pursuit of novel catalyst design, an adequate 
understanding of promoter, support, metal particle size,… effects on the catalyst performance is 
essential. A technique providing such key insights is Steady State Isotopic Transient Kinetic 
Analysis (SSITKA). 
While quite some relevant information can already be obtained from the experimental analysis 
itself, the modeling of SSITKA data will further increase the insights in the reaction pathway and 
how it is affected by the aforementioned phenomena. These additional insights can be used in a 
model guided design procedure. One must take care, however, not to drown in the acquired 
experimental information and to keep the computational effort, while modeling, within manageable 
limits. 
The present work focuses on the modeling of SSITKA data acquired for complex reactions. 
Specific attention is devoted to the stable and fast integration of the reactor model equations as well 
as to the extent of the reaction network that is accounted for in molecular detail. Fischer-Tropsch 
Synthesis (FTS) has been selected as the model reaction.  
 
Procedures 
In a SSITKA experiment an isotopic label in the reactants and products is monitored as a function 
of time after an abrupt switch of a reactant by its isotopic counterpart.1 For FTS, this is typically a 
switch between 12CO and 13CO. Apart from the isotopic labeling, the experiment is performed at 
steady state conditions. The preferred reactor configuration for SSITKA experimentation is a plug 
flow reactor. The resulting reactor model equations, hence, comprise partial differential equations, 
PDEs, for the species which take part in the isotopic exchange and ordinary differential equations, 
ODEs, and algebraic equations, AEs for the species that are not taking part in the isotope exchange 
reactions and for the various sums of isotopologues and isotopomers of a specific species.2 The 
PDEs are purely convective in nature, necessitating the use of a non-linear discretization scheme to 
avoid spurious oscillations during the numerical integration.3 As non-linear discretization scheme, 
the Flux Limiter3 (FL) approach has been selected. Due to the vast number of FL functions 
proposed in the literature, a case study has been performed in which the 14 most relevant FL 
functions are compared to each other in terms of accuracy and computational time as function of the 
residence time in the reactor and abruptness of the isotopic switch. Two more ways to further 
reduce the computational time are considered, i.e., a semi-analytical calculation of the Jacobian 
matrix and selection of an appropriate stiff ODE solver.   
The Single-Event microkinetic (SEMK) methodology4 is applied for the microkinetic modelling. 
The isotope effects merely impact on the symmetry number of the reaction rate coefficients in the 
SEMK methodology. An available automated reaction network generation algorithm5 has been 
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extended with the capability to account for isotopes. The size of the resulting reaction network, 
however, exhibits an exponential dependency on the carbon number of the longest hydrocarbon 
chain, see Figure 1. It not only leads to computationally too intensive calculations but goes beyond 
the detail which can reasonably obtained with present-day analytical techniques. As a result, a 
reaction network size reduction technique has been devised. The hydrocarbons considered in the 
network are split up into two groups. A group with a maximum carbon number for which 
isotopologues and isotopomers are accounted for in full detail. In the second group of heavier 
hydrocarbons, sets of species are introduced which allow tracking the isotopic labeling at specific 
positions in the chain. This is illustrated in Figure 1 for metal propyl species in which the maximum 
carbon number for which isotopically labeled species are accounted for in detail is set at 2. The 
eight metal propyl species are distributed over six sets. Two of these sets follow the total amount of 
metal propyl species with a 12C or 13C atom bonded to the metal atom of the catalyst. The four other 
sets follow the total amount of metal propyl species with an isotopic labeling of the two terminal 
carbon atoms as indicated in Figure 1. For the heavier hydrocarbon, only the total fraction of 12C or 
13C as a function of time can be simulated. Of course, the example presented for metal propyl 
species serves illustrative purposes only and the corresponding gain is practically none. The gain for 
heavier species, however, is much more significant as evident from Figure 1, left. 
 

  
Figure 1: Left - The number of species in the reaction network as function of the carbon number in the longest 
hydrocarbon chain. The full black line represents the number of species in the reaction network generated with 
the reaction network generation code. The dashed line corresponds to the number of species when only the 
formation of C2 species is described in detail. Right - Graphical representation of the sets introduced in the 
reduced kinetics scheme.  
 
Results and discussion 
Most of the FL functions show competitive 
convergence behavior with respect to the step size 
used in the discretization for the application 
considered in this work. Hence, the selection of a 
FL function for the simulation of SSITKA data was 
focused on the required computational time. The 
simulations clearly illustrate that a careful selection 
of a FL function for a specific application can 
considerably speed up the simulations, e.g., the 
difference in computational time between the 
SMART FL and the Van Leer FL amounts to 
several orders of magnitude, see Figure 2. Based on 
the results of the case study, continuous FL 

Figure 2: CPU time as function of the number 
of gridpoints. SMART FL (‒ ‒) and Van Leer 
(―) 
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functions were selected as the best FL functions for the modeling of SSITKA data.  
The semi-analytical calculation of the Jacobian matrix allows reducing the computational time with 
a factor 4 to 7. Of the four backward differentiation solvers, i.e. DASPK, LSODE, VODE and 
LSODA, the DASPK solver was found to outperform the others.  
Table 1 shows the reduction in computational time between simulations performed with the kinetics 
scheme accounting for all the isotopologues and isotopomers of all the hydrocarbons, the so-called 
detailed network, and the simulations performed with the kinetics scheme accounting for a detailed 
labeling of only a subset of the hydrocarbons, the so-called reduced network. The carbon number of 
the longest hydrocarbon in the simulations is 5 and the carbon number of the longest hydrocarbon 
chain in the subset is 2. The simulations indicate that a reduction in computational time up to a 
factor 10 can be achieved.  
 
Table 1: Computational time for the different kinetics schemes. The carbon number of the longest hydrocarbon 
in both schemes is 5. In the reduced kinetics scheme, the carbon number of the longest hydrocarbon chain which 
is described in full detail is 2.   

τ  [s]  H2/CO 
[-] 

CPU time detailed network 
[s] 

CPU time reduced network 
[s] 

0.01 2 1779 175 
5 1764 173 

0.1 2 2153 349 
5 2296 329 

1.0 2 21052 3022 
5 19093 2734 

 
Conclusions 
A careful assessment of Flux Limiter (FL) functions is essential to select an appropriate FL function 
for a specific application. The case study presented in this work illustrates how for the modeling of 
Steady State Isotopic Transient Kinetic Analysis (SSITKA) data, continuous FL functions are the 
best choice. A semi-analytical calculation of the Jacobian matrix further reduces the computational 
time with a factor 4 to 7. The DASPK solver is selected as the best backward differentiation solver.  
A method to track the isotopic labeling in full detail has been devised together with a technique to 
reduce the reaction network size and fine-tune the information generated by the simulations to the 
level of detail accessible by current analysis methods. Simulations results show that a reduction in 
computational time of a factor 10 can be achieved.  
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Introduction 
 
A novel kinetic Monte Carlo modeling methodology is presented, allowing control 
over monomer sequences for each individual macromolecule in radical 
polymerization  [1,2]. The methodology is applied for controlled radical polymerization 
(CRP), in which macroradicals Ri (i: chain length) can be temporarily deactivated into 
dormant species (RiX; X: end-group functionality) by a mediating agent (e.g. 
catalyst). Under well-chosen conditions termination reactions which lead to loss of X 
and formation of dead polymer P can be minimized. 
 
In this contribution, focus is on Initiators for Continuous Activator Regeneration Atom 
Transfer Radical Polymerization (ICAR ATRP; Figure 1a) aiming at the controlled 
synthesis of linear gradient copolymers (Figure 1b) made of methyl methacrylate (red 
and n-butyl acrylate (green) monomer units. A temperature of 80°C is selected and 
CuBr2/PMDETA (N,N,N′,N″,N″-pentamethyldiethylenetriamine) is considered as 
catalyst with amounts as low as 50 ppm (molar with respect to monomer).  

   
Figure 1: (a) ICAR ATRP, initial compounds boxed (R0X: ATRP initiator; I2: conventional radical 
initiator; M: monomer; Mt

n+1LyX2: deactivator); X: functionality; ka,da,dis,p: rate coefficient for activation, 
deactivation, dissociation, propagation (b) Targeted linear gradient copolymer (methyl methacrylate 
(red) and n-butyl acrylate (green) monomer units). 
 

Methodology 
Linear gradient quality (<GD>) is calculated based on the comparison of kinetic 
Monte Carlo simulated monomer sequences of a representative number of chains 
with predefined ideal gradient monomer sequences [1]. Mayo-Lewis monomer 
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incorporation kinetics are exploited to determine the optimal multicomponent fed-
batch policy that results in a fast ATRP initiation and a good control over monomer 
sequences [2]. The conventional radical initiator flow rate is determined based on the 
simulated termination rate profile, in order to mimic a steady radical concentration. 
The comonomer flow rates are adjusted to maintain starved feed operation (90% 
monomer conversion; low monomer concentrations) and the catalyst/deactivator flow 
rate is varied so that a constant ppm level is obtained with respect to the added 
amount of monomer. These heuristics follow from the design premise to incorporate 
a quasi-constant number of monomer units per activation-growth-deactivation cycle 
and, hence, to limit as much as possible the perturbation of the ATRP pseudo-
equilibrium between R and RX species. 
 
Results 
Kinetic Monte Carlo simulations show that starved feed operation and fed-batch 
feeding of the catalyst ensure the incorporation of an approximately constant number 
of monomer units during each activation/growth/deactivation cycle,  leading to higher 
uniformity in the monomer sequences. Combined with fine-tuning of the conventional 
radical initiator flow rate, i.e. maintaining a constant radical concentration, a relatively 
fast ICAR ATRP (Figure 2a), a linear number average chain length evolution (Figure 
2b), a high end-group functionality (Figure 2c) and suppressed termination in the 
initiation phase (Figure 2d) can be obtained. 
 

 
 
Figure 2: (a) Overall conversion (based on total monomer amount of corresponding batch case) as a 
function of polymerization time (b) Number average chain length xn as a function of overall conversion 
(c) End-group functionality EGF as a function of overall conversion. (d) Dispersity as a function of 
overall conversion (e) Evolution of instantaneous copolymer composition F1,inst as a function of the 
overall conversion (MMA:1) (f) Gradient deviation <GD> as a function of conversion; initial conditions: 
[M]0:[R0X]0 100; fed-batch addition of dissolved I2: 27 µmol L−1 with flow rate of 0.001 µL s−1 per liter 
reaction mixture of the corresponding batch case; fed-batch addition of comonomer via Mayo-Lewis 
equation each time an in situ conversion of 0.9 is reached (with at the start 1% of the batch amount in 
pure MMA form); comonomer addition accompanied by addition of deactivator so that Cu level is 
always 50 ppm (with respect to the monomer and monomer units).   
 
The fed-batch addition of comonomer yields a linear probability profile for 
incorporating the first monomer (Figure 1e), as desired for linear gradient polymers. 
The proposed heuristics yield at high conversion copolymers with <GD> values near 
zero (Figure 1f). Chain initiation and propagation are improved, while chain 
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termination remains uncharacteristically low for starved feed conditions (Figure 3 
right). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: (left) sample of polymer molecules when adding all reagents at t = 0 (batch); (right) sample 
of polymer molecules when adding all reagents according to the heuristics (fed-batch) 
 
 
Conclusions 
Novel heuristics for controlled radical polymerization using isothermal ICAR ATRP of 
MMA and nBuA for the synthesis of tailored linear gradient copolymers are 
established and their feasibility is demonstrated. A continuous addition of dissolved 
conventional radical initiator suppresses initial termination and leads to higher time-
averaged radical concentrations and, hence, an increase of the overall 
polymerization rate. To establish stable activation/growth/deactivation cycles, the 
monomer is added in a fed-batch manner so that the monomer concentration 
remains approximately constant. The relative comonomer flows are set in such way 
that a linear probability of finding MMA along the polymer backbone results, 
controlling the monomer sequences of individual copolymer chains. Per monomer 
addition, deactivator is added to compensate for the volume increase, again ensuring 
stable activation/growth/deactivation cycles. Hence, the highest polymer gradient 
quality results when a multi-component fed-batch procedure is selected. 
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Introduction	
  
Membrane	
   distillation	
   is	
   an	
   emerging	
   technology	
   to	
   separate	
   non-­‐volatile	
   components	
   from	
   an	
   aqueous	
   feed	
  
stream.	
  Mathematical	
  models	
  have	
  proven	
  useful	
  to	
  pursue	
  breakthrough	
  in	
  the	
  economics	
  of	
  the	
  technology	
  and	
  
for	
  further	
  improvement	
  through	
  membrane	
  and	
  module	
  design	
  as	
  well	
  as	
  operational	
  optimization.	
  	
  

Many	
  models	
   for	
   direct	
   contact	
   membrane	
   distillation	
   (DCMD)	
   are	
   based	
   on	
   the	
   Dusty	
   Gas	
  Model	
   for	
   the	
  mass	
  
transfer	
   inside	
   the	
  membrane,	
  while	
   the	
  heat	
   transfer	
   inside	
   the	
   channels	
   is	
   typically	
  modelled	
  with	
  Nusselt	
   type	
  
equations.	
  In	
  most	
  of	
  the	
  MD	
  models	
  the	
  researchers	
  use	
  an	
  "of-­‐the-­‐shelf"	
  Nusselt	
  equation.	
  In	
  our	
  work,	
  we	
  show	
  
that	
   the	
   existing	
   Nusselt	
   equations	
   cannot	
   directly	
   be	
   applied	
   to	
   simulate	
   the	
   heat	
   transfer	
   in	
   the	
   spacer	
   filled	
  
channels	
  and	
  instead	
  the	
  existing	
  equations	
  should	
  be	
  pre-­‐calibrated	
  using	
  aluminium	
  foil	
  [1],	
  operating	
  the	
  system	
  
as	
  a	
  heat	
  exchanger.	
  

In	
   this	
   contribution	
   a	
  Monte	
   Carlo	
   filtering	
  method	
  was	
   applied	
   to	
   calibrate	
   and	
   study	
   the	
   structure	
   of	
   a	
   typical	
  
DCMD	
  model.	
   	
   This	
   is	
   not	
   common	
   practice	
   and	
   the	
   calibration	
   efforts	
   in	
   the	
   literature	
   are	
   typically	
   not	
   treated	
  
correctly.	
   Often	
   too	
   many	
   parameters	
   are	
   being	
   calibrated	
   and	
   issues	
   related	
   to	
   identifiability	
   usually	
   are	
   not	
  
discussed.	
  The	
  method	
   showed	
   that	
   in	
  order	
   to	
  properly	
   calibrate	
   the	
  model	
   for	
  a	
   single	
   layer	
  membrane,	
  only	
  2	
  
parameters	
  are	
  needed,	
   that	
   correct	
   the	
  heat	
  and	
  mass	
   transfer	
   inside	
   the	
  membrane.	
  The	
   study	
   revealed	
   that	
  a	
  
three	
  dimensional	
   interaction	
  between	
   the	
  porosity,	
   tortuosity	
   and	
  pore	
   size	
   exists	
  when	
   the	
  Dusty	
  Gas	
  Model	
   is	
  
used,	
   revealing	
   that	
   the	
   tortuosity	
   could	
  be	
  used	
  successfully	
  as	
  a	
   single	
  calibration	
  parameter	
   for	
   the	
  membrane	
  
mass	
  transfer.	
  It	
  should	
  be	
  stressed	
  that	
  a	
  multitude	
  of	
  solutions	
  exist	
  to	
  predict	
  the	
  same	
  mass	
  and	
  heat	
  transfer.	
  

Finally,	
   a	
   simple,	
   yet	
   physical	
   method	
   for	
   the	
   simulation	
   of	
   supported	
   membranes	
   is	
   developed	
   that	
   enables	
   to	
  
model	
  the	
  system	
  by	
  reducing	
  the	
  heat	
  transfer	
  coefficient	
  in	
  the	
  permeate	
  channel,	
  where	
  the	
  membrane	
  support	
  
is	
  physically	
  located.	
  The	
  model	
  structure	
  did	
  not	
  need	
  adaptation	
  and	
  addition	
  of	
  parameters.	
  

Results	
  and	
  discussion	
  
In	
  order	
  to	
  choose	
  which	
  parameters	
  should	
  be	
  used	
   in	
  the	
  calibration	
  of	
  the	
  model,	
   the	
  resistances	
   in	
  the	
  DCMD	
  
system	
  are	
  split	
  into	
  different	
  categories	
  -­‐	
  Figure	
  1.	
  

	
  

Figure	
  1	
  Heat	
  (HT)	
  and	
  mass	
  transfer	
  (MT)	
  resistances	
  in	
  DCMD	
  system	
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The	
   heat	
   transfer	
   inside	
   the	
   channels	
   is	
   modelled	
   using	
   the	
   Nusselt	
   equation	
   (eq.1),	
   similarly	
   to	
   heat	
   exchanger	
  
models.	
  Likewise,	
  the	
  mass	
  transfer	
  is	
  modelled	
  using	
  the	
  Sherwood	
  equation	
  (eq.	
  2).	
  

𝑁𝑢 = 𝑎𝑅𝑒!𝑃𝑟! 	
   1	
  
𝑆ℎ = 𝑎𝑅𝑒!𝑆𝑐! 	
   2	
  

The	
  Nusselt	
  equation	
  is	
  calibrated	
  by	
  replacing	
  the	
  membrane	
  with	
  an	
  aluminium	
  foil	
  and	
  performing	
  heat	
  transfer	
  
experiments	
  in	
  order	
  to	
  obtain	
  the	
  coefficients	
  a,	
  b	
  and	
  c	
  in	
  eq.	
  1.	
  Since	
  the	
  Sherwood	
  equation	
  is	
  the	
  mass	
  transfer	
  
equivalent	
   of	
   the	
   Nusselt	
   equation	
   [2],	
   the	
   experimentally	
   obtained	
   coefficient	
   a,	
   b	
   and	
   c	
   were	
   also	
   used	
   in	
   the	
  
Sherwood	
  equation.	
  

In	
  order	
  to	
  study	
  the	
  model	
  structure	
  for	
  the	
  Knudsen	
  and	
  molecular	
  resistances	
   in	
  the	
  Dusty	
  Gas	
  model	
  a	
  Monte	
  
Carlo	
  filtering	
  method	
  was	
  applied	
  –	
  Figure	
  2.	
  	
  

	
  

Figure	
  2	
  Flow	
  diagram	
  representation	
  of	
  the	
  Monte	
  Carlo	
  Filtering	
  method	
  used	
  in	
  this	
  work	
  

A	
  sampling	
  range	
  was	
  chosen	
  for	
  the	
  parameters	
  studied	
  in	
  this	
  work.	
  Next,	
  a	
  random	
  shot	
  is	
  taken	
  for	
  each	
  of	
  the	
  
parameters	
  and	
  the	
  model	
  is	
  run	
  using	
  the	
  given	
  parameters	
  set	
  for	
  all	
  of	
  the	
  experiments	
  of	
  a	
  given	
  membrane.	
  The	
  
prediction	
   performance	
   of	
   the	
   model	
   is	
   estimated	
   using	
   the	
   weighted	
   sum	
   of	
   squared	
   errors	
   (wSSE)	
   using	
   an	
  
objective	
   function	
   that	
   includes	
  model	
   output	
   variables,	
   i.e.	
   the	
   flux	
   and	
   the	
   energy	
   efficiency.	
   The	
  weights	
  were	
  
assigned	
  based	
  on	
  the	
  experimental	
  errors,	
  estimated	
  by	
  the	
  difference	
  of	
   flux	
  and	
  energy	
  efficiency	
  between	
  the	
  
feed	
  and	
  the	
  permeate	
  channels.	
  In	
  this	
  way	
  it	
  is	
  estimated	
  how	
  well	
  a	
  simulation	
  based	
  on	
  a	
  certain	
  parameter	
  set	
  
fits	
  all	
  of	
  the	
  available	
  experimental	
  data.	
   It	
  was	
  found	
  that	
  the	
  membrane	
  mass	
  transfer	
  parameters	
   interact	
   in	
  a	
  
three	
   dimensional	
  way	
   (Figure	
   3)	
  which	
  would	
  make	
   it	
   dangerous	
   to	
   estimate	
   them	
   simultaneously	
   as	
   this	
   point	
  
towards	
  a	
  problem	
  of	
  structural	
  identifiability.	
  This	
  simply	
  means	
  that,	
  based	
  on	
  the	
  available	
  data,	
  no	
  “unique”	
  set	
  
of	
  parameter	
  estimates	
  can	
  be	
  found.	
  Since	
  the	
  membrane	
  tortuosity	
   is	
  the	
  most	
  uncertain	
  parameter	
  and	
  cannot	
  
be	
  measured	
  it	
  was	
  decided	
  to	
  leave	
  it	
  as	
  the	
  only	
  calibration	
  parameter	
  for	
  the	
  mass	
  transfer.	
  The	
  only	
  resistance	
  
left	
   to	
  be	
  calibrated	
   is	
   the	
  thermal	
  conductivity	
  of	
   the	
  membrane	
  matrix.	
  This	
  parameter	
   is	
  very	
  uncertain	
  since	
   it	
  
cannot	
  be	
  reliably	
  measured	
  and	
  the	
  models	
  that	
  predict	
  the	
  thermal	
  conductivity	
  of	
  the	
  membrane	
  rely	
  on	
  a	
  pre-­‐
defined	
  structure	
  of	
  the	
  air-­‐polymer	
  matrix	
  that	
  is	
  different	
  for	
  every	
  membrane	
  type.	
  Therefore,	
  it	
  was	
  decided	
  to	
  
include	
  this	
  parameter	
  in	
  the	
  calibration	
  –	
  Figure	
  4.	
  The	
  initial	
  value	
  of	
  the	
  thermal	
  conductivity	
  had	
  to	
  be	
  increased	
  
by	
  about	
  50%	
  in	
  order	
  to	
  obtain	
  a	
  good	
  fit	
  for	
  the	
  particular	
  membrane.	
  

	
  
	
   	
  

	
  
Figure	
  3	
  Three	
  dimensional	
  interactions	
   Figure	
  4	
  Weighted	
  sum	
  of	
  squared	
  errors	
  as	
  a	
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between	
  the	
  membrane	
  parameters.	
  Only	
  the	
  
behavioural	
  (good)	
  solutions	
  are	
  plotted.	
  

function	
  of	
  membrane	
  thermal	
  conductivity	
  
correction.	
  Good	
  solutions	
  lie	
  below	
  the	
  red	
  line.	
  

	
  
	
   	
  

	
  
Figure	
  5	
  The	
  simulated	
  versus	
  predicted	
  flux	
  for	
  
an	
  unsupported	
  membrane,	
  eq.	
  Experimental	
  
conditions:	
  Tf	
  53-­‐	
  61	
  oC,	
  Tp	
  25-­‐54	
  oC,	
  salinity	
  0-­‐
327	
  g/l,	
  channel	
  velocity	
  2	
  to	
  28	
  cm/s	
  

Figure	
  6	
  Simulated	
  versus	
  experimental	
  flux	
  for	
  a	
  
supported	
  membrane.	
  Experimental	
  conditions:	
  Tf	
  
54-­‐59	
  oC,	
  Tp	
  39-­‐49	
  oC,	
  salinity	
  0-­‐347	
  g/l,	
  channel	
  
velocity	
  4	
  to	
  28	
  cm/s	
  

	
  
To	
  improve	
  the	
  mechanical	
  stability	
  of	
  the	
  very	
  thin	
  membranes,	
  non-­‐woven	
  support	
  is	
  often	
  used.	
  Traditionally,	
  the	
  
support	
  is	
  modelled	
  by	
  assuming	
  that	
  the	
  support	
  is	
  completely	
  filled	
  with	
  water	
  and	
  the	
  thermal	
  conductivity	
  of	
  the	
  
support	
  (water	
  and	
  polymer	
  mixture)	
  is	
  calculated	
  by	
  another	
  submodel.	
  This	
  approach	
  is	
  flawed,	
  mainly	
  because	
  it	
  
neglects	
  the	
  convection	
  in	
  the	
  support	
  material	
  and	
  adds	
  uncertainly	
  of	
  the	
  model	
  and	
  additional	
  parameters	
  to	
  the	
  
model.	
  Moreover,	
   the	
   thermal	
   conductivity	
   of	
   the	
   polymers	
   depend	
   strongly	
   on	
   their	
   orientation	
   and	
   degree	
   of	
  
crystallinity.	
  On	
   the	
  other	
  hand,	
  by	
   recognizing	
   that	
   the	
  support	
  brings	
  only	
  an	
  additional	
  heat	
   transfer	
   resistance	
  
because	
   it	
   is	
   located	
   at	
   the	
   permeate	
   side	
   (Figure	
   1),	
   we	
   decided	
   to	
   model	
   the	
   support	
   simply	
   by	
   reducing	
   the	
  
Reynolds	
  exponent	
  b	
   in	
  the	
  Nusselt	
  equation	
  (eq.	
  1)	
  since	
  this	
  is	
  the	
  lumped	
  parameter	
  for	
  these	
  phenomena.	
  The	
  
resulting	
   fit	
   for	
   the	
   newly	
   proposed	
   method	
   can	
   be	
   seen	
   in	
   Figure	
   6.	
   We	
   will	
   also	
   show	
   how	
   this	
   additional	
  
parameter	
  impacts	
  the	
  identifiability	
  of	
  the	
  parameters	
  and	
  how	
  one	
  needs	
  to	
  be	
  careful	
  when	
  choosing	
  degrees	
  of	
  
freedom	
  for	
  optimisation	
  problems.	
  

Conclusions	
  
By	
   applying	
   the	
  Monte	
  Carlo	
   filtering	
   technique	
   to	
   this	
  model	
  we	
  were	
   able	
   to	
   study	
   the	
  model	
   structure	
   and	
   to	
  
derive	
   a	
   new	
   method	
   for	
   simulation	
   of	
   supported	
   membranes.	
   Moreover,	
   the	
   proper	
   parameters	
   for	
   system	
  
optimization	
  could	
  be	
  chosen	
  in	
  order	
  to	
  avoid	
   identifiability	
   issues.	
  This	
   is	
   important,	
  because	
   if	
  one	
  parameter	
   is	
  
used	
  to	
  compensate	
  for	
  another,	
  the	
  predictive	
  power	
  of	
  the	
  model	
  will	
  be	
  impacted.	
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1. Introduction 
 

We consider a problem of a chemical process (CP) design in the case of the presence of 
uncertainty in the process models. One of two following formulations of a problem of the optimal 
design of chemical processes (CP) under uncertainty is usually used: a) the formulation of the two-
stage optimization problem (TSOP) takes into account the possibility of the change of control 
variables at the operation stage b) the formulation of the one-stage optimization problem (OSOP) 
implies that the control variables are constant at the operation stage.  
Methods of solving the TSOP with hard constraints (TSOPHC) and the OSOP with chance 
constraints (OSOPCC) have been developed extensively. Significantly less attention was given to 
formulation and solving of the TSOP with soft constraints.  One of the main issues in solving the 
TSOPCC is a calculation of multiple integrals to determine the expected value of the objective 
function and the probability of constraints satisfaction. This operation is very intensive 
computationally. The use of the standard Gaussian quadrature for the calculation of the multiple 
integrals is very intensive computationally even for small dimensionality of vector θ  of the 
uncertain parameters. We consider a method of solving TSOPCC based on the reduction of chance 
constraints to deterministic ones. 
  The two-stage optimization problem with chance constraints (TSOPCC) has the following form 

1 , ( )
min ( , ( ), ) ( )
d z

T

f f d z d
θ

θ θ ρ θ θ= ∫                             (1) 

Pr{ ( , ( ), ) 0, 1,..., }jg d z j mθ θ α≤ = ≥                                (2) 
                            

We showed that constraint (2) can be substituted with the following m+1 constraints  
Pr{ }  Tαθ α∈ ≥                                                                   (4) 

max ( , ( ), ) 0jT
g d z

αθ
θ θ

∈
≤ ,                                                             (5) 

Hence, problem (1) can be rewritten in the following form  
*

, ( ),
min [ ( , ( ), )]

d z T
f E f d z

αθ
θ θ=                                                                 (6) 

max ( , ( ), ) 0jT
g d z

αθ
θ θ

∈
≤ , 1, ,j m= …                                                    (6) 

Pr{ }Tαθ α∈ ≥ ,                                                               (7) 

The peculiarity of problem (6) is that  
a) we  should look for optimal forms and positions of the regions 

j
Tα and  

b) the search variables ( )z θ are multivariate functions  
 We will develop an iteration method of solving problem (6) which will be based on a partition of 
the uncertainty region T into subregions (multidimensional rectangles ( )k

lR ).   Let at the k-th 
iteration the region T   be  partitioned on a set ( )kR of the subregions ( )k

lR    
( ) ( ), , ( ), ,{ : , 1,..., }k k L r k U r
r i i i i kR r Nθ θ θ θ= ≤ ≤ = ,                                                   (8) 

( ) ( )
1 k

k k
NR R T∪ ∪ ="                                                                                                          (9) 
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( ) ( )( ) ( ) ,   ,k k
l qR R l q=∅ ∀∩ 1 ,   1k kq N q N≤ ≤ ≤ ≤                                        (10) 

where  ( )( )k
lR  is  a set of interior points of the region ( )k

lR , kN  is a number of regions ( )k
lR  at the k -

th iteration and   l is a number of a subregion in the set ( )kR .  Unfortunately it is very difficult to 
look for the optimal form and location of the region Tα . Therefore, we will restrict a class of 
possible region Tα and look for some approximation ( )kTα

� of the region Tα . At the k-th iteration of 
this procedure we will solve the following problem 

( ) ( )

( ) ( )

, ( ),
min [ ( , ( ), )]
k k

k k
apd z T

E f d z
αθ

θ θ
��

�                                                                         (11) 

( )

( )max ( , ( ), ) 0
k

k
j

T
g d z

αθ
θ θ

∈
≤

�
�                1, ,j m= …                                (12) 

( )Pr{ }kTαθ α∈ ≥� .            ,                                                        (13) 
 
where ( )kz� is an approximation of multivariate function ( )z θ , ( ) ( )[ ( , ( ), )]k k

apE f d z θ θ� is an 
approximation  of [ ( , ( ), )]E f d z θ θ .  

Approximation of the region Tα .  We will look for the approximation ( )
j

kTα
�  in the form of some   

union of multidimensional rectangles  ,( ) , ,( ) , ,( ){ : , 1,..., }l k L l k U l k
i i i iT i pα θ θ θ θ= ≤ ≤ =  

,( )( ) 1,( ) 2,( ) kN kk k kT T T Tα α α α= ∪ ∪ ∪� "                                                     (14) 
where ,( )i kTα is the l-th subregion in the set ( )

j

kTα
�  and kN  is the number of subregions , ,( )

j

j l kTα  at the k -
th iteration  and 

,( ) ,( )( ) ( ) ,   , 1,...,s k t k
kT T s t Nα α∩ =∅ ∀ = .                                           (15) 

Note that the number of regions ,( )l kTα  is equal to the number of the regions ( )k
lR . We will require 

satisfaction of the following conditions 
,( ) ( ) ,   1,...,l k k

l kT R l Nα ∈ =  1,...,j m= .                                           (16) 
Since conditions (10) are met then it follows from (16) that conditions (15) are met. Taking into 
account (14), (15) we obtain 

,( )( ) 1,( ) 2,( )Pr{ } Pr{ } Pr{ } Pr{ }kN kk k kT T T Tα α α α= + + +� "                               (17) 
In this case the search of the optimal forms and locations of the regions 

j
Tα  is reduced to the search 

of the optimal upper and lower bounds , ,( ) , ,( ),  L l k U l k
i iθ θ  of the sides of the multidimensional 

rectangles ,( )l kTα . Since all the parameters iθ  are independent and have the normal distribution then 
the probability measure of the multidimensional rectangle ,( )l kTα  is equal to multiplication of the 
probability measures of the intervals ,( ) , ,( ) , ,( )[ ]l k L l k U l k

i i i iI θ θ θ= ≤ ≤ . Thus, we have 

,( ) , , 1 , , 1
1

Pr{ } [ (( [ ]) ) (( [ ]) )]pl k U j l L j l
i i i i i ii

T E Eαθ θ θ σ θ θ σ− −

=
∈ = Φ − −Φ −∏ ,                                              (18) 

where ( )ηΦ  is the standard normal distribution function  

Substituting the expressions for ,( )Pr{ }l kTα from (18) in (17) we obtain 

( ) , ,( ) , ,( )

1 1
Pr{ }  [ ( ) ( )]

kN p
k U l k L l k

i i
l i

Tα θ θ
= =

= Φ −Φ∑∏
� �� .                                                 (19) 

Approximation of multivariate functions. We will look for an approximate solution of problem 
(11) in the supposition that the control variables ( )z θ   will be piece-wise constant functions ( ) ( )kz θ�  
of the following form   
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( ) ,( ) ( )( )  if ,k l k k
lz z Rθ θ= ∈�  1,..., kl N=                                                      (20) 

It is easy seen that if at each iteration 1kN =  then TSOPCC is transformed into OSOPCC. For the 
approximate calculation of the expected value of the function ( )( , , )kf d z θ� we will use the piecewise 
linear approximation ( )( , , )kf d z θ� � of the function ( )( , , )kf d z θ�  of the following form 

( ) ,( ) ( ) ( )
1( , , ) ( , , , )  if k l k k k

lf d z f d z Rθ θ θ θ= ∈� �� � 1,..., kl N=  
,( ) ( )

,( ) ( ) ,( ) ( )

1

( , , )( , , , ) ( , , ) ( )
k r k kN

r k k r k k qr
r r i ri

i i

f d zf d z f d z θ
θ θ θ θ θ

θ=

∂
= + −

∂∑�                        (21) 

and ( )k
riθ is the i-th component of the vector ( )k

rθ . For the expected value approximation  we use the 
same partition of the uncertainty region as for approximation of the regions 

j
Tα and multivariable 

functions. The right-hand side of formula (21) is the linear part of the Taylor’s expansion of the 
function ,( )( , , )r kf d z θ� at the point ( )k

rθ .The points ( )k
rθ ,  1,..., kr N= are the linearization points. They 

will coincide with the middle points of the subregions ( )  k
rT . It is easy to obtain the following 

expression 

( )

,( ) ( )
,( ) ( ) ,( ) ( ) ( ) ( )

1

( , , )( , , , ) ( ) ( , , ) ( [ ; ] )
k

q

r k k
pr k k r k k k kr

r r r i r r riT
i

f d zf d z d a f d z E T aθ
θ θ ρ θ θ θ θ θ

θ=

∂
= + −

∂∑∫
�� � �     (22) 

where 
( ) ( )
k

r
r T

a dρ θ θ= ∫ , 
( )

( )[ ; ] ( )
k

r

k
i r iT

E T dθ θ ρ θ θ= ∫ . One can show that calculation of the values ra  

and ( )[ ; ]k
i rE Tθ  is reduced to calculation of some one-dimensional integrals.  

As an approximation of the expected value  ( )[ ( , ( ), ); ]kE f d z Tθ θ�  we will use the following 
expression 

( )

( ) ( ) ,( ) ( )
1

[ ( , ( ), )] ( , , , ) ( )k

k
q

Nk k r k k
ap rr T

E f d z f d z dθ θ θ θ ρ θ θ
=

=∑ ∫ ��                                    (23) 

Using (23), (19), (22) it is easy to transform problem (11) into the following optimization problem 
which will be solved at k-th iteration  

,( ) , ,( ) , ,( )

( ) ( ) ( )

, , , 
min [ ( , ( ), ); ]

l k L l k U l k
i i

k k k
ap

d z
f E f d z T

θ θ
θ θ=

�
�                                         (24) 

,( )

,( ) max ( , , ) 0,   1, , ,
l k

l k
j

T
g d z j m

αθ
θ

∈
≤ = …       1,..., kl N=  

, , ,( ) , , ,( )

1 1
 [ ( ) ( )]

kN p
U j l k L j l k
i i j

l i
θ θ α

= =

Φ −Φ ≥∑∏
� �

, 1, ,j m= …  

,( ) ( ) ,   1,...,l k k
l kT R l Nα ∈ =   

Problem (24) is a semi-infinite programming problem. For solving problem (24) one can use the 
outer approximations method (Hettich, Kortanek, 1993). We will partition one or several subregions 

( )k
lR at each iteration for improvement of the approximations of the regions 

j
Tα , the piece-wise 

constant approximation of multivariate functions ( )z θ functions and the approximation of  the 
expected value of the goal function. Thus, the solution of problem (24) does not require the 
numerical calculation of multiple integrals. 
Conclusion 
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Simulations of instationary operated heterogeneous 
catalytic reactions 

 
F.J. Keil, A. Garayhi 

Hamburg University of Technology, Hamburg, Germany 
 
 
In general, in a temporal analysis of products (TAP) reactor a pulse-response experiment is 
executed by a small and narrow pulse of a gas mixture which is sent into an evacuated 
packed microreactor. The injected molecules of gas travel through the microreactor via 
Knudsen diffusion and eventually escape into an adjacent vacuum chamber containing a 
QMS detector. A rectangular pulse input corresponds to an infinite Fourier series of 
trigonometric functions. That means very many frequencies are simultaneously stimulated. 
Instead, we propose a sinusoidal input of the reactant gas mixture employing various 
frequencies and amplitudes. In doing so, one can find out many details about 
adsorption/desorption and reactions inside the pellets. For this purpose the catalyst pellets 
were modeled as heterogeneous supports. The gas phase and solid phase being spatially 
inhomogeneous, that means the catalyst distribution can be arbitrary, are taken into account. 
The diffusion is calculated by the dusty-gas model. Adsorption/desorption processes are 
considered as chemical reactions, i.e. gaseous and adsorbed species are modeled as 
different species. The elementary steps of reactions can be presented, and the reactors are 
simulated as networks of continuous stirred tanks which show the same residence time 
distribution as the real reactor. As an example one then obtains the following reduced system 
of equations for the isothermal case, whereby for each cell one has to solve the pellet 
equations: 
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Reactor equation 
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Boundary conditions 
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Bi  Biot number,   pressure ratio (p/pz = 0.5) x  molar fraction, 0 
 convective factor  

)),8/((
5.0

2 



zp pr   dimensionless diffusion matrix, z  pellet coordinate,   residence 

time, j  stoiciometric coefficients,   dimensionless reaction rate, e  vector with all 
elements equal to one 
 

By using the a. m. model, the instationary behavior of the reaction A + B  C + D has been 
investigated. The following Langmuir-Hinshelwood and Eley-Rideal schemes have been 
employed:  
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LH     ER 

A +   A    A +   A 

B +   B    A + B  C + D 

A + B  C + D   A  A +  

A  A +     C  C +  

B  B +     D  D +  

C  C +       free site 

D  D +     X  adsorbed species X 
 
The inflow of component B is maintained constant whilst component A is supplied sinusoidal. 
An inert component is also fed into the reactor to keep the residence time constant. 
 
A very important result is that component B oscillates also inside the reactor although its feed 
is constant. The oscillations are induced by various mechanisms. The first mechanism is a 
depletion of component A in the gas phase owing to penetration of the pores and adsorption. 
This results in a high concentration of B in one period when the concentration of A is also 
high. That means both components oscillate in phase. This phenomenon is more 
pronounced in the ER mechanism compared to the LH mechanism. Coadsorption may also 
induce oscillations if the sorption processes and equilibration are running very fast, but the 
surface reaction is so slow that a large part of the reactants desorbs before reacting. Fast 
chemical reactions also lead to oscillations of B which is depleted in case the concentration 
of A is high. In case of an ER mechanism the concentrations of A and B oscillate by a half 
period phase shift. If the surface reaction is rate determining, this phenomenon occurs also 
for the LH mechanism. Fig. 1 shows an example of the oscillations of B for a LH mechanism 
and various adsorption constants.  
 

 
 
Fig. 1 
 
As the three induction mechanisms lead to different phase shifts, the phase shifts give an 
indication of the rate determining step. A diffusion resistance has primarily effect on the 
phase shift. Additionally, nonlinear distortions of the response curves may be observed. This 
means that the fundamental frequency stimulates higher frequencies. 
 
The influence of various parameters on the response will be demonstrated.  
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Integration of DFT calculations into microkinetic analysis:

Application to carbon dioxide hydrogenation on ceria

Zhuo Cheng and Cynthia S. Lo
Department of Energy, Environmental and Chemical Engineering

Washington University in St. Louis

April 1, 2015

1 Introduction

Heterogeneous catalysis involves the complex interplay of structure, properties, and activity across
length and time scales. Thus, multiscale modeling can be an effective method to predict catalyst be-
havior and guide experimental studies. In particular, density functional theory (DFT) calculations,
coupled with microkinetic modeling, can give insight into how the electronic structure of the cata-
lyst dictates activity and selectivity. Macroscopic reaction observables can thus be obtained, with
quantitative accuracy, from first principles, given the atomistic structure of the reacting system.
Transition state theory is employed with a modified Brønsted-Evans-Polanyi relation to obtain the
input parameters to the reactor design equations, which, in turn, are solved to obtain the reaction
rate coefficients, turnover frequencies, and surface coverages.

This method [1] is applied to model the hydrogenation of carbon dioxide to methanol (Figure 1)
and methane on a reduced ceria catalyst. Carbon dioxide utilization is receiving increased attention
due to both the industrial importance of fuel production and the environmental significance of
greenhouse gas utilization [2, 3]. Methanol, as a liquid fuel, can be effectively used as a source of
energy and thus close the carbon cycle. Alternatively, methanol can be used as the raw material
for other synthetic hydrocarbons by the MTO (methanol to olefins) process. The hope is that
the carbon dioxide generated from fossil fuel combustion can then be activated [4] and chemically
recycled by converting it back to methanol via hydrogenation.

2 Results

Two reaction channels to methanol are identified: 1. COOH pathway via a carboxyl intermediate
and 2. HCOO pathway via a formate intermediate. While formaldehyde (H2CO) appears to be the
key intermediate for methanol synthesis, other intermediates, including carbine diol, formic acid
and methynol, are not feasible due to their high formation energies. Furthermore, direct formyl
hydrogenation to formaldehyde is not feasible due to its high activation barrier (Figure 2).

Instead, we find that conversion of H-formalin (H2COOH∗) to formaldehyde is kinetically more
favorable. The formaldehyde is then converted to methoxy (H3CO∗), and finally hydrogenated to
form methanol. Our calculated results for vibrational entropy, heat capacity, and reaction enthalpy
are in good agreement with corresponding values in the published literature, which validates our
choice of methodology. Microkinetic analyses reveal the rate-limiting steps in the reaction network
and establish that the HCOO route is the dominant pathway for methanol formation on this catalyst
(Figure 3).

1
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Figure 1: Schematic of hydrogenation network for upgrading CO2.

Figure 2: Hydrogenation Energy Profile

2
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(a) Stoichiometric ratio of H2/CO2. (b) Pressure of 1 atm.

Figure 3: Temperature and (a) pressure and (b) H2/CO2 ratio dependence on TOF for HCOO
pathway.

3 Conclusions

Carbon dioxide hydrogenation to methanol on a reduced ceria catalyst should predominantly fol-
low the formate pathway. In this pathway, H-formalin is converted to formaldehyde in the rate-
limiting step, followed by further hydrogenation to form a surface-bound methoxy group and finally,
methanol. Furthermore, our analysis of the turnover frequency suggests that a moderately high
H2/CO2 feed ratio can facilitate carbon dioxide hydrogenation to methanol. The methodology
proposed here is also broadly applicable to the analysis of chemical reaction networks.

‘
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Explicit formulas for reaction probability in
reaction-diffusion experiments

M. Wallace∗1, R. Feres†1, G. Yablonsky‡2 and A. Stern§1

1Department of Mathematics, Washington University
2Department of Chemistry, Saint Louis University

1 Introduction

We consider reaction-diffusion systems of the following kind: Pulses of a reactant gas are injected
into a chemical reactor whose interior has been filled with a chemically inert, permeable to gas
diffusion, solid medium containing a number of small metal catalyst particles. Reaction at the
catalytic sites is assumed to be of first order and gas transport is by Knudsen diffusion. The
outflow of gas from the reactor is then measured for the fraction of reaction product in a mixture
containing the product and unreacted gas. Our goal is to find formulas that express this value
as a function of the chemical reaction constant and the reactor geometric configuration (position
and number of catalyst particles, shape of reactor and of the catalyst particles, place of gas
injection, etc.) Our main results are as follows. We first show that reaction probability can
be effectively computed by a time-independent boundary value problem for Laplace’s equation.
This boundary value problem often admits relatively simple one-dimensional network models on
so-called metric graphs. The usefulness of theses network models, which we refer to as generalized
thin zone systems, lies in that it provides explicit formulas for reaction probability that can be
used as reference, or approximation, for the more realistic three-dimensional reactors. We also
undertake a systematic study of Temporal Analysis of Products (TAP)-like configurations for
one or more catalyst particles in which we solve the three-dimensional boundary value problem
numerically and compare the results with explicit formulas obtained for the generalized thin-zone
systems. The problem of determining optimal particle configuration that maximizes reaction
probability is investigated in a few simple cases.

∗One Brookings Dr., St. Louis, MO, 63130; matt@math.wustl.edu
†One Brookings Dr., St. Louis, MO, 63130; feres@math.wustl.edu; — Corresponding author
‡3450 Lindell Blvd, St. Louis, MO, 63103; gyablons@slu.edu
§One Brookings Dr., St. Louis, MO, 63130; astern@math.wustl.edu
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2 Main results

• It is shown by stochastic analysis that the problem of conversion in general reactor
configurations in dimensions 2 or 3 is solved by a time-independent boundary value
problem for Laplace’s equation (or, more generally, a Feynman-Kac equation) with
mixed (Dirichlet, Neumann, Robin) boundary conditions. This provides an effective
computational tool.

Figure 1: The reaction probability is the solution of a time independent boundary value problem
for the Feynman-Kac operator on the domain U with Neumann boundary condition
on the reflecting boundary Γr and boundary value 0 on the absorbing boundary Γa.
The reaction rate term kq(x) is assumed to be supported on a a relatively small region
of U , indicated by the darker grey sets, called active sites.

Here are some details. It is convenient to formulate the problem for the survival
function ψ(x), representing the probability that a single gas molecule of type A,
injected into U at the initial position x, will eventually leave U through Γa without
having converted into B. The complementary probability of conversion to B will
be denoted α(x) = 1 − ψ(x). If the overall reaction constant is k and the diffusion
constant is D (assuming uniform Fickian diffusivity) then ψ(x) satisfies

D∆ψ − kq(x)ψ = 0 on U

with boundary conditions

n ⋅ ∇ψ = 0 on Γr

ψ = 1 on Γa.

If the active sites are all collar regions of thickness δ as in Figure 1, the problem of
finding the survival function can be restated in terms of Laplace’s equation ∆ψ = 0
in U with mixed Dirichlet-Neumann-Robin conditions on the boundary. Specfically,
with Γc denoting the boundary of the region occupied by catalyst particles, and Γr
now denoting the complement of Γc in the reflecting boundary, we have:

n ⋅ ∇ψ = 0 on Γr

n ⋅ ∇ψ = κψ on Γc

ψ = 1 on Γa

2
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Here κ ∶= δk
D

can be regarded as an effective reaction constant.

• We obtain general approximate solutions based on exact solutions for network
models mentioned below. The following is shown to hold very well when the catalyst
is a single particle of a relatively small size:

(2.1) α(x) = P (x) λκ

1 + λκ
Here, P (x) is the probability that a molecule of A injected at x will hit the catalyst
particle. Under the assumption of Fickian diffusion P (x) solves Laplace’s equation
∆P (x) = 0 in U , together with the boundary conditions:

n ⋅ ∇P = 0 on Γr

P = 1 on Γc

P = 0 on Γa

• The above conversion formula is greatly generalized in a network approximation,
where we suppose the catalyst to consist of a finite number of points. Then

α(x) = P0(x) −∑
v∈CPv(x)

λv(κ)
λ(κ)

where P0(x) is the probability of hitting a catalyst at all and Pv(x) is the probability
of hitting at vertex v; λ and λv are polynomial functions whose coefficients contain
geometric information.
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Figure 2: Optimal configuration of a multi-particle thin zone system.

• We undertake a detailed analysis of various configurations of a Temporal Analysis
of Products (TAP)-reactor, including one catalyst particle, two particles, approx-
imations of thin zone systems, among others. We obtain detailed dependence
of conversion on particle shape and position parameters. We also study optimal
configurations that maximize conversion in multiparticle systems.
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 The most widely used mathematical approach to chemical kinetics relies on 

concentrations, which are assumed to be continuous functions of time. However, it is 

now well understood that when very small amounts of substance are involved, the 

particulate nature of matter makes this approach untenable and the computationally 

often more demanding stochastic kinetics must be used as an alternative.1 

 This contribution will show that the use of stochastic kinetics may be inevitable 

in interpreting experimentally observed results in autocatalytic systems even if the 

amounts of substance involved are quite macroscopic. Chemical examples of this 

phenomenon include seemingly random distributions of enantiomers in the Soai 

reaction,2,3 and large fluctuations in the clock time of certain Landolt-type reactions.4,5 

Strong autocatalysis was confirmed in all of these systems2-5 and the stochastic 

approach was successfully used to interpret the enantiomeric excess and Landolt time 

distributions.6-8 

 Autocatalysis is a kinetic phenomenon that involves positive feedback. When 

the feedback is very strong compared to other processes, the kinetic role of just a 

handful of product molecules may be significant enough to influence the overall 

reaction, which provides exactly the conditions where the use of stochastic kinetics is 

inevitable. The following simple autocatalytic scheme will be of particular interest: 

   
B2BA
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The deterministic rate equation describing the change of concentration of reactant A is 

as follows: 
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In this rate equation, [A]0 and [B]0 represent the initial concentrations of these two 

species. This rate equation can be solved analytically:9 

 
)1([A])[B][A](

)[A][B][A](
[A] )[B][A](

000

)[B][A](
000

00

00

tkkk
cccu

tkkk
ccu

ccu

ccu

ekkkk
ekkk

++−

++−

−−++

++
=  

58 G. Lente



 In the corresponding stochastic kinetic description, molecule numbers (a for A 

and b = a0 + b0 − a for B) are used instead of concentrations. The direct equivalent of 

the rate equation is the stochastic master equation, which describes the time-dependent 

probability, denoted Pa(t), that the systems contains exactly a molecules of species A at 

time instant t:  

 [ ] [ ] acuacu
a PabaaaPabaaa
dt
dP

)()1)(1()1( 00100 −+κ+κ−−−++κ++κ= +  

As all master equations in stochastic kinetics, this a system of linear differential 

equations, whose solution can be given symbolically in the following form: 

 [ ]∑
−

=

+−κ+−κ−=
aa

i

tibiaia
i,aa

cueXP
0

000

0

))(()(  

In this formula, Xa,i represent multiplication factors that can be calculated in a recursive 

manner for a = a0, a0 − 1, a0 − 2, a0 − 3, etc.    

 The contribution will compare the two different approaches and identify the 

conditions under which the deterministic rate equation cannot be used. These results 

will be visualized by using stochastic maps, which were recently introduced in the case 

of first order reaction networks.10 Preliminary results will also be presented on how the 

dependence of the observations on stirring rate, a paramount feature in experimental 

systems,4,5 can be modelled using the stochastic approach. 
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In this work we propose the simplest dynamic model of a first order phase transition [1] 

and perform its parametric analysis. Conditions have been recognized for the existence of three 

and five steady states; the ranges of the parameters where autooscillations exist in a dynamic 

system have been found; and parametric and phase portraits of the mathematical model have 

been built. The process dynamics in the vicinity of a phase transition point has been shown to 

can be rather complex. For phase transitions of the type 

21 FF ↔       (1) 

in a system where there is heat exchange with the environment, a dimensionless spatially 

homogeneous model can be represented as 

),1)(()( 21 xyfxyf
dt
dx

−+−=      (2) 

),1()1)(()( 2211 ysxyfxyf
dt
dy

−+−β+β=    (3) 

where
  ,2,1)),/11(exp()( =−γ= iyDayf iii          (4) 

x and y are dimensionless concentration and temperature, respectively; dimensionless parameters 

Dai, s, γi, and βi. 

Parametric dependences are easily derived in an explicit form from the stationary 

equation, for example, 
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The examples of parameter curves based on (5)–(8) are shown in Figs. 1 and 2, where we can see 

regions with one, three and five steady states. The multiplicity of steady states gives rise to a 

hysteresis on the temperature curves. 

 
Fig. 1. Dimensionless steady state temperature 
vs. parameter β1 for s = 13, γ1 = 5, β2 = 8, Da1 
= 0.1 and Da2 = 0.35. Parameter γ2 varies as 
follows: (1) 4, (2) 5, (3) 7, and (4) 20. 

 
Fig. 2. Parametric dependence y(Da2) for Da1 
= 0.1, β1 = –4.4, β2 = 8, γ1 = 25.7, γ2 = 5, s = 
13. 

 

For example, bifurcation curve of multiplicity (LΔ) is given by the condition 
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Together with (5)–(8) equalities (9) and (10) allow to write equations for curves LΔ and 

Lσ in an explicit form on the plane of the two parameters. 

Fig. 3 shows one of the possible parametric portraits of the nonlinear dynamic model (2) 

and (3). The curves of multiplicity LΔ and neutrality Lσ define the range of parameters that differ 

in the number and stability of steady states. In the case of the one unstable steady state there are 

autooscillations for model (2), (3) (Fig. 4). From any initial data, the system goes to the 

autooscillation mode. The range of parameters for which there are oscillations is quite narrow. 

Therefore, for detection of autooscillation it requires a consistent parametric analysis of an 

investigated mathematical model. 
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Fig. 3. Parametric portrait on the plane (β1, γ2) 
for Da1 = 0.1, Da2 = 0.35, β2 = 8, γ1 = 5, s = 13. 

 
Fig. 4. Time dependences of the model (2), 
(3) x(t), y(t) for autooscillation mode Da1 = 
0.1, Da2 = 0.35, β1 = –1, β2 = 8, γ1 = 5, γ2 = 
20, s = 13. 

 

To summarize, dynamic model (2), (3) can be regarded as the simplest basic model of a 

first order phase transition. The parametric analysis of this model shows that it can have one, 

three, or five steady states. The parameter regions have been found where autooscillations exist 

in a dynamic system; characteristic parameter and phase portraits have been built for the 

mathematical model [2–6]. The process dynamics in the vicinity of a phase transition point can 

be rather complex. Its characteristic features can be hysteresis of temperature dependences, 

undamped temperature and concentration oscillations, and considerable dynamic bursts as the 

system tends to acquire a steady state. 
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1 Introduction

In recent years many mass transfer operations and two-phase reactions have been carried out in microchan-
nels, with the aim of improving process efficiency. Microchannels offer advantages such as high surface
to volume ratio, low inventories and well defined laminar flow fields. Applications of stratified microflows
include liquid-liquid extraction [1], phase transfer catalysis [2, 3] and membraneless microfluidic fuel cells
[4].

Mathematical models of these systems consist of partial differential equations (PDEs) for each phase,
which describe transverse diffusion, axial convection and reactions. These models must generally be solved
numerically. They contain a large number of parameters, all of which can affect the system performance.
Thus analysis of the system, across parameter space, and optimization using these PDE models becomes
quite tedious.

In this work, we derive reduced order models or averaged models of the system, which retain all the
physical parameters.These models describe the evolution of the transversely averaged concentration along
the length of the channel. They reduce computation time and aid in analysis, design and optimization.
Such models can also be used to gain insight into the physics of the process.

To average the equations, we use the Lyapunov-Schmidt (LS) reduction technique. This technique
has been effectively applied by Balakotaiah and coworkers to average partial differential equations of the
convection-diffusion-reaction type [5, 6, 7]. Two different reduced order models are obtained: the One
Equation Averaged (OEA) model and the Two Equation Averaged model (TEA).

2 Averaged Models for Reactive Extraction

In this section, we discuss averaged models developed for reactive extraction in stratified flow. The process
consists of two fluids flowing alongside each other with a flat inter-fluid interface, in a microchannel. This
flow is modeled as flow between two parallel flat plates. The carrier fluid enters with solute, while the
solvent fluid enters without any solute. As the fluids flow along the channel, the solute diffuses from the
carrier phase into the solvent phase, where it undergoes a reaction of the type A → products.

Two reduced order models are obtained for this system. The One Equation Averaged model (OEA)
and the Two Equation Averaged model (TEA).

In case of the OEA model, the LS reduction is applied to both fluids simultaneously. Mathematically
the PDEs are formulated as a single operator equation in a direct sum space and then reduced. This
approach was used by Ratnakar et al. [8] to develop an averaged model for a monolith catalytic reactor
that consists of a core fluid phase and an annular solid catalyst. The final OEA model is given below:

h
dĉ1

dx
+

(1 − h)

ω

dĉ2

dx
= Dar (c̄2) (1 − h) (1a)

ĉ1 − c̄1 = pDa r (c̄2) (β1) (1b)
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Figure 1: Comparison of the two equation averaged (TEA) model with the full PDE model and the one
equation averaged (OEA) model for the case of second order reaction in phase 2. The variation of the
cup-mixing average concentration along the length of the channel is plotted. Different values of p and Da
are considered. At the inlet (x = 0), ĉ1 = 1 and ĉ2 = 0. Parameter values: µ12 = 1/2, D12 = 3, K = 2,
h = 0.4

ĉ2 − c̄2 = pDaD12 r (c̄2) (β2) (1c)

c̄1 − Kc̄2 = pDa r (c̄2) (β3) (1d)

hĉ1 +
(1 − h)

ω
ĉ2 = h +

(1 − h)

ω

ĉ2,in

ĉ1,in
at x = 0 (1e)

Here ĉi and c̄i are cup-mixing and cross-section average concentrations of the carrier (i = 1) and solvent
(i = 2). p is the transverse peclet number, which is small when transverse diffusion is much faster than
axial convection. Da is the Damkohler number corresponding to the reaction in the solvent phase. βi

are constants that depend on the velocity profile, the ratio of solute diffusivities (D12), the viscosity ratio
(µ12) and the distribution coefficient (K = ceq

1 /ceq
2 ). h is the volume fraction of the carrier phase (fluid 1)

and ω is ratio of the average velocity of the carrier fluid to the solvent.
This reduced model consists of one averaged mass balance equation ((1a)) which describes the evolution

of the cup mixing averaged concentrations along the channel length. Eqs. (1b) and (1c) account for the
difference between the cup-mixing and cross-section average concentrations in each phase (due to a finite
time for transverse diffusion). Eq. (1d) accounts for the departure from equilibrium maintained between
the two phases due to the reaction in phase 2.

Figure 1 presents a comparison of the predictions of the TEA and OEA reduced models with that of
the PDE model. Different values of p and Da are considered, for the case of µ12 = 1/2, D12 = 3, K = 2,
h = 0.4. The reaction is assume to be second order: r(c̄2) = −c̄2

2. At the inlet, phase 2 (solvent) is taken
to be pure (ĉ2,in = 0).

This figure shows that the OEA model is able to predict the systems behavior well, except in the region
close to the inlet. The OEA model cannot predict the initial mass transfer between the phases when they
first come in contact. It can only capture the variations in concentration that occur after this inlet region,
due to the chemical reaction in the solvent phase. This drawback is a result of averaging across both
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phases simultaneously. As p increases, the diffusion time scale increases relative to convection, and the
length of the inlet region over which the initial mass transfer occurs increases. Therefore, the predictions
of the full PDE model matches the OEA after a greater channel length when p is larger.

To overcome this drawback of the OEA model, we develop the TEA model by applying the LS procedure
to each phase separately. This requires identifying the flux between the phases explicitly (J(x)) and writing
the equations in the form of two separate operator equations. The final result is given below:

p
dĉ1

dx
=

−J (x)

h
(2a)

ĉ1 − c̄1 = γ1J (x) (2b)

p

ω

dĉ2

dx
=

J (x)

(1 − h)
+ pDar (c̄2) (2c)

ĉ2 − c̄2 = γ2J (x) + pDaγ3r (c̄2) (2d)

J (x) =
(c̄1 − Kc̄2)

γ4
− pDa r (c̄2)

γ5

γ4
(2e)

ĉ1 = 1 and ĉ2 =
ĉ2,in

ĉ1,in
at x = 0 (2f)

Here γi are constants that depend on fluid properties.
This model consists of two differential equations for the evolution of the cup-mixing average concen-

trations along the channel. Two more equations account for the difference between the cup-mixing and
the cross-section averages. The last equation gives an expression for the flux between the fluids.

The flux J(x) is composed of two terms. The first is due to the departure of the average concentrations
in the two fluids from equilibrium. The second term is a correction to the flux due to a chemical reaction.

Figure 1 shows that the TEA model predicts the average concentrations much better than the OEA
model, when Da is small (Figs. 1(a)-1(c)). This improvement is pronounced near the inlet; the TEA
model captures the variation of the average concentrations right from the entrance of the channel. The
TEA model deteriorates, however, as Da is increased beyond unity. In this case the OEA model performs
much better, as seen in Fig. 1(d). This was found to be the case in other comparisons as well, which
were carried out for a range of parameter values. Thus, when modeling reactive extraction, the TEA
model should be used if Da is small (Da < 1) while the OEA model should be used for relatively high
Da(Da > 1).

3 Conclusions

Reduced order models have been derived that describe mass transfer and reactions in stratified micro flows
accurately. While the averaged models have been developed for a relatively simple reactive-extraction
process, they can be easily extended to processes involving multiple species and multiple reactions, oc-
curring within the fluids or on the surface of the walls. These models will be useful for design, analysis,
optimization and model predictive control.

We have shown how the LS technique can be applied to each phase separately, to derive an averaged
model that predicts inter-fluid mass transfer more accurately. This procedure can be applied to average
models for a wide range of systems involving stratified flows that sustain transport and reactions.
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Abstract

Examples of the most amazing phenomena in catalysis are self-oscillations
and chaotic behavior of the reaction rate accompanied by spatial and tem-
poral self-organization in the adsorbed layer on the catalyst surface. One of
the first heterogeneous catalytic systems in which the rate self-oscillations
were found was hydrogen oxidation on a nickel catalyst. In spite of a wide
variety of different heterogeneous catalytic systems that demonstrate the
critical phenomena of this kind, up to now there is no common theoretical
explanation of such a complex dynamics.

One of the approaches to theoretical studying the complex dynamics in
heterogeneous catalysis consists in development of a mathematical model
as a system of nonlinear ordinary differential equations that describes the
temporal changes of the concentrations of the individual intermediates on
the catalyst surface.

Our paper presents some results of studying chaotic behavior in the low-
dimensional dynamical systems with a hierarchy of characteristic times. Un-
der study is a kinetic model of three nonlinear ordinary differential equations

∗Corresponding author at: Boreskov Institute of Catalysis, Pr. Akad. Lavrent’eva 5,
Novosibirsk 630090, Russia. Tel.: +7 383 326 6426; fax: +7 383 330 6878

Email addresses: chumakov@math.nsc.ru (G. A. Chumakov),
Lyuba.Chumakova@ed.ac.uk (L. G. Chumakova), chum@catalysis.ru
(N. A. Chumakova)

Preprint submitted to MaCKiE–2015 April 22, 2015

Modeling the chaotic dynamics of heterogeneous catalytic reactions 67



with fast, intermediate, and slow variables to illustrate that the influence of
adsorbed species on the rate of a catalytic reaction may lead to sustained
oscillations and chaos under isothermal conditions. Such a situation may oc-
cur, for example, when the heterogeneity of the catalytic active surface sites
causes the activation energy of some rate constants to change with surface
coverage by one of the intermediate substances.

In our recent paper [1] we studied a scheme that allowed us to generate
the multi-peak oscillations in the three-dimensional kinetic system with fast,
intermediate, and slow variables. Our approach was based upon the exam-
ination of global dynamics of the one-parameter family of the two-variable
subsystems with intermediate and fast variables. A distinctive feature of the
study in [1] was the scenario of transition from periodic behavior correspond-
ing to a stable cycle on the strongly deformed torus to the chaotic multi-peak
oscillations by the bifurcation of the invariant torus. It was of great interest
to clarify how the torus should lose its smoothness with respect to the control
parameter.

In this paper, we study a scheme that allows us to generate homoclinic
chaos in the three-dimensional system with fast, intermediate, and slow vari-
ables. In this case, for generation of the chaotic dynamics we find the param-
eters of the model under which the system exhibits a Feigenbaum cascade of
period-doubling bifurcations. Numerical simulations are used to demonstrate
the different types of periodic and chaotic behavior predicted by the model.
In particular, as some parameter is varied, the subharmonic period-doubling
cascade leads to generation of a global attractor in the system.

Unstable manifolds of the periodic orbits in the cascade are topologically
equivalent to Möbius bands, so we call such orbits Möbius orbits. Using the
one-dimensional approximations of the Poincare map and its second iteration,
we find a transversal homoclinic orbit to the Möbius orbit which appears as
a result of the first bifurcation in the period-doubling cascade.

It is important to note that the saddle Möbius orbits from the track of
the direct period-doubling cascade and the standard Kaplan-Yorke formula
can give a lower bound for the Lyapunov dimension of the global attractor.
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Introduction 

Oscillatory reaction kinetics is unusual and, nevertheless, well-known phenomenon in heterogeneous catalysis. 
Sinusoidal or relaxation-type oscillations, and chaotic behavior have been observed in approximately 70 catalytic 
reactions in a wide pressure range, from ultrahigh vacuum up to atmospheric pressure, over all types of catalysts, 
including single-crystals, polycrystalline foils, wires, and supported catalysts. Several mechanisms describing the rate 
oscillations for different reactions were proposed. However, the most of them is based on the Langmuir-Hinshelwood 
mechanism and do not take into account the diffusion in subsurface layers of catalysts. This study is devoted to 
theoretical analysis of the influence of the diffusion of oxygen atoms into nickel on the self-sustained rate oscillations in 
the catalytic oxidation of methane. 

Methodology 

The microkinetic scheme for the oxidation of methane over nickel was published elsewhere [1]. Parameters of 
elementary reactions, such as enthalpies and activation energies, were determined using a phenomenological approach 
suggested by E. Shustorovich [2]. Pre-exponential factors of elementary steps were evaluated in the framework of the 
transition state theory [3]. The diffusion coefficients of oxygen atoms in nickel were determined on the basis of experimental 
data. The mathematical model of the reaction consists of a system of ordinary differential equations and takes into account 
concentrations of surface intermediates, an oxygen concentration in subsurface layers, and the heat balance.  

Results and discussion 

The set of elementary reactions included in the model of the catalytic oxidation of methane over nickel is shown 
Table 1, where [*] denotes to free vacancies on the nickel metal surface; [Ox] is nickel oxide; [CH4*], [CH3*], [CH2*], 
[CH*], [H*], [O*], [CO*], [OH*] are adsorbed intermediates on the catalyst surface; CH4(g), O2(g), CO(g), CO2(g), 
H2(g), H2O(g) are gas phase concentrations. The model was amended with a step of the diffusion of oxygen atoms from 
the nickel surface into subsurface layers. It allows us to study the influence of this step on the characteristics of the 
oscillatory behavior (fig. 1). In full agreement with previous study [1] the model without the oxygen diffusion under 
certain parameters has oscillatory solution (fig. 2). In this case the oscillations starts without any delay. In contrast in 
the model with the oxygen diffusion we found a long induction period before arising the self-sustained oscillations. 
Similar effect was observed experimentally. Also we found that the concentration of oxygen in the subsurface layers of 
nickel oscillates synchronously with the concentrations of reaction products in the gas phase. 

In both cases we found the partial pressure oscillations of products and reactants as well as the concentration 
oscillations of main intermediates on the catalyst surface. Simultaneously the catalyst temperature oscillated with the 
amplitude of several Celsius degrees. Typical oscillations are presented in fig. 1.  
Table 1. The mechanism of catalytic oxidation of methane over nickel. 
№ Reaction  

1 CH4(g) + [*] → [CH4*] 

2 [CH4*] → CH4(g) + [*]  

3 [CH4*] + [*] → [CH3*] + [H*] 

4 [CH3*] + [*] → [CH2*] + [H*] 

5 [CH2*] + [*] → [CH*] + [H*] 

6 [CH*] + [*] → [C*] + [H*] 

7 O2(g) + 2[*] → 2[O*] 
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8 2[O*] → O2(g) + 2[*] 

9 [C*] + [O*] → [CO*] + [*]  

10 2[H*] → H2(g) + 2[*] 

11 [O*] → [Ox] 

12 [C*] + [Ox] → [CO*] + [*]  

13 [CO*] → CO(g) + [*]  

14 [CO*] + [O*] → CO2(g) + 2[*]  

15 [CO*] + [Ox] → CO2(g) + 2[*]  

16 [H*] + [O*] → [OH*] + [*]  

17 [H*] + [Ox] → [OH*] + [*]  

18 [H*] + [OH*] → H2O(g) + 2[*]  

 
Fig. 1.  Synchronous stable oscillations of temperature and gas phase concentrations (left). Unstable 
oscillations on the border of oscillatory region (right). 
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Fig. 2. Oscillations of catalyst temperature in the models of methane oxidation with 3 and 10 nickel 
mololayers.  

Conclusions 

The addition of the oxygen diffusion into the model leads to the appearance of an induction period before the 
self-sustained rate oscillations. The concentration of oxygen in the subsurface layers of nickel oscillates synchronously 
with the concentrations of reaction products in the gas phase.  
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USA	
  
	
  

Fluid	
  Catalytic	
  Cracking	
  is	
  an	
  important	
  unit	
  operation	
  in	
  most	
  of	
  the	
  petroleum	
  refinery	
  operations	
  for	
  
the	
  conversion	
  of	
  crude	
  oil	
  into	
  useful	
  products.	
  The	
  FCC	
  process	
  plays	
  a	
  major	
  role	
  in	
  the	
  conversion	
  
of	
  high	
  molecular	
  weight	
  hydrocarbons,	
  which	
  comprise	
  FCC	
  feedstock,	
  into	
  lower	
  molecular	
  weight	
  
and	
  lower	
  boiling	
  range	
  but	
  higher	
  market	
  value	
  hydrocarbons.	
  The	
  chemical	
  composition	
  of	
  the	
  
feedstocks	
  affects	
  the	
  slate	
  and	
  quality	
  of	
  major	
  FCC	
  products	
  thus	
  influencing	
  the	
  whole	
  refinery	
  
economics.	
  	
  The	
  FCC	
  catalyst	
  enables	
  this	
  economic	
  value	
  of	
  raw	
  materials	
  to	
  be	
  harnessed	
  under	
  the	
  
unit	
  operating	
  conditions	
  constraints.	
  While	
  the	
  quality	
  of	
  FCC	
  catalyst	
  is	
  important	
  to	
  unlock	
  the	
  
feedstock	
  potential	
  and	
  to	
  produce	
  the	
  valuable	
  products,	
  the	
  maximum	
  value	
  depends	
  on	
  the	
  initial	
  
feedstock	
  composition.	
  Understanding	
  complex	
  catalyst-­‐feedstock	
  interactions	
  is	
  the	
  key	
  to	
  proper	
  
catalyst	
  selection	
  and	
  optimum	
  unit	
  operation.	
  The	
  industry	
  standard	
  is	
  to	
  evaluate	
  catalyst-­‐feed	
  
interactions	
  in	
  the	
  Advanced	
  Catalyst	
  Evaluation	
  (ACE)	
  apparatus.	
  This	
  is	
  a	
  high	
  throughput	
  bench	
  top	
  
system	
  with	
  a	
  fluidized	
  bed	
  reactor	
  to	
  simulate	
  commercial	
  riser	
  operations.	
  While	
  the	
  interpretation	
  
of	
  the	
  experimental	
  data	
  within	
  the	
  envelope	
  of	
  testing	
  equipment	
  operating	
  conditions	
  is	
  
mathematically	
  trivial,	
  scaling-­‐up	
  the	
  results	
  onto	
  different	
  operation	
  conditions,	
  especially	
  
commercial	
  operations,	
  or	
  understanding	
  the	
  effect	
  of	
  feedstock	
  or	
  catalyst	
  change	
  on	
  unit	
  
performance	
  requires	
  a	
  thorough	
  understanding	
  of	
  the	
  combined	
  reactor	
  hydrodynamics,	
  unit	
  heat	
  
balance,	
  and	
  kinetics	
  of	
  complex	
  chemical	
  reactions	
  involved	
  in	
  the	
  cracking	
  process.	
  	
  	
  
	
  
Over	
  the	
  years,	
  methods	
  have	
  been	
  developed,	
  mostly	
  in	
  the	
  form	
  of	
  heuristic	
  correlations,	
  to	
  predict	
  
cracking	
  products	
  yield	
  and	
  quality	
  based	
  on	
  the	
  properties	
  of	
  the	
  catalyst	
  and	
  feed.	
  Correlations	
  are	
  
however	
  limited	
  in	
  applications	
  to	
  the	
  domain	
  of	
  the	
  experimental	
  data	
  set	
  used	
  for	
  their	
  derivations.	
  
Models	
  allow	
  to	
  expand	
  these	
  heuristic	
  observations	
  onto	
  new	
  systems	
  and	
  to	
  provide	
  a	
  detailed	
  
understanding	
  of	
  complex	
  phenomena	
  that	
  are	
  difficult	
  to	
  experiment	
  with.	
  	
  Modeling	
  of	
  FCC	
  
processes	
  is	
  not	
  trivial	
  because	
  of	
  the	
  enormous	
  number	
  of	
  chemical	
  compounds	
  involved,	
  the	
  type	
  of	
  
chemical	
  families	
  those	
  compounds	
  belong	
  to	
  (paraffins,	
  isoparaffins,	
  olefins,	
  aromatic,	
  naphthenic,	
  
saturates,	
  resins,	
  asphaltenes,	
  etc.)	
  that	
  would	
  affect	
  reaction	
  mechanism	
  and	
  pathways,	
  and	
  the	
  type	
  
of	
  cracking	
  process	
  pathways	
  that	
  can	
  be	
  either	
  thermal	
  or	
  catalytic	
  with	
  Bronsted	
  acid	
  sites	
  
promoting	
  protolytic	
  cracking	
  and	
  Lewis	
  acid	
  sites	
  associated	
  with	
  a	
  β-­‐scission	
  mechanism.	
  Literature	
  
provides	
  numerous	
  examples	
  of	
  kinetic	
  schemes	
  to	
  deal	
  with	
  those	
  complexities.	
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This	
  paper	
  describes	
  the	
  evolution	
  of	
  the	
  six-­‐lump	
  model	
  that	
  we	
  successfully	
  employed	
  for	
  the	
  
interpretation	
  of	
  experimental	
  data.	
  	
  While	
  such	
  a	
  lumping	
  scheme	
  is	
  adequate	
  to	
  describe	
  selectivity	
  
of	
  major	
  products,	
  the	
  reaction	
  rate	
  constant	
  did	
  not	
  correlate	
  well	
  with	
  initial	
  composition	
  of	
  the	
  
feedstock.	
  A	
  collection	
  of	
  over	
  two	
  hundred	
  feeds	
  originated	
  from	
  different	
  geographical	
  locations	
  
was	
  thoroughly	
  characterized.	
  All	
  those	
  feeds	
  were	
  tested	
  in	
  the	
  ACE	
  apparatus	
  against	
  three	
  families	
  
of	
  commercial	
  FCC	
  catalysts	
  using	
  a	
  range	
  of	
  severities	
  (cat-­‐to-­‐oil	
  ratio	
  from	
  0	
  to	
  100,	
  and	
  reactor	
  
temperatures	
  from	
  778	
  to	
  817	
  K).	
  Cracking	
  products	
  were	
  identified	
  and	
  thoroughly	
  characterized.	
  
Distribution	
  models	
  for	
  the	
  feedstock	
  initial	
  properties	
  and	
  cracking	
  product	
  attributes	
  were	
  
formulated	
  based	
  on	
  the	
  discretized	
  form	
  of	
  the	
  gamma	
  distribution	
  function.	
  The	
  cracking	
  process	
  is	
  
described	
  in	
  terms	
  of	
  the	
  discrete	
  population	
  balance	
  assuming	
  deterministic	
  reaction	
  pathways.	
  
While	
  a	
  good	
  agreement	
  was	
  achieved	
  between	
  model	
  predictions	
  and	
  the	
  yield	
  of	
  major	
  products	
  
using	
  a	
  univariate	
  distribution,	
  a	
  bivariate	
  approach	
  might	
  be	
  needed	
  for	
  other	
  properties	
  such	
  as	
  
Gasoline	
  RON	
  and	
  MON.	
  
	
  

 
Figure	
  1.	
  	
  Comparison	
  of	
  model	
  predictions	
  with	
  LCO	
  yield	
  data	
  from	
  ACE	
  experiments	
  –	
  289	
  data	
  
points.	
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1 Introduction 

Although emulsion (co)polymerization is an industrially important process used in the production of adhesives, 
coatings and paintings, its mathematical modeling is challenging due to: (i) complex mass transfer and 
partitioning of monomer(s) among three phases, (ii) complicated kinetic schemes involving chain-branching and 
cross-linking, (iii) practical problems associated with latex production, e.g., coagulation of polymer particles and 
fouling on equipment surfaces. 

This contribution deals with the work carried out in two EU collaborative projects. First of them, named 
“COOPOL” (No. 280827) was focused on the development of system for model-based predictive control (MPC) 
of semi-batch emulsion copolymerization of four monomers (two water soluble + two hydrophobic). The project 
ended in February 2015 and the functionality of the MPC system was successfully demonstrated at BASF pilot 
plant reactor. Probably the most important outcome of this project was the reduction of batch duration by up to 
10% while maintaining the product quality characterized by solid content in latex and number-average molecular 
weight of the produced copolymer. 

The aim of the ongoing project “RECOBA” (No. 636820) is shifted more towards the detailed 
molecular architecture of the formed copolymer, i.e., it is necessary to predict on-line full structure of branched 
and cross-linked polymer network, which cannot be done by the method of polymer moments used in the 
macroscopic model developed in the COOPOL project. For this purpose, we use Monte Carlo (MC) simulation 
which utilizes some of the state variables pre-calculated by the macroscopic model. Therefore we call our 
approach “hybrid”. Since we do not have a complete experimental characterization of the product molecular 
architecture (full molecular weight distribution, branching density etc.) up to now, in this abstract we 
demonstrate the feasibility of the hybrid MC approach on a simple case of emulsion copolymerization of two 
hydrophobic monomers without long chain-branching (LCB) and cross-linking. Hybrid MC predictions 
including branching / cross-linking are already available, but they are not validated yet. 
 
2 Macroscopic Process Model of Semi-Batch Emulsion Copolymerization Reactor 
 
The process model of semi-batch emulsion copolymerization of 4 monomers (2 water soluble + 2 water 
insoluble) developed within the COOPOL project is based on several simplifying assumptions, of which the 
most important are: 

• Nucleation of polymer particles is neglected, because the polymer seed is used. The process is thus 
assumed to proceed in Stage II and III of emulsion polymerization. 

• It was found that for typical process conditions, the solubility of hydrophobic comonomers in aqueous 
phase is low (< 5%) and also the solubility of hydrophilic comonomers in polymer particles is low. 
Therefore we neglect the presence of comonomers that are not compatible with a given phase and the 
reaction medium is finally divided into two simultaneously running 2-monomer copolymerizations with 
different kinetics: (i) emulsion copolymerization in latex particles, and (ii) solution polymerization in 
aqueous phase. 

• Dynamic evolution of average number of radicals per polymer particle n  is predicted using approach of 
Li & Brooks[1]. 

• Besides traditional steps as initiation, propagation and termination, the copolymerization kinetic scheme 
contains also chain transfer to monomer (and to chain-transfer agent) and intramolecular chain transfer 
(backbiting) leading to the formation of short-chain branches. 
 

The model is formulated as a system of ODEs represented by: 
• Material balances of non-polymeric species in all phases. 
• Material balance of radicals in polymer and aqueous phase. 
• Population balance of polymer moments (summed over polymer and aqueous phase). 
• Heat balance of reaction mixture and reactor cooling jacket. 
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The method of polymer moments was used in this model because the main characteristic of product quality was 
number-average molecular weight of copolymer Mn and the long-chain branching and cross-linking was not 
considered in the model. However, in the presence of excessive branching and cross-linking, the use of polymer 
moments becomes unsuitable, because near the gel point the moments of higher order increase dramatically 
(approaching infinity at gel point), making integration of model equations stiff or impossible. Moreover, method 
of moments can provide only information about average molecular weights of polymer, while prediction of the 
detailed molecular architecture (cf. Section 3) provides valuable information, which can be used for instance for 
the estimation of polymer viscosity or film-forming properties. 
 
In MPC system, the developed model is implemented as a C++ code and the simulation of several hours of semi-
batch reaction is carried out in approx. 1.5 s. The model of semi-batch reactor was validated by 15 laboratory 
experiments with varying conditions for: (i) conversion of individual monomers, (ii) solid content in latex, and 
(iii) average molecular weights of the produced copolymer.  

Moreover, the model became a central part of the MPC system implemented in the pilot plant reactor of 
our industrial partner and its functionality was successfully tested by three scenarios of increasing complexity: 

1. On-line control of reaction mixture temperature. 
2. Minimization of batch time while keeping the standard product quality (characterized by average 

molecular weight). 
3. Minimization of batch time and change in product quality (increase/decrease in average polymer 

molecular weight). 
 
Regarding the average molecular weights, we mean the experimentally (by SEC/GPC) determined value of the 
final product, which was not available on-line during the batch, but rather measured afterwards and compared 
with model predictions. Not only that this work represents the first successful case of on-line control of polymer 
quality implemented at larger than laboratory scale, it also allowed for the reduction in reaction time by approx. 
10%. Results generated at the pilot plant are, however, confidential and can be presented only with scaling in 
arbitrary units. 
 
3 Hybrid Monte Carlo Simulation of Polymer Chains Architecture Evolution 
 
With respect to the evolution of copolymer molecular architecture, the classical approach represented by 
simulation of the growth of individual chains would be extremely time-consuming for the on-line control. 
Therefore we follow the so-called “competition technique” developed by Prof. Hidetaka Tobita in 1990s[2], 
significantly reducing the simulation time. 

In the competition technique, each event leading to the termination of the active chain growth (e.g., exit 
to the aqueous phase, termination, transfer to monomer or to other polymer chain) is given its probability 
distribution with respect to the given chain length. For each of these events and each radical (active/growing 
chain) in polymer particle, the imaginary time of the radical growth (until it is ceased by the event) is calculated 
based on the probability distribution and random numbers. The event with shortest time is then selected as the 
“real”, i.e., as the one that actually happened. In one step of MC algorithm, we thus propagate all active chains in 
the particle by much higher number of monomeric units than in the conventional MC simulations, which leads to 
enormous reduction of computational time. Information about the structure of macromolecules (formed over 
several hours of real time) can be obtained in approx. 10 seconds in MATLAB on a standard desktop PC. 

In order to estimate the probabilities of individual events, Monte Carlo simulation utilizes physical-
chemical parameters of the modeled system as well as evolution of several state variables previously evaluated 
by macroscopic process model, namely: 

• reaction mixture temperature, 
• concentration of radicals in the aqueous phase, 
• concentration of monomers sorbed in polymer particles. 
 

The predicted information about the evolution of polymer network topology can be easily translated into full 
molecular weight distribution (MWD), branching/cross-linking density, polymer particle size distribution (PSD), 
conversion at gel point and other desired product/process characteristics. 

Up to now we are awaiting the detailed experimental information about the architecture of copolymer 
formed during the simulated reaction, therefore we can present at least the comparison of average product 
characteristics calculated by the MC simulation and macroscopic process model for a simplified system with 
long-chain branching and cross-linking neglected, i.e., semi-batch emulsion copolymerization of two water-
insoluble monomers. However, the evolution of polymer network due to long-chain branching and cross-linking 
is already implemented and will be validated as soon as the experimental data are available. 
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It is evident that the agreement between Monte Carlo and process model is very good for average 
particle diameter (Fig. 1a) and average molecular weights of the produced copolymer (Fig. 1b), especially with 
respect to the final (product) values. The differences between the models are probably caused by the different 
approach to modeling of radicals distribution in polymer particles. While the process models uses purely 
statistical approach[1], MC approach simulates each event (radical absorption into particle, exit from the particle 
or termination) separately. 
 

  
(a) (b) 

Figure 1. Comparison of the dynamic evolution of the product characteristics predicted by Monte Carlo and macroscopic 
process model of emulsion copolymerization of two hydrophobic comonomers. (a) Average diameter of polymer particle, (b) 
number and weight-average molecular weight of copolymer.  
 
4 Conclusions and Future Work 

The MPC system for on-line control and optimization of 4-monomer semi-batch emulsion copolymerization was 
developed and successfully demonstrated in industrial pilot-scale reactor, thus representing state-of-the-art in the 
control of emulsion polymerization processes. The developed control model can be extended with the hybrid 
Monte Carlo approach, resulting in the prediction of the detailed molecular architecture of the produced 
copolymer with sufficient speed for the use in on-line control system. 
 With respect to polymer quality, only data on average molecular weights of copolymer were available 
up to now for the validation of models. Therefore, the experimental validation of hybrid MC model will be 
performed as soon as the experimental data on more detailed molecular architecture (e.g., full MWD, branching 
density) are available. Polymer network architecture predicted by MC simulation is further used for the 
prediction of polymer melt viscosity using the extended tube theory[3],[4]. 
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Chemical reactions, in laboratory/industrial practice and in natural contexts, often occur via a 
complex mechanism involving many species and many elementary steps (or “parallel reactions”). 
Even in the ideal situation of perfectly stirred medium and isothermal conditions, for which the 
system of Ordinary Differential Equations (ODEs) yielding the trajectory in the concentrations 
space are of simple polynomial type, one may encounter severe problems on computational and/or 
interpretative grounds. For example, the large spread of kinetic constants may originate a “stiffness” 
which imposes the use of extremely short propagation time-steps for integrating the equations. Thus 
one aims to achieve a “reduced” but accurate enough description of the kinetics such that only the 
relevant features are kept, the dimension of the algebraic problem is lowered, and the stiffness is 
removed. This goal is termed “dimensional reduction” of kinetics description. 
Here we exploit an almost ubiquitous trait which is “observed” in the concentrations space when 
several trajectories, originating from different initial points, are plotted together. After a fast 
transient, the trajectories seem to “converge” to a hypersurface, named Slow Manifold (SM), of 
lower dimension than that of the whole space; the trajectories then remain close to the SM up to 
equilibrium and the slow tail of evolution takes place in its neighbourhood. An illustration of a 2-
dimensional SM, embedded in a 3-dimensional space, is given in the figure below for a simple 
kinetic scheme.  
The existence of a region in which trajectories converge, implies the appearance of mutual 
correlation between the species concentrations, suggesting that some degrees of freedom can be 
removed from the description of the system. The strategy is particularly efficient considering that 
SMs of very low dimension can be featured in reacting systems involving very many species. For 
example, a 1-dimensional SM is found in a 9-species model scheme for hydrogen combustion [1]. 
From the mid of 1980s, several theoretical-computational approaches have been proposed to define 
and detect SMs in chemical kinetics. Amongst them we mention strategies which exploit the idea of 
the existence of a timescale separation between fast and slow processes. In such a category we find 
the Computational Singular Perturbation method [2] and the construction of Intrinsic- [1] and 
Attracting  [3] Low-Dimensional Manifolds. Other methods are inspired by thermodynamic-like 
criteria [4].   
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Example of 2-dimensional Slow Manifold in the 3-dimensional concentrations space. Solid lines are trajectories 
starting from initial points generated at random. The red line is the 1-dimensional manifold of stationary points. 
The SM can be figured out as the surface which is approached by trajectories in going towards the stationary 

points. Values of the kinetic constants here used are 1 1
1 2 s sk c t− −= , 1 1

2 1 s sk c t− −= , 1
3 0.6 sk t −= , 1

4 3 sk t −=  where cs 

and ts are arbitrary units for volumetric concentrations and time. 

 
In such a scenario, a formal/operative definition of SM has been recently presented by us [5, 6]. Our 
guess is that the SM, being a common trait, should emerge from a “universal format” of the 
evolution law of the reacting system. In this communication we outline the theoretical approach and 
present some issues concerning low-computational-cost algorithmic implementations. Hereafter 
only the main features are outlined.    
The starting point in ref. [5] was to derive an extended system of ODEs from the original one 
having the following mass-action-based form 
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where xj is the volumetric concentration of the species j, ( )
j

m
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m
Pυ  are its stoichiometric 

coefficients as reactant and product, respectively, in the m-th elementary step/reaction, and mk  is 

the kinetic constant. Our transformation, as a whole, consists in turning from the N variables xj to 

the following N×M variables , ' '( )jm j mV x  having physical dimension of rates: 
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By introducing the cumulative index ( , )Q j m=  which labels the pair species-step, the new 

variables are collected in the square matrix V of dimension s sQ Q×  with sQ N M= × , whose time 

evolution results to be governed by 
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' ' ' ''
''

QQ QQ Q Q
Q

V V V= − ∑ɺ           (3) 

A backward transformation ( ) →V x x  then allows one to retrieve the actual state of the system in 

the concentrations space [5]. Eq. (3) is an extended system of ODEs (for the Qs
2 variables mutually 

related by non-linear constraints such that the actual number of independent quantities remains N) 
whose quadratic format is the same regardless of the features of the specific kinetic scheme.  
We stress that the change from Eq. (1) to Eq. (3) fits into the class of transformations named 
“quadratization” or “embedding into Lotka-Volterra format” [7]. By considering that general ODEs 
systems can be firstly put into a polynomial format [8] and then “quadratized”, the present study 
may be of interest in different fields even outside the chemical kinetics context.  
In ref. [5] we have shown that the rates 

'
'

( ) : ( )Q QQ
Q

z V=∑x x          (4) 

have peculiar properties. First, they fix the timescale of evolution of the matrix V (as it appears 
from Eq. (3)), and hence of the reacting system. Moreover, we have recently established that the 
inverse of the Euclidean norm of the array z is directly proportional to the time-step to be employed 
in a forward propagation scheme, hence such a norm quantifies the local “slowness” of the 
evolution. Second, by means of phenomenological inspections, in ref. [5] we formulated the 
conjecture that a “typical” trajectory for a “typical” kinetic scheme enters a region of the 
concentrations space, termed by us as the “Attractiveness Region” (AR), within which the high-

order time-derivatives ( ) ( ( )) ( ( )) /n n n
QQz t d z t dt=x x  tend to become multiple one of the others and 

monotonically decay to zero. The SM was defined as the hypersurface within AR where ( ) ( ) 0n
Qz =x , 

for all Q, as n → ∞  (on the equilibrium manifold, the stronger and exact condition ( 1)( ) 0n
Qz

≥ =x  

holds). This provides a geometric definition of SM as a global object in the concentrations space 
[6]. Remarkably, such a definition emerged (and indeed it was detected via a phenomenological 
inspection) by the structure of the evolution law in Eq. (3), without the need of subjective choices or 
assumptions.  

In ref. [6] we have proved such a conjecture on simple model kinetic schemes, showing that the SM 
can be detected once an algorithmic implementation of its definition is adopted. On the other hand, 
we have also pointed out that facing high-dimensional cases is a hard task. The major problem is to 
devise an efficient way to approach the neighborhood of the SM, before starting the check of 
conditions on the high-order derivatives. Indeed, although the AR is specified in mathematical 
terms [5], there are still no ways to state, via a low-computational-cost route, if a point in the 
concentrations space belongs to it or not. Without such a guide, the search for the SM would be like 
“to find a needle in a (multi-dimensional) haystack”. However, we have recently recognized that 

approximations of the SM can be obtained by using only the low-order derivatives ( ) ( )n
Qz x . Some 

recent outcomes along this way will be presented here, while for technicalities we refer to our 
companion communication Slow Manifolds  identification for dimensionality reduction of chemical 

kinetics: a computational route. 
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Lyapunov functions and stability of kinetics: from Boltzmann to
present days
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The talk gives a review of Lyapunov functions and stability analysis of kinetic
systems from Boltzmann’s f log f to the present. New families of universal Lya-
punov functions for nonlinear kinetics are introduced. Differential inclusions pro-
duced by kinetics with partially known reaction rate constants are studied. For them,
the forward-invariant peeling procedure is constructed. This procedure produces a
forward-invariant subset of the concentration space from an initially given domain. The
general constructions are illustrated by simple examples from chemical kinetics.
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Abstract 
 
Process systems engineering (PSE) has been traditionally concerned with the understanding and 
development of systematic procedures for the design, control, and operation of chemical process 
systems. Systematic computer aided methods and tools have been successfully used in the solution and 
analysis of problems related to process-product engineering, covering a wide range of topics and 
disciplines. This presentation will discuss the role and importance of modelling with special emphasis 
on kinetic model identification. Although, models are an integral part of all computer aided 
methods/tools, the development of mathematical models for representation of the domain chemical 
process/product knowledge is still principally a manual task. A significant reduction in time and 
resources spent on problem solving in general and modelling in particular, can be made through the 
development and use of a computer aided modelling framework that can aid in the systematic 
generation/creation of the needed models, which is usually the first-step of any model-based approach. 
A versatile and flexible modelling framework with features such as model reuse, model decomposition 
and aggregation, model identification coupled with a library of predictive constitutive models and 
numerical solvers will have the capability to generate process-product models for a wide range of 
problems at a fraction of the time and resources spent currently. The presentation will highlight the use 
of a systematic model based approach coupled with a computer aided modelling framework in solving 
interesting problems in model development, model analysis, model validation and model application of 
models. Issues such as model applicability, data consistency, model discrimination and numerical 
solution strategies will also be discussed. 
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There are many sources of errors both in experiments and the kinetic model that affect the quality of a 

kinetic model. It is not always possible to model all change in the catalyst during a large series of 

experiments. Average deactivation or the effect of regeneration may be included but small changes due 

the complete history of the catalyst is more difficult to identify and model. This may be observed as a 

difference between two identical experiments as seen in Figure 1. 

Identical repeated experiments may show systematic errors i.e. ‘lack of fit’. Now it can be argued if this 

‘lack of fit’ is random or due to a poor model that cannot model the change in catalyst due to the history 

of the catalyst. 

 

Figure 1 Observed and simulated reaction rates with different experiments and catalyst treatments. 

In kinetic modeling we fit the model by minimizing the residual between model and experiment 

eu=Yu-f(Cu,Tu,p) 

This residual may have different sources  

E(eu)= ψ k + σl + τm + εu 

Ψ=error from catalyst batch 

σ=errors from different test series 

τ=errors from different experiments 

ε=errors from different observations 

With a correct model we expect that the same parameters are valid for all data points and the residual 

will be randomly distributed. A prediction using these parameters should have a correct expected value 

and the problem arises in calculating the confidence interval. The degrees of freedom is the number of 

observations of the error and we need to find the largest sources of error. If the residual from repeated 

experiments is larger than the residual from repeated observations it is not sufficient to increase the 

number of observations to improve predictability, we need more experiments and the degrees of 

freedom is estimated from the number of experiments minus the number of parameters. 
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A poor model with lack of fit will not describe all data equally well and the resulting parameters will 

depend on what experiments that are performed.  The predictions from such a model will have even 

larger confidence intervals depending on the expected variations of the parameters in addition to the 

random effects. 

One way to analyze such data is bootstrapping (random sampling with replacement). There are different 

ways of performing the data selection but one common method is to randomly remove a fraction of the 

data e.g. 1/10 of the data and make a least squares minimization to obtain new parameters. You repeat 

this until all data has been used and an estimation of the confidence interval is obtained from the 

variation in parameters between the different data sets. 

  

Figure 2 Residual of 24 experiments in two series with in                   Figure 3 Influence of the observations on the parameters 

total 3400 observations.                                                                       estimated from the H-matrix 

 

Figure 2 shows typical residuals from kinetic modelling of transient experiments. The graph shows 10 

experiment from a first series of experiments and then additional 24 experiments. From least squares 

minimization we obtain that the sum of errors are zero and the sum of squares has a minimum. However 

it does not guarantee that the main errors are due to errors in the individual observations. On the 

contrary we observe a large residual in the transient transition from one experimental condition to 

another and that the residual for the experiments are much larger than the residual for repeated 

observations.  

The degrees of freedom is the number of observations of the main error i.e. 34-p in this case and in this 

case 20 parameters, the degrees of freedom is 14 and not 3380.  

The rate of accumulation and desorption can only be observed during transients and only the 

equilibrium constant can be determined from steady state experiments. Figure 3 shows the influence 

of the different experimental points on the parameters estimated from the H-matrix.  We can clearly 

see that some observations have minor influence on the parameters and in reality we could estimate 

the parameters from 1/5 of all the experiments. In text book parameter estimation with one type of 

errors the extra experiments contributes to a more accurate estimation of the error as seen in the 

increased degrees of freedom. However, when the main error arises from the experiments and not to 

the individual observations these extra experiments do not contribute at all.  

The residual during transients are much larger than the average residual and it turns out that some 

parameters are determined from a few observations with large errors while other parameters are 

determined more accurately from more data points with less errors. 
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Figure 4 shows a normal probability plot of the average residual for each experiment. They fit very nice 

into a straight line but it is not possible to conclude that these errors are random since with sufficient 

number of observations the distribution tend according to the central limit theorem to be normal 

distribution. We need a more thorough analysis to identify if the model can be improved e.g. plot the 

residuals vs the temperature in the previous experiments.   

 

 

Figure 4 Normal probability plot of the residual τ 

 

Conclusion 

A proper parameter fitting require an analysis of the residual as well. Identification of what experiments 

that contribute to the parameter estimation and the errors in these experiments are required for a 

proper regression analysis. Adding more observations may not always improve the quality of the model.  

Traditional lack of fit analysis based on comparison between repeated identical experiments and the 

total sum of squares must be performed with different sources of errors. 

 

Future work 

Analysis of the quality of predictions from models with lack of fit. 
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Introduction     Swirling counterflows play an important role in the environment (tornadoes) and 
technology: chemical1-3, bio and nuclear reactors; delta-wing aircraft; vortex combustors4. Their nature 
has been discussed more than a half-century, but no consensus has been achieved.  We argue that swirl 
decay and acceleration cause the flow reversals. These mechanisms clearly show why counterflows 
develop along and normal to the axis of rotation, how counterflows emerge, expand, becomes double and 
multiple. This understanding can potentially help design conventional and novel vortex devices.  It also 
indicates possible means of the counterflow control. 
     The development of a local circulation region in a swirling flow, often referred to as vortex breakdown 
(VB) bubble, was first observed on a delta wing.  The vortex arises where the wing and fuselage meet.  
The swirl and longitudinal velocities increase downstream, reach their peaks near the wing middle, then 
decay, and vanish far away.  VB occurs near the location of maximal swirl velocity and reduces the lift 
force.  As the angle of attack varies, the lift and drag forces have jumps. These sudden changes can cause 
the loss of flight control. 
    Being problematic for aircraft, VB is beneficial for combustion.  A flame front propagates via diffusion 
with a speed around 1 m/s.  For applications in turbines, the front must be stationary.  Therefore, a flow is 
required which moves slowly against the flame propagation.  A circulatory motion, induced by VB, has 
such necessary feature.  The reversed flow transports the combustion heat back to a fuel source and 
warms up a fuel and an oxidizer that makes combustion stable and clean.  Due to these and other 
applications, the VB problem attracted the attention of many researches.  
    Different conjectures4 were proposed to explain VB: (a) inertial wave roll-up (more than 500 
citations!), (b) collapse of the near-axis boundary layer, (c) flow separation, (d) fold catastrophe, and (e) 
transition from convective to absolute instability.  We argue below that VB develops via the swirl-decay 
mechanism (SDM) which explains VB features. 
 
Swirl decay mechanism     In a few words, SDM is the following.  In a rapidly rotating flow, the 
centrifugal force induces the radial gradient of pressure p, according to the cyclostrophic balance, ∂p/∂r = 
ρʋ2/r, where ρ is the fluid density, ʋ is the swirl velocity, and r is the distance from the rotation axis.  
Therefore, p increases with r.  The reduction of pressure near the axis, compared with its peripheral value, 
is larger (smaller) in the vicinity (downstream) of a swirl source because the swirl decays, e.g., due to 
friction at a wall.  Therefore, the near-axis pressure is smaller (larger) in the vicinity of (away from) the 
swirl source.  This pressure difference drives the backflow near the axis.  If a swirling flow converges to 
the axis, the near-axis pressure reduces, decelerating and reversing the downstream flow, i.e., a VB 
bubble develops as Figure 1 illustrates. 
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Figure 1: VB bubbles of the cylindrical container flow driven by the rotating left disk. 

 
Swirl acceleration mechanism  In a few words, this mechanism (SAM) is the following.  The 
cyclostrophic balance, ∂p/∂r = ρʋ2/r, can occur only away from a wall.  The no-slip condition renders that 
ʋ = 0 at a wall, i.e., the centrifugal force drops to the second-order zero.  It drops in a thin near-wall 
boundary layer of a high-speed flow.  In contrast, pressure remains nearly invariant across the boundary 
layer.  If a wall is tangential to the r-direction, then ∂p/∂r is also nearly invariant across the boundary 
layer and being not balanced by the centrifugal force there, generates a strong near-wall jet propagating in 
the direction of decreasing r.   

 
 
 
 
 

 
 
 

 

Figure 2. Schematics of circulation region CR in a disk-like vortex chamber. 

    The jet can be very strong if the bulk flow accelerates in the same direction.  Such jets measured5 and 
numerically simulated6 in disk-like vortex chambers, DVC, developed for nuclear reactors, but their 
mechanism has not been adequately explained.  Our explanation is that the jet entrains an ambient fluid 
that can cause a local reversal of the radial velocity.  Figure 2 is a schematic of the meridional motion in 
the disk part of a DVC.  A fluid nearly tangentially enters the DVC through its sidewall and develops a 
vortex-sink motion.  The flow accelerates while moving inward the disk.  In an accelerating flow, the 
velocity distribution becomes nearly uniform in the normal-to-end-wall directions.  With no swirl, the 
radial velocity also would be uniform, but the presence of swirl radically changes this by the development 
of near-wall jets.  If the swirl-to-radial entrance velocity ratio is sufficiently large, then the jet entrains not 
only upstream fluid but downstream fluid as well causing the radial velocity reversal and the formation of 
circulation region CR schematically shown in Fig. 2.   Thus SAM explains the counterflow normal to the 
rotation axis observed in disk-like vortex chambers.   For more details see papers5-8.  
Conclusion   Based on the above discussion, we can conclude that SDM and SAM resolve two vortex-
dynamic enigmas each having a more than half-century history.  

CR 
r 

z 

The nature of vortex breakdown 87



3	
  
	
  

 
1. Marin, G. B. & Yablonsky, G. S. Kinetics of Chemical Reactors, Wiley-VCH, (2011).  
2. Kovacevic, J. Z., Pantzali, M. N., Heynderickx, G. J. & Marin, G. B. Bed stability and maximum solids 

capacity in a Gas–Solid Vortex Reactor: Experimental study. Chem.Eng.Sci. 106, 293-303 (2014). 
3. Kovacevic, J. Z., Pantzali M. N., Niyogi, K., Deen, N. G., Heynderickx, G. J. & Marin, G. B. Solids 

velocity fields in a cold-flow Gas–Solid Vortex Reactor. Chem.Eng.Sci. 123, 220-230 (2015). 
4. Shtern, V. Counterflows.  Cambridge University Press (2012). 
5. Savino, J. M. & Keshock, E. G. Experimental profiles of velocity components and 
6. Vatistas, G. H., Fayed, M. & Soroardy, J. U. Strongly swirling turbulent sink flow between 
      two stationary disk, Journal of Propulsion and Power, 24, 296-301 (2008). 
7. Shtern, V. & Borissov, A. Counter-flow driven by swirl decay. Phys. Fluids 22, 063601 (2010). 
8. Shtern, V.N., Torregrosa, M.M., & Herrada, M.A. Effect of swirl decay on vortex 
      breakdown in a confined steady axisymmetric flow. Phys. Fluids 24, 043601 (2012). 
  

88 V.N. Shtern



Contents

M. Kraft: On the detailed modelling of high temperature nanoparticles synthesis 1

R. Bürger: On reactive settling of activated sludge 2

B. Celse: Parameter fitting: which algorithm to choose? 5

Guanghua Ye: Probing pore blocking effects on multiphase reactions at the particle level
using a discrete model 8

S. Kar: A comparative study of optimization algorithms for a cellular automata model 11

S. Alzyod: The Sectional Quadrature Method of Moments (SQMOM): An Application to
Liquid-liquid Extraction Columns 13

A. Ceccato: Slow Manifolds identification for dimensionality reduction of chemical kinetics:
a computational route 15

P. Nicolini: Traits of regularity in stochastic chemical kinetics: analogy with the Slow Man-
ifolds feature in deterministic kinetics 19

K. Osz: Mathematical description of the kinetics of photochemical reactions 22

M. Szukiewicz: Exact analytical solution of a non-linear reaction-diffusion problem for full
range of parameters values: multiplicity and dead zone coexistence. 24

M. Szukiewicz: Modeling of gas flow: usefulness of the Laplace transform and CAS-type
programs 27

R.O. Fox: Quadrature-Based Moment Methods in Chemical Engineering 30

D. Pischel: Coping with heterogeneity and stochasticity in microbial processes 31

D. Branco Pinto: The switching point between kinetic and thermodynamic control of com-
petitive reactions 34

89



90 CONTENTS

J. Van Belleghem: Fischer-Tropsch Synthesis SSITKA simulation: balancing between
model complexity, computational effort and relevance of the included features 38

P.H. Van Steenberge: Novel heuristics for mediating radical chain reactions: a stochastic
simulation of the synthesis of copolymers with tailored monomer sequences 41

I. Hitsov: Calibration And Analysis Of A Direct Contact Membrane Distillation Model
Using Monte Carlo Filtering and good modelling practice 44

M. Ostrovsky: Optimal design of chemical processes with joint chance constraints 47

F.J. Keil: Simulations of instationary operated heterogeneous catalytic reactions 50

C. Lo: Integration of DFT calculations into microkinetic analysis: Application to carbon
dioxide hydrogenation on ceria 52

R. Feres: Explicit formulas for reaction probability in reaction-diffusion experiments 55

G. Lente: Stochastic effects in autocatalysis 58

V.I. Bykov: Oscillating regimes of first order phase transition 60

J. Picardo: Low-dimensional Modeling of Reactions and Transport in Stratified Microflows 63

N.A. Chumakova: Modeling the chaotic dynamics of heterogeneous catalytic reactions with
fast, intermediate, and slow variables 67

V. Ustyugov: Modelling of Influence of Oxygen Bulk Diffusion in Nickel on Oscillatory
Kinetics of Catalytic Oxidation of Methane 69

D.S. Orlicki: Application of population balance concept in modeling of FCC riser reactions 72

A. Zubov: Use of Hybrid Monte-Carlo Models in Online Control of Product Quality in
Emulsion Copolymerization 74

D. Frezzato: Slow Manifolds identification for dimensionality reduction of chemical kinetics 77

A.N. Gorban: Lyapunov functions and stability of kinetics: from Boltzmann to present days 81

R. Gani: Methods and tools for kinetic model identification 82

B. Andersson: Lack of fit and degrees of freedom in kinetic modelling 83

V.N. Shtern: The nature of vortex breakdown 86



CONTENTS 91

ISBN 9789082401004
EAN: 9789082401004

An issue of the journal Computers & Chemical Engineering will publish the full papers
corresponding to some of these abstracts.


