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GDR MOMAS Thanks:

It is a great pleasure for me to give a talk at this conference.
For me this the 3rd MACKIE-2 conference and I hope to
profit from it as before by interacting with people whom I do
not see as usual mathematical conferences. Many thanks
to everybody from the organizing committee!
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profit from it as before by interacting with people whom I do
not see as usual mathematical conferences. Many thanks
to everybody from the organizing committee!

These results are obtained in collaboration with C.J. van
Duijn and I. S. Pop (TU Eindhoven, The Netherlands), C.
Rosier (Université du Littoral, France) and C. Choquet
(Marseille).
This research is supported in part by the GDR MOMAS
(Modélisation Mathématique et Simulations numériques
liées aux problèmes de gestion des déchets nucléaires):
(PACEN/CNRS, ANDRA, BRGM, CEA, EDF, IRSN)as a
part of the project
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GDR MOMAS Introduction

"Modèles de dispersion efficace pour des problèmes de
Chimie-Transport: Changement d’échelle dans la mod́elisation
du transport ŕeactif en milieux poreux, en présence des nombres
caract́eristiques dominants.”
In many processes arising in chemical engineering it is important
to study the diffusion of a solute transported by a fluid flowing
through a porous medium. In addition, there are reactions or
adsorption occurring at the solid/fluid interfaces.
Examples are chromatographic systems, heterogeneous reactors
from chemical and catalytic reaction engineering, the use of
surfactants in tertiary oil recovery processes, environmental
problems ....
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GDR MOMAS Introduction

"Modèles de dispersion efficace pour des problèmes de
Chimie-Transport: Changement d’échelle dans la mod́elisation
du transport ŕeactif en milieux poreux, en présence des nombres
caract́eristiques dominants.”
In many processes arising in chemical engineering it is important
to study the diffusion of a solute transported by a fluid flowing
through a porous medium. In addition, there are reactions or
adsorption occurring at the solid/fluid interfaces.
Examples are chromatographic systems, heterogeneous reactors
from chemical and catalytic reaction engineering, the use of
surfactants in tertiary oil recovery processes, environmental
problems ....
These systems are analyzed in terms ofdispersion equationsfor
momentum, energy and mass transfer in continua. In fact
averaging of the physical first principles should give
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us the dispersion coefficients (=effective coefficients).
Nevertheless, there are difficulties:
Even the simplest models contain the transport terms of the
form ~v · ∇c. Since both the velocity and the concentration
gradient are oscillatory, in general the average of the
product is different from the product of the averages.
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GDR MOMAS I2

us the dispersion coefficients (=effective coefficients).
Nevertheless, there are difficulties:
Even the simplest models contain the transport terms of the
form ~v · ∇c. Since both the velocity and the concentration
gradient are oscillatory, in general the average of the
product is different from the product of the averages.

Par example, in Taylor’s dispersion the velocity field
contributes, after averaging, to the effective diffusion and
one obtains Taylor’s mechanical dispersion term. Presence
of the chemical reactions complicates additionally
determination of the effective coefficients since they can
depend on the reaction term or on the adsorption isotherm
in a complicated way. It is fairly complicated to determine
this dependance using just laboratory experiments.
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GDR MOMAS I3

In order to start with a simple situation, we consider a
porous medium comprised of a bundle of capillary tubes.
The disadvantage is that a bundle of capillary tubes
represents a geometrically oversimplified model of a porous
medium. Nevertheless, there is considerable insight to be
gained from such analysis.
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In order to start with a simple situation, we consider a
porous medium comprised of a bundle of capillary tubes.
The disadvantage is that a bundle of capillary tubes
represents a geometrically oversimplified model of a porous
medium. Nevertheless, there is considerable insight to be
gained from such analysis.
We start with a "simple" problem:

We study the diffusion of the solute particles transported by
the Poiseuille velocity profile in a semi-infinite 2D channel.
Solute particles are participants in a first-order chemical
reaction with the boundary of the channel. They don’t
interact between them. The simplest example,is described
by the following model for the solute concentration c∗:
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Figure 1: The tube
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Figure 3: The tube
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Figure 4: Poiseuille’s profile
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∂c∗

∂t∗
+ q(z)

∂c∗

∂x∗ − D∗∆x∗,zc
∗ = 0 in IR+ × (−H,H), (1)

Talk at the workshop ”2008 annual seminar on Mathematics in Chemical Kinetics andEngineering”, Ghent University, Belgium, May 23, 2008 – p. 7/71
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∂c∗

∂t∗
+ q(z)

∂c∗

∂x∗ − D∗∆x∗,zc
∗ = 0 in IR+ × (−H,H), (3)

where q(z) = Q∗(1 − (z/H)2) and Q∗ (velocity) and D∗

(molecular diffusion) are positive constants. At the lateral
boundaries z = ±H the first-order chemical reaction with
the solute particles is modeled through the following
boundary condition :

−D∗∂y∗c∗ = Ke
∂c∗

∂t∗
on Γ∗, (4)

where Ke is the linear adsorption equilibrium constant and
Γ∗ = {(x∗, y∗) : 0 < x∗ < +∞, |y∗| = H}.
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GDR MOMAS I4a

At the inlet boundary, infiltration with a pulse of water
containing a solute of concentration c∗f ,
followed by solute-free water is described using the
Danckwerts boundary condition

−D∗∂x∗c∗ + q(y∗)c∗ =

{

q(y∗)c∗f , for 0 < t∗ < t∗0
0, for t > t∗0.

(5)

The natural way of analyzing this problem is to introduce
the appropriate scales.
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They would come from the characteristic concentration ĉ,
the characteristic length LR, the characteristic velocity QR,
the characteristic diffusivity DR and the characteristic time
TR. The characteristic length LR coincides in fact with the "
observation distance".
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They would come from the characteristic concentration ĉ,
the characteristic length LR, the characteristic velocity QR,
the characteristic diffusivity DR and the characteristic time
TR. The characteristic length LR coincides in fact with the "
observation distance".
Problem involves the following time scales:

TL = characteristic longitudinal time scale =LR/QR

TT = characteristic transversal time scale =H2/DR

TC = superficial chemical reaction time scale =
LRKe

HQR

,

and the non-dimensional number Pe=
LRQR

DR
(Peclet

number).
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In this paper we fix the reference time by setting
TR = TC = TL and K = Ke/H = TC/TL = O(1). To carry out
the analysis we need to compare the dimensionless
numbers with respect to ε. For this purpose we set
Pe = ε−α.
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GDR MOMAS I5

In this paper we fix the reference time by setting
TR = TC = TL and K = Ke/H = TC/TL = O(1). To carry out
the analysis we need to compare the dimensionless
numbers with respect to ε. For this purpose we set
Pe = ε−α.

Solving the full problem for arbitrary values of coefficients is
costly and practically impossible. Consequently, one would
like to find the effective (or averaged) values of the dispersion
coefficient and the transport velocity and an effective
corresponding 1D parabolic equation for the effective
concentration. In 1953 G.I. Taylor obtained an explicit
effective expression for the enhanced diffusion coefficient
and it is called in literature Taylor’s dispersion formula.
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We choose Q = Q∗

QR
= O(1), and

TT

TL
=

HQR

DR
ε = O(ε2−α) = ε2 Pe.

Then the situation from Taylor’s article corresponds to the
case when 0 ≤ α < 2, i.e. transversal Peclet’s number is

equal to (
1

ε
)α−1 and K = 0 (no chemistry). It is interesting to

remark that in his paper Taylor has α = 1.6 and α = 1.9.
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We choose Q = Q∗

QR
= O(1), and

TT

TL
=

HQR

DR
ε = O(ε2−α) = ε2 Pe.

Then the situation from Taylor’s article corresponds to the
case when 0 ≤ α < 2, i.e. transversal Peclet’s number is

equal to (
1

ε
)α−1 and K = 0 (no chemistry). It is interesting to

remark that in his paper Taylor has α = 1.6 and α = 1.9.

Our domain is now the infinite strip Ω+ = IR+ × (0, 1). Then
using the antisymmetry of c, our equations in their
non-dimensional form are
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∂cε

∂t
+ Q(1 − y2)

∂cε

∂x
= Dεα∂2cε

∂x2
+ Dεα−2∂2cε

∂y2
in Ω+ × (0, T ),

(6)

−Dεα−2∂cε

∂y
= −D

1

ε2Pe
∂cε

∂y
= K

∂cε

∂t
on Γ+ × (0, T ), (7)

cε(x, y, 0) = 0 for (x, y) ∈ Ω+, (8)

(−Dεα∂xcε + Q(1 − y2)cε)x=0 =

{

Q(1 − y2)cf , for 0 < t < t0

0, for t > t0.
,

(9)

∂cε

∂y
(x, 0, t) = 0, for (x, t) ∈ (0,+∞) × (0, T ). (10)
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We study the behavior of the solution to (6) -(10), with
square integrable gradient in x and y, when ε → 0.
In the absence of chemical reactions, the effective problem
with Taylor’s dispersion coefficient reads:











∂tc
Tay + 2Q

3 ∂xcTay = (Dεα + 8
945

Q2

D ε2−α)∂xxc
Tay,

in IR+ × (0, T ), cTay|x=0 = cf ,

cTay|t=0 = 0, ∂xcTay ∈ L2(IR+ × (0, T )),

(11)

What is known concerning derivation of (11) ?
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⋄ For the formal derivation using the method of moments,
see the paper of Aris from Proc. Roy. Soc. London (1956).
⋄ Another approach is in the paper by Lungu and Moffat, J.
Engng Math (1982). They used a large time and small wave
number expansion, after a Fourier transform, to decipher
the asymptotic behaviour.
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⋄ For the formal derivation using the method of moments,
see the paper of Aris from Proc. Roy. Soc. London (1956).
⋄ Another approach is in the paper by Lungu and Moffat, J.
Engng Math (1982). They used a large time and small wave
number expansion, after a Fourier transform, to decipher
the asymptotic behaviour.

⋄ " Near rigorous " derivation using the centre manifold
theory is due to Mercer and Roberts, SIAM J. Appl. Math.
(1990). The initial value problem is studied and the Fourier
transform with respect to x is applied. The resulting PDE is
written in the form u̇ = Au + F (u), with u = (k, ĉ) . Then the
centre manifold theory is applied to obtain effective
equations at various orders. Since the corresponding centre
manifold isn’t finite dimensional, the results aren’t rigorous.
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⋄ When the chemistry is added (e.g. having an irreversible,
1st order, chemical reaction with equilibrium at y = 1, as we
have), then there is a paper by M.A. Paine, R.G. Carbonell
and S. Whitaker in Chemical Engineering Science,
(1983).Paine et al used the "single-point" closure schemes
of turbulence modeling by Launder to obtain a closed model
for the averaged concentration. Their effective equations
are non-local and the effective coefficients are not
determined.
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⋄ When the chemistry is added (e.g. having an irreversible,
1st order, chemical reaction with equilibrium at y = 1, as we
have), then there is a paper by M.A. Paine, R.G. Carbonell
and S. Whitaker in Chemical Engineering Science,
(1983).Paine et al used the "single-point" closure schemes
of turbulence modeling by Launder to obtain a closed model
for the averaged concentration. Their effective equations
are non-local and the effective coefficients are not
determined.

⋄ More recently, there is an approach using the centre
manifold theory in the article by Balakotaiah et Chang, Phil.
Trans. R. Soc. Lond. A (1995), where they use the ratio
between TT and TL.
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Our technique is motivated by the paper by J. Rubinstein,
R. Mauri in SIAM J. Appl. Math. (1986), where the analysis
is based on the hierarchy of time scales. In our knowledge
the only rigorous result concerning the effective dispersion,
in the presence of high Peclet’s numbers (and no
chemistry), is in the recent paper by A. Bourgeat, M. Jurak
and A.L. Piatnitski, in Math. Meth. Appl. Sci. (2003). Their
approach is based on the regular solutions for compatible
data for the underlying linear transport equation. In the
absence of the compatibility, it seems more efficient to use
the "Gausslets", than very compatible hyperbolic equations.
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Our technique is motivated by the paper by J. Rubinstein,
R. Mauri in SIAM J. Appl. Math. (1986), where the analysis
is based on the hierarchy of time scales. In our knowledge
the only rigorous result concerning the effective dispersion,
in the presence of high Peclet’s numbers (and no
chemistry), is in the recent paper by A. Bourgeat, M. Jurak
and A.L. Piatnitski, in Math. Meth. Appl. Sci. (2003). Their
approach is based on the regular solutions for compatible
data for the underlying linear transport equation. In the
absence of the compatibility, it seems more efficient to use
the "Gausslets", than very compatible hyperbolic equations.

We obtained several mathematically rigorous results on
Taylor’s dispersion, with and without chemical reactions and
I’ll present some of them.
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GDR MOMAS Laplace’s transform

The Laplace’s transform method is widely used in solving
engineering problems. In applications it is usually called the
operational calculus or Heaviside’s method.
For locally integrable function f ∈ L1

loc(R) such that f(t) = 0

for t < 0 and |f(t)| ≤ Aeat as t → +∞, the Laplace transform
of f , denoted f̂ , is defined as

f̂(τ) =

∫ +∞

0
f(t)e−τt dt, τ = ξ + i η ∈ C. (12)

It is closely linked with Fourier’s transform in R. We note
that

f̂(τ) = F
(

f(t)e−ξt
)

(−η), ξ > a, (13)
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GDR MOMAS Laplace 1

where the Fourier’s transform of a function g ∈ L1(R) is
given by

F
(

g(t)
)

(ω) =

∫

R

g(t)eiωt dt, ω ∈ R.

It is well-known that f̂ defined by (12) is analytic in the
half-plane {Re(τ) = ξ > a} and it tends to zero as
Re(τ) → +∞.
For real applications, Laplace’s transform of functions is not
well-adapted and it is natural to use Laplace’s transform of
distributions.
Laplace’s transform is applier to linear ODEs and PDEs, the
transform problem is solved and its solution f̂ is calculated.
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GDR MOMAS Laplace 2

Then the important question is how to inverse the Laplace’s
transform.
We have the sufficient condition by Prüss:
Theorem by Prüss. Let q : {Re(τ) > 0} → X be analytic. If
there exists a real number M > 0 such that ‖λq(λ)‖X ≤ M

and ‖λ2q′(λ)‖X ≤ M for Re(λ) > 0, then there exists a
bounded function f ∈ C(0,+∞;X) such that

q(λ) =

∫ +∞

0
f(t)e−λt dt.

In particular
q ∈ C∞w (R+;X)=C∞w (R+;X) = {r ∈ C∞((0,+∞);X); ‖r‖w =

supn∈N supλ>0
λn+1

n!

∥

∥

dn

dλn r(λ)
∥

∥

X
< +∞}.
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GDR MOMAS A simple mean

This result represents a complicated criterium and we will
use a direct approach based on the link to Fourier’s
transform.
The simplest way to average the problem (6)-(10) is to take
the mean value with respect to y. Let
ceff
0 =< cε >=

∫ 1
0 cε dy. Supposing that the mean of the

product is the product of the means, which is in general
wrong, we get the following problem for the " averaged "
concentration ceff

0 (x, t) :











(1 + K)
∂ceff

0

∂t + 2Q
3

∂ceff
0

∂x = εαD
∂2ceff

0

∂x2 in IR+ × (0, T ),

−Dεα∂xceff
0 + 2Qceff

0 /3 = 2Qĉf/3 in IR+ × (0, T ),

ceff
0 |t=0 = 0, ∂xc

eff
0 ∈ L2(IR+ × (0, T )).

(14)
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The problem for Laplace’s transform reads:



































(1 + K)τcL,eff
0 +

2Q

3

∂cL,eff
0

∂x
= εαD

∂2cL,eff
0

∂x2
in (0,+∞),

∂xcL,eff
0 ∈ L2((0,+∞)),

−Dεα∂xcL,eff
0 + 2QcL,eff

0 /3 = 2Qĉf/3, for x = 0.

(15)
We will call this problem the "simple closure approximation".
We get
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Proposition 2

‖ĉε − cL,eff
0 ‖L2(IR+×(0,1)) ≤ εβ C|τ ||ĉf |

1 + (εα|τ |)1/4
, (16)

‖∂x(ĉε − cL,eff
0 )‖L2(IR+×(0,1)) ≤ εβ−α/2 C|τ ||ĉf |

1 + (εα|τ |)1/4
, (17)

‖∂y(ĉ
ε − cL,eff

0 )‖L2(IR+×(0,1)) ≤ εβ+1−α/2 C|τ ||ĉf |
1 + (εα|τ |)1/4

, (18)

where β = 1 − α/2 if α ≥ 1/2 and β = (1 + α)/2 if α < 1/2.
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Corollary 3 . Let cf ∈ D(0, T ) and let ceff
0 be such that

ĉeff
0 = cL,eff

0 . Let β be defined as in Proposition 2. Then we
have

‖cε − ceff
0 ‖C(R+;L2(Ω+)) ≤ Cεβ.

Next let cf ∈ W 1,∞(R+) with compact support in [0,+∞),
such that cf (0) 6= 0. Then for 1 < r < +∞, we have

‖cε−ceff
0 ‖Lr(R+;L2(Ω+)) ≤

{

Cε1−α/2−αδ, 2 > α ≥ 1/2, 0 < δ < 1/4

Cε(1+α)/2, 1/2 > α ≥ 0.

Presence of the contact discontinuity due to cf (0) 6= 0

diminishes precision.
For details see
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[A1] C. Choquet, A. Mikelić : Laplace transform approach to the
rigorous upscaling of the infinite adsorption rate reactiveflow
under dominant Peclet number through a pore, accepted for
publication inApplicable Analysis,2008.
Furthermore, the case ofcf = 1 on (0, T ) is covered by Corollary
3, since it could be extended to a Lipschitz function onR+, with
compact support in[0,+∞).
NOT BRILLANT AS APPROXIMATION.
IS THERE A BETTER APPROXIMATION ?
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[A1] C. Choquet, A. Mikelić : Laplace transform approach to the
rigorous upscaling of the infinite adsorption rate reactiveflow
under dominant Peclet number through a pore, accepted for
publication inApplicable Analysis,2008.
Furthermore, the case ofcf = 1 on (0, T ) is covered by Corollary
3, since it could be extended to a Lipschitz function onR+, with
compact support in[0,+∞).
NOT BRILLANT AS APPROXIMATION.
IS THERE A BETTER APPROXIMATION ?
Paine et al propose the following effective model











∂tc
Pai + Q

(

2
3 + A1

)

∂xc
Pai + C2c

Pai = K∗∂xxcPai,

in IR+ × (0, T ), ∂xc
Pai ∈ L2(IR+ × (0, T ))

cPai|x=0 = cf , cPai|t=0 = 1,

(20)
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where A1 depends on the zeroth order moments of cPai and
qcPai and K∗ depends on the zero, first and second order
moments of the same quantities and Peclet’s number.
This is a non-local problem, hence difficult solve. Even
worse: it was derived using an AD HOC closure
assumption.
We performed a different derivation of the effective model.
The model we got is the following:
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GDR MOMAS S6

where A1 depends on the zeroth order moments of cPai and
qcPai and K∗ depends on the zero, first and second order
moments of the same quantities and Peclet’s number.
This is a non-local problem, hence difficult solve. Even
worse: it was derived using an AD HOC closure
assumption.
We performed a different derivation of the effective model.
The model we got is the following:

(EFF )










∂tc + 2Q
3(1+K)∂xc = D̃εα ∂xxc

1+K in (0,+∞) × (0, T ),

−Dεα∂xc|x=0 + 2Q
3 (c|x=0 − cfχt<t0) = 0,

∂xc ∈ L2((0,+∞) × (0, T )), c|t=0 = 0,

where
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D̃ = D +
8

945

Q2

D
ε2−2α +

4Q2

135D

K(7K + 2)

(1 + K)2
ε2−2α. (21)

Our result could be restated in dimensional form:
Theorem 4Let us suppose that
LR > max{DR/QR, QRH2/DR, H}. Then the upscaled
dimensionalapproximation for (1) reads

(1+K)
∂c∗,eff

∂t∗
+

2

3
Q∗∂c∗,eff

∂x∗ = D∗
(

1+(
8

945
+

4

135

K(7K + 2)

(1 + K)2
)Pe2

T

)∂

(22)

where PeT =
Q∗H

D∗ is the transversal Peclet number and

K = Ke/H is the transversal Damkohler number.
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Why our model is better than other models from the
literature?
For simplicity, we compare only the physical concentration
cε with c.
Theorem 5Let α ≥ 1 and let cf ∈ C∞

0 (0, T ). Let c be given by
(EFF). Then we have

‖cε − c‖C([0,T ];L2(Ω+)) ≤ Cε2−α, (23)

‖∂yc
ε‖C([0,T ];L2(Ω+)) ≤ Cε3−3α/2, (24)

‖∂x

(

cε − c
)

‖C([0,T ];L2(Ω+)) ≤ Cε2−3α/2. (25)

For ill-prepared data we have following more precise result:
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Let

cL,eff
1 (x, y; ε) = c0(x; ε) + ε2−α Q

D

(y2

6
− y4

12
− 7

180
− 2

45

K(7K + 2)

(1 + K)2

·∂xc0(x; ε) + ε2−αK

D

(1

6
+

K

3(1 + K)
− y2

2

)

τc0(x; ε) (26)

where c0 ∈ H1(Ω+) is the solution of the following effective
problem
{

(1 + K)τc0 + 2Q
3 ∂xc0 − εαD̃∂2

xxc0 = 0 in (0,+∞),

−Dεα∂xc0 + 2Q
3 c0 = 2Q

3 ĉf for x = 0,
(27)

Then we have
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Proposition 6

‖(ĉε − cL,eff
1 )(τ)‖L2(IR+×(0,1)) ≤ Cε2−α |τ2cf |

1 + (εα|τ |)1/4
, (28)

‖∂x(ĉε − cL,eff
1 )‖L2(IR+×(0,1)) ≤ Cε2−3α/2 |τ2cf |

1 + (εα|τ |)1/4
, (29)

Corollary 7 . Let cf ∈ C∞
0 (0, T ) and let ceff

0 be such that

ĉeff
0 = cL,eff

0 . Let β be defined as in Proposition 6. Then we
have

‖cε − ceff
0 ‖C(R+;L2(Ω+)) ≤ Cε2−α.

Next let cf ∈ W 1,∞(R+) with compact support in [0,+∞),
such that cf (0) 6= 0. Then for 1 < r < +∞, we have
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‖
∫ t

0
(cε−ceff

0 ) dt‖Lr(R+;L2(Ω+)) ≤ Cε2−α−αδ, 0 < δ < 1/4, r(1−δ) <

These results are more precise than previous from the
article
[A2] A. Mikelić , C. Rosier : Rigorous upscaling of the infinite
adsorption rate reactive flow under dominant Peclet number
through a pore,Ann Univ Ferrara,Vol. 53 (2007), p. 333–359.
obtained by a different technique.
Next we present the formal derivation of the upscaled equation,
which can be found in
[A3] C.J. van Duijn, A. Mikelíc, I. S. Pop, C. Rosier : Effective
Dispersion Equations For Reactive Flows With Dominant Peclet
and Damkohler Numbers, accepted for publication inAdvances in
Chemical Engineering ,2008.
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The estimate obtained when we took the simple mean
value, isn’t satisfactory. At the other hand, it is known that
the Taylor dispersion model gives a very good 1D
approximation. With this motivation we briefly explain how
to obtain formally the higher precision effective models and
notably the variant of Taylor’s dispersion formula, by the
2-scale asymptotic expansion.
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GDR MOMAS Formal expansion

The estimate obtained when we took the simple mean
value, isn’t satisfactory. At the other hand, it is known that
the Taylor dispersion model gives a very good 1D
approximation. With this motivation we briefly explain how
to obtain formally the higher precision effective models and
notably the variant of Taylor’s dispersion formula, by the
2-scale asymptotic expansion.

We start with the problem (6)-(10) and search for cε in the
form

cε = c0(x, t; ε) + ε2−αc1(x, y, t) + ε2(2−α)c2(x, y, t) + . . . (31)

After introducing (30) into the equation (6) we get
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ε0
{

∂tc
0 + Q(1 − y2)∂xc

0 − Dεα−1∂yyc
1
}

+

ε2−α
{

∂tc
1 + Q(1 − y2)∂xc

1 − Dεα−1∂xxc0−

Dεα−1∂yyc
2
}

= O(ε2(2−α)) (32)

In order to have (32) for every 0 < ε < ε0, all coefficients in
front of the powers of ε should be zero.
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ε0
{

∂tc
0 + Q(1 − y2)∂xc

0 − Dεα−1∂yyc
1
}

+

ε2−α
{

∂tc
1 + Q(1 − y2)∂xc

1 − Dεα−1∂xxc0−

Dεα−1∂yyc
2
}

= O(ε2(2−α)) (34)

In order to have (32) for every 0 < ε < ε0, all coefficients in
front of the powers of ε should be zero.

The problem corresponding to the order ε0 is










−D∂yyc
1 = −Q(1/3 − y2)∂xc

0−
(

∂tc
0 + 2Q∂xc0/3

)

on (0, 1),

∂yc
1|y=0 = 0, −D∂yc

1|y=1 = K∂tc
0.

(35)
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for every (x, t) ∈ (0,+∞) × (0, T ). By Fredholm’s alternative,
the problem (33) has a solution if and only if

(1 + K)∂tc
0 + 2Q∂xc0/3 = 0 in (0, L) × (0, T ). (36)

Unfortunately our initial and boundary data are incompatible
and the hyperbolic equation (36) has a discontinuous
solution. Since the asymptotic expansion for cε involves
derivatives of c0, the equation (36) doesn’t suit our needs.
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GDR MOMAS F2

for every (x, t) ∈ (0,+∞) × (0, T ). By Fredholm’s alternative,
the problem (33) has a solution if and only if

(1 + K)∂tc
0 + 2Q∂xc0/3 = 0 in (0, L) × (0, T ). (38)

Unfortunately our initial and boundary data are incompatible
and the hyperbolic equation (36) has a discontinuous
solution. Since the asymptotic expansion for cε involves
derivatives of c0, the equation (36) doesn’t suit our needs.

In the article by Bourgeat et al the difficulty was overcome
by supposing compatible initial and boundary data. We
proceed by following an idea by Rubinstein and Mauri and
suppose that

(1+K)∂tc
0 +2Q∂xc0/3 = O(ε2−α) in (0,+∞)×(0, T ). (39)
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The hypothesis (37) will be justified a posteriori, after getting
an equation for c0. Hence (33) reduces to

{

−D∂yyc
1 = −Q(1/3 − y2)∂xc

0 + K∂tc
0 on (0, 1),

∂yc
1|y=0 = 0, −D∂yc

1|y=1 = K∂tc
0,

(40)

for every (x, t) ∈ (0,+∞) × (0, T ), and
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The hypothesis (37) will be justified a posteriori, after getting
an equation for c0. Hence (33) reduces to

{

−D∂yyc
1 = −Q(1/3 − y2)∂xc

0 + K∂tc
0 on (0, 1),

∂yc
1|y=0 = 0, −D∂yc

1|y=1 = K∂tc
0,

(42)

for every (x, t) ∈ (0,+∞) × (0, T ), and

c1(x, y, t) =
Q

D
(
y2

6
− y4

12
)∂xc0 +

K

D
(
1

6
− y2

2
)∂tc

0 + C0(x, t),

(43)

where C0 is an arbitrary function.
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Let us go to the next order. Then we have



















−D∂yyc
2 = −Q(1 − y2)∂xc1 + Dε2(α−1)∂xxc0−

∂tc
1 + Dεα∂xxc1 − εα−2

(

(1 + K)∂tc
0 + 2Q∂xc0/3

)

on (0, 1), ∂yc
2|y=0 = 0 and

−D∂yc
2|y=1 = K∂tc

1|y=1

(44)

for every (x, t) ∈ (0,+∞) × (0, T ).
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Let us go to the next order. Then we have



















−D∂yyc
2 = −Q(1 − y2)∂xc1 + Dε2(α−1)∂xxc0−

∂tc
1 + Dεα∂xxc1 − εα−2

(

(1 + K)∂tc
0 + 2Q∂xc0/3

)

on (0, 1), ∂yc
2|y=0 = 0 and

−D∂yc
2|y=1 = K∂tc

1|y=1

(45)

for every (x, t) ∈ (0,+∞) × (0, T ).

The problem (44) has a solution if and only if

∂tc
0 + 2Q∂xc0/3 + K(∂tc

0 + ε2−α∂tc
1|y=1)−

Dε2∂xx(

∫ 1

0
c1dy) + ε2−α∂t(

∫ 1

0
c1 dy) − εαD∂xxc0+
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ε2−αQ∂x(

∫ 1

0
(1 − y2)c1 dy) = 0 in (0,+∞) × (0, T ). (46)

(46) is the equation for c0 . Next let us remark that

∫ 1

0
c1 dy = C0(x, t), (47)

∫ 1

0
(1 − y2)c1 dy =

2

3
C0(x, t) − Q

D

8

945
∂xc0 +

2K

45D

∂c0

∂t
, (48)

∂c1

∂t
|y=1 =

2Q

45D
∂xtc

0 − K

3D
∂ttc

0 + ∂tC0. (49)
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In order to get a parabolic equation for c0
K we choose C0K

such that ∂ttc
0
K and ∂xtc

0
K do not appear in the effective

equation.
Then C0 is of the form C0 = a∂tc

0 + b∂xc0 and after a short
calculation we find that

C0(x, t) =
1

3D

K2

1 + K
∂tc

0 − 2Q

45D

K(2 + 7K)

(1 + K)
∂xc0. (50)

Now c1 takes the form

c1(x, y, t) =
Q

D
(
y2

6
− y4

12
− 7

180
− 2

45

K(2 + 7K)

(1 + K)
∂xc0+

K

D
(
1

6
+

1

3

K

1 + K
− y2

2
)∂tc

0. (51)
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For α ≥ 1, 2 ≥ 2(2 − α) and we are allowed to drop the term
of order O(ε2). Now the equation (46) becomes

(1+K)∂tc
0 +

2Q

3
∂xc

0 = εαD̃∂xxc0 in (0,+∞)× (0, T ). (52)

with

D̃ = D +
8

945

Q2

D
ε2(1−α) +

4Q2

135D

K(2 + 7K)

(1 + K)2
ε2(1−α) (53)

Using the energy arguments, we prove Proposition 6 and
Corollary 7. The estimate would be normally of order
O(ε2(2−α)), but presence of the boundary layer at x = 0

reduces our precision to O(ε2−α)
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Proofs through the combination of Laplace’s transform and
anisotropic energy arguments in [A1], are much simpler
than the corresponding ones in [A2] or in the original article
[A4] A. Mikelić, V. Devigne, C.J. van Duijn, Rigorous
upscaling of the reactive flow through a pore, under
dominant Peclet and Damkohler numbers, SIAM J. Math.
Anal.,Vol. 38, Issue 4 (2006), p.1262-1287,
where the reactions were given by

D∗∂zc
∗ + k∗c∗ = 0 on z = ±H, (54)
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PARAMETERS VALUES

Width of the slit : H 2.635 · 10−4 m,

Characteristic length : LR 0.319 m

ε = H/LR 0.826 · 10−3

characteristic velocity: Q∗ 4.2647 · 10−5 m/sec

diffusion coefficient: D∗ 1.436 · 10−10 m2/sec,

longitudinal Peclet number: Pe= LRQ∗

D∗
= 0.94738 · 105

α = log Pe/ log(1/ε) = 1.614172

transversal Peclet number: PeT = HQ∗

D∗
= 0.7825358 · 102

Table 1: A. Parameter values for the longest time example of
Taylor.
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For the direct numerical solution of 2D problem we use the
package FreeFem++by O. Pironneau, F. Hecht and A. Le
Hyaric.
We present a very short description of the method:

Discretization in time :
The first order operator is discretized using the method
of characteristics. More precisely, the equation (6) is
written as:

∂c

∂t
+ (~q.∇)c = Dεα∂xxc + Dεα−2∂yyc = f(x, y, t) (55)

Let cm be an approximation for the solution c at a time
mδt.
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Then the one step backward convection scheme by the
method of characteristics reads as follows:

1

δt
(cm+1(x, y) − cm(x − q(y)δt, y) = fm(x, y)

Space discretization:
One of the characteristics of our problem is the
presence of a smeared front. In order to track it
correctly, the Lagrange P1 finite elements, with
adaptive mesh, are used. The mesh is adapted in the
neighborhood of front after every 10 time steps.

we start with
CASE A: time of flow: t∗ = 11220 sec
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We solve

1. The 2D problem . It is solved using the FreeFM++
package. On the images the solution is denoted
(pbreel).

2. The effective problem

∂t∗c
Tay +

2Q∗

3
∂x∗cTay = D∗(1 +

8

945
Pe2

T )∂x∗x∗cTay for x, t > 0,

(56)

cTay|x=0 = 1 and cTay|t=0 = 0. (57)

On the images its solution is denoted by (taylor).
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1. The problem obtained by taking the simple mean over
the vertical section:

∂t∗c
moy+

2Q∗

3
∂x∗cmoy−D∗∂x∗x∗cmoy = 0 in (0,+∞)×(0, T )

(58)
with initial/boundary conditions (57). On the figures its
solution is denoted by (moyenne).

On the figure we show the comparison between
concentration from Taylor’s paper (taylor), from the original
problem (pbreel) and the simple average (moyenne) at
t = 11220 sec.
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-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

’pbreel’
’taylor’

’moyenne’

Figure 5: Comparison between concentrations at t = 11220
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Note that in the absence of the chemical reactions we can
solve the problems (56)-(57), respectively (58) - (57)
explicitly. With Q̄ = 2Q∗

3 and D̄ = D∗(1 + 8
945Pe2

T ), the
solution for (56)-(57) reads

cTay(x, t) = 1 − 1√
π

[

exp{Q̄x

D̄
}
∫ ∞

(x+Q̄t)/(2
√

D̄t)
e−η2

dη+

∫ ∞

(x−Q̄t)/(2
√

D̄t)
e−η2

dη
]

(59)

For the problem (58),(57), everything is analogous.
CASE B: time of flow t∗ = 240 sec.
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PARAMETERS VALUES

Width of the slit : H 2.635 · 10−4 m,

Characteristic length : LR 0.632 m

ε = H/LR 0.41693 · 10−3

characteristic velocity: Q∗ 0.393 · 10−2 m/sec

diffusion coefficient: D∗ 0.6 · 10−9 m2/sec,

longitudinal Peclet number: Pe= LRQ∗

D∗
= 4.1396 · 106

α = log Pe/ log(1/ε) = 1.95769

transversal Peclet number: PeT = HQ∗

D∗
= 1.72592 · 103

Table 2: B. Parameter values for the characteristic time 240

seconds from Taylor’s paper
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Figure 6: Case B: 2nd case from Taylor’s paper. Comparison
between the solutions at t∗ = 240 sec.
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On the Figure the comparison between concentration from
Taylor’s paper, from the original problem and the simple
average at t = 240 sec.
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Now we study the case of the linear surface
adsorption-desorption reaction. Then the condition (2) is
replaced by

−D∗∂y∗c∗ =
∂ĉ

∂t∗
= k̂∗(c∗ − ĉ/Ke) on z = ±H, (60)

where k̂∗ represents the rate constant for adsorption and Ke

the linear adsorption equilibrium constant. We note here
presence of 3 new characteristic times: TDE = KeR/kR

(characteristic desorption time), TA = ĉR/(cRkR)
(characteristic adsorption time) and Treact = H/kR

(superficial chemical reaction time scale). We consider the
case when KeR = H, TA = TL = TDE. In non- dimensional
form, (60) reads
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−Dεα−2∂cε

∂y
=

TA

TDE

∂cε
s

∂t
=

TL

TDE
k(cε− TA

TDE
cε
s/K)|y=1 on Γ+×(0, T

(61)
The effective problem is now
(EFF22)






































∂t(c + TA

TDE
cs) + (2Q

3 + 2Qk
45D

TT

TDE
)∂xc − (Dεα+

8
945

Q2

D ε2−α)∂xxc = 2Qk
45DK

TA

TDE

TT

TDE
∂xcs in (0,+∞) × (0, T )

(1 + k
3D

TT

TDE
)∂tcs = k TL

TA
(c + 2Q

45Dε2−α∂xc − TA

TDE
cs/K)

in (0,+∞) × (0, T )
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The effective problem in its dimensional form is
(DIM)























































∂t∗(c
∗ + ĉ

H ) + (2Q∗

3 + 2Q∗DaT

45 )∂x∗c∗ − D∗(1+

8

945
Pe2

T )∂x∗x∗c∗ =
2Q∗DaT

45Ke
∂x∗ ĉ in (0,+∞) × (0, T )

(1 + 1
3DaT )∂t∗ ĉ = k̂∗(c∗ + 2HPeT

45 ∂x∗c∗ − ĉ
Ke

)

in (0,+∞) × (0, T )

c|x=0 = 0, c|t=0 = 1, ∂xc ∈ L2((0,+∞) × (0, T )).

where PeT = Q∗H
D∗

is the transversal Peclet number and

DaT = k̂∗H
D∗

is the transversal Damkohler number.
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CASE A2: time of flow: t∗ = 100 sec

Our scaling impose k̂∗ = εQ∗ and Ke = H. This gives
DaT = εPeT . Now the system to solve is (DIM) and we
should compare between the solutions to (1), (60) with the
initial/boundary conditions (??), ĉ|t=0 = 0 and (DIM) and the
problem obtained by taking the simple mean, with the same
initial/boundary conditions.
Comparison between concentration obtained using our
effective problem (eff), average of the section of the
concentration from the original problem (pbreel3) and the
concentration coming from the simple average (moy) at
t∗ = 100, t∗ = 211 and t∗ = 350 sec sec, is shown on the
Figures 7, 8 and 9.
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GDR MOMAS Test 1

PARAMETERS VALUES

Width of the slit : H 0.5 · 10−2 m,

Characteristic length : LR 0.632 m

ε = H/LR 0.7911 · 10−2

characteristic velocity: Q∗ 0.3 · 10−2 m/sec

diffusion coefficient: D∗ 0.2 · 10−6 m2/sec,

longitudinal Peclet number: Pe= LRQ∗

D∗
= 9.48 · 103

α = log Pe/ log(1/ε) = 1.670972

transversal Peclet number: PeT = HQ∗

D∗
= 75

characteristic reaction velocity: k̂∗ = εQ∗ = 0.237 · 10−4 m/sec

transversal Damkohler number: DaT = εHQ∗

D∗
= 0.5933

Table 3: Parameter values at the case A2: diffusive transport
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GDR MOMAS Test 2
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GDR MOMAS Test 2
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GDR MOMAS the Nonlinear Problem

Now we study some nonlinear cases. Then the condition
(2) is replaced by

−D∗∂y∗c∗ =
∂ĉ

∂t∗
= Φ̂(c∗) − k̂∗d ĉ on z = ±H, (62)

where k̂∗d represents the constant desorption rate and Ke

the linear adsorption equilibrium constant. Examples of Φ̂
are

Φ̂(c) =
k1c

1 + k2c
(Langmuir) ; Φ̂(c) = k1c

k2 (Freundlich).

(63)
Characteristic times are now TA = ĉR/(cRk1R)
(characteristic adsorption time) and Treact = H/k1R

(superficial chemical reaction time scale).
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GDR MOMAS Nonlinear problem 1

In non- dimensional form, (62) reads

−Dεα−2∂cε

∂y
=

TA

Treact

∂cε
s

∂t
=

TL

Treact
(Φ(cε)−k∗dTAcε

s)|y=1 on Γ+×(0,

(64)
The effective problem is now

∂t

(

c0
FN +

TA

Treact
ceff
sN

)

+
2Q

3
∂x

(

c0
FN +

1

15D

TT

Treact
Φ(c0

FN )
)

=

εα(D +
8

945

Q2

D
ε2(1−α))∂xxc0

FN +
2Q

45D

TATTk∗d
Treact

∂xceff
sN , (65)

∂tc
eff
sN =

TL

TA

(

Φ(c0
FN + ε2−αc1

FN |y=1) − k∗dTAc0
sN

)

, (66)

c1
FN |y=1 =

2

45

Q

D
∂xc

0
FN − TA

3DTreact
∂tc

eff
sN , (67)
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GDR MOMAS Nonlinear problem 1a

c0
FN |x=0 = 0, c0

FN |t=0 = 1, ceff
SN |t=0 = cs0. (68)

In its dimensional form our effective problem for the volume
and surface solute concentrations {c∗N , ĉN} reads

∂t∗(c
∗
N +

ĉN

H
) + ∂x∗(

2Q∗

3
c∗N +

PeT

15
Φ̂(c∗N )) =

D∗(1 +
8

945
Pe2

T )∂x∗x∗c∗N +
2k∗dPeT

45
∂x∗ ĉN (69)

∂t∗ ĉN = Φ̂(c∗N + PeT c̃1
N ) − k∗dĉN (70)

c̃1
N =

2H

45
∂x∗c∗N − 1

3
∂t∗ ĉN , (71)

where PeT =
Q∗H

D∗ is the transversal Peclet number.
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GDR MOMAS Nonlinear problem 1b

Similar to the linear case, taking the mean over the
transversal section gives

∂t∗(c
moy
N +

ĉmoy
N

H
) +

2Q∗

3
∂x∗cmoy

N − D∗∂x∗x∗cmoy
N = 0 (72)

∂t∗ ĉN = Φ̂(cmoy
N ) − k∗dĉN . (73)

We point out that for the non-negligible local Peclet number,
taking the simple mean over the section does not lead to a
good approximation.
For more details one could consult the article
[P] C.J. van Duijn, Andro Mikelić, I. S. Pop, Carole Rosier:
Effective Dispersion Equations For Reactive Flows With
Dominant Peclet and Damkohler Numbers, to appear in
"Advances in Chemical Engineering", 2008.
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GDR MOMAS Infinite adsorption rate

Here we concentrate our attention to the case when the
adsorption rate constant k̂∗ is infinitely large.
This means that the reaction at channel wall
Γ∗ = {(x∗, z) : 0 < x∗ < +∞, |z| = H} is described by the
the following flux equation

−D∗∂zc
∗ = Ke

∂c∗

∂t∗
on Γ∗, (74)

where Ke is, as before, the linear adsorption equilibrium
constant. Now we see that (60) is replaced by (74), which
corresponds to taking the limit k̂∗ → ∞.
The characteristic times TA and TDE can not be used any
more and we introduce the new characteristic time

TC =
KeR

εQR
, which has a meaning of the superficial chemical
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GDR MOMAS IAR1

reaction time scale. As before, we set ε = H
LR

<< 1 and
choose TR = TL. Introducing the dimensionless numbers
into the starting and considering constant initial/boundary
conditions yields the problem :

∂cε

∂t
+ Q(1 − y2)

∂cε

∂x
= Dεα∂2cε

∂x2
+ Dεα−2∂2cε

∂y2
in Ω+ × (0, T )

(75)

−Dεα−2∂cε

∂y
= −D

1

ε2Pe
∂cε

∂y
=

TC

TL
K

∂cε

∂t
on Γ+ × (0, T ) (76)

cε(x, y, 0) = 1 for (x, y) ∈ Ω+, (77)

cε(0, y, t) = 0 for (y, t) ∈ (0, 1) × (0, T ), (78)
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GDR MOMAS IAR2

Further, we suppose that TC ≈ TL. After the same
calculations as before, we find that the effective problem for
the concentration c∗,eff

K in its dimensional form reads

(1 + DaK)
∂c∗,eff

K

∂t∗
+

2Q∗

3

∂c∗,eff
K

∂x∗ =

D∗
(

1 +
4

135
Pe2

T [
2

7
+

DaK(2 + 7DaK)

(1 + DaK)2
]
)∂2c∗,eff

K

∂(x∗)2
. (79)

In (79) PeT = Q∗H
D∗

is the transversal Peclet number and
DaK = Ke

H is the transversal Damkohler number.
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GDR MOMAS Numerical experiments

The transversal section mean gives

(1 + DaK)∂t∗c
moy
K +

2Q∗

3
∂x∗cmoy

K − D∗∂x∗x∗cmoy
K = 0 (80)

We present the numerical solution of the equation (79) with
the initial/boundary data

c∗,eff
K |x∗=0 = 0 and c∗,eff

K |t∗=0 = 1. (81)

Parameters are shown on the Table 4.

Talk at the workshop ”2008 annual seminar on Mathematics in Chemical Kinetics andEngineering”, Ghent University, Belgium, May 23, 2008 – p. 65/71



GDR MOMAS NE1

PARAMETERS VALUES

Width of the slit : H 5. · 10−3 m,

Characteristic length : LR 0.8632 m

ε = H/LR 5.7924001 · 10−3

characteristic velocity: Q∗ 0.3 · 10−3 m/sec

diffusion coefficient: D∗ 2. · 10−7 m2/sec,

longitudinal Peclet number: Pe= LRQ∗

D∗
= 1.2948 · 105

α = log Pe/ log(1/ε) = 1.83815052

transversal Peclet number: PeT = HQ∗

D∗
= 75

transversal Damkohler number: DaT = Ke

H
= 1

Table 4: Parameter values in the case of an infinite adsorp-
tion rate k̂∗ = +∞

Talk at the workshop ”2008 annual seminar on Mathematics in Chemical Kinetics andEngineering”, Ghent University, Belgium, May 23, 2008 – p. 66/71



GDR MOMAS NE2

Results are shown on corresponding Figures 10, 11 and
12, at times t∗ = 863, 2877 and 5755 sec.
Once more the model obtained by the simple averaging
over vertical section gives an approximation which is not
good and which gets worse during time evolution.
The simulations are from [P] C.J. van Duijn, A. Mikelić, I. S.
Pop, C. Rosier: Effective Dispersion Equations For Reactive
Flows With Dominant Peclet and Damkohler Numbers,to
appear in Advances in Chemical Engineering,2008.
and the error estimate in the articles [A1] and
[A2] A. Mikeli ć , C. Rosier : Rigorous upscaling of the infinite
adsorption rate reactive flow under dominant Peclet number
through a pore,Ann Univ Ferrara,Vol. 53 (2007), p. 333–359.
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GDR MOMAS NE3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

’pbreelt3’
’efft3’

’moyt3’

Figure 10: Case of an infinite adsorption rate k̂∗ = +∞:
Comparison between concentrations at t = 863 sec.
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GDR MOMAS NE4
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Figure 11: Case of an infinite adsorption rate k̂∗ = +∞:
Comparison between concentrations at t = 2877 sec.
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GDR MOMAS NE5
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Figure 12: Case of an infinite adsorption rate k̂∗ = +∞:
Comparison between concentrations at t = 5755 sec.
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Perspectives:

PERSPECTIVES:

Getting the effective equation for more complicated
chemistry

Hyperbolic models? Camacho, Cas Berentsen .......

Generalization to realistic porous media

Advantages of the homogenization approach over
direct simulations of stiff anisotropic multidimensional
convection/diffusion are obvious
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