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Modeling of Product and Process Systems
experimental and

theoretical methods & tools

experiment / 
measurement techniques

modeling/ simulation

model identification

integrated method development
towards a work process of model-based experimental analysis 

product & process systems

kinetic phenomena
• diffusion
• heat and mass transfer
• interface phenomena
• multiphase transport
• (bio-)chemical reaction
• nucleation ...

multi-phase reaction and
separation processes

fluid, structured &
functional products

biological systems
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Integration of Modeling and Experimentation

• common approach in research and industrial practice
– coupled phenomena
– detailed models, numerical case studies
– comparison of simulation and experimental results
– evaluation of the model, but no model identification !

• suggested future approach
– coordinated design of model and experiment
– model refinement based on experimental evidence
– accounting for inevitable measurement errors
– identification of a valid (mechanistic) model

(structure & parameters) !

cf. J.V. Beck, Meas. Sci. Techn. 9 (1998)
α,λ,κ,

µ,σ,D(x)

α,λ,κ,
µ,σ,D(x)

+

model-based experimental analysis – MEXA:
valid models at minimal effort 
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Collaborative Research Centre 540

Model-based Experimental Analysis
of Kinetic Phenomena in Fluid
Multi-phase Reactive Systems

12 research groups with cross-disciplinary expertise
• biotechnolgy (Ansorge-Schuhmacher)
• biochemical engineering (Büchs)
• reaction engineering (Greiner, Leitner)
• thermal separations (Pfennig) 
• transport phenomena (Kneer)
• multiphase fluid dynamics (Modigell)
• computational engineering science (Behr)
• process systems engineering (Bardow, Marquardt)
• numerical mathematics (Reusken)
• scientific computing (Bischof, Bücker)
• NMR imaging (Blümich, Stapf)
• optical spectroscopy (Koß, Lucas, Poprawe)

Funded by DFG
(Deutsche Forschungs-
gemeinschaft) since 1999
Director: W. Marquardt
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Research Agenda of CRC 540

development of a work process
Model-based Experimental Analysis (MEXA)

for systematic mechanistic modeling by means of multi-method integration
and

its application to modeling of multi-phase fluid reaction processes

reaction and

multi-component

diffusion in liquids

transport and reaction

in single dispersed

 liquid droplets

transport and

(bio-)reaction in

 heterogeneous systems

transport and

reaction in

liquid falling films
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experimentexperiment measurement
techniques

experimental 
conditions

MEXA Methodology

experimental
design

numerical
simulation

computed states
and measurements

inputs, parameters,
initial conditions

a-priori knowledge 
and intuition

mathematical
models

iterative model refinement

iterative improvement of experiment

extended understanding

formulation and solution
of inverse problems

model structure,
parameters, 

inputs, states,
confidence regions

sensor          model
calibration    selection

measurements

incremental model identification
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Simultaneous Model Identification

measurements x

                

model parameters ! 

! mass/heat balances

! thermodynamics

! reaction kinetics

! ...

Model y(x,!,t)

model parameters θ

measurements y

! mass/heat balances
! thermodynamics

! reaction kinetics

! ...

model of

observations

y(x,θ,t) ( )!!
==

"
m

1j

2

jj

n

1i

i )t(y~)t,,(yw
2

1
min èx
è

Overall process model y(x,θ,t)

is fitted to experimental data:

s.t. dynamic model & constraints

• What if we do not know any candidate model structure ?

• How to select a suitable model structure ?

• Is bias due to model structure defects or a lack of information content in data ?

• How to deal with very few or very many observations ?

• How to deal with convergence & robustness problems of estimation algorithm?
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Incremental Model Identification

measurements x

                

model parameters ! 

! mass/heat balances

! thermodynamics

! reaction kinetics

! ...

Model y(x,!,t)

model parameters θ

measurements y

! mass/heat balances
! thermodynamics

! reaction kinetics

! ...

model of

observations

y(x,θ,t)

measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model of the reaction

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

measurements y

model structure and parameters θ

Decompose
the model identification and
selection problem into fully

transparent steps !

• computationally efficient (minutes rather than days)
• numerically robust and fully transparent
• a-priori knowledge can be integrated into the identification process
• complex and interacting kinetic phenomena can be identified
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Incremental Identification – Some Examples

• differential methods in reaction kinetics, e.g. Connors (1990)
 → estimate reaction rate by FD, then estimate kinetic parameters

• hybrid modeling, e.g. Psichogios & Ungar (1992), Tholudor & Ramirez (1999)
→ combine first-principles models with neural nets

• inverse problems in population balances, Mahoney, Doyle & Ramkrishna (2002)
 → calculate growth rate as model-based data, correlate with states

• derived from intuition and physical insight
• often ad-hoc methods 
• problem-specific solutions

a generice principle ?
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Incremental Model Identification

measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model structure and parameters !

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

[ ] )t()t()t(F
dt

)t(d
)t(V rin

fcc
c

+!=balances

Nrf )t()t(V)t(r =stoichiometry

Incremental Model Development

( )ècr ),t(f)t( =kinetic law

)t(rf

)t(r

è

Illustratrion with a CSTR Illustratrion with reaction kinetcis idenfication in a CSTR 

(Marquardt, 1995)(Marquardt, 1998)
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measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model structure and parameters !

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

[ ] )t()t()t(F
dt

)t(d
)t(V rin

fcc
c

+!=balances

Nrf )t()t(V)t(r =stoichiometry

( )ècr ),t(f)t( =kinetic law

)t(rf

)t(r

è

WhatWhat  areare  thethe  ingredientsingredients  forfor  implementationimplementation ? ?

high-resolutionhigh-resolution  in-situin-situ  
measurementsmeasurements

inversioninversion  algorithmsalgorithms  forfor  
operatoroperator  equationsequations  

parameterparameter and  and structurestructure  
identificationidentification  forfor  
algebraicalgebraic  modelsmodels  

model-basedmodel-based  
designdesign of  of 

experimentsexperiments  

Incremental Model Identification
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High Resolution Measurement Techniques
non-invasive, in-situ measurements of field data
• observation of qualitative behavior
• quantitative characterisation of kinetic phenomena

interpretation of the primary measurement data,
calibration, quantification of measurement errors !

particle size distribution (FBRM)
Kail, Briesen, Marquardt et al., LPT

r

Lc

LC

Nk

wave number

po
st

io
n

conencentrations on a line,
Raman spectroscopy,

Koß, Lucas et al., CRC 540

velocity profiles in a
levitated droplet, NMR

imaging, Blümich et
al., CRC 540
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Replacement 
of measurement device or  varying temperatures 

Problems of Established Analysis Methods

Non-linear effects due to molecular interaction    

Reactive mixtures: restricted extrapolability     

Most established spectral analysis methods such as

• PCA, PLS or
• classical least squares

are linear and cannot model all nonlinear effects that occur in real
mixtures:
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Indirect Hard Modeling – General Idea

Development of a rigorous mathematical model of the spectrum
Consideration of physical effects of the spectrum through
phenomenological modeling

Generation of pure component models using automatic peak fitting algorithm
 (Alsmeyer et al., Applied Spectroscopy, 58 (8), 2004)

Step 1:  Modeling of pure component spectra (during calibration) 

!=
i

iiP

pure
VS ),(),( "## è

Indirect Hard Modeling: a nonlinear spectral analysis approach
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Model of the Mixture Spectrum

= ! 1" ! 
2

"+

Step 2: Mixture spectrum is modeled as:
Linear combination of parameterized non-linear pure component models

All non-linear effects are modeled phenomenologically:

     Baseline variations        Spectral shifts     Peak variations

! "+=
k

kSkP

pure

kkB SBS ),,()()( ,, ##$%#$

kS,
!

kP,
!

B
!

1,pureS 2,pureS
mix
S

Full spectral model:
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Calibration

j

i
j,i

j

i

x

x
K=

!

!

!
="

k i,ki

k
i

K

x
1

1

#

#

Linear, physically motivated
calibration model
(Non-linear effects are corrected
by the spectral model)

S
~ spectral

model ù

measurement C B

A

x

concentration

calibration
model

Highly reduced amount of calibration measurements
Theory: One calibration measurement
Practice: Few measurements

Good extrapolability:
Calibration in concentration subspace is possible
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SpecTool

SpecTool:
• Matlab-based GUI
• facilitates automatic and 

manual spectral analysis
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measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model structure and parameters !

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

[ ] )t()t()t(F
dt
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WhatWhat  areare  thethe  ingredientsingredients  forfor  implementationimplementation ? ?

high-resolutionhigh-resolution  in-situin-situ  
measurementsmeasurements

inversioninversion  algorithmsalgorithms  forfor  
operatoroperator  equationsequations  

Incremental Model Identification
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Inversion Problems are Ill-Posed
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Issues in Flux Estimation

• decide on a set of measurements for best identifiablility
– at least as many measurements as unknown fluxes (Hirschorn, 1979)
 methods for quantification of identifiability (e.g. Asprey, 2003)

• balance information content of measurements and resolution of the flux
parameterization
– choose spatial and temporal resolution of flux function
 adaptive discretization methods (e.g. Binder et al. 2000)

• compromise between bias and variance in estimates
– balanced choice of discretization, early stopping and regularization
– systematic methods for the selection of regularization operators

and multiple regularization parameters (e.g. Ascher, Haber, 2001,
Engl et al., 1996, Belge et al. 2002)
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measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model structure and parameters !

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters
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dt

)t(d
)t(V rin

fcc
c

+!=balances

Nrf )t()t(V)t(r =stoichiometry

( )ècr ),t(f)t( =kinetic law

)t(rf

)t(r

è

WhatWhat  areare  thethe  ingredientsingredients  forfor  implementationimplementation ? ?

inversioninversion  algorithmsalgorithms  forfor  
operatoroperator  equationsequations  

parameterparameter and  and structurestructure  
identificationidentification  forfor  
algebraicalgebraic  modelsmodels  

Incremental Model Identification
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Flux Model Selection Problem

find the most appropriate functional representation 

for the correlation of fluxes and states: structure and parameters

parameter estimation and model structure selection

• error-in-variables formulation (Britt & Lücke, 1978, Boggs et al. 1992)

• inference approach, decision tree & statistical tests (Verheijen, 2003)

• Bayesian a-posteriori probability tests (Stewart et al., 1998)

• combinatorial search (McKay et al., 1997, Skrifvars et al., 1998)

    generate candidate model structures

• experience-based, qualitative reasoning, kinetic power laws (Schaich et al., 2001)

• molecular scale modeling (Barrett & Prausnitz, 1975, Liu et al., 1998)

• multivariate regression & data mining (Bates & Watts, 1988, Hastie et al. 2001)
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Function Approximation

M

1i

d

ii }RR)y~,{(S =!"= x

( )!
=

"
#+$

N

1i

2

iiN
Vf

)f(y~)(f
M

1
min

NN

%x

Tikhonov regularization term
enforcing smoothness of fN

!+= )(fy~ ii x

Recover unknown function f∈V from data S "as good as possible"

Restriction to finite dimen-
sional subspace VN

Given: noisy data set S

Binder et al. (2000)
Ascher and Haber (2001)

Desirable properties

• linear scaling with number of data points (avoid „curse of dimensionality“)

• properly exploit information content in data (avoid under-/overfitting)
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• hierarchical d-dimensional finite-element discretization of unknown function 
with d-linear hat functions, Yserentant (1992)

• significant reduction of number of parameters by successive approximation 
on subgrids and subsequent linear combination to a sparse grid approximation

• approximation quality close to full grid approximation

[ ]1,4f [ ]2,3f [ ]3,2f [ ]4,1f

[ ]3,1f[ ]2,2f [ ]
)c(

4,4
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(Garcke et al., 2001; Brendel & Marquardt, 2003) 

Sparse Grid Approximation
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Incremental Grid Refinement
Initial grid

Final grid
?

? ? ?

? ? ? ?

? ? ? ?

? ?

?
• number of tested grids scales linearly with number of

dimensions instead of exponentially
• curse of dimensionality in selecting the discretization is avoided
• no guarantee to find optimal discretization
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measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model structure and parameters !

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters
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WhatWhat  areare  thethe  ingredientsingredients  forfor  implementationimplementation ? ?

parameterparameter and  and structurestructure  
identificationidentification  forfor  
algebraicalgebraic  modelsmodels  

model-basedmodel-based  
designdesign of  of 

experimentsexperiments  

Incremental Model Identification



29Model-Based Experimental Analysis

measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model of the reaction

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

measurements x

model structure and parameters θ

Modeling of Reaction Kinetics

• no. of reactions, stoichiometry and kinetics unknown

• isothermal semi-batch CSTR experiments

• concentration measurements (ex-situ, e.g. GC;
in-situ, e.g. Raman/IR spectroscopy)

• a number of simulated semi-batch reactor
experiments, 60 min (cases: noise, sampling …)

Acetoacetylation of
Pyrrole with Diketene

(Brendel, Bonvin, Marquardt, 2006)

1: P + D PAA
2: D + D DHA
3: D OL
4: PAA + D F



30Model-Based Experimental Analysis

measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model of the reaction

candidates for

stoichiometry

candidates for

reaction kinetics

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

Incremental Model Identification
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inverse problem:
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measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model of the reaction

candidates for

stoichiometry

candidates for

reaction kinetics

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

Incremental Model Identification

target factor analysis

Bonvin & Rippin, 1990
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Target Factor Analysis
Propose an R x S dimensional stoichiometric matrix Np with

R = number of reactions

S = number of involved species

Set up a B x S dimensional data matrix D

B = Number of observations

D = can be expressed as X*N, where X is a matrix indicating the extents of the R
reactions and N is the correct stoichiometric matrix

Discard those stoichiometries of Np that cannot be approximately described as linear
combination of the rows of Na

Singular Value Decomposition   D = U*S *  VT

                                                             =   Xa  * Na,

where the rows of Na represent a basis for the observed stoichiometric space
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• f r: reaction fluxes

• r: reaction rates

• N: stoichiometric matrix

• V: volume

Determination of reaction rates

Fluxes, Stoichiometry → Reaction Rates  -  Theory

( )

( )

( )

( )
2

r
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minarg r

• BLS problem

Stoichiometry
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estimated 
reaction fluxes

Reaction Fluxes → Stoichiometry, Reaction Rates

stoichiometryTFA

l
i
n
.

c
o
m
b
i
n
a
t
i
o
n

estimated  
reaction rates

estimated rate
true rate
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measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model of the reaction

candidates for

stoichiometry

candidates for

reaction kinetics

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

Incremental Model Identification
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Structure Identification of Reaction Rate Function

)t(ĉ

)t(r̂
)c(r̂

correlation with data-driven methods

• NN with Bayesian regularization

• band of noisy data sets

• physical insight

correlation of concentrations and rates
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Estimated Reaction Rate Functions

Mean: 2.7%

Max: 6%

Mean: 4.2%

Max: 25%

Mean: 2.9%

Max: 5%

Mean: 167%

Max: 2958%
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Identification of Reaction Kinetic Laws

regression of estimated rates
and concentrationens for each
individual reaction

)(tr

)(tc
),( ckr

  P + D           PAA

candidate kinetic laws
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1
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1
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=

=

=

=

=

=
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=

best model structure with
statistically optimal parameters

simultaneous identification for
promising model candidates

estimated rate
kinetic las  4
kinetid law  5
kinetic law  8
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measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model of the reaction

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

measurements

model structure and parameters θ

Iterative Model lmprovement

Reaktionsparameter

 experimental
run

experiment
design

experimental
degrees of freedom

parameter-
correction

optimal parameters
confidences

candidates for
reaction kinetics

candidates for
stoichiometry
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Iterative Improvement - Example

stoichiometry kinetic law

1: P + D PAA
2: D + D DHA
3: D OL 33

D22

KPD11

kr

ckr

ccckr

=

=

=

validation parameters

N/A-1

requested accuracy achieved

scenario: 3600 data points in each experiment (Ts=1 s), 5% noise 

1: P + D PAA
2: D + D DHA
3: D OL

D33

K

2

D22

KPD11

ckr

cckr

ccckr

=

=

=

experimental design for model discrimination 

2
Parametersatz

k1, k2, k3

1: P + D PAA
2: D + D DHA
3: D OL D33

K

2

D22

KPD11

ckr

cckr

ccckr

=

=

=

experimental design for best model parameters

3
Verbesserter

Parametersatz
k1, k2, k3
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Incremental vs. Simultaneous Model Identification

# Models
CPU
Time

Ident. 
Corr.

Incremental Method Simultaneous Method

STDV = 2%

STDV = 10%

Reso-
lution # Models

Ident. 
Corr.

3 sec

30 sec

5 min

1

≈ 1

≈ 7

30 min

15 sec

6 sec 100 %

100 %

100 %

3 sec

30 sec

5 min

≈ 160

≈ 200

40 min

3 min

2 min 10 %

50 %

100 %≈ 100

3 sec

30 sec

5 min 100 %

100 %

100 %

3 sec

30 sec

5 min 10 %

50 %

100 %

3600

3600

3600

3600

3600

3600

1.7 d

3.8 h

1.6 d

3.9 h

1.1 h

1.7 h

CPU
Time

Reso-
lution

identical
60 min

much faster
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MEXA for Investigation of Diffusive Transport

Why studying diffusion ?

• detrimental for product and process design

• very high experimental effort 

• very few multi-component diffusion data available

• validity of diffusion models still a matter of debate

• a good model problem

for the development of 

MEXA methodology

measurements

balancesmodel 2

model 1 balances

stoichiometry

model 3 kinetic lawstoichiometrybalances

concentrations

fluxes

model of the reaction

concentrations

concentrations

measured concentrations

fluxes

fluxes

rates

rates reaction parameters

measurements

model structure and parameters θ

Intermediate productIntermediate product

selectivity of 
heterogeneously 
catalyzed reactions
(Pantelides & Urban, 
2004)
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Incremental Model Identification

measurements y

model F(x,θ)

parameters θ

model B

model BF

model BFD

flux
modelsbalances

model for fluxes

z

c
DJ
VV

!

!
"= 

flux
modelsbalances

model for coefficient
),( !cfDV =

balances
structure of system

z

J

t

c
V

!

!
"=

!

!

binary diffusion

balances diffusive flux JV(zi,tk)

coefficient DV(zi,tk)flux
models

diffusion
coefficient

parameterdiffusion
coefficient

model structure and parameters for diffusion
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x(z,t) model

t

xi(z)

A B

C

balance
equations

1D

+
model

discrimination

+
transport

laws

sequence of inverse problems

Ji(z,t) Dik(x, Θ)

Incremental Model Identification

model probability 

constant 13,2% 

linear 39,3% 

quadratic 27,8% 

cubic 19,7% 
 

Modell probability 

constant 13,2% 

linear 39,3% 

quadratic 27,8% 

kubic 19,7% 
 

robust and efficient identification of models
experimental results for binary and ternary diffusion 

Bardow et al. (2003, 2006)
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Ternary Mixtures

balancesmodel B

model BF balances

2,1 ; =
!

!
"=

!

!
i

z
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t

c
V

ii
→ problem decouples
→ solve binary problem twice

z

c
D

z

c
DJ

VVV

!

!
"

!

!
"= 2

12

1

111

→ coefficients not
     identifiable

diffusion
coefficientmodel BFD flux

modelsbalances

flux
models

-10.4-10.8-33.4-9.0Error [%]

D22D21D12D11Coefficient

→ error-in-variables regression

Example: simulated experiment as in Arnold & Toor (1967), noise level σ=0.01

estimation of constant diffusion coefficients from a single experiment
with good precision
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Optimal Experimental Design: Idea

set free variables p such that 
information on  model parameters  

is maximized

=
maximize curvature of

parameter estimation objective

2

2

max
!

"

#

#

p

!(p
1
)

!(p
2
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D* 
D
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!(p
1
)

!(p
2
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D* 
D
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error level

!(p
1
)

!(p
2
)

D* 
D

!

!*
error level

parameter estimation objective 
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Optimal Ternary Mixture Composition

!

"
xm
a
x

x
c

x
L

x
U

x
1

x
2

Example: acetone-benzene-methanol at xC = [0.35; 0.302; 0.348]T, 
(Alimadadian and Colver, 1976)

• scaled objective ζ-efficiency measures information per parameter
• one Raman experiment suffices to determine ternary Fick matrix 
• two different experiments result in substantial improvement
• experiments should be as distinct as possible (φ(2)=φ(1)+90°)
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Optimal Initial Conditions

m
ea

su
rin

g 
zo

ne

z 0 z s
en

so
r

xL

xU

Example: acetone-benzene-methanol at xC = [0.35; 0.302; 0.348]T, 
(Alimadadian and Colver, 1976)

• measurements at the wall, i.e. restricted diffusion experiments
• unequal volume of both phases, almost independent of concrete mixture 
• short experiments are beneficial
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Ternary Results

Diffusivities from a single Raman experiment

→ one Raman experiment gives full diffusion matrix
→ currently scatter in data is still significant
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System: 1-Propanol - 1-Chlorobutane - n-Heptane
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Ternary Results

Diffusivities from two optimal Raman experiments

→ one Raman experiment gives full diffusion matrix
→ good precision from 2 optimized runs
→ robust & efficient measurement
→ quantitative validation of design predictions
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with reference data from Weingärtner et al. (1994)

Diffusivities from two Raman experiments
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Quaternary Diffusion

concentration measurements with Raman spectroscopy and
model-based design and evaluation of diffusion experiments

(cyclohexane – toluene – dioxane – chlorobutane)

matrix of Fick‘s
diffusion coefficients
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Benefits of MEXA for Diffusion Problem

reduces experimental effort
 fewer experiments
 maximum precision
 simple design and preparation

diffusion experiments for
 - multi-component mixtures

- reactive systems
- electrolytes

• experimentally validated for
binary, ternary, quaternary
and quinternary mixtures

• concentration dependence
of diffusion coefficients

high resolution
measurements

model-based
methods

• towards reactive and
electrolytes mixtures

• further improvement of method
• diffusion modeling
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• falling films are all around:
    - falling film cooler

       - falling film evaporator
- falling film absorber
- falling film reactors

• transport phenomena are hardly
understood, interaction between

      - fluid dynamics with free
      surface
    - heat and mass transfer
    - chemical reaction

• first milestone: modelling of
      heat transfer with
      effective transport coefficients

Kinetic Phenomena in Falling Film Reactors

y

x

ϕ

( )x,z,t!

Ozonolysis of
olefines in silicon oil

y

x

ϕ

!

molecular 
transport,
3D, wavy 

effective 
transport, 

2D, flat 
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Heat Transfer through Falling Film
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measurement data

energy bal.model 2

model 1 energy bal.

transport
law

model 3 constitutive
equation

transport
law

energy bal.

temperatures

heat flux

Model structure and parameters 

temperatures

temperatures

measured temperature field

heat flux
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Experimental Set-up
eperiments:
F. Al-Sibai, A. Leefken, R. Kneer, U. Renz, SFB 540

39,4

39,6
°C

wall temperature
measurements

TW
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Mathematical Problem Formulation
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Optimization Algorithm (CG)

DROPS: adaptive FEM, 3D, anisotropic grids: 
Soemers, Groß, Reichelt, Reusken, CRC 540

temperature
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direct 
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nested iteration

• multi-level strategy:
exploit grid hierarchy

• good initial guesses from
coarse grid results
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Heat Flux Estimates from Experimental Data

measured temperature distributions estimated heat flux distribution

(Groß, Soemers, Mhamdi, Al-Sibai, Reusken, Marquardt, Renz, 2005)
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Heat Flux Estimates from Experimental Data
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Towards Inverse Transport Problems
CG method for the solution of inverse

problem embeds DROPS
(Reusken u.a., SFB 540) ein.

DROPS employs
adaptive multi grid methods,
finite element discretization,
levelset method

and facilitates the numerical simulation
of multi-phase flow problems in 3D
    at high resolution
of the phenomena at the phase interface,
    efficient and error-controlled
with
   appropriate flexibility
for model extensions. a droplet rising in a stagnant liquid

Pfennig, Reusken u.a., CRC 540 
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MEXA Business Process – Evaluation

method integration has high potential !

• optimal experimental design reduces effort
• structure identification leads to mechanisms

• improvement of method integration
  in particular for distributed problems

incremental refinement has high potential !
• homogenous reactions, multi-component diffusion, 
  diffusion & bioreaction in gels
• drastic reduction of experimental and engg. effort
• significantly improved transparency
 
• further development for CFD problems 

Messdaten

BilanzenModell 2

Modell 1 Bilanzen

Stöchiometrie

Modell 3 KinetikgesetzStöchiometrieBilanzen

Konzentrationen

Flüsse

Modellstruktur und Parameter !

Konzentrationen

Konzentrationen

Gemessene Konzentrationen

Flüsse

Flüsse

Raten

Raten Reaktionsparameter

Kandidaten für

Stöchiometrie

Kandidaten für

Reaktionskinetik

Versuchs-

planung

Versuchs-

durchführung

Entwurfs-

variablen

Parameter-

korrektur

opt. Parameter

Konfidenzen

Versuchs-
planung

Numerische
Simulation

berechnete Zustände

und Messgrößen

Eingänge, Parameter,

Anfangsbedingungen

Vorwissen 
und Intuition

Mathematische
Modelle

Iterative Verfeinerung des Modells

Iterative Verbesserung des Experiments

Erweitertes Verständnis

Messgrößen

Formulierung und Lö-
sung inverser Probleme

Modellstruktur,
Parameter, 

Kali-               Modell-
bration          auswahl Konfidenz-

aussagen

Eingänge, 
Zustände

Versuchs-
aufbau Messtechnik

Versuchs-
bedingungen

our 
     vision:

development of an integrated MEXA tool set to 
transfer systems methods to experimentators
 planning and coordination…  
 documentation… 
 guidance …
 process reengineering …

…of MEXA processes
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Lessons Learned

• accept interactions between kinetic phenomena in experiments,
but

isolate them during identification by a suitable decomposition strategy

• high precision calibration of high-resolution measurements
(PIV, LIC, LCSM, NMR imaging, Raman / IR spectroscopy etc.)
often is a difficult modeling problem in itself

• statistics of measurement errors need to be included in the analysis

• flux estimation is the key to reliable identification

• tremendous improvements are possible by systematic
cross-disciplinary linking of process systems and experimental skills
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Some Challenges for Future Work

• refinement of MEXA work process
– flux estimation (estimation quality, numerical efficiency)
– exploit error statistics
– integrated calibration and kinetics identification
– tailor optimal experimental design methods to incremental identification
– assessment of identifiability
– adjust model parameterization to information content of experiments

• roll-out MEXA strategy from meso- to micro- and macro-scale
– hybrid modeling on macro-scale
– model structure generation from molecular simulation results

• application and benchmarking of MEXA work process
– complicated reaction and transport problems
– population systems (crystallization, ...)
– biological systems (metabolic pathways, ...)
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