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Two Universes of model reduction
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A reduced model
that works




The Second Law
and model reduction

* Entropy of a closed system increases:
dS/dt =0;

* In a open system the entropy production 1s
positive;

» These properties should hold for every
model: all the procedures of model

reduction should preserve the sign of
entropy production.



Idea of fast-slow decomposition
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Conditional entropy maxima
for these fast directions are
somewhere here

Bold dashed line — slow invariant manifold;
bold line — approximate invariant manifold;
several trajectories and correspondent directions
of fast motion are presented schematically.



Geometrical structures of model reduction

f+kerP U

A=(1-P)J(f)

U i1s the phase space,

J(f) 1s the vector field of the system under consideration: df/dt = J(f),
Q2 1s an ansatz manifold,

T is the tangent space to the manifold € at the point f,

PJ(f) is the projection of the vector J(f) onto tangent space Ty,

A = (1-P)J(f) is the defect of invariance,

the affine subspace f+kerP is the plain of fast motions, and A belongs to kerP.
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Example 1: QSS

R- concentrations of radicals,
C- concentrations of stable components

dR dC
o (R,O), Y =F(R,C
" R ( )dt c(R,C)

> R; <Bp; > C; <Bc; Bp << B¢
i i

r=R/Bp;c=C/Br;t=t/Bc;&=Bp /B¢

dr — IFR(BRI/‘,BcC'),dC:FC(BRroBCC)
dr ¢ dr

Fr(Br.Bee)=0=> r=r(©), = Fe(Bpr(©), Bee)
T
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QSS

2Pt+0,<2PtO;
Pt+CO—PtCO
PtO+PtCO—CO,+2Pt.

2(ki [P]*[O,] - ki [PtO]?) = k3 [PtO][PtCO];

k5 [Pt][CO] - k5 [PtCO] = k3 [PtO][PtCO];
[Pt] +[PtO] + [PtCO] = bpy



A typical mistake

In QSS, dR/dt 1s not “small,” because 1n QSS

dR OFp(R,c) dc
dt oc dt




Geometry of QSS
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Example 2: QE

agd +...+ag, A4, & BaA +...+ B, 4, -Tastreactions,
Vs = Py — g - stoichiometric vectors of fast reactions,

L = Lin{y;} - the plain of fast motions,

Q={c:) .u;(c)ys = 0for all fast reactions} - QE manifold;
H; (c) - chemical potentials;

{m ;| - a basis in orthogonal complement to L;

m ;(c) = (mj,c)-slow variables;

¢ = Fru(c)+ Fgoy(c) - kinetic equations;

dm -
) = © — (mjﬂFSlow(C))

cenrlS w0}



QE

l.A<> Bfast;y =(-11),Q={c:cy =Kcg},m(c)=c4+cp,
Km m

scp\m)=-—-,
1+ K 5(m) 1+ K

If there are some additional reactions and components

on ), c(m)=

and the mitial egs. for ¢ 4, ¢ are

¢4 =F 525t (€) + F ygiow (€), ¢B = Fpagt (€) + Fpglow (€,
then the QE eq.1s 71 = F 4 1w (c(m)) + Fpg1ow (c(m)).

2. A+ B < Ctast; y =(-1,-1L1), Q={c:cycp = Kc},
my(c)=cy—cp,my(c)=cy+cp+2cc
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Geometry of QE

/ Fast

Slow

No “fast components,” but some “fast directions”




Geometrical structures of model reduction

f+kerP U

A=(1-P)J(f)

U i1s the phase space,

J(f) 1s the vector field of the system under consideration: df/dt = J(f),
Q2 1s an ansatz manifold,

T is the tangent space to the manifold € at the point f,

PJ(f) is the projection of the vector J(f) onto tangent space Ty,

A = (1-P)J(f) is the defect of invariance,

the affine subspace f+kerP is the plain of fast motions, and A belongs to kerP.
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Invariance equation
d¥/dt=J(\P)

() — Ansatz

A=J-PJ=(

Manifold
Invariance equation\/
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Methods for Solution

* Taylor expansion near equilibrium
(Lyapunov,...)

* Singular perturbation expansion (small
parameter) (Chapman-Enskog, Fenichel,...)

* The Newton method (Kolmogorov-Arnold
for Hamiltonian systems, Fraser-Roussel,
Gorban-Karlin,...)

» Relaxation methods (Foias-Jolly-
Kevrekidis-Sell-Tit1; Gorban-Karlin,...)
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The Lyapunov auxiliary theorem

(dD()/dy) J,

N\
A

Tangent vector

V/\

y

z

z=0(y)

X y

T

Jacobian

Invariant spaces

Invariance equation: on the manifold,
(dD(y)/dy) J,=J;
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Newton method

with incomplete linearization
A=0ie.(1-P)J(f)=0

J(Jrk+1) =Sk + T k41 =
J(Ji)+DJ |5, (Fps1)+0(Iy)

The equation for one iteration :
(1-=P)DJ |, (&y11) =g
under condition Pof 1 =0

It converges to the slowest manifold
(under some technical conditions)
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Relaxation method

The equation of motion for immersed manifolds 1s

d (Fd Ex)) = (1= Pp(x) ) (F(X)) = A(F (X))

We are looking for a stable fixed point

The invariance equation 1s
A=0ie.(1-P)J(f)=0
The relaxation method:

Jie+1 = Sk +hA(Si)

The choice of step 4: we can project the motion on Ay and go ahead
until the projection of current A on A; becomes 0 (in the linear
approximation) — it 1s the Newton method projected on A.
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The problem of thermodynamic projector

For any given:
* concave entropy function (functional) S;

* ansatz manifold € which 1s not tangent to
the levels of S

Find a projector P that projects any vector
field J with dS/dt > 0 1n a vector field on Q
with the same 1nequality.
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Thermodynamic Lyapunov functions
for classical conditions

U, V=const, G pr = —8/kp:

H, P=const, Gyr=—5kg:

V. T=const, Gpr=F/kgl = Ulkgl — 5/kg ;
P, T=const, Grr=G/T=HkgT — 5/kg .

where FF = U7 — T§5 1s the free energy
G =H — T5 15 the free enthalpy
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Entropic inner product

@2S<f>
- Z afaf

SN=-X A ey =R

Shahshahani metric

S(=-[r@m @ G  =[7 e
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Differential and gradient

Differential (Gato) of a function S(f) at point f1s a linear
functional DS that gives the best approximation of S
near f: S(f+ex)=S(f)+eDsS(x)+o(e) for any vector x.
Definition of differential does not depend on an inner
product.

Gradient is a vector that represents the differential by the
inner product

g =(gradS) r & (D, S5)(x) :<g9x>f
orS(f+gx):S(f)+5<g,x>f +o0(¢)

Definition of gradient depends on the mner product



Entropy gradient

in entropic inner product
g =(gradS) , < (D;S)(x) = g,x

or S(f + &x) :S(f)+5<g,x>f +0(¢)
Vector gradS$ in entropic inner product gives the
Newtonian direction for S (an undergraduate

€Xercise).

The gradient should belong to a subspace of zero
balances change: for

S(f)==|f(2)In f(z)dz
(gradS) ; =—f(In f = [ £(z)In f(2)dz)
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The thermodynamic projector

The thermodynamic projector P onto space Tt is

(gradS)f”<(gradS)fL, J>
<(gradS)f” : (gradS)f”>

Where orthogonality and all gradients are
defined 1n the entropic inner product;

f

P(J)=P(J)+
/

P*(J) is the orthogonal projector onto space T
(gradS) /' = P*((gradS) ;)

(gradS) ,~ = (1- P)((gradS) ;)
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Uniqueness theorem

The thermodynamic projector 1s the unique
operator which transforms the arbitrary vector
field equipped with the given Lyapunov function
S ito a vector field with the same Lyapunov
function (and also this happens on any manifold
which 1s not tangent to the levels of .5).
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Free lunch

The requirement 1s: the thermodynamic projector
preserves the sign of entropy production. As additional
consequences from this requirement we have:

* The thermod
entropy prod

ynamic projector preserves the value of
uction (not only the sign of 1t);

 The thermoc

ynamic projector transforms a system with

Onsager reciprocity relations into a system with the
Onsager reciprocity relations (it preserves the Onsager

relations).
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Bobylev instability of Burnett equations

Acoustic dispersion
curves for Burnett
approximation (dashed
line), for first iteration of
MIM (solid line), and for
regularization of the
Burnett approximation
via partial summing of
the Chapman-Enskog

expansion (punctuated
dashed line). Arrows

indicate an increase of k2.

Im )

4.4
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Negative viscosity for Burnett equations

Dependency of viscosity
on compression for
Burnett approximation
(dashed line), for first
iteration of MIM (solid
line), and for partial

summing (punctuated
dashed line).

ou’ |
06
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Invariant grid for two-dimensional chemical
system: Al + A2 &> A3 > A2+ A4

One-dimensional
invariant grid (circles)
Projection onto the
3d-space of 0.15
concentrations Cl, ¢4, «
c3. The trajectories of ~ °'
the system in the 0.05
phase space are shown

by lines. The 1
equilibrium point 1s 0

marked by square. c4 05 ¢1
The system quickly 00

reaches the grid and

further moves along it.

0.2

30



0.086

Invariant grid for ¢

model Hydrogen -

0.01

0.06
o 0.04
0.02

0.05 0.1

a) Projection onto .,

the 3d-space of
CH9 CO> CQH
concentrations. b
b) Projection onto -
the principal FR

3D-subspace.

0.15
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Invariant
orid as a
screen for

visualizing * .

dierent
functions

Model
Hydrogen
burning
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Visualizing functions:
Entropy and entropy production

Entropy Entropy production
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Visualizing functions:
Separation of relaxation times




Conclusion : Three reasons to use
the thermodynamic projector

» It guarantees the persistence of

dissipation: All the thermodynamic processes

which should product the entropy conserve this
property after projecting, moreover, not only the sign
of dissipation conserves, but the value of entropy
production and the reciprocity relations too;
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e Universality: The coefficients (and, more
generally speaking, the right hand part) of kinetic
equations are known significantly worse then the

t]
t]

nermodynamic functionals, so, the universality of
he thermodynamic projector (it depends only on

t]

nermodynamic data) makes the thermodynamic

properties of projected system as reliable, as for
the 1nitial system,;

* It is easy (much more easy than spectral
projector, for example).
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Most important items

QE vs QSS;

Defect of invariance and the invariance
equation;

The system of method

Thermodynamics proj

s for solution;

ector
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Invariance equation
d¥/dt=J(\P)

() — Ansatz

A=J-PJ=(

Manifold
Invariance equation\/
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Methods for Solution

* Taylor expansion near equilibrium
(Lyapunov,...)

* Singular perturbation expansion (small
parameter) (Chapman-Enskog, Fenichel,...)

* The Newton method (Kolmogorov-Arnold

for Hamiltonian systems, Fraser-Roussel,
Gorban-Karlin,...)

» Relaxation methods (Foias-Jolly-
Kevrekidis-Sell-Tit1; Gorban-Karlin,...)
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The thermodynamic projector

The thermodynamic projector P onto space Tt is

(gradS)f”<(gradS)fL, J>
<(gradS)f” : (gradS)f”>

Where orthogonality and all gradients are
defined 1n the entropic inner product;

f

P(J)=P(J)+
/

P*(J) is the orthogonal projector onto space T
(gradS) /' = P*((gradS) ;)

(gradS) ,~ = (1- P)((gradS) ;)
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Thank you for your attention

Reprints on-line:

Just GOOGLe Gorban
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http://www.math.le.ac.uk/people/ag153/
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