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Plan
• Chemical kinetics – source of ideas about temporal 

organization
• Model reduction or solution?
• The Second Law and model reduction
• Fast-slow decomposition
• QSS and QE
• Invariance equation
• Entropic inner product
• Entropy gradient in entropic inner product
• The thermodynamic projector
• Uniqueness theorem
• Conclusion
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Two Universes of model reduction

Universe 
of models

Universe 
of ansatzs
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The Second Law 
and model reduction

• Entropy of a closed system increases: 
dS/dt ≥0;

• In a open system the entropy production is 
positive;

• These properties should hold for every 
model: all the procedures of model 
reduction should preserve the sign of 
entropy production. 
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Idea of fast-slow decomposition

Ωslow

U

Ωansatz

Fast
directions

Conditional entropy maxima
for these fast directions are
somewhere here

Bold dashed line – slow invariant manifold; 
bold line – approximate invariant manifold; 
several trajectories and correspondent directions 
of fast motion are presented schematically.
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Geometrical structures of model reduction

• U is the phase space,
• J(f) is the vector field of the system under consideration: df/dt = J(f), 
• Ω is an ansatz manifold, 
• Tf is the tangent space to the manifold Ω at the point f, 
• PJ(f) is the projection of the vector J(f) onto tangent space Tf, 
• Δ = (1-P)J(f) is the defect of invariance, 
• the affine subspace f+kerP is the plain of fast motions,  and Δ belongs to kerP.

Δ=(1-P)J(f)

U

f Ω

J(f)

PJ(f)

Tf
f+kerP
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Example 1: QSS
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C- concentrations of stable components
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QSS
2Pt+O2↔2PtO;
Pt+CO↔PtCO
PtO+PtCO→CO2+2Pt.
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A typical mistake

In QSS, dR/dt is not “small,” because in QSS
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Geometry of QSS
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Example 2: QE
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QE
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Geometry of QE

Ω

L

Fast

Slow

No “fast components,” but some “fast directions”
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Geometrical structures of model reduction

• U is the phase space,
• J(f) is the vector field of the system under consideration: df/dt = J(f), 
• Ω is an ansatz manifold, 
• Tf is the tangent space to the manifold Ω at the point f, 
• PJ(f) is the projection of the vector J(f) onto tangent space Tf, 
• Δ = (1-P)J(f) is the defect of invariance, 
• the affine subspace f+kerP is the plain of fast motions,  and Δ belongs to kerP.

Δ=(1-P)J(f)
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Methods for Solution

• Taylor expansion near equilibrium 
(Lyapunov,…)

• Singular perturbation expansion (small 
parameter) (Chapman-Enskog, Fenichel,…)

• The Newton method (Kolmogorov-Arnold 
for Hamiltonian systems, Fraser-Roussel, 
Gorban-Karlin,…)

• Relaxation methods (Foias-Jolly-
Kevrekidis-Sell-Titi; Gorban-Karlin,…) 
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The Lyapunov auxiliary theorem

y

z

z=Φ(y)
Jy

Tangent vector

(dΦ(y)/dy) Jy

Invariance equation: on the manifold, 
(dΦ(y)/dy) Jy=Jz

Jacobian
invariant spaces
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Newton method 
with incomplete linearization
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Relaxation method
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The equation of motion for immersed manifolds is

The choice of step h: we can project the motion on  Δk and go ahead 
until the projection of  current Δ on Δk becomes 0 (in the linear 
approximation) – it is the Newton method projected on Δ.

)(1 kkk fhff

The invariance equation is

Δ+=+

The relaxation method:

We are looking for a stable fixed point



20

The problem of thermodynamic projector 

For any given:
• concave entropy function (functional) S;
• ansatz manifold Ω which is not tangent to 

the levels of S
Find a projector P that projects any vector 
field J with dS/dt ≥ 0 in a vector field on Ω 
with the same inequality.
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Thermodynamic Lyapunov functions 
for classical conditions
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Entropic inner product
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Differential and gradient
Differential (Gato) of a function S(f) at point f is a  linear 

functional DfS that gives the best approximation of S
near f: S(f+εx)=S(f)+εDfS(x)+o(ε) for any vector x. 

product.
Gradient is a vector that represents the differential by the 

inner product  

Definition of differential does not depend on an inner 
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Definition of gradient depends on the inner product
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Entropy gradient 
in entropic inner product
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Vector gradS in entropic inner product gives the 
Newtonian direction for S (an undergraduate 
exercise).

The gradient should belong to a subspace of zero 
balances change: for
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The thermodynamic projector
The thermodynamic projector P onto space Tf is
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Where orthogonality and all gradients are 
defined in the entropic inner product;

is the orthogonal projector onto space Tf
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Uniqueness theorem

The thermodynamic projector is the unique 
operator which transforms the arbitrary vector 
field equipped with the given Lyapunov function 
S into a vector field with the same Lyapunov
function (and also this happens on any manifold 
which is not tangent to the levels of S).
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Free lunch

The requirement is: the thermodynamic projector 
preserves the sign of entropy production. As additional 
consequences from this requirement we have:

• The thermodynamic projector preserves the value of 
entropy production (not only the sign of it);

• The thermodynamic projector transforms a system with 
Onsager reciprocity relations into a system with the 
Onsager reciprocity relations (it preserves the Onsager
relations).
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Bobylev instability of Burnett equations

Acoustic dispersion 
curves for Burnett 
approximation (dashed 
line), for first iteration of 
MIM (solid line), and for 
regularization of the 
Burnett approximation 
via partial summing of 
the Chapman-Enskog
expansion (punctuated 
dashed line). Arrows 
indicate an increase of k2.
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Negative viscosity for Burnett equations

Dependency of viscosity 
on compression for 
Burnett approximation 
(dashed line), for first 
iteration of MIM (solid 
line), and for partial 
summing (punctuated 
dashed line). 
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Invariant grid for two-dimensional chemical 
system: A1 + A2 ↔ A3 ↔ A2 + A4

One-dimensional 
invariant grid (circles) 
Projection onto the 
3d-space of 
concentrations c1, c4, 
c3. The trajectories of 
the system in the 
phase space are shown 
by lines. The 
equilibrium point is 
marked by square. 
The system quickly 
reaches the grid and 
further moves along it.
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Invariant grid for 
model Hydrogen 

burning

a) Projection onto 
the 3d-space of 

cH, cO, cOH
concentrations. 

b) Projection onto 
the principal
3D-subspace.
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Invariant 
grid as a 

screen for 
visualizing 

dierent
functions

Model 
Hydrogen 
burning
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Visualizing functions:
Entropy and entropy production

Entropy Entropy production
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Visualizing functions:
Separation of relaxation times

λ2/λ1 λ3/λ2
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Conclusion : Three reasons to use 
the thermodynamic projector

• It guarantees the persistence of 
dissipation: All the thermodynamic processes 
which should product the entropy conserve this 
property after projecting, moreover, not only the sign 
of dissipation conserves, but the value of entropy 
production and the reciprocity relations too;
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• Universality: The coefficients (and, more 
generally speaking, the right hand part) of kinetic 
equations are known significantly worse then the 
thermodynamic functionals, so, the universality of 
the thermodynamic projector (it depends only on 
thermodynamic data) makes the thermodynamic 
properties of projected system as reliable, as for 
the initial system;

• It is easy (much more easy than spectral 
projector, for example).
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Most important items

• QE vs QSS;
• Defect of invariance and the invariance 

equation;
• The system of methods for solution;
• Thermodynamics projector
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Methods for Solution

• Taylor expansion near equilibrium 
(Lyapunov,…)

• Singular perturbation expansion (small 
parameter) (Chapman-Enskog, Fenichel,…)

• The Newton method (Kolmogorov-Arnold 
for Hamiltonian systems, Fraser-Roussel, 
Gorban-Karlin,…)

• Relaxation methods (Foias-Jolly-
Kevrekidis-Sell-Titi; Gorban-Karlin,…) 
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The thermodynamic projector
The thermodynamic projector P onto space Tf is
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Where orthogonality and all gradients are 
defined in the entropic inner product;

is the orthogonal projector onto space Tf
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Thank you for your attention

Reprints on-line:

http://www.math.le.ac.uk/people/ag153/

Just GOOGLe Gorban

http://www.math.le.ac.uk/people/ag153/
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