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Abstract

Nearly all popular reasoning forms that handle inconsistencies in a
defeasible way have been characterized in terms of inconsistency-adaptive
logics in standard format. This format has great advantages, which are
explained in Sections 1 and 2. This suggests that inconsistency-adaptive
logics form a suitable unifying framework for handling such reasoning
forms.

I shall present four new arguments in favour of this suggestion. (i) Iden-
tifying equivalent premise sets proceeds along familiar lines and is much
easier than for many other formats. (ii) Inconsistency-adaptive logics of-
fer maximally consistent interpretations by themselves, without requiring
tinkering from their user. (iii) Characterization in terms of inconsistency-
adaptive logics offers easy extensions and variations (a fascinating new
type of example will be given). (iv) Inconsistency-adaptive logics allow
for axiomatizations that identify a set of isomorphic models and enable
one to describe inconsistent models in an unambiguous way.

1 Introduction

A variety of formats is used to present defeasible logics. More often than not,
the format is typical for the logic and derives from the accidental way in which
the logic was discovered. Not only the object level description, but also the
proof techniques needed for metatheorems vary with those formats. Unifying
this domain seems highly useful if not necessary.

As soon as a standard format for adaptive logics was devised,1 it seemed to
offer an attractive means for unification. Today nearly all (first order) defeasible
logics have been characterized by adaptive logics. Moreover, the unification is a

∗Research for this paper was supported by subventions from Ghent University and from
the Fund for Scientific Research – Flanders. I am indebted to Graham Priest for comments
on a former draft of this paper.

1The first steps were taken in [2], but later the matter was refined. The best published
formulation appears in [4]. The most reliable reference on adaptive logics is [7], of which the
central chapters are available on the web.
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strong one. If an adaptive logic is in standard format, the format itself defines
the logic’s proof theory and semantics—see Sections 1 and 2. Moreover, most
of the metatheory has been proved in terms of the standard logic alone. This
includes soundness and completeness and a host of properties.

The standard format of adaptive logics may still prove not to be the right
unifying frame. New defeasible logics may be discovered and may require that
the format is modified or replaced. Or another format may turn out superior
in the end. Nevertheless, especially in terms of the new arguments presented
below, it is certainly worthwhile to continue the unification in terms of the
standard format.

In the present paper, four new arguments are presented in favour of charac-
terizing defeasible reasoning forms by adaptive logics in standard format. The
arguments are diverse in nature, but all point in the same direction.

For the first two arguments, more technical papers are in preparation. This
is why I shall consider them briefly, pointing out the results and commenting
on their significance while referring, for technical matters, to the forthcoming
papers. The third and fourth argument are presented a bit more at length.

2 Preliminaries

In order to make the paper minimally self contained, I shall first briefly summa-
rize the standard format of adaptive logics. First, however, I need to introduce
some logics.

Where CL is classical logic, let CLuN be the full positive fragment of CL
together with the axiom A ∨ ¬A.2 CLuN is just like CL except that it allows
for gluts with respect to negation (whence its name). So it is a paraconsistent
logic and actually (with respect to CL) the most basic paraconsistent logic that
is not also paracomplete. CLuNs, studied at length in [8], is the paraconsistent
logic obtained by extending CLuN with double negation (in both directions) de
Morgan axioms, axioms expressing the standard classical behaviour of negations
of implications, negations of equivalences, and negations of the quantifiers, and
Replacement of Identicals—its name refers to Schütte who first described its
propositional fragment in [27]. LP is a fragment of CLuNs: all logical symbols
have the same meaning as in CLuNs except for implication and equivalence,
which are explicitly defined by A ⊃ B =df ¬A ∨ B and A ≡ B =df (A ∧ B) ∨
(¬A ∧ ¬B) and hence are not detachable.

The sequel of this section may be skipped by people familiar with adaptive
logics. An adaptive logic AL is defined by a triple:

(i) A lower limit logic LLL: a reflexive, transitive, monotonic, and compact
logic for which there is a positive test.

(ii) A set of abnormalities Ω : a set of LLL-contingent formulas, characterized
by a (possibly restricted) logical form F which contains at least one logical
symbol.

(iii) An adaptive strategy : Reliability, Minimal Abnormality, . . .
The lower limit logic is the stable part of the adaptive logic; anything that

follows from the premises by LLL will never be revoked. For technical reasons,
all classical symbols are added to the lower limit logic, whence this extends CL.
In the present context, this means that classical negation, ¬̌, is added next to

2Replacement of Identicals is not derivable in CLuN but can be added.
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the standard negation, ¬, which is paraconsistent. In standard applications,
¬̌ does not occur in the premises or in the conclusion. Its function is techni-
cal and metatheoretical. Abnormalities are supposed to be false “unless and
until proven otherwise”. Strategies are ways to handle derivable disjunctions
of abnormalities: an adaptive strategy picks one specific way to interpret the
premises as normally as possible. To keep the discussion with bounds, I shall
only consider the Minimal Abnormality strategy—see below—in the present
paper.

From now on, I shall take “adaptive logic” to mean adaptive logic in standard
format. Inconsistency-adaptive logics are adaptive logics the lower limit of which
has a paraconsistent standard negation.

Let us review some examples of inconsistency-adaptive logics. CLuNm has
CLuN as its lower limit logic, Ω = {∃(A ∧ ¬A) | A ∈ F}, and Minimal Abnor-
mality as its strategy—F is the set of open and closed formulas and ∃(A∧¬A)
is the existential closure of A ∧ ¬A. CLuNsm is similar, except that CLuNs
is its lower limit and its set of abnormalities is Ωa = {∃(A ∧ ¬A) | A ∈ Fa}, in
which Fa is the set of open and closed primitive formulas (those that contain
no logical symbol except possibly for identity). LPm is exactly like CLuNsm

except that LP is its lower limit.
If the lower limit logic is extended with an axiom by which all abnormalities

entail triviality, one obtains the upper limit logic ULL. The upper limit logic of
CLuNm , of CLuNsm , and of LPm is CL. If a premise set Γ does not require
that any abnormalities are true, the AL-consequences of Γ are identical to its
ULL-consequences. In the opposite case, the AL-consequence set of Γ will in
general be a superset of its LLL-consequences.

In the expression Dab(∆), ∆ is a finite subset of Ω and Dab(∆) denotes
the classical disjunction of the members of ∆. Dab(∆) is called a Dab-formula.
Dab(∆) is a minimal Dab-consequence of Γ iff Γ `LLL Dab(∆) whereas Γ 0LLL

Dab(∆′) for all ∆′ ⊂ ∆. Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-
consequences of Γ, Φ(Γ) comprises the minimal choice sets of {∆1,∆2, . . .}.
Where M is a LLL-model, Ab(M) is the set of abnormalities verified by M .

Definition 1 A LLL-model M of Γ is minimally abnormal iff there is no LLL-
model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Definition 2 Γ �ALm A iff A is verified by all minimally abnormal models of
Γ.

It was proved in [4] that a LLL-model M of Γ is minimally abnormal iff
Ab(M) ∈ Φ(Γ).

Adaptive logics have also a dynamic proof theory, which is defined by rules
of inference and by a marking definition. An annotated AL-proof consists of
lines that have four elements: a line number, a formula, a justification and a
condition. Where

A ∆

abbreviates that A occurs in the proof as the formula of a line that has ∆ as its
condition, the (generic) inference rules are:
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PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B∨̌Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

In RU, ∨̌ abbreviates classical disjunction. By applying the above rules, one
moves from one stage of a proof to another. A stage is a list of lines—stage 0 of
any proof is the empty list. Stage s′ is an extension of s iff all lines that occur
in s occur in the same order in s′. A dynamic proof is a chain of stages.

That A is derivable on the condition ∆ from the premise set Γ may be
interpreted as follows: it follows from Γ that A or one of the members of ∆ is
true. As the members of ∆, which are abnormalities, are supposed to be false, A
is considered as derived, unless and until the supposition cannot be upheld. The
precise meaning of this depends on the strategy, which determines the marking
definition (see below) and hence determines which lines are marked at a stage.
If a line is marked at a stage, its formula is considered as not derived at that
stage.

Dab(∆) is a minimal Dab-formula at stage s of an AL-proof iff, at stage s,
Dab(∆) is derived on the condition ∅ and there is no ∆′ ⊂ ∆ for which Dab(∆′)
is derived on the condition ∅. Where Dab(∆1), . . . , Dab(∆n) are the minimal
Dab-formulas at stage s of a proof from Γ, Φs(Γ) is the set of minimal choice
sets of {∆1, . . . ,∆n}.

Definition 3 Marking for Minimal Abnormality: Line l is marked at stage s
iff, where A is derived on the condition ∆ at line l, (i) there is no ϕ ∈ Φs(Γ)
such that ϕ∩∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line on which A is
derived on a condition Θ for which ϕ ∩Θ = ∅.

This reads more easily: where A is derived on the condition ∆ at line l, line
l is unmarked at stage s iff (i) there is a ϕ ∈ Φs(Γ) for which ϕ ∩ ∆ = ∅ and
(ii) for every ϕ ∈ Φs(Γ), there is a line at which A is derived on a condition Θ
for which ϕ ∩Θ = ∅.

Definition 4 A is finally derived from Γ at line l of a stage s iff (i) A is the
second element of line l, (ii) line l is not marked at stage s, and (iii) every
extension of the stage in which line l is marked may be further extended in such
a way that line l is unmarked.

Definition 5 Γ `AL A (A is finally AL-derivable from Γ) iff A is finally
derived at a line of a proof from Γ.

As announced, most of the metatheory is provable in terms of the standard
format, including that Γ `AL A iff Γ �AL A.
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3 Equivalent Premise Sets

This section reports on joint work with Peter Verdée and Christian Straßer—
see[10]. It is often important to determine whether two premise sets, Γ and Γ′,
are equivalent with respect to a logic L, i.e. CnL(Γ) = CnL(Γ′). Thus, two the-
ories may be ‘identical’ or not and two people may or may not share the same
view on some topic. Determining whether two premise sets are identical by
computing the sets CnL(Γ) and CnL(Γ′) is obviously an impossible task. For-
tunately certain criteria may be applied if the underlying logic is a Tarski logic
(a reflexive, transitive, monotonic consequence relation), which is the common
type of logics.3

Let L′ be weaker than L iff CnL′(Γ) ⊂ CnL(Γ) for some Γ and CnL′(Γ) ⊆
CnL(Γ) for all Γ. The three most straightforward criteria are C1–C3 below. C1
is a direct criterion; the other criteria refer to a different logic. C2 and C3 are
especially handy if L is a complicated logic.

C1 If Γ′ ⊆ CnL(Γ) and Γ ⊆ CnL(Γ′), then Γ and Γ′ are L-equivalent.

C2 If L′ is a Tarski logic weaker than L, and Γ and Γ′ are L′-equivalent, then
Γ and Γ′ are L-equivalent.

C3 If every CnL(∆) is closed under a Tarski logic L′ (viz. CnL′(CnL(∆)) =
CnL(∆) for all ∆), and Γ and Γ′ are L′-equivalent, then Γ and Γ′ are
L-equivalent.

For most defeasible logics, as formulated in the literature, one or more of the
criteria break down. Easy examples are the Strong (or inevitable) consequence
relation (Γ `Strong A iff Γ′ `CL A for every maximal consistent subset of Γ′ of
Γ) and the Weak consequence relation (Γ `Weak A iff Γ′ `CL A for some maxi-
mal consistent subset of Γ′ of Γ)—see [26] and [11]. Note that C1 does not hold
for the Weak consequence relation and that C3 fails for the Strong consequence
relation. The way in which some defeasible logics are presented causes the sit-
uation even to be worse. Thus criteria C1–3 require heavy reformulation before
they even make a chance to be applicable to the many kinds of default logics
or to the very transparent pivotal-assumption consequence relations defined in
[17].

The situation is completely different for adaptive logics: criteria C1–C3 prov-
ably hold for all of them. The proofs (in [10]) rely on the fact that all adaptive
logics have the following properties: reflexivity, fixed point (CnAL(CnAL(Γ)) =
CnAL(Γ)), cumulative monotonicity (if Γ′ ⊆ CnAL(Γ), then CnAL(Γ) ⊆ CnAL(Γ∪
Γ′)), and cumulative transitivity (if Γ′ ⊆ CnAL(Γ) then CnAL(Γ ∪ Γ′) ⊆
CnAL(Γ))—note that these properties are provable from the standard format.
So, for adaptive logics, we have handy criteria for determining the equivalence
of premise sets (and the identity of theories) and these criteria are the same as
for Tarski logics.

Some will wonder how this is possible, given the claim that all defeasible
first-order logics can be characterized by an adaptive logic. The reason is that
the characterization often proceeds under a translation. An example might

3Tarski logics that are compact and semi-recursive may be characterized as logics that have
static proofs, whereas defeasible logics have dynamic proofs. A first version of the theoretical
analysis of such notions is presented in [6].
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clarify this. Let the premises be formulated with classical negation, ¬̌. Let
Γ¬¬̌ = {¬¬̌A | A ∈ Γ} and let W 6¬ be the set of closed formulas that do
not contain ¬ (but may contain ¬̌). It was proved in [1] that CnStrong(Γ) =
CnCLuNm (Γ¬¬̌) ∩W 6¬. So while C3 does not hold for the Strong consequence
relation, C3 applies once the two premise sets are so translated and the ‘logic’
Strong is replaced by CLuNm .

There is a further result on extending premise sets. For every Tarski logic
L, Γ ∪ ∆ and Γ′ ∪ ∆ are L-equivalent if Γ and Γ′ are. This does not hold for
defeasible logics, not even for adaptive ones. However, for adaptive logics there
is (apart from a specific criterion) a very close approximation: If L is a Tarski
logic weaker than AL and Γ and Γ′ are L-equivalent, then Γ ∪ ∆ and Γ′ ∪ ∆
are AL-equivalent for all ∆.

Two other important results are proven in [10]. Where AL is an adaptive
logic and LLL is its lower limit logic: (i) every monotonic logic L that is weaker
than AL is weaker than LLL or identical to it and (ii) if CnAL(Γ) is closed
under a monotonic logic L, then L is weaker than LLL or identical to it. This
means that the lower limit logic provides very sharp versions of C2 and C3 and
of the criterion mentioned in the previous paragraph.

4 Reducing Tinkering

Both the structure of the Cn logics and certain statements of da Costa’s seem to
suggest that a certain stratagem should be applied to theories that turn out in-
consistent. Whether da Costa had this application in mind or not, the stratagem
is clearly interesting and suggested by the Cn logics. It is worthwhile to develop
inconsistency-adaptive logics that have the Cn systems as their lower limit be-
cause these enable one to accomplish, in more comfortable circumstances, the
task served by the stratagem. The results presented in this section are studied
at length in [5]. So I shall be brief here.

4.1 The Cn Logics and the Stratagem

The Cn-logics form a hierarchy. A simple way to describe it—not da Costa’s
original one—goes as follows. Let Cω be full positive (predicative) CL together
with the axioms A∨¬A and ¬¬A ⊃ A and the rule “if A ≡c B, then ` A ≡ B”,
in which A ≡c B iff A and B are congruent in the sense of Kleene [16, p. 153]
or one is obtained from the other by deleting vacuous quantifiers.4

Let A1 abbreviate ¬(A∧¬A),5 let A2 abbreviate ¬(A1 ∧¬A1), etc., and let
A(n) abbreviate A1 ∧ A2 ∧ . . . ∧ An. The logic Cn (n ∈ {1, 2, . . .}) is obtained
by extending Cω with the following axioms

B(n) ⊃ ((A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A))

(A(n) ∧B(n)) ⊃ (A †B)(n) where † ∈ {∨,∧,⊃}
Qx(A(x))(n) ⊃ (QxA(x))(n) where Q ∈ {∀,∃}

4All Cn logics defined below in the text are identical to da Costa’s, except that he intro-
duces Cω as the limit. Cω is like Cω except that the former has positive intuitionistic logic
where the latter has positive classical logic. An interesting study of limits of the hierarchy is
presented in [13]. The logic Cω is there called Cmin.

5While ¬A∧A and A∧¬A are Cω-equivalent, ¬(¬A∧A) and ¬(A∧¬A) are not. Which
of both is taken to express the consistency of A is a conventional matter.
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A formula of the form A(n) is a consistency statement in Cn. It expresses
that A behaves consistently—see for example [14]—in that A,¬A,A(n) `Cn

B.
Incidentally, ¬(n)A =df ¬A ∧A(n) defines classical negation in Cn.

The Cn logics form a hierarchy in that Γ `Cn A if Γ `Cm A for some m > n.
Cω forms a limit of this hierarchy. As it will be useful to have classical negation
available even in Cω, let us extend the language with the symbol ¬̌ and give
it the meaning of classical negation (by introducing the usual axioms)—the
standard negation, ¬, is still paraconsistent. Note the difference between ¬(n)

and ¬̌. The first is definable within the standard language and behaves like
classical negation in all Cm with m ≤ n, but is not definable in Cω. The second
symbol does not belong to the standard language, and hence does not occur in
the premises, but is added to the language for technical reasons.6

Two features of the Cn logics may cause some wonder. First, what is the use
of having classical negation, viz. the symbol ¬(n), definable within paraconsis-
tent logics? Next, what is the use of the hierarchy of Cn logics? The following
paragraphs answer these questions, possibly with hindsight.

The paraconsistent Cn were introduced to replace CL in inconsistent con-
texts. Let T0 = 〈Γ0,CL〉 turn out to be inconsistent. Replacing T0 by T1 =
〈Γ0,C1〉 saves the theory from triviality—I suppose that Γ0 does not contain
any formulas of the form ¬(A ∧ ¬A) because these are CL-tautologies. At the
same time, however, T1 is much poorer than is desirable. Suppose that A ∨ B
and ¬A are C1-derivable from Γ0 and that A is not. As Γ0 was intended to be
consistent, one would expect B to be derivable as well. But A ∨ B,¬A 0C1

B.
So, if A is not C1-derivable from Γ0, one might extend Γ0 with the consistency
statement A(1). This delivers the desired result because A∨B,¬A,A(1) `C1

B.
Exactly the same situation arises if ¬B ⊃ A and ¬A are C1-derivable from
Γ0. So the addition of consistency statements to an inconsistent theory has
dramatic effects. Within the paraconsistent context, it drastically enriches the
theory. Moreover, the so enriched theory approaches the original theory, T0, as
it was originally intended.

Adding consistency statements involves a danger. Let T ′1 = 〈Γ1,C1〉 in
which Γ1 is obtained by adding a set of consistency statements of the form A(1)

to Γ0. T ′1 may very well be trivial. When this is the case, one may retract some
of the added consistency statements. There is, however, another possibility.

The transition from T0 to T1 involves the replacement of CL, which da Costa
also calls C0, by C1 in order to avoid triviality. If T ′1 turns out trivial, one may
replace C1 by C2—let the result be T2. In this way, triviality is avoided again;
statements of the form A(1) are not consistency statements in the context of C2.
Moreover, relying on the insights from the failed previous attempt, one may
enrich Γ1 with consistency statements of the form A(2), which have the desired
effect in the context of C2. This process may be repeated. If T ′n = 〈Γn,Cn〉, Γn

comprising no statements A(m) for which m > n,7 and is trivial, replacing Cn

by Cn+1 restores non-triviality because no A(m) occurring in T ′n is a consistency
statement with respect to Cn+1.

6The approach is related to, but different from, the one followed in [12], where a consistency
operator, ◦A, belongs to the standard language and is implicitly defined by, for example,
◦A ⊃ ((A ∧ ¬A) ⊃ B).

7Just as A1 is a CL-theorem, viz. a C0-theorem, Am is a Cn-theorem whenever m > n.
So one may suppose that no formula of the form Am or A(m) is Cn+1-derivable from the
non-logical axioms of a theory that has Cn as underlying logic.
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The stratagem demands the presence of classical negation and the Cn hier-
archy and so motivates them. Certain phrases used by da Costa also suggest the
stratagem. Thus he states that Cn logics isolate inconsistencies and he distin-
guishes between ‘good’ and ‘bad’ theorems of Cn-theories, the bad ones being
those whose negation is also a theorem. In order to isolate the bad theorems and
to take advantage of the good ones, one needs to add consistency statements to
the theory.

4.2 The Adaptive Logics

I shall proceed in two steps. First we need adaptive logics that interpret the
premise set as consistently as possible with respect to a Cn-logic. Let us call
these Cn

m logics. These inconsistency-adaptive logics enrich a premise set with
the consistency statements that are justifiable by logical means. The Cn

m-
logics should have been devised a long time ago, were it only because of the
historical significance of the Cn logics. There was, however, a difficulty. Cn

logics validate relations between contradictions and whenever this is the case
there is a possibility that a flip-flop logic results. Flip-flop logics are adaptive
logics, but are uninteresting for most application contexts. They behave like
the upper limit logic whenever the premise set is normal, which is all right, and
behave like the lower limit logic whenever the premise set is abnormal (requires
at least one abnormality to be true), which is not all right. Fortunately, a
criterion for flip-flop behaviour, in terms of a specific indeterministic semantics,
was developed—see [5, §6] for the application of the criterion to the Cn logics.
In view of this result, the following logics are not flip-flops. For each n, Cn

m is
defined as the triple consisting of (i) Cn, (ii) Ω = {∃(A ∧ ¬A) | A ∈ F}, and
(iii) Minimal Abnormality—the result generalizes to Reliability, which I do not
consider for lack of space.

These logics assign as consequences of a premise set Γ all formulas true
in the minimally abnormal Cn-models of Γ—this obviously includes all Cn-
consequences of Γ.

Applying the adaptive logics has certain advantages over following the strat-
agem. First of all, the logic itself adds consistency statements that can be
added on logical grounds; no tinkering is involved. Next, for some (actually
most) premise sets, the consequence set will comprise an infinite number of
consistency statements as well as all their consequences. Note that this effect
cannot be obtained by tinkering. Moreover, it is possible that a Dab-formula is
derivable, say (p∧¬p)∨ (q∧¬q), of which no disjunct is derivable. In this case,
there is no logical justification for either of the two disjuncts. So the logic will
not chose between ¬(p∧¬p) and ¬(q ∧¬q), but will have the disjunction of the
consistency statements, ¬(p ∧ ¬p) ∨ ¬(q ∧ ¬q), as a consequence together with
all that follows from it.

An interesting fact concerns the choice of a Cn
m logic that is suitable for

a set of premises. It turns out that Cω
m is the suitable choice for all premise

sets. To be more precise, it holds for every Cn
m that CnCn

m (Γ) is either trivial
or identical to CnCω

m (Γ).
Now we come to the second step. Following the stratagem has also an

advantage over applying the adaptive logic. Consider again a case where (p ∧
¬p)∨ (q ∧¬q) is derivable but none of both disjuncts is. A person following the
stratagem is able to chose at this point, for example to consider p∧¬p as false,
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and hence q ∧ ¬q as true.
It is possible to introduce such ‘new premises’ within an adaptive framework

and it is actually possible to do this in a more elegant way than the stratagem
permits. First of all, the minimal Dab-formulas that are derived evoke the
question which of the disjuncts is true; so they indicate the points at which
choices may be made. Next, there cannot be logical reasons for the choices. So
the person applying the adaptive logics has to justify the new premises on the
basis of extra-logical grounds. Moreover, the addition of new premises should
proceed in a defeasible way in order to avoid possible triviality. Finally, each such
new premise is better introduced in a prioritized way. Indeed, the justification
of some consistency statements will be stronger than that of others. Given
all this, the matter may be handled by a well known combined adaptive logic,
which should only be adjusted to the circumstances in that the lower limit of
the combining adaptive logics should be Cω. The combined logic guides the
addition of prioritized consistency statements. To the Cω

m-consequences the
combined logic first adds as many as possible of the consistency statements
with the highest priority; to the result of this it adds as many as possible of the
consistency statements with the next highest priority; and so on.

For the details of the combined logic, I refer to [5]. It is interesting, however,
to note that, while the hierarchy of Cn logics proves useless on the present
approach, the priorities are expressed by formulas that largely follow da Costa’s
hierarchy of consistency statements. Thus ¬∃(A ∧ ¬A) is the least prioritized
consistency statement concerning A, ¬∃(A∧¬A)∧¬(∃(A∧¬A)∧¬∃(A∧¬A))
is the next stronger consistency statement concerning A, and so on.

4.3 Two Comments

The enrichment that will be described in Section 5 may be introduced within
the context of the Cn

m logics. This departs rather heavily from the stratagem,
but is clearly meaningful in the present context.

The second comment concerns decidability. Not taking anything back of
what I said about the advantages of the adaptive approach over the stratagem,
let me try to avoid a misunderstanding. The adaptive approach clearly cannot
make the situation more decidable than it is. For example, if the premise set is
(finite and) propositional, the adaptive consequence set is decidable. In this case,
an able logician may manage to obtain the right result in terms of the stratagem.
Where the premise set is predicative, the stratagem may lead one to the wrong
conclusions because one may never find out that an added consistency statement
causes triviality. By following the adaptive approach, a similar situation may
arise: one takes a conclusion as finally derived while it is not, because one does
not manage to derive the required Dab-formulas. If matters are undecidable,
no approach can repair this—see [15] for a challenge and [9] for an answer.

The advantages of the adaptive approach are mainly threefold. First, it
defines the consequence set in a correct way, even if this set is not recursive or
not even semi-recursive. Next, there are proof procedures (see [3] and [29]) that,
for some Γ and A, lead after finitely many steps to the conclusion that A is or
is not a final consequence of Γ. It the answer is decidable, the proof procedure
will provide it, and if it provides an answer, the answer is correct. Finally,
the adaptive approach rigorously distinguishes between consistency statements
that can be added on logical grounds and those that require an extra-logical
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justification. It guides the addition of the latter by delineating the choices to
be made and it handles the added statements according to their priority.

5 Variations

The first inconsistency-adaptive logic, dating from around 1980, had the aim
to offer a maximally consistent interpretation of premise sets, or theories, that
were intended as consistent but had turned out to be inconsistent. So when it
was recently found possible to realize the aim in a more efficient way, this came
as a shock.

Two other problems are solved at once. Inconsistency-adaptive logics are
instruments: formal characterizations of defeasible reasoning forms. We want
to have a manifold of them around to suit specific application purposes. While
there is a lot of variation with respect to the lower limit logic and the strategy,
every lower limit logic seems to determine a unique set of abnormalities8—I
disregard flip-flop logics (see Subsection 4.2). In this paper, the limitation is
overcome.

The second problem concerns the comparison between different lower limit
logics. Stronger paraconsistent logics have in general larger consequence sets
than weaker ones, but also spread inconsistencies. While the former property
makes more formulas derivable on the empty condition, the latter restricts the
number of formulas that are finally derivable but have a non-empty condition.
In general, varying the lower limit logic often leads to incomparable adaptive
consequence sets. The result presented in this paper changes the picture drasti-
cally. By varying the set of abnormalities, adaptive logics with a very weak lower
limit logic may be given a very rich consequence set. I shall present comparative
results below.

5.1 Characterization of the Abnormalities

The idea behind the enriched set of abnormalities is surprisingly simple. When
certain complex CLuNm -abnormalities are derivable, these may have different
causes. Thus if (p ∨ q) ∧ ¬(p ∨ q) is CLuN-derivable from the premises, this
may be because p is so derivable, or q is, or p ∨ q is whereas neither p nor q is.
These three cases can be distinguished.

Consider the premise set Γ1 = {¬(p∨q), q, p∨r} and let the underlying logic
be CLuNm . Note that ¬p is derivable on the condition {(p ∨ q) ∧ ¬(p ∨ q)}
and hence r is derivable on the condition {(p ∨ q) ∧ ¬(p ∨ q), p ∧ ¬p}. By the
presence of q and ¬(p ∨ q), however, (p ∨ q) ∧ ¬(p ∨ q) is derivable from Γ1 on
the empty condition and so cannot be taken to be false. So neither ¬p nor r are
CLuNm -derivable from Γ1. At first sight, this seems justified. Note, however,
that the derivability of (p ∨ q) ∧ ¬(p ∨ q) is caused by the presence of q, not by
the presence of p.

It is possible to turn this idea in a technically feasible definition? It is. In
the presence of ¬(p ∨ q), each of p ∨ q, p, and q may cause the abnormality.
The disjunction is derivable from either disjunct. Moreover, any CLuN-model
verifying p ∨ q verifies p or q, but not necessarily both. This suggests that we
consider (p∨q)∧¬(p∨q), p∧¬(p∨q), and q∧¬(p∨q) as separate abnormalities.

8This is typical for inconsistency-adaptive logics, not for other adaptive logics.
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The gain is clear: as ¬(p ∨ q) `CLuN ¬p ∨ (p ∧ ¬(p ∨ q)), p is derivable from
¬(p∨q) on the condition {p∧¬(p∨q)} if the member of this singleton counts as
an abnormality. Moreover, while q ∧ ¬(p ∨ q) is unconditionally derivable from
Γ1, p ∧ ¬(p ∨ q) is provably not a disjunct of any minimal Dab-consequence of
Γ1. Of course, this is merely an example; the matter requires elaboration.

Primitive formulas and their negations will be called atoms. Formulas that
are not atoms are classified as a-formulas or b-formulas, varying on a theme
from [28]. To each of them, two other formulas are assigned according to the
following table.

a a1 a2 b b1 b2

A ∧B A B A ∨B A B
A ≡ B A ⊃ B B ⊃ A A ⊃ B ¬̌A B

¬A ¬̌A ¬̌A
¬̌(A ∨B) ¬̌A ¬̌B ¬̌(A ∧B) ¬̌A ¬̌B
¬̌(A ⊃ B) A ¬̌B ¬̌(A ≡ B) ¬̌(A ⊃ B) ¬̌(B ⊃ A)

Next, a set sp(A) of specifying parts is assigned to every open or closed
formula A as follows:

1. Where A is a conjunction of (one or more) atoms, possibly preceded by a
sequence of quantifiers, sp(A) = {A}.

2. sp(a) = {a} ∪ {sp(A ∧B) | A ∈ sp(a1);B ∈ sp(a2)}.

3. sp(b) = {b} ∪ sp(b1) ∪ sp(b2).

4. sp(∀αA) = {sp(∀αB) | B ∈ sp(A)}.

5. sp(∃αA) = {sp(∃αB) | B ∈ sp(A)}.

The adaptive logic CLuNm
1 is defined by the following triple: (i) lower limit:

CLuN, (ii) set of abnormalities: Ωs = {∃(B ∧ ¬A) | A ∈ F ;B ∈ sp(A)}, and
(iii) strategy: Minimal Abnormality.

The mechanism is one of refinement. Even if (p ∨ q) ∧ ¬(p ∨ q) is true in
some models of a premise set, either p ∧ ¬(p ∨ q) or q ∧ ¬(p ∨ q) may be false
in some of those models and this enables us to rule out some further models as
more abnormal than required by the premises.

We have seen that the logic CLuNm
1 is richer than CLuNm with respect to

Γ1. However, the enrichment is not restricted to similar cases. Let me mention
two further examples. Consider first Γ2 = {p ∨ q,¬(p ∨ q), p ∨ r, q ∨ s}. In
view of the explicit contradiction between the first two premises, one might
expect to obtain no gain in this case. Yet, there is one. It is easily seen that
r is derivable from Γ2 on the condition {p ∧ ¬(p ∨ q)} and that s is derivable
on the condition {q ∧ ¬(p ∨ q)}. So r ∨ s is derivable on both conditions.
Moreover, the only minimal Dab-consequences of Γ2 are (p ∨ q) ∧ ¬(p ∨ q) and
(p ∧ ¬(p ∨ q)) ∨ (q ∧ ¬(p ∨ q)). It follows that r ∨ s, which is not a CLuNm -
consequence of Γ2, is a CLuNm

1 -consequence of this premise set.
Another enrichment is illustrated by Γ3 = {¬¬(p ∧ q),¬p,¬q ∨ r}. Neither

q nor r is a CLuNm -consequence of Γ3, but both are CLuNm
1 -consequences of

it.
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5.2 A Combined Inconsistency-Adaptive Logic

For all that was said, one might have the impression that CLuNm
1 offers a net

gain over CLuNm , but this is false. In order to obtain a net gain, we need
a combined adaptive logic. To see this, consider Γ4 = {¬(¬s ∨ (¬p ∧ ¬r)),
¬(¬p ∨ ¬q),¬(s ∨ p)}.

The only members of minimal Dab-consequence of Γ4 (with respect to both
Ω and Ωs) are provably 1–9 below. All are members of Ωs and only 1–3 are
members of Ω.

1 (¬s ∨ (¬p ∧ ¬r)) ∧ ¬(¬s ∨ (¬p ∧ ¬r))
2 (¬p ∨ ¬q) ∧ ¬(¬p ∨ ¬q)
3 (s ∨ p) ∧ ¬(s ∨ p)
4 ¬s ∧ ¬(¬s ∨ (¬p ∧ ¬r))
5 (¬p ∧ ¬r) ∧ ¬(¬s ∨ (¬p ∧ ¬r))
6 ¬p ∧ ¬(¬p ∨ ¬q)
7 ¬q ∧ ¬(¬p ∨ ¬q)
8 s ∧ ¬(s ∨ p)
9 p ∧ ¬(s ∨ p)

It is also provable that we may restrict our attention, in this specific propo-
sitional case, to models of Γ4 that verify the premises together with some of
the relevant propositional letters and the classical negation of the others. A
survey is displayed in Table 1. Unmentioned letters may receive an arbitrary
value, provided they are not inconsistent. The numbers in the table refer to the
abnormalities listed before. The first row of stars depicts the (kinds of) models
that are minimally abnormal with respect to CLuNm ; the second row of stars
those that are moreover minimally abnormal with respect to CLuNm

1 . The
two-step selection is required because the second, fourth, sixth, eight, and ninth
models are minimally abnormal with respect to Ωs-abnormalities, but none of
them is minimally abnormal with respect to Ω-abnormalities. The so combined
selection delivers the consequences q, p ∨ r, s ∨ r, . . . on top of those delivered
by CLuNm .

Let us call the combined adaptive logic CLuNm
c and let CnCLuNm

c
(Γ) =

CnCLuNm
1

(CnCLuNm (Γ)), which offers the right selection of models. Proof the-
oretically such logics seem to be disastrous: it seems that one needs to compute
CnCLuNm (Γ) before one can even start to apply CLuNm

1 . But this is not so.
As was spelled out already in [2], the dynamic proof theory of thus combined
adaptive logics is hardly more complex than that of the combining logics.

5.3 Some Comparisons

As promised, I shall now show that the combined logic CLuNm
c does not only

better than CLuNm , but does also very good in comparison to inconsistency-
adaptive logics that have a richer lower limit. Below, I consider five premise
sets to compare CLuNm

c with the corresponding adaptive logics that have as
their lower limit logic respectively the maximal paraconsistent logic CLuNs
and LP. I list the results for the latter logics together where they are identical
with respect to the formulas that are listed—they differ from each other with
respect to formulas that contain implications or equivalences.
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p p p p p p p p ¬̌p ¬̌p ¬̌p ¬̌p ¬̌p ¬̌p ¬̌p ¬̌p
q q q q ¬̌q ¬̌q ¬̌q ¬̌q q q q q ¬̌q ¬̌q ¬̌q ¬̌q
r r ¬̌r ¬̌r r r ¬̌r ¬̌r r r ¬̌r ¬̌r r r ¬̌r ¬̌r
s ¬̌s s ¬̌s s ¬̌s s ¬̌s s ¬̌s s ¬̌s s ¬̌s s ¬̌s

1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3
∗ ∗ ∗ ∗ ∗ ∗

4 4 4 4 4 4 4 4
5 5 5 5

6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9
∗ ∗ ∗

Table 1: CLuN-models of Γ4

Γ5 = {¬(p ∨ q), q ∨ r, p,¬p ∨ s}
CLuNm CLuNm

c CLuNsm/LPm

p p p
¬p

¬q ¬q
q ∨ r r r
s s

Γ6 = {p ∨ q,¬(p ∨ q), p ∨ r, q ∨ s}
CLuNm CLuNm

c CLuNsm/LPm

¬p
¬q

p ∨ q p ∨ q p ∨ q
p ∨ r p ∨ r p ∨ r
q ∨ s q ∨ s q ∨ s

¬p ∨ ¬q
r ∨ s

Γ7 = {p, ¬p ∨ q, ¬(p ∨ r), ¬¬p ⊃ s}
CLuNm CLuNm

c CLuNsm LPm

p p p p
¬p ¬p

¬¬p ¬¬p ¬¬p ¬¬p
¬r ¬r ¬r

q q
s s s
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Γ8 = {p, ¬p ∨ q, ¬(p ∨ r), ¬¬p ⊃ s,¬q ∨ t, r ∨ u}
CLuNm CLuNm

c CLuNsm LPm

p p p p
¬p ¬p

¬¬p ¬¬p ¬¬p ¬¬p
¬r ¬r ¬r

q q
s s s
t t

u u u

It is interesting to study the difference between the consequence sets. In
all cases, (i) the CLuNsm -consequences or LPm -consequences that are not
CLuNm

c -consequences cause additional inconsistency and (ii) some CLuNm
c -

consequences are neither CLuNsm -consequences nor LPm -consequences and
they do not cause additional inconsistency. I am not claiming, however, that
CLuNm

c is better than the other adaptive logics. An instrument should be
used where it is suitable. The only point I wanted to make is that CLuNm

c

maximally isolates inconsistencies, just as much as CLuNm , but nevertheless
offers an extremely rich consequence set.

6 Parsimonious Axiomatizations

6.1 The Problem

Let LA be the language of arithmetic (with one constant, 0, and three functions,
′, +, and ×). In several places, for example [22, 23, 24, 25], Graham Priest
considers inconsistent models of arithmetic—see also [19, 20]. In these models,
the logical symbols are interpreted in terms of Priest’s LP—implication and
equivalence are defined and non-detachable. I shall only consider the so-called
collapsed models.
Mn

p denotes the model with the following successor graph:

0 → 1 → . . . → n → n+ 1
↑ ↓

n+ p− 1 ← . . .

In order to simplify the subsequent argument, let us concentrate on modelsMn
1 ,

which have the following successor graph

0 → 1 → . . . → n

�
Let us more particularly concentrate on M2

1. In order to avoid confusion
between numbers and numerals, let the domain of the model be {f,m, a} and
let the interpretation of the successor function be characterized by the following
graph:

f → m → a

�
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with v(0) = f, viz. the constant 0 is taken to name f. So 0′ names m, and 0′′,
0′′′, etc. all name a.

EveryMn
1 can be seen as modelling a specific inconsistent arithmetic An

1 =
{A | Mn

1  A} (the formulas of LA that are verified by Mn
1 ). As every Mn

1 is
a finite model, An

1 can be finitely axiomatized with LP as the underlying logic.
This means that there is a recursive, and actually finite, set of formulas Γ such
that An

1 = {A | Γ `LP A}.
There is, however, an oddity. Not only M2

1, but also M1
1 as well as the

trivial model M0
1 are models of A2

1. This is related to the fact that A0
1 ⊇

A1
1 ⊇ A2

1 ⊇ . . .. It is also related to the fact that M2
1 is a model of classical

arithmetic,9 which, provided it is consistent, is a limit of this sequence of sets.
The sentences of LA that are true in the standard model of arithmetic are also
true in the finite and inconsistent modelM2

1. In the same way the sentences of
LA that are true in M2

1 are also true in M1
1 and in M0

1.
It follows from Gödel’s first theorem that no consistent axiomatization of

first-order sentences true in the standard model of arithmetic identifies the
standard model. Every such axiomatization also has non-standard models, the
domain of which comprises objects not named by any numeral. So no (first-
order) axiomatization identifies the standard model. The situation is similar
for every An

1 , except that the domains of the non-intended models comprise
not more but less objects than the domain of the intended model—the larger
n, the greater the number of non-intended models. In many other respects, the
situation is dissimilar from the situation of classical arithmetic, but in this sense
it is similar.

The failure to identify a single model, say M2
1, is obviously contingent on

the object language and on the underlying logic. Let us first have a look at
variant logics.

6.2 A LPm-Axiomatization

One might hope to identify M2
1 by presenting an axiomatization that has

LPm—see [21] or better [25]—as its underlying logic rather than LP. Indeed,
LPm selects the ‘minimal abnormal’ LP-models of a premise set—see below for
the quotation marks. InM2

1, the denotation of 0′′ and of all higher numerals are
inconsistent with respect to identity (that is 0′′ = 0′′ ∧¬ 0′′ = 0′′ is a theorem),
but the denotations of 0′ and of 0 are consistent with respect to identity. In
M1

1, the denotation of 0′ is also inconsistent with respect to identity, and inM0
1

the denotation of every numeral is inconsistent with respect to identity—M0
1 is

a trivial model.
Unfortunately, LPm does not provide a solution. The cause lies with the

way in which minimal abnormal models are defined in LPm. Here are, again,
the successor graphs of M2

1, M1
1, and M0

1:

f → m → a

�
f → a

�
a

�
The ‘abnormal part’ of a model is represented in LPm by the atomic incon-

sistent ‘facts’ that hold in the model. In other words, for every n-ary predicate

9By “classical arithmetic” I obviously mean the set of formulas true in the standard model
and not the theorems of some axiom system.
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R, the n-tuples that belong to both the extension of R, v+(R), and to the anti-
extension of R, v−(R)—see [25] for details. The only predicate that matters
in the present context is identity and all three models have the same abnormal
part, viz. v+(=)∩v−(=) = {〈a, a〉}. So all three models are LPm-models of A2

1.
This means that no LPm-axiomatization identifies M2

1 and that the difficulty
remains.

Incidentally, we obviously need v(0) = a instead of v(0) = f in the displayed
model M0

1. Some isomorphic models have f as the only element of the domain,
and these have exactly the same abnormal part as some models isomorphic with
M1

1 and M2
1.

6.3 LPm-Axiomatization

Unlike LPm, LPm is an adaptive logic in standard format; it was described
in Section 2. The difference with LPm is that abnormalities are not ‘incon-
sistent’ n-tuples of members of the domain, but formulas, viz. existentially
closed contradictions. The abnormal part of a LP-model M , Ab(M), is the
set of abnormalities verified by M . So Ab(M2

1) comprises all formulas of the
form 0i = 0i ∧ ¬ 0i = 0i in which i is a sequence of two or more names of
the successor function, as well as the LP-consequences of these, for example
∃x(x = x ∧ ¬x = x). The set Ab(M1

1) moreover comprises 0′ = 0′ ∧ ¬ 0′ = 0′

and Ab(M0
1) even comprises 0 = 0∧¬ 0 = 0. So, of the three considered models,

onlyM2
1 is a minimally abnormal model of A2

1. An LPm -axiomatization of A2
1

is obtained, for example by adding the axiom 0′′′ = 0′′ to the Peano Axioms.
Let this set of axioms be called PA2

1—there are obviously simpler, viz. finite,
sets that do exactly the same job. The axiom system 〈PA2

1,LPm〉 (the axioms
PA2

1 closed under LPm) identifies A2
1.

It is important to realize that the effect results from changing the underlying
logic. If this is LPm , the models of A2

1 have to be LPm -models, and the only
such model is M2

1.
Some may wonder whether an axiomatization with LPm as underlying logic

is really an axiomatization. Indeed, a LPm -proof of A from the premise set
Γ requires a list of formulas together with a reasoning in the metalanguage
establishing that A is finally derived in the list of formulas—see for example
[9] for details. So this kind of proofs, which are called dynamic, do not form
a positive test for (final) derivability. In the present context, however, this
complication does not arise. Given the model M2

1, which is finite, and the
language, there are prospective proofs, see for example [3], that form a decision
method for derivability. In other words, CnLPm (PA2

1) is a decidable set and the
couple 〈PA2

1,LPm〉 is a legitimate axiomatization of A2
1. For those who are still

mistrusting, let 〈∆,LP〉 be an axiomatization of A2
1—so CnLP(∆) = A2

1. Next,
consider the axiomatization 〈∆,LPm〉 and note that CnLPm (∆) = A2

1.10 As
every A2

1-theorem is LP-derivable from ∆, it is unconditionally LPm -derivable
from ∆. So in view of this metatheoretic fact, there is a positive test for A2

1-
theoremhood.

10This further clarifies the claim made in the previous paragraph. Although CnLP(∆) =
CnLPm (∆), 〈PA2

1,LP
m 〉 identifies M2

1 whereas 〈PA2
1,LP〉 does not.
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6.4 A Richer Language

Other axiomatizations are possible, even with a Tarski logic as the underlying
logic, but they all have the disadvantage that they require replacing LA by a
richer language.

The first alternative is that one adds classical (or Boolean) negation, ¬̌.
A suitable axiomatization is obtained by extending PA2

1 with, for example,
¬̌ 0′ = 0′′. In the presence of classical negation, ¬̌ 0 = 0′ is derivable from this
and, in general, ¬̌A is derivable whenever A is “false only” in M2

1. Apart from
requiring an extension of the language, this approach has the further disadvan-
tage that it is opposed to Priest’s philosophical views—he has argued against
the meaningfulness of classical negation, a point which I shall not discuss here.

Another alternative is to extend the language with a relevant implication,
→, as well as with bottom, ⊥, and adding to PA2

1 axioms like 0′ = 0′′ → ⊥,
0 = 0′ → ⊥, and so on. If the relevant implication is the one from [25, §18.3],
the “and so on” should not be underestimated; even 0′ = 0 → ⊥ is not a
consequence of 0 = 0′ → ⊥. If the n in Mn

1 is large, the number of required
axioms will be impressive, but obviously finite.

This approach too seems to involve difficulties. If the relevant implication
is not extremely poor, one will have as a theorem ∀x∀y(x = y → f(x) = f(y))
for every one argument function f . So, in particular, one will have ∀x∀y(x =
y → x′ = y′) as a theorem. But then 0′ = 0′ → 0′′ = 0′′ is a theorem. As
¬ 0′′ = 0′′ is a theorem of PA2

1 and → is contraposable, ¬ 0′ = 0′ would be a
theorem of PA2

1. But this is wrong: ¬ 0′ = 0′ is false in M2
1 and so should not

be a theorem of PA2
1. Of course, the difficulty will not occur if the relevant

implication is weaker, for example is the one from [25, §18.3]. One wonders,
however, whether this implication will be sufficient to formalize the whole body
of our knowledge, empirical and mathematical. Indeed, Priest is a monologist.
So he opposes using different logics in different contexts.

The presence of an enthymematic implication does not repair the situa-
tion. Indeed, while one might prefer to replace the relevant implication in
¬ 1 = 1 → ⊥ by an enthymematic one, there is no reason to perform the same
replacement in ∀x∀y(x = y → f(x) = f(y)) in case this is a theorem. How-
ever, the presence of a non-contraposable relevant implication would remove
this specific difficulty, might very well be justifiable,11 and seems to provide a
sufficiently strong statement ∀x∀y(x = y → f(x) = f(y)).

More serious difficulties are lurking around the bend. First, the relevant
implication is ad hoc in the present context—it occurs nowhere else in the in-
consistent arithmetic, just like the classical negation from two paragraphs ago.
Next, I cannot see any sense in which ¬ 0′ = 0′ can be said to relevantly imply
every statement of the language. Adding the implicative axioms comes to a
technical trick. It does the job, but can only be justified by the argument that
it provides a warrant that is as good as the one the classical logician invokes
by recurring to classical implication (which connects classical inconsistency to
triviality)—but see below.

Another difficulty is related to the fact that everything is true in the trivial
model, in the present context M0

1. So, even if it can be avoided that M1
1 is a

model of A2
1, this theory still has bothM2

1 andM0
1 as models, and so does not

11The most obvious justification for contraposition is consistency. So I always wondered
why so many relevant logicians want their implications to be contraposable.
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identify M2
1 in a unique way—please compare with the LPm -axiomatization

which does rule out the trivial model M0
1.

Incidentally, the classical logician seems to do better in this respect on her
understanding. She can claim that adding ¬̌ 0′ = 0′′ identifies M2

1 in a unique
way. On the classical logician’s understanding, there is no trivial model because
the truth values, say t and f , are distinct, vM is a function, and vM (¬̌A) = t iff
vM (A) = f . So there are no models in which vM (¬̌A) = t = vM (A). Of course
Graham Priest has argued that the classicist’s understanding makes no sense,
a point not discussed here.

6.5 Describing the Models

Until now, I phrased the difficulty as one of axiomatizing the formulas true in the
modelsMn

p , while I took those models at face value. However, a similar difficulty
affects the description of the models. Whether one considers the description I
gave above or the description in [25], the model M1

1 actually agrees with the
description of the model M2

1. The domain counts three different objects, f,
m, and a. Of these, m and a are not only different but also identical and the
successor function holds between them. Note, incidentally, that “m” and “a”
are not the elements of the domain, but the names of these elements; just as
the drawing is not the successor graph, but a representation of it. That the
characters “m” and “a” are not identical, but different, and different only for
that matter, does not prevent them from naming the same entity.12 By a similar
reasoning, the model M0

1 agrees with the description of M2
1.

So the description of M2
1 does not identify this model as we understood it,

unless we presuppose that the description is as consistent as possible, viz. is
presented in terms of LPm . Unlike LPm, LPm will select the right description
and will select the right models of the description—these are not the models
described by the description.

7 Concluding Comment

Rather than commenting on the promise made in Section 1, I shall comment on
a consequence of the preceding section.

In [18], Chris Mortensen writes that, according to inconsistency-adaptive
logics, “only consistent conclusions are deduced pro tem” and continues “In the
opinion of this (opinionated) writer, consistentising strategies are useful for the
context of discovery, but fail to do justice to a priori reasoning from inconsistent
premises, where one should be acknowledging the full role of all the premises
without dodging the inconsistencies in them.” These claims are actually false,13

but the reason to quote them lies elsewhere, viz. in the presupposed status of a

12One shouldn’t make too much of the “different only” phrase. In Priest’s view it may be
true together with “the characters are the same”, for otherwise “This sentence is false and
only false.” would produce triviality.

13The first quoted claim is obviously false: all formulas derivable by the lower limit logic are
adaptively derivable, whether consistent or inconsistent. However, some further consequences
are adaptively derivable by taking as many other inconsistencies to be false as the premises
permit. So inconsistency-adaptive logics do acknowledge the full role of all the premises and
do not dodge any inconsistencies in them. They presuppose that inconsistencies are false
unless and until proven otherwise, from the premises that is.
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priori reasoning. If there is any truth in Section 6, one needs “consistentising
strategies” in order to describe the models Mn

p and this is apparently required
before any a priori reasoning about them can even start. Inconsistency-adaptive
logics were always presented as instruments (or methods), which may be more
or less suited to a specific context, and not as candidates for “the true logic” or
“the standard of deduction” or “the canon of a priori reasoning”. Nevertheless,
the situation depicted in Section 6 seems to present a further argument, apart
from many others, to mistrust a strict separation between sensible reasoning
instruments and a priori reasoning. It also suggests that, while it is easy to
explain the paraconsistent viewpoint by relying on classical results, such as the
supposedly consistent standard model of arithmetic, it might be more difficult
for the monologist dialetheist to offer her teachings from scratch. That Graham
Priest has been persistently working in that direction, including the development
of a dialetheisticly sound set theory, deserves the admiration and sympathy of
every logician, even of those who (like me) consider the standard of reasoning
as context dependent.
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