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Introduction 

For Logical Empiricism logic was the clue to separating sound reasoning from unsound reasoning 

and this separation was fundamental, first for understanding science, and next for demarcating 

science. So logic, formal logic that is, was central for the philosophy of science. The situation 

changed with the advent of the historicist movement. Science was seen by this movement as 

content-driven, as contextual. The role of formal logic was reduced to checking deductive 

inferences. Logic had nothing interesting to contribute to the mechanisms that are responsible for 

scientific change. 

 Shapere (2004) offers an interesting analysis of the reasons why both movements were 

bound to fail, of the roots of the difficulties, and of their solution. A crucial statement is that “the 

content of the science that is accepted at any given epoch provides the reasons guiding, and 

sometimes driving, further inquiry” (p. 50). So science is content-guided: the basis for scientific 

reasoning is “what we have learned, including what we have learned about how to learn” (p. 52). 

Viewing science in this way will enable philosophers to avoid regarding the scientific method, or 

possible scientific methods, as identifiable a priori without, at the same time, embracing the 

relativism of the historicist movement. This view has been gaining wide adherence during the last 

few decades.  

 One might conclude that this view still heavily restricts the role of logic, viz. to avoiding 

mistaken deductive inferences, but I shall try to show that this conclusion is mistaken. Precisely 

because science is content-guided, articulating a precise philosophy of science requires a heavy 

dose of logic. It moreover requires intense creative work in logic.  

 In the sequel of the paper, I shall mainly deal with methodological issues. Before getting 

there, however, it is useful to briefly discuss the issue of the standard logic. 

 

The Standard Logic 

We need logic for avoiding mistaken deductive inferences, but which logic? First order classical 

logic (henceforth CL) is clearly best established and most widely promoted by logicians. 

However, many logicians do not accept CL as “the true logic.” Intuitionists and (mathematical) 

constructivists see intuitionistic logic as the standard in mathematics, and sometimes as the 

general standard. Relevance logicians have argued that CL is mistaken in several respects and 

that the true logic is a relevant one. Dialetheists argue that there are true contradictions and hence 

that the true logic should be paraconsistent, i.e., that it should not validate the inference from a 

contradiction to arbitrary statements (from A and not-A to derive B). And a number of logics, 
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actually too many to even mention the most representative ones, have been presented for specific 

purposes. The sciences hardly played any role in most of these proposals – quantum logic is an 

exception. The driving arguments came from insights in everyday language, from metaphysics, 

and from the history of logic. 

 So the logic community is not much help in identifying the true logic. But is there a true 

logic? A logic determines the meaning of ‘logical words’ such as ‘and’, ‘not’, ‘for all’, etc. These 

words are part of languages by which humans try to get a grasp on the world. But choosing a 

language does not warrant that it is suitable for correctly describing the world. The transition 

from Newton-and-Maxwell to relativity requires that the language is modified (“conceptual 

change”). The same holds apparently for every scientific revolution and even for less drastic 

scientific changes. The point is hardly contentious; decennia ago Hempel (1958) acknowledged 

that conceptual change is just as legitimate a move as a replacement of accepted statements 

within the current conceptual system. If the meaning of logical words does not form an exception 

in this respect, then only the future history of science can determine which is the true logic. 

 Every logic contains certain presuppositions about the world. Thus CL presupposes, 

among many other things, that the world is consistent (that no A is true together with not-A). 

Remark, however, that scientific reasoning should enable us to derive conclusions from, among 

other things, statements that we have reasons to accept on the basis of our best scientific insights. 

Clearly, stipulating that inconsistencies are false cannot exclude that the available data together 

with the accepted theories might provide reasons to accept A as well as reasons to accept not-A. 

Moreover, there are historical cases, both from mathematics and from the empirical sciences, in 

which reasons to accept a statement as well as its negation were present – for references to case 

studies see (Meheus 2002). 

 Some will argue that, if we have a reason to accept A as well as a reason to accept not-A, 

then at least one of the reasons is bound to be a bad one. This means that, if a scientific discipline 

is in an inconsistent state, then one should try to reform it and bring it to a consistent state. I 

largely agree to this (Batens 2002). It is crucial, however, that, in order to transform the 

inconsistent state to a consistent state, one needs to reason from the inconsistent state. Only by 

doing so one can locate the inconsistencies and delineate the statements that are consistently 

affirmed by the theory. Given this still inconsistent state, one has to search for ways that remove 

the inconsistencies, but retain most of the ‘consistent part’ of the theory. To do so in terms of CL 

is impossible. 

 Analogous arguments apply to the other presuppositions of CL and, more generally, to the 

presuppositions of every logic L. The world may resist being grasped by a language of which the 

logical words are governed by L. In this sense, the true logic is at best the logic that would 

underlie a complete and correct science, and hence cannot be known at this moment. Meanwhile, 

however, even if we were to know this true logic, it would be of little use to us, because we have 

to reason from present-day science in order to improve it. 

 

Methodological Concepts 

Philosophers of science want to define their concepts in a precise way. Logic is often a good 

means for doing so. Definitions become more transparent when phrased in terms of a formalized 

language. Next, the metatheory of logic provides a set of clear tools: the consequence relation, 

logical relations between statements, model, contradiction, and so on. Where required, logic is 

extended with set theory, probability theory, and similar mathematical structures. Many nice 

illustrations of all this are found in Kuipers (2000). Note that logic does not only enable one to 

attain a high level of precision. It moreover functions as a heuristic tool: it suggests ways of 



looking at the problems and of categorizing them; it provides possible relations between 

statements, sets of statements, and the like; it facilitates seeing the consequences of proposed 

solutions; etc. The most technically elaborated proposal of the sort considered is probably the 

belief-revision approach as applied, for example, by Gärdenfors (1988) – as the elaboration 

leaves little room for varying the three central operations (expansion, contraction, and revision) 

and requires severe idealization, it seems not to agree with a content-guided understanding of 

scientific change. Set theoretic tools were heavily used by the structuralists (Balzer, Moulines & 

Sneed 1987) and probabilistic tools (Markov chains) are used in Pearl’s (2000) theory of 

causality. 

 The examples from the previous paragraph proceed in terms of CL and extensions thereof. 

Sometimes alternative logics are more suitable for clarifying certain methodological concepts. 

Among the popular examples, I refer especially to Van Fraassen’s supervaluations and to the 

partial structures of da Costa and associates – see entry on Structure of Theories. 

 A different use of logic is made when the aim is not to define a concept, but rather to 

describe, in more or less detail, the stages of a reasoning process. Remark that, for example, 

defining an explanation of a certain kind is a very different thing from describing the process by 

which this kind of explanation is obtained. A typical example is presented in Kuipers & 

Wiśniewski (1994). Wiśniewski’s erotetic logic is invoked to characterize the “train of thought” 

in searching an explanation by specification. The central tool here is erotetic implication: how 

questions together with declarative statements imply other questions. 

 The most elaborate unified approach of this kind is Hintikka’s work on interrogative logic 

(e.g. Hintikka 1999). This logic uses a variant of Beth tableaux for book-keeping. Beth meant 

these two-sided tableaus as a device for testing inference: the premises are written on the left 

side, the conclusion on the right side, and next the tableau rules are applied, which sometimes 

causes a subtableau being started; a tableau may close, remain open, or not stop. Hintikka 

interprets the tableaux in a game-theoretic way, for example as a game against nature. 

 Consider an application to the search of an explanation for a singular statement E in terms 

of a theory T. The axioms of T are introduced on the left side and E on the right. An explanation 

of E in terms of T requires that E is not a CL-consequence of T. So, in order for the tableau to 

close, new information needs to be introduced. This is obtained by introducing questions on the 

left side, which requires that their presupposition occurs on the same side. The answers that 

nature gives are represented by a fixed set S; if the answer to a question is in S, the answer is 

added on the left side. Apart from the rules of the game, there is also a deductive heuristics as 

well as an interrogative heuristics – I avoid Hintikka’s “strategy” for reasons that become clear 

below. Where the rules determine which moves are permitted, a heuristics is directed towards 

applying the rules in such a way that the game is won. In our example the game is won when the 

tableau closes, because this means that one has obtained a set of answers (singular statements) 

that jointly form an explanation of E in terms of T. 

 Hintikka has applied his interrogative logic to many problems from the philosophy of 

science, among them also induction. He sees this logic as central to the logic of inquiry and to the 

logic of discovery, and even as a general theory of reasoning. The advantage of the distinction 

between rules and heuristics is that the latter allow for a context-guided understanding of inquiry. 

The disadvantage, however, is that it is difficult to say much about heuristics in the present 

framework, as is apparent from Hintikka’s work on the topic. Moreover, there are clearly two 

kinds of considerations that determine a heuristics. One of them is determined by the logical 

structure of the problem one tries to solve, which is here represented by the tableau one tries to 

close. A very different kind of considerations, however, is determined by the historical situation: 



that the problem one tries to solve is similar to problems solved in the past and that we know 

which set of moves were successful in solving the latter. The first kind of considerations can 

clearly be described in a systematic way – they are a matter of logic. Considerations of the 

second kind depend on the historical situation. On the basis of historical case studies, one may try 

to spell out the parameters of possible problem-solving situations as well as their possible values. 

Any such general theory, however, is bound to be provisional because it depicts at best the 

present and past situations. 

 

Logics for Methodological Concepts 

Methodological concepts give rise to forms of reasoning that are not deductive. Think about 

inductive generalization, abduction, interpreting an inconsistent theory as consistently as 

possible, handling background generalizations in the presence of exceptions, invoking theories or 

hypotheses that are ordered by priorities, etc. – more examples are discussed in Batens (2004). 

Clearly such reasoning forms are not guided by deductive logic alone. This is why one needs the 

proposals presented in the previous section. One may try to approach the reasoning in terms of a 

definition, which settles whether the result of the reasoning is an object of the suitable kind. 

Alternatively one may try to say more about the reasoning itself, by characterizing the “train of 

thought” that underlies it, or by setting it up as a specific application of interrogative logic. 

 Different and more radical approaches attempt a characterization by a logic. Indeed, the 

reasoning forms are in a clear sense logics: they assign a set of correct consequences to every set 

of premises. In some respects they differ from usual logics. Let us at once consider the most 

striking feature. Most of those forms of reasoning are dynamic in that statements that are seen as 

consequences at some point in the reasoning are rejected at a later point, when the reasoning has 

led to a better understanding of the premises. At a still later point they may be reinstated as 

consequences in view of the continuation of the reasoning.  

 The dynamics is related to the fact that many of those reasoning forms are non-

monotonic: what follows from part of the premises need not follow from all of them. Inductive 

generalization, which obviously relies on background knowledge, is non-monotonic because the 

derived generalizations need be compatible with the data. As new data are taken into 

consideration, formerly derived conclusions may have to be withdrawn. The opposite move may 

also be justified. The data may prevent us from accepting either that all P are Q or that all R are 

not-Q (because, although some P are known to be Q and some R are known to be not-Q, some P 

are known to be R while their Q-hood is unknown). If the further data reveal that some R is Q, 

and hence falsify that all R are not-Q, this may (in some circumstances) make it sound to 

conclude that all P are Q. 

 Even monotonic reasoning processes may display the dynamics described in the next to 

last paragraph. Indeed, the cause of the dynamics is not non-monotonicity, but the absence of a 

‘positive test’ for the consequence relation – in other words, the consequence relation is not even 

partially recursive. This requires a brief digression. If a logic L is decidable, there is a mechanical 

procedure that tells us (after finitely many steps) whether, for an arbitrary set of premises Γ and 

an arbitrary statement A, A is a L-consequence of Γ or not. CL is undecidable. However, there 

still is a positive test for CL-derivability: there is a mechanical procedure that, if A is a CL-

consequence of Γ, informs us so after finitely many steps. 

For the aforementioned reasoning processes there is not even a positive test. No 

mechanical procedure will, for an arbitrary Γ and an arbitrary A that is a consequence of Γ, tell us 

after finitely many steps that A is a consequence of Γ. The absence of a positive test may be a 

serious handicap from a computational point of view, but is very familiar to philosophers of 



science. Much sound reasoning is not ‘conclusive’; it may require revision in view of further 

consideration. 

 Approaching methodological concepts by means of logics has some advantages, which 

will become clear later. This is why I continue discussing the matter. I shall do so in terms of the 

approach I am most familiar with, the adaptive logics approach. Let us first look at the logics 

themselves (this section) and next consider their application in a problem-solving context (next 

section). My description will be informal and slightly inaccurate at some points – an accessible 

and up-to-date description is available in Batens (2007, §2–5) and soon in Batens (200x). 

 An adaptive logic (in standard format) is characterized by a triple: a lower limit logic, a 

set of abnormalities and a strategy. The lower limit logic is a logic of the usual type (reflexive, 

transitive, monotonic, and compact) that has a characteristic semantics. The set of abnormalities 

is a set of formulas characterized by a logical form. Abnormalities are taken to be false, until and 

unless the premises prevent this. Strategies need not worry us here: they are a technical device to 

handle cases were the premises require that at least one out of a finite set of abnormalities is true, 

but fail to specify which one. 

 Let us consider an example that extends CL, the logic of inductive generalization. Which 

statements of the form “All A are B” can be jointly and justifiedly upheld in view of a given set of 

empirical data (which need not be primitive formulas). Realistic applications require that one 

takes background theories into account. Moreover, some background theories are rejected when 

falsified by the data, whereas others are retained except for the falsified generalizations or even 

except for the falsified instances of generalizations. This is realized by combining a diversity of 

adaptive logics for handling background generalizations with the adaptive logic for inductive 

generalization – space limitations force me to restrict the discussion to the latter.  

The lower limit logic is CL. The set of abnormalities is the set of formulas of the form 

something-is-A-and-something-is-not-A. This is obviously inspired by Carnap’s (1952) idea of 

uniformity. Inductive generalization (which, incidentally, Carnap was unable to obtain in terms of 

his probabilistic approach) is made possible by interpreting the world as uniformly as the data 

permit. So abnormalities are taken to be false until and unless the data force us to consider them 

as true. 

 Adaptive logics of inductive generalization assign to every set of data, phrased in a given 

language, a unique set of inductive generalizations that are jointly consistent with the data – they 

do the same when the data are first extended in terms of background theories. Non-derivable 

generalizations are either falsified or jointly conflict with the data. In the latter case – see the 

third paragraph of this section for an example – their disjunction is typically derivable. Just as the 

connected set of abnormalities, this guides research, as we shall see in the next section. If no 

instance of a generalization G is derivable from the data, there always is a generalization H that is 

equally justified from the data and for which G and H jointly conflict with the data.  

The derivable set of generalizations is arguably the best set of generalizations to act upon, 

given that the predicates are well-entrenched. Moreover, Reichenbach’s ‘pragmatic justification 

of induction’ applies: if a set of generalizations holds in a list of singular data, the logic of 

inductive generalization will reveal them in the long run.  

 Handling inconsistency requires weakening CL, but proceeds according to the same 

structure. If a theory T that was intended as consistent turns out to be inconsistent, we want to 

replace it by a consistent theory that retains the ‘good parts’ of T. In order to do so, we first have 

to interpret T as consistently as possible in order to retain whatever can be retained from T as 

originally intended. This is precisely what inconsistency-adaptive logics do, whereas monotonic 

paraconsistent logics offer too weak an interpretation in this respect. An inconsistency-adaptive 



logic AL is characterized as expected: the lower limit logic is a paraconsistent logic and the set of 

abnormalities is the (existential closure) of formulas of the form A-and-not-A. By taking these as 

false in as far as the premises permit, the adaptive logic AL interprets the premises as consistently 

as possible: the AL-consequences of the premises contain all desired CL-consequences and do 

not contain the undesired ones (viz. do not contain all statements).  

 There is obviously a large set of inconsistency-adaptive logics. They are obtained by 

varying (mainly) the paraconsistent lower limit logic. So the bad news is that inconsistency-

adaptive logics require a justification: are they suitably applicable to the present situation. The 

good news is that the available multiplicity of paraconsistent logics makes it likely that the 

suitable inconsistency-adaptive logic for many specific contexts is readily available – for the 

multiplicity see Béziau & Carnielli (2006), the references therein, etc. The situation is different 

for the adaptive logic of inductive generalization: few sensible alternatives for the lower limit 

logic CL are at present available (and the strategy offers not much variation). This is largely 

compensated by the multiplicity of adaptive logics for handling background knowledge. 

 Many more adaptive logics have been studied, most of them relating to problems in the 

philosophy of science. Characterizing a methodological concept in terms of an adaptive logic (in 

standard format) has a number of attractive consequences. First, it provides an exact definition of 

the concept in terms of the lower limit logic and the set of abnormalities. Next, it defines the 

proof theory as well as the semantics of the logic. The semantics is essential for clarifying the 

underlying idea of the logic: it selects the lower limit models of the premises that verify only the 

abnormalities that are required to be true by the premises (the precise meaning of this depends on 

the strategy). Whatever is true in all those models is a consequence of the premises. The proof 

theory – basically three generic rules and a marking definition – is equally important: if offers an 

explication of the informal reasoning by which we try to find out whether the methodological 

concept applies. In this respect, the availability of dynamic proofs is one of the strongholds of 

adaptive logics. The basic idea is that statements that are only derivable by relying on the 

falsehood of certain abnormalities, are derived on a condition, viz. the set of those abnormalities. 

Next, it depends on the (disjunctions of) abnormalities that are derived at a certain stage of the 

proof whether a line is marked (and hence OUT) or unmarked (and hence IN). 

 The standard format itself takes care of the metatheory. It warrants that the proof theory 

and semantics are equivalent, and it warrants that a set of desirable metatheoretic properties are 

present (Batens 2006, Batens 200x), in other words that the logics do the required job in a decent 

way. So, as soon as one is able to characterize a methodological concept in terms of an adaptive 

logic in standard format, all the hard logician’s work is provided for free. The standard format 

even provides one with a set of criteria for determining, for some premise sets Γ and conclusions 

A, whether A is or is not an adaptive consequence of Γ. Although no algorithm is available, the 

criteria may apply. Where they do not, the proof theory (together with the prospective dynamics 

which I describe below) explicates sensible reasoning towards establishing a conclusion. 

 

Formal Problem-Solving Processes 

If a methodological concept is characterized by a logic, much of the connected reasoning is 

explicated by the logic. For example, whether a statement A is compatible with a theory T is 

reduced to the problem whether A is a CO-consequence of T, where CO is the adaptive logic of 

compatibility. So part of Hintikka’s heuristics is taken over by the logic, whereas the rest of 

Hintikka’s heuristics should now be phrased as a heuristics with respect to the adaptive logic – 

CO in the example. 



 Part of the remaining heuristics still depends on the logical structure of the problem one 

tries to solve. As this is a matter of formal reasoning itself, it is sensible to attempt to push it into 

the proofs. There is indeed an easy way to do so, viz. in terms of a prospective dynamics. Let us 

consider the situation for CL, which will be most transparent for the reader. Suppose that one is 

trying to derive A and that “if B, then A” is one of the premises. Then one obviously can obtain A 

by obtaining B and next applying Modus Ponens. Instead of remembering this, or writing it down 

on a separate piece of paper, one writes [B]A in the proof. On the one hand [B]A expresses that A 

can be obtained by obtaining B; on the other hand it is a bookkeeping device to remind one that 

one tries to obtain B. If B can be obtained directly from one of the premises, one will introduce 

that premise and start analysing it. If B itself cannot be obtained from the premises, it is analysed. 

Thus if B is C-and-D, then one derives [C,D]A from [B]A. The prospective dynamics can be 

usefully combined with marking definitions. Thus, if [C,D]A occurs in the proof and D turns out 

to be a dead end (not to be derivable from the premises), then it is useless to try to derive C in 

order to obtain A. So [C,D]A is a dead end itself. Similarly, if both [C,D]A and [C]A occur in the 

proof, then the former should be marked as redundant: C is sufficient to derive A. The 

prospective dynamics may be spelled out for other logics than CL, including adaptive logics. The 

advantage is, as noted above, that those parts of the heuristics that depend on the logical structure 

of the problem, can be written into the proof and can thus be made transparent. 

 A formal problem-solving process is composed of a number of elements, among them a 

combination of logics, the prospective dynamics for these logics, an erotetic logic (resembling the 

logics of Wiśniewski (1996)), and a heuristics, which is actually a kind of procedure (a set of 

instructions to extend a given proof in a certain way in view of the lines of the proof). One starts 

from a problem (a set of questions of a certain type) together with the premises. The problem 

gives rise to a prospective statement which determines a target. This is usually followed by 

deductive steps. Where these come to an end, unsolved problems together with declarative 

statements may give rise to deriving further problems, which then again start the prospective 

machinery.  

 The above schema may easily be extended. Let us consider one example. In line with 

Hintikka’s work, the schema can be extended for example with a question answering device, 

which leads to the introduction of new premises. The interesting point is that adaptive logics may 

be used for guiding research, viz. for deciding which questions should be asked. Typically, new 

consequences may be derived if one succeeds in ‘narrowing down’ a derived disjunction of 

abnormalities to (a shorter disjunction or) a single abnormality. So this is one important source of 

‘derived’ problems that may be built in into the procedure. At any point in time, scientists have a 

fairly good idea of the problems that can be solved by empirical means. Formal problem solving 

processes will guide one in deciding to make certain observations. If an experiment is required, a 

related problem-solving (sub)process will be started (to make the experiment easy to perform, 

plausibly conclusive, …). 

 The plot behind the above should be clear by now. On the one hand one tries to fix (in the 

logic, the prospective dynamics, and the procedure) all aspects that can be mastered by formal 

means. On the other hand one tries to leave room for a content-guided heuristics wherever this is 

possible. I shall devote the last section to the latter. 

 

Content-Guided Reasoning 

Remark for a start that, at any given point in time, the language of a scientific discipline has been 

molded by the discipline’s past history. This obviously applies generally and is not typical for the 

proposals discussed in the previous section. 



 All adaptive logics have rules that are not validated by the lower limit logic, but would be 

valid if all abnormalities are false. Such rules are neither validated nor invalidated by an adaptive 

logic. The logic validates certain applications of the rule, viz. those that are permitted by the 

premises. Phrased more precisely, it depends on the disjunctions of abnormalities derivable from 

the premises by the lower limit logic, whether an application of such a rule is valid or invalid. In 

this sense, adaptive logics are a means to formally characterize a specific (but restricted) form of 

content-guidance.  

 We have seen that the multiplicity of adaptive logics allows one to select the variant that 

is suitable in a specific situation and forces one to justify the choice. The same applies to the 

choice of an erotetic logic and to the choice of the procedure that governs the prospective 

dynamics.  

 The above plot enables one to take background theories seriously, while still allowing for 

several forms of defeasibility in view of the data (rejecting a theory, rejecting only some 

generalizations that follow from a theory, rejecting only instances of such generalizations).  

 An equally fascinating aspect is that the above plot leaves ample room for the introduction 

of guesses, which may either be wild or rely on world-views and similar personal constraints. 

Which guesses are useful is determined by the derived disjunctions of abnormalities. The origin 

of the guesses is (and should be) extra-logical, but the logic (or combination of logics) guides the 

guess in handling it as defeasible. 

 The most important content-guided aspect lies obviously in the heuristics that is not 

determined by the formal problem-solving process itself. Let me just mention a few aspects. It 

will depend on this heuristics whether one tries to derive a conclusion along one road rather than 

the other. It will depend on the heuristics whether one recurs to an observational question, to an 

experimental question, or rather tries to obtain a theoretical derivation first. (The use of models is 

another alternative, which should as soon as possible be built in into the plot.) How one should 

proceed cannot be spelled out beforehand, but should be decided in view of the case under 

consideration, in view of what one has learned about ‘the world’ and about learning. So the basic 

demand on a plot for formal problem solving processes it that it leaves sufficient freedom for the 

heuristics. In order to do that, and to situate the heuristics, the logical framework has to be spelled 

out. This framework should be malleable. It should consist of a set of related slots that can be 

filled in agreement with the demands of the case under consideration. But even then the 

framework, just as much as the standard deductive logic, can at best be a provisional hypothesis 

based on what we have learned about problem solving. A good hypothesis is one that takes into 

account the insights of our days. But more days are to come.  
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SUGGESTED READINGS 

Most of the relevant papers are spread over journals. Hintikka (1999) and Kuipers (2000) present 

approaches based on classical logic. So does Gärdenfors (1988), concentrating on applications 

within the reach of the belief revision mechanism. Batens (200x) and the other cited papers by 

Batens concern an approach in terms of adaptive logics.  


