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Warnings and Conventions

My approach: describe defeasible reasoning in a way that
resembles the description and metatheory of Tarski logics,
including proof theory and semantics, and including
soundness, completeness and other metatheoretic properties.

I see this not as opposed to a more application oriented
approach, but as complementary with it (and not because both
are needed, but because both clarify and justify each other).

Let ∆ ⊆fin Γ abbreviate “a finite ∆ ⊆ Γ”.

3 [4 4 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Warnings and Conventions

My approach: describe defeasible reasoning in a way that
resembles the description and metatheory of Tarski logics,
including proof theory and semantics, and including
soundness, completeness and other metatheoretic properties.

I see this not as opposed to a more application oriented
approach, but as complementary with it (and not because both
are needed, but because both clarify and justify each other).

Let ∆ ⊆fin Γ abbreviate “a finite ∆ ⊆ Γ”.

4 [4 4 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Outline

Defeasible reasoning and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic Proofs . . .

Some references

5 [5 17 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Defeasible reasoning and Logic

Where W is the set of closed formulas of a language schema
L, a logic is a function L : ℘(W) → ℘(W).

defeasible reasoning processes have the property that some
steps taken [conclusions derived] during the reasoning process
may be withdrawn in view of insights obtained afterwards in the
ongoing reasoning process.

example: Inductive generalization: Which set of ‘generalisations’ is
jointly compatible with a given set of empirical data?
(generalisation: purely functional; only unary predicates)

∀x(A(x) ⊃ B(x)) compatible with Γ

iff no instance of A(α) ∧ ¬B(α) derivable from Γ.

Complication: If an instance of (A(α) ∧ ¬B(α)) ∨ (C(β) ∧ ¬D(β))
derivable from Γ, then the members of
{∀x(A(x) ⊃ B(x)),∀x(C(x) ⊃ D(x))} are jointly incompatible with Γ.
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Other examples

- Handling inconsistency: interpret inconsistent premise sets/theories
as consistently as possible. (In preparation of forging a consistent
replacement.)

- deciding on a person’s position in a discussion.
- abduction: deriving from a theory / set of theories potential

explanations of a given fact
- etc. etc.

most reasoning is defeasible (in daily life and in the sciences)
ultimately all methods all knowledge ultimately relies on
defeasible reasoning steps

If a type of defeasible reasoning is systematic, then it defines a
logic (in the above broad sense).op 3 toepassen

Rule-Based approaches may be integrated – see below.

10 [14 17 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Other examples

- Handling inconsistency: interpret inconsistent premise sets/theories
as consistently as possible. (In preparation of forging a consistent
replacement.)

- deciding on a person’s position in a discussion.
- abduction: deriving from a theory / set of theories potential

explanations of a given fact
- etc. etc.

most reasoning is defeasible (in daily life and in the sciences)
ultimately all methods

all knowledge ultimately relies on
defeasible reasoning steps

If a type of defeasible reasoning is systematic, then it defines a
logic (in the above broad sense).op 3 toepassen

Rule-Based approaches may be integrated – see below.

11 [14 17 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Other examples

- Handling inconsistency: interpret inconsistent premise sets/theories
as consistently as possible. (In preparation of forging a consistent
replacement.)

- deciding on a person’s position in a discussion.
- abduction: deriving from a theory / set of theories potential

explanations of a given fact
- etc. etc.

most reasoning is defeasible (in daily life and in the sciences)
ultimately all methods all knowledge ultimately relies on
defeasible reasoning steps

If a type of defeasible reasoning is systematic, then it defines a
logic (in the above broad sense).op 3 toepassen

Rule-Based approaches may be integrated – see below.

12 [14 17 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Other examples

- Handling inconsistency: interpret inconsistent premise sets/theories
as consistently as possible. (In preparation of forging a consistent
replacement.)

- deciding on a person’s position in a discussion.
- abduction: deriving from a theory / set of theories potential

explanations of a given fact
- etc. etc.

most reasoning is defeasible (in daily life and in the sciences)
ultimately all methods all knowledge ultimately relies on
defeasible reasoning steps

If a type of defeasible reasoning is systematic, then it defines a
logic (in the above broad sense).op 3 toepassen

Rule-Based approaches may be integrated – see below.

13 [14 17 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Other examples

- Handling inconsistency: interpret inconsistent premise sets/theories
as consistently as possible. (In preparation of forging a consistent
replacement.)

- deciding on a person’s position in a discussion.
- abduction: deriving from a theory / set of theories potential

explanations of a given fact
- etc. etc.

most reasoning is defeasible (in daily life and in the sciences)
ultimately all methods all knowledge ultimately relies on
defeasible reasoning steps

If a type of defeasible reasoning is systematic, then it defines a
logic (in the above broad sense).op 3 toepassen

Rule-Based approaches may be integrated – see below.

14 [14 17 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

defeasible reasoning processes display
· an external dynamics: non-monotonicity: conclusions revised
in view of the addition of new premises
· an internal dynamics: conclusions revised as insights in the

premises grow (= as reasoning proceeds)
weak consequence relation is monotonic, yet defeasible

internal dynamics unavoidable: typical absence of positive test
at the predicative level
(the consequence set is not recursively enumerable)
⇒ no defeasible reasoning form is characterised by a Tarski logic

most crucial: no positive test for “consistent” (affects: handling
inconsistency, classical compatibility, inductive generalisation,
explanation (cf. Hintikka-Halonen), . . . )
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Adaptive Logics

· oldest work (late 1970s): inconsistency-adaptive logics
[Batens, 1989] [occasion, irony]

· soon semantic approach spelled out [Batens, 1986] [minimal
abnormality]
· generalisation to predicative level [Batens, 1999] [↔ GP]
· students (especially J. Meheus) pushed to generalize the
inconsistency-adaptive approach to other defeasible
processes, ultimately the aim was to incorporate all defeasible
reasoning forms, first and foremost all methods from PoS and
daily life
· as more adaptive logics were studied, need for a general
characterization: SF. This defined a AL as a triple, and offered
generic definitions of the proof theory and the semantics
[Batens, 2001]. Generic proofs were provided of the
metatheory (including Soundness, Completeness and many
metatheoretic properties) [Batens, 2007].
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Inconsistency-adaptive logics

paradigmatic case:
T = ⟨Γ,CL⟩ was intended as consistent but turns out
inconsistent ⇒ requires paraconsistent underlying logic

in search for a consistent replacement: interpret T as
consistently as possible (close to intention): this locates and
isolates the inconsistencies T in its full richness, except for the
pernicious consequences of its inconsistency
removing the inconsistencies will require empirical or conceptual work

A very simple paraconsistent logic is CLuN, which is like CL,
except that it allows for gluts with respect to Negation. CLuN is
full positive CL plus EM: A ∨ ¬A. (Note: RoE and RoI invalid in
CLuN.)

Γ ⊢CL A iff there are B1, . . . ,Bn such that
Γ ⊢CLuN A ∨ ((B1 ∧ ¬B1) ∨ . . . ∨ Bn ∧ ¬Bn))
similarly for other paraconsistent logics. Generic proof:
[Batens, 2007]
example: p ∨ q,¬p ⊢CL q and p ∨ q,¬p ⊢CL q ∨ (p ∧ ¬p)
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Where L is a language schema and W its set of closed
formulas. An adaptive logic in standard format,
AL : ℘(W) → ℘(W) is defined by a triple:
(1) A lower limit logic LLL: a logic that is defined over L, has

static proofs in L.
simplification relies on trusty semantics [Batens, 2021].

(2) A decidable set of abnormalities Ω ⊆ W∗: a set of
formulas characterized by a (possibly restricted) logical
form F; or a decidable union of such sets.

(3) An adaptive strategy: Reliability, Minimal Abnormality, . . . .

For all adaptive logics in standard format, the format defines by
generic means the semantics, the proof theory, and a very
extensive meta-theory (soundness, completeness,
stopperedness, etc., etc. — see [Batens, 2007] and several
later results by others).
adaptive logics in SF have a complexity up to Π1

1 [Verdée, 2009,
Odintsov and Speranski, 2012, Odintsov and Speranski, 2013]
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Some examples of proofs

simple propositional proof that illustrates handling
inconsistency:

1 ¬p ∧ r Prem ∅
2 q ⊃ p Prem ∅
3 q ∨ ¬r Prem ∅
4 r ⊃ p Prem ∅

5 ¬p 1; RU ∅
6 r 1; RU ∅
7 ¬q 2, 5; RC {p ∧ ¬p}
8 ¬r 3, 7; RC {p ∧ ¬p,q ∧ ¬q}
9 q 3, 6; RC {r ∧ ¬r}

✓10

10 r ∧ ¬r 6, 8; RU {p ∧ ¬p,q ∧ ¬q}
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Static proofs

Intuitively, L has static proofs iff, for every decidable Γ,
(i) every formula derived in a L-proof from Γ remains derived if
the proof is extended
and
(ii) if Γ ⊢L A, then any L-proof from Γ can be extended such that
A is derived in it the extension.

I shall consider annotated proofs (number and a justification on
each line)
- easier for handling dynamic proofs
- non-annotated proofs parasitic on annotated ones
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central elements of proofs: rules, lines, and lists of lines

A line of a static proof will be a triple:
· a line ‘number’ (broad sense)
· a formula
· a justification.
All that matters: numbers identify their line, allowing for unambiguous
reference

The justification of a line l is a couple ⟨Nl ,Rl⟩:
- Nl is a (possibly empty) set of lines (referred to by their
numbers)
- Rl is a S-rule as introduced below

A S-rule (rule typical for logics that have static proofs) is a
metalinguistic expression of the form Υ/A – read “to derive A
from Υ” – in which A is a metalinguistic formula and Υ is a
recursive set of metalinguistic formulas.

a S-rule specifies: from formulas of a certain form another formula of
a corresponding form may be derived

A S-rule is finitary iff Υ is finite
the members of Υ called local premises (of the S-rule)
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from Υ” – in which A is a metalinguistic formula and Υ is a
recursive set of metalinguistic formulas.

a S-rule specifies: from formulas of a certain form another formula of
a corresponding form may be derived

A S-rule is finitary iff Υ is finite
the members of Υ called local premises (of the S-rule)
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central elements of proofs: rules, lines, and lists of lines

A line of a static proof will be a triple:
· a line ‘number’ (broad sense)
· a formula
· a justification.
All that matters: numbers identify their line, allowing for unambiguous
reference

The justification of a line l is a couple ⟨Nl ,Rl⟩:
- Nl is a (possibly empty) set of lines (referred to by their
numbers)
- Rl is a S-rule as introduced below

A S-rule (rule typical for logics that have static proofs) is a
metalinguistic expression of the form Υ/A – read “to derive A
from Υ” – in which A is a metalinguistic formula and Υ is a
recursive set of metalinguistic formulas.

a S-rule specifies: from formulas of a certain form another formula of
a corresponding form may be derived

A S-rule is finitary iff Υ is finite
the members of Υ called local premises (of the S-rule)
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central elements of proofs: rules, lines, and lists of lines

A line of a static proof will be a triple:
· a line ‘number’ (broad sense)
· a formula
· a justification.
All that matters: numbers identify their line, allowing for unambiguous
reference

The justification of a line l is a couple ⟨Nl ,Rl⟩:
- Nl is a (possibly empty) set of lines (referred to by their
numbers)
- Rl is a S-rule as introduced below

A S-rule (rule typical for logics that have static proofs) is a
metalinguistic expression of the form Υ/A – read “to derive A
from Υ” – in which A is a metalinguistic formula and Υ is a
recursive set of metalinguistic formulas.

a S-rule specifies: from formulas of a certain form another formula of
a corresponding form may be derived

A S-rule is finitary iff Υ is finite
the members of Υ called local premises (of the S-rule)
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central elements of proofs: rules, lines, and lists of lines

A line of a static proof will be a triple:
· a line ‘number’ (broad sense)
· a formula
· a justification.
All that matters: numbers identify their line, allowing for unambiguous
reference

The justification of a line l is a couple ⟨Nl ,Rl⟩:
- Nl is a (possibly empty) set of lines (referred to by their
numbers)
- Rl is a S-rule as introduced below

A S-rule (rule typical for logics that have static proofs) is a
metalinguistic expression of the form Υ/A – read “to derive A
from Υ” – in which A is a metalinguistic formula and Υ is a
recursive set of metalinguistic formulas.

a S-rule specifies: from formulas of a certain form another formula of
a corresponding form may be derived

A S-rule is finitary iff Υ is finite
the members of Υ called local premises (of the S-rule)
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central elements of proofs: rules, lines, and lists of lines

A line of a static proof will be a triple:
· a line ‘number’ (broad sense)
· a formula
· a justification.
All that matters: numbers identify their line, allowing for unambiguous
reference

The justification of a line l is a couple ⟨Nl ,Rl⟩:
- Nl is a (possibly empty) set of lines (referred to by their
numbers)
- Rl is a S-rule as introduced below

A S-rule (rule typical for logics that have static proofs) is a
metalinguistic expression of the form Υ/A – read “to derive A
from Υ” – in which A is a metalinguistic formula and Υ is a
recursive set of metalinguistic formulas.

a S-rule specifies: from formulas of a certain form another formula of
a corresponding form may be derived

A S-rule is finitary iff Υ is finite
the members of Υ called local premises (of the S-rule)
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S-rules may have a restriction attached to them.
Essential that it can be decided whether the restriction is
fulfilled by inspecting the list of lines to which the application of
the rule belongs.
Examples of such restrictions, e.g., in the rule R∀: “To derive
⊢ A ⊃ ∀αB(α) from ⊢ A ⊃ B(β), provided β does not occur in either A
or B(α).”
· the restriction on β is established by inspection.
· that ⊢ A ⊃ B(β) may be established in terms of the path of

A ⊃ B(β)

Some S-rules may have the form ∅/A, possibly with a
restriction attached to it.
If there is no restriction, A is usually called an axiom schema.
Some prefer to combine a set of axioms with an explicit Axiom rule:
“If A is an axiom, then ∅/A.” (to derive A from anything)

Explicit definitions may also be seen as (couples of) rules. The
definition A =df B corresponds to the S-rule “from a formula C
that contains an occurrence of A, to infer the formula obtained
from C by replacing A by B, and vice versa”.
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S-rules may have a restriction attached to them.
Essential that it can be decided whether the restriction is
fulfilled by inspecting the list of lines to which the application of
the rule belongs.
Examples of such restrictions, e.g., in the rule R∀: “To derive
⊢ A ⊃ ∀αB(α) from ⊢ A ⊃ B(β), provided β does not occur in either A
or B(α).”
· the restriction on β is established by inspection.
· that ⊢ A ⊃ B(β) may be established in terms of the path of

A ⊃ B(β)

Some S-rules may have the form ∅/A, possibly with a
restriction attached to it.
If there is no restriction, A is usually called an axiom schema.
Some prefer to combine a set of axioms with an explicit Axiom rule:
“If A is an axiom, then ∅/A.” (to derive A from anything)

Explicit definitions may also be seen as (couples of) rules. The
definition A =df B corresponds to the S-rule “from a formula C
that contains an occurrence of A, to infer the formula obtained
from C by replacing A by B, and vice versa”.
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S-rules may have a restriction attached to them.
Essential that it can be decided whether the restriction is
fulfilled by inspecting the list of lines to which the application of
the rule belongs.
Examples of such restrictions, e.g., in the rule R∀: “To derive
⊢ A ⊃ ∀αB(α) from ⊢ A ⊃ B(β), provided β does not occur in either A
or B(α).”
· the restriction on β is established by inspection.
· that ⊢ A ⊃ B(β) may be established in terms of the path of

A ⊃ B(β)

Some S-rules may have the form ∅/A, possibly with a
restriction attached to it.
If there is no restriction, A is usually called an axiom schema.
Some prefer to combine a set of axioms with an explicit Axiom rule:
“If A is an axiom, then ∅/A.” (to derive A from anything)

Explicit definitions may also be seen as (couples of) rules. The
definition A =df B corresponds to the S-rule “from a formula C
that contains an occurrence of A, to infer the formula obtained
from C by replacing A by B, and vice versa”.
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The most popular restricted S-rule of the form ∅/A is Prem: “If
A ∈ Γ, then ∅/A.” where Γ is the premise set

Numerous odd logics may be defined with otherwise restricted
rules ∅/A, or with unrestricted such rules, or without Prem.
examples: (i) the empty logic Em has CnEm(Γ) = ∅ for all Γ, (ii) the
constant logic Tr has CnTr(Γ) = W for all Γ

Let R denote a set of S-rules that contains Prem. Given R and
a list L of lines, a line l of L is R-correct iff
(i) all members of Nl precede l in L
(ii) Rl ∈ R
(iii) the formula of l is the result of applying Rl to the formulas
of the lines in Nl .
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The most popular restricted S-rule of the form ∅/A is Prem: “If
A ∈ Γ, then ∅/A.” where Γ is the premise set

Numerous odd logics may be defined with otherwise restricted
rules ∅/A, or with unrestricted such rules, or without Prem.
examples: (i) the empty logic Em has CnEm(Γ) = ∅ for all Γ, (ii) the
constant logic Tr has CnTr(Γ) = W for all Γ

Let R denote a set of S-rules that contains Prem. Given R and
a list L of lines, a line l of L is R-correct iff
(i) all members of Nl precede l in L
(ii) Rl ∈ R
(iii) the formula of l is the result of applying Rl to the formulas
of the lines in Nl .
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The most popular restricted S-rule of the form ∅/A is Prem: “If
A ∈ Γ, then ∅/A.” where Γ is the premise set

Numerous odd logics may be defined with otherwise restricted
rules ∅/A, or with unrestricted such rules, or without Prem.
examples: (i) the empty logic Em has CnEm(Γ) = ∅ for all Γ, (ii) the
constant logic Tr has CnTr(Γ) = W for all Γ

Let R denote a set of S-rules that contains Prem. Given R and
a list L of lines, a line l of L is R-correct iff
(i) all members of Nl precede l in L
(ii) Rl ∈ R
(iii) the formula of l is the result of applying Rl to the formulas
of the lines in Nl .
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Definition
A R-stage from (premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.

Definition
A static R-proof of A from Γ is a static R-proof from Γ in which,
from a certain stage on, there is a line that has A as its formula.

Definition 4 comes to: a static R-proof of A from Γ is a static
R-proof from Γ in which A is the formula of a line of a stage.
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Definition
A R-stage from (premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.

Definition
A static R-proof of A from Γ is a static R-proof from Γ in which,
from a certain stage on, there is a line that has A as its formula.

Definition 4 comes to: a static R-proof of A from Γ is a static
R-proof from Γ in which A is the formula of a line of a stage.
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Definition
A R-stage from (premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.

Definition
A static R-proof of A from Γ is a static R-proof from Γ in which,
from a certain stage on, there is a line that has A as its formula.

Definition 4 comes to: a static R-proof of A from Γ is a static
R-proof from Γ in which A is the formula of a line of a stage.
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Definition
A R-stage from (premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.

Definition
A static R-proof of A from Γ is a static R-proof from Γ in which,
from a certain stage on, there is a line that has A as its formula.

Definition 4 comes to: a static R-proof of A from Γ is a static
R-proof from Γ in which A is the formula of a line of a stage.
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Definition
Γ ⊢R A (A is R-derivable from Γ) iff there is a static R-proof of
A from Γ.

The five preceding definitions enable one to delineate a
specific set of logics, the members of which will turn out to
have some interesting and unexpected properties.

Definition
A logic L has static proofs iff there is a recursive set R of
S-rules such that Γ ⊢L A iff Γ ⊢R A.

Nearly every rule Υ/A has applications to sets with a lower
cardinality than Υ
hence generates a recursive set of “more specific rules”.
example: A/A ∧ A is more specific than A,B/A ∧ B

In the same way, the infinitary A,C1 ∧ D1,C2 ∧ D2, . . . /A ∨ B
generates the more specific finitary rule A,C1 ∧ D1/A ∨ B.
In general, every infinitary S-rule R generates zero or more
finitary rules. The set of these, say fin(R), is recursive.
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Definition
Γ ⊢R A (A is R-derivable from Γ) iff there is a static R-proof of
A from Γ.

The five preceding definitions enable one to delineate a
specific set of logics, the members of which will turn out to
have some interesting and unexpected properties.

Definition
A logic L has static proofs iff there is a recursive set R of
S-rules such that Γ ⊢L A iff Γ ⊢R A.

Nearly every rule Υ/A has applications to sets with a lower
cardinality than Υ
hence generates a recursive set of “more specific rules”.
example: A/A ∧ A is more specific than A,B/A ∧ B

In the same way, the infinitary A,C1 ∧ D1,C2 ∧ D2, . . . /A ∨ B
generates the more specific finitary rule A,C1 ∧ D1/A ∨ B.
In general, every infinitary S-rule R generates zero or more
finitary rules. The set of these, say fin(R), is recursive.
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Definition
Γ ⊢R A (A is R-derivable from Γ) iff there is a static R-proof of
A from Γ.

The five preceding definitions enable one to delineate a
specific set of logics, the members of which will turn out to
have some interesting and unexpected properties.

Definition
A logic L has static proofs iff there is a recursive set R of
S-rules such that Γ ⊢L A iff Γ ⊢R A.

Nearly every rule Υ/A has applications to sets with a lower
cardinality than Υ
hence generates a recursive set of “more specific rules”.
example: A/A ∧ A is more specific than A,B/A ∧ B

In the same way, the infinitary A,C1 ∧ D1,C2 ∧ D2, . . . /A ∨ B
generates the more specific finitary rule A,C1 ∧ D1/A ∨ B.
In general, every infinitary S-rule R generates zero or more
finitary rules. The set of these, say fin(R), is recursive.
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Definition
Γ ⊢R A (A is R-derivable from Γ) iff there is a static R-proof of
A from Γ.

The five preceding definitions enable one to delineate a
specific set of logics, the members of which will turn out to
have some interesting and unexpected properties.

Definition
A logic L has static proofs iff there is a recursive set R of
S-rules such that Γ ⊢L A iff Γ ⊢R A.

Nearly every rule Υ/A has applications to sets with a lower
cardinality than Υ
hence generates a recursive set of “more specific rules”.
example: A/A ∧ A is more specific than A,B/A ∧ B

In the same way, the infinitary A,C1 ∧ D1,C2 ∧ D2, . . . /A ∨ B
generates the more specific finitary rule A,C1 ∧ D1/A ∨ B.
In general, every infinitary S-rule R generates zero or more
finitary rules. The set of these, say fin(R), is recursive.
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Definition
Γ ⊢R A (A is R-derivable from Γ) iff there is a static R-proof of
A from Γ.

The five preceding definitions enable one to delineate a
specific set of logics, the members of which will turn out to
have some interesting and unexpected properties.

Definition
A logic L has static proofs iff there is a recursive set R of
S-rules such that Γ ⊢L A iff Γ ⊢R A.

Nearly every rule Υ/A has applications to sets with a lower
cardinality than Υ
hence generates a recursive set of “more specific rules”.
example: A/A ∧ A is more specific than A,B/A ∧ B

In the same way, the infinitary A,C1 ∧ D1,C2 ∧ D2, . . . /A ∨ B
generates the more specific finitary rule A,C1 ∧ D1/A ∨ B.
In general, every infinitary S-rule R generates zero or more
finitary rules. The set of these, say fin(R), is recursive.
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Theorem
If R is a recursive set of S-rules, then there is a recursive set
R′ of finitary S-rules such that Γ ⊢R′ A iff Γ ⊢R A.

Corollary
A logic L has static proofs iff there is a recursive set R of
finitary S-rules such that Γ ⊢L A iff Γ ⊢R A.

Different sets of rules define the same logic. If L has static
proofs, let RL be a recursive set of finitary +S-rules such that
Γ ⊢L A iff Γ ⊢RL A. The Corollary warrants that there is such a
set. In view of the proof of last Theorem, a further corollary is
available.

Corollary
Every line of every stage of a static proof has a finite path.
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Theorem
If R is a recursive set of S-rules, then there is a recursive set
R′ of finitary S-rules such that Γ ⊢R′ A iff Γ ⊢R A.

Corollary
A logic L has static proofs iff there is a recursive set R of
finitary S-rules such that Γ ⊢L A iff Γ ⊢R A.

Different sets of rules define the same logic. If L has static
proofs, let RL be a recursive set of finitary +S-rules such that
Γ ⊢L A iff Γ ⊢RL A. The Corollary warrants that there is such a
set. In view of the proof of last Theorem, a further corollary is
available.

Corollary
Every line of every stage of a static proof has a finite path.
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Theorem
If R is a recursive set of S-rules, then there is a recursive set
R′ of finitary S-rules such that Γ ⊢R′ A iff Γ ⊢R A.

Corollary
A logic L has static proofs iff there is a recursive set R of
finitary S-rules such that Γ ⊢L A iff Γ ⊢R A.

Different sets of rules define the same logic. If L has static
proofs, let RL be a recursive set of finitary +S-rules such that
Γ ⊢L A iff Γ ⊢RL A. The Corollary warrants that there is such a
set. In view of the proof of last Theorem, a further corollary is
available.

Corollary
Every line of every stage of a static proof has a finite path.
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It is easily provable that all logics that have static proofs share
many interesting properties.

Definition
A standard RL-proof of A from Γ is a RL-proof of A from Γ in
which A is the formula of the last line of the last stage.

Theorem
If L has static proofs, then Γ ⊢L A iff there is a standard
RL-proof of A from Γ.

The usual definition of a (static) proof of A from Γ identifies a
RL-proof of A from Γ with the last stage of a standard RL-proof
of A from Γ. So, if L has static proofs, Γ ⊢L A holds according to
the usual definition just in case it holds according to the
definitions of the present section.

Theorem
If L has static proofs, then L is Compact (if A ∈ CnL(Γ) then
A ∈ CnL(Γ

′) for a Γ′ ⊆fin Γ).

Theorem
If L has static proofs, then L is Reflexive (Γ ⊆ CnL(Γ)).
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It is easily provable that all logics that have static proofs share
many interesting properties.

Definition
A standard RL-proof of A from Γ is a RL-proof of A from Γ in
which A is the formula of the last line of the last stage.

Theorem
If L has static proofs, then Γ ⊢L A iff there is a standard
RL-proof of A from Γ.

The usual definition of a (static) proof of A from Γ identifies a
RL-proof of A from Γ with the last stage of a standard RL-proof
of A from Γ. So, if L has static proofs, Γ ⊢L A holds according to
the usual definition just in case it holds according to the
definitions of the present section.

Theorem
If L has static proofs, then L is Compact (if A ∈ CnL(Γ) then
A ∈ CnL(Γ

′) for a Γ′ ⊆fin Γ).

Theorem
If L has static proofs, then L is Reflexive (Γ ⊆ CnL(Γ)).
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It is easily provable that all logics that have static proofs share
many interesting properties.

Definition
A standard RL-proof of A from Γ is a RL-proof of A from Γ in
which A is the formula of the last line of the last stage.

Theorem
If L has static proofs, then Γ ⊢L A iff there is a standard
RL-proof of A from Γ.

The usual definition of a (static) proof of A from Γ identifies a
RL-proof of A from Γ with the last stage of a standard RL-proof
of A from Γ. So, if L has static proofs, Γ ⊢L A holds according to
the usual definition just in case it holds according to the
definitions of the present section.

Theorem
If L has static proofs, then L is Compact (if A ∈ CnL(Γ) then
A ∈ CnL(Γ

′) for a Γ′ ⊆fin Γ).

Theorem
If L has static proofs, then L is Reflexive (Γ ⊆ CnL(Γ)).
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It is easily provable that all logics that have static proofs share
many interesting properties.

Definition
A standard RL-proof of A from Γ is a RL-proof of A from Γ in
which A is the formula of the last line of the last stage.

Theorem
If L has static proofs, then Γ ⊢L A iff there is a standard
RL-proof of A from Γ.

The usual definition of a (static) proof of A from Γ identifies a
RL-proof of A from Γ with the last stage of a standard RL-proof
of A from Γ. So, if L has static proofs, Γ ⊢L A holds according to
the usual definition just in case it holds according to the
definitions of the present section.

Theorem
If L has static proofs, then L is Compact (if A ∈ CnL(Γ) then
A ∈ CnL(Γ

′) for a Γ′ ⊆fin Γ).

Theorem
If L has static proofs, then L is Reflexive (Γ ⊆ CnL(Γ)).
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It is easily provable that all logics that have static proofs share
many interesting properties.

Definition
A standard RL-proof of A from Γ is a RL-proof of A from Γ in
which A is the formula of the last line of the last stage.

Theorem
If L has static proofs, then Γ ⊢L A iff there is a standard
RL-proof of A from Γ.

The usual definition of a (static) proof of A from Γ identifies a
RL-proof of A from Γ with the last stage of a standard RL-proof
of A from Γ. So, if L has static proofs, Γ ⊢L A holds according to
the usual definition just in case it holds according to the
definitions of the present section.

Theorem
If L has static proofs, then L is Compact (if A ∈ CnL(Γ) then
A ∈ CnL(Γ

′) for a Γ′ ⊆fin Γ).

Theorem
If L has static proofs, then L is Reflexive (Γ ⊆ CnL(Γ)).
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It is easily provable that all logics that have static proofs share
many interesting properties.

Definition
A standard RL-proof of A from Γ is a RL-proof of A from Γ in
which A is the formula of the last line of the last stage.

Theorem
If L has static proofs, then Γ ⊢L A iff there is a standard
RL-proof of A from Γ.

The usual definition of a (static) proof of A from Γ identifies a
RL-proof of A from Γ with the last stage of a standard RL-proof
of A from Γ. So, if L has static proofs, Γ ⊢L A holds according to
the usual definition just in case it holds according to the
definitions of the present section.

Theorem
If L has static proofs, then L is Compact (if A ∈ CnL(Γ) then
A ∈ CnL(Γ

′) for a Γ′ ⊆fin Γ).

Theorem
If L has static proofs, then L is Reflexive (Γ ⊆ CnL(Γ)).
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Theorem
If L has static proofs, then L is Transitive (if ∆ ⊆ CnL(Γ), then
CnL(∆) ⊆ CnL(Γ)).

If L is Transitive, then CnL(CnL(Γ)) ⊆ CnL(Γ). If L is Reflexive,
CnL(Γ) ⊆ CnL(CnL(Γ)). These give us the following lemma and
corollary.

Lemma
If L is Reflexive and Transitive, then L has the Fixed Point
property (CnL(CnL(Γ)) = CnL(Γ)).

Corollary
If L has static proofs, then L has the Fixed Point property
(Idempotence).

If L has the Fixed Point property, one also says that CnL(Γ) is a
fixed point.

Theorem
If L has static proofs, then L is Monotonic (CnL(Γ)
⊆ CnL(Γ ∪ Γ′) for all Γ′).
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Theorem
If L has static proofs, then L is Transitive (if ∆ ⊆ CnL(Γ), then
CnL(∆) ⊆ CnL(Γ)).

If L is Transitive, then CnL(CnL(Γ)) ⊆ CnL(Γ). If L is Reflexive,
CnL(Γ) ⊆ CnL(CnL(Γ)). These give us the following lemma and
corollary.

Lemma
If L is Reflexive and Transitive, then L has the Fixed Point
property (CnL(CnL(Γ)) = CnL(Γ)).

Corollary
If L has static proofs, then L has the Fixed Point property
(Idempotence).

If L has the Fixed Point property, one also says that CnL(Γ) is a
fixed point.

Theorem
If L has static proofs, then L is Monotonic (CnL(Γ)
⊆ CnL(Γ ∪ Γ′) for all Γ′).
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Theorem
If L has static proofs, then L is Transitive (if ∆ ⊆ CnL(Γ), then
CnL(∆) ⊆ CnL(Γ)).

If L is Transitive, then CnL(CnL(Γ)) ⊆ CnL(Γ). If L is Reflexive,
CnL(Γ) ⊆ CnL(CnL(Γ)). These give us the following lemma and
corollary.

Lemma
If L is Reflexive and Transitive, then L has the Fixed Point
property (CnL(CnL(Γ)) = CnL(Γ)).

Corollary
If L has static proofs, then L has the Fixed Point property
(Idempotence).

If L has the Fixed Point property, one also says that CnL(Γ) is a
fixed point.

Theorem
If L has static proofs, then L is Monotonic (CnL(Γ)
⊆ CnL(Γ ∪ Γ′) for all Γ′).
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Theorem
If L has static proofs, then L is Transitive (if ∆ ⊆ CnL(Γ), then
CnL(∆) ⊆ CnL(Γ)).

If L is Transitive, then CnL(CnL(Γ)) ⊆ CnL(Γ). If L is Reflexive,
CnL(Γ) ⊆ CnL(CnL(Γ)). These give us the following lemma and
corollary.

Lemma
If L is Reflexive and Transitive, then L has the Fixed Point
property (CnL(CnL(Γ)) = CnL(Γ)).

Corollary
If L has static proofs, then L has the Fixed Point property
(Idempotence).

If L has the Fixed Point property, one also says that CnL(Γ) is a
fixed point.

Theorem
If L has static proofs, then L is Monotonic (CnL(Γ)
⊆ CnL(Γ ∪ Γ′) for all Γ′).
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Theorem
If L has static proofs, then L is Transitive (if ∆ ⊆ CnL(Γ), then
CnL(∆) ⊆ CnL(Γ)).

If L is Transitive, then CnL(CnL(Γ)) ⊆ CnL(Γ). If L is Reflexive,
CnL(Γ) ⊆ CnL(CnL(Γ)). These give us the following lemma and
corollary.

Lemma
If L is Reflexive and Transitive, then L has the Fixed Point
property (CnL(CnL(Γ)) = CnL(Γ)).

Corollary
If L has static proofs, then L has the Fixed Point property
(Idempotence).

If L has the Fixed Point property, one also says that CnL(Γ) is a
fixed point.

Theorem
If L has static proofs, then L is Monotonic (CnL(Γ)
⊆ CnL(Γ ∪ Γ′) for all Γ′).

69 [70 80 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Theorem
If L has static proofs, then L is Transitive (if ∆ ⊆ CnL(Γ), then
CnL(∆) ⊆ CnL(Γ)).

If L is Transitive, then CnL(CnL(Γ)) ⊆ CnL(Γ). If L is Reflexive,
CnL(Γ) ⊆ CnL(CnL(Γ)). These give us the following lemma and
corollary.

Lemma
If L is Reflexive and Transitive, then L has the Fixed Point
property (CnL(CnL(Γ)) = CnL(Γ)).

Corollary
If L has static proofs, then L has the Fixed Point property
(Idempotence).

If L has the Fixed Point property, one also says that CnL(Γ) is a
fixed point.

Theorem
If L has static proofs, then L is Monotonic (CnL(Γ)
⊆ CnL(Γ ∪ Γ′) for all Γ′).
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Corollary
If L has static proofs, then L is a Tarski logic.

Uniformity takes its name from the Uniform Substitution rule
There are many complications with uniformity;
[Pogorzelski and Prucnal, 1975] discusses just one of them.
After some aspects are specified, one obtains:

Theorem
If L has static proofs described in a certain metalanguage,
then L is uniform with respect to that metalanguage.

Lemma
If L has static proofs, every line that occurs in a stage of a
RL-proof can be written as a finite string of a finite alphabet.

If the lemma would not hold, humans would not be able to write
proofs.

Theorem
If L has static proofs, then there is a positive test for L.
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Corollary
If L has static proofs, then L is a Tarski logic.

Uniformity takes its name from the Uniform Substitution rule
There are many complications with uniformity;
[Pogorzelski and Prucnal, 1975] discusses just one of them.

After some aspects are specified, one obtains:

Theorem
If L has static proofs described in a certain metalanguage,
then L is uniform with respect to that metalanguage.

Lemma
If L has static proofs, every line that occurs in a stage of a
RL-proof can be written as a finite string of a finite alphabet.

If the lemma would not hold, humans would not be able to write
proofs.

Theorem
If L has static proofs, then there is a positive test for L.
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Corollary
If L has static proofs, then L is a Tarski logic.

Uniformity takes its name from the Uniform Substitution rule
There are many complications with uniformity;
[Pogorzelski and Prucnal, 1975] discusses just one of them.
After some aspects are specified, one obtains:

Theorem
If L has static proofs described in a certain metalanguage,
then L is uniform with respect to that metalanguage.

Lemma
If L has static proofs, every line that occurs in a stage of a
RL-proof can be written as a finite string of a finite alphabet.

If the lemma would not hold, humans would not be able to write
proofs.

Theorem
If L has static proofs, then there is a positive test for L.
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Corollary
If L has static proofs, then L is a Tarski logic.

Uniformity takes its name from the Uniform Substitution rule
There are many complications with uniformity;
[Pogorzelski and Prucnal, 1975] discusses just one of them.
After some aspects are specified, one obtains:

Theorem
If L has static proofs described in a certain metalanguage,
then L is uniform with respect to that metalanguage.

Lemma
If L has static proofs, every line that occurs in a stage of a
RL-proof can be written as a finite string of a finite alphabet.

If the lemma would not hold, humans would not be able to write
proofs.

Theorem
If L has static proofs, then there is a positive test for L.
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Corollary
If L has static proofs, then L is a Tarski logic.

Uniformity takes its name from the Uniform Substitution rule
There are many complications with uniformity;
[Pogorzelski and Prucnal, 1975] discusses just one of them.
After some aspects are specified, one obtains:

Theorem
If L has static proofs described in a certain metalanguage,
then L is uniform with respect to that metalanguage.

Lemma
If L has static proofs, every line that occurs in a stage of a
RL-proof can be written as a finite string of a finite alphabet.

If the lemma would not hold, humans would not be able to write
proofs.

Theorem
If L has static proofs, then there is a positive test for L.
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Corollary
If L has static proofs, then L is a Tarski logic.

Uniformity takes its name from the Uniform Substitution rule
There are many complications with uniformity;
[Pogorzelski and Prucnal, 1975] discusses just one of them.
After some aspects are specified, one obtains:

Theorem
If L has static proofs described in a certain metalanguage,
then L is uniform with respect to that metalanguage.

Lemma
If L has static proofs, every line that occurs in a stage of a
RL-proof can be written as a finite string of a finite alphabet.

If the lemma would not hold, humans would not be able to write
proofs.

Theorem
If L has static proofs, then there is a positive test for L.
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Theorem
If L is Reflexive, Transitive, Monotonic, and Compact, and there
is a positive test for it, then there is a language schema in
which L has static proofs.

Theorem
Some logics L, defined over a language schema L are
Reflexive, Transitive, Monotonic, Uniform and Compact, and
there is a positive test for them, but they do not have static
proofs in L.

In such cases L cannot be characterized by any recursive set
of S-rules in which the metavariables range over formulas from
L.
Not all known logics have static proofs (in a language schema).
E.g., is second order CL, which has no dynamic proofs either.
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Theorem
If L is Reflexive, Transitive, Monotonic, and Compact, and there
is a positive test for it, then there is a language schema in
which L has static proofs.

Theorem
Some logics L, defined over a language schema L are
Reflexive, Transitive, Monotonic, Uniform and Compact, and
there is a positive test for them, but they do not have static
proofs in L.

In such cases L cannot be characterized by any recursive set
of S-rules in which the metavariables range over formulas from
L.
Not all known logics have static proofs (in a language schema).
E.g., is second order CL, which has no dynamic proofs either.
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Theorem
If L is Reflexive, Transitive, Monotonic, and Compact, and there
is a positive test for it, then there is a language schema in
which L has static proofs.

Theorem
Some logics L, defined over a language schema L are
Reflexive, Transitive, Monotonic, Uniform and Compact, and
there is a positive test for them, but they do not have static
proofs in L.

In such cases L cannot be characterized by any recursive set
of S-rules in which the metavariables range over formulas from
L.
Not all known logics have static proofs (in a language schema).
E.g., is second order CL, which has no dynamic proofs either.
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In some logics L the meaning of some logical symbols cannot
be fixed by S-rules, but only by more complex rules, sometimes
called metarules [Routley, 1982, Brady, 2006]; the cause is
often the weakness of the involved implication.
In view of this, S-rule is better redefined as follows:

If Γ1 ⊢L A1 and . . . Γn ⊢L An, then Υ/A (n ∈ {0,1, . . .}).

example: If A ⊢ C and B ⊢ C then A ∨ B/C. Where n > 0, the
application of a S-rule in a static proof P refers to finitely many
other finite and static proofs. Adjust “stage” etc.
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Aim: provide the theoretical backing for dynamic proofs (in
general, not specifically for ALs).

Central elements of annotated dynamic proofs: rules, lines,
lists of lines, and a marking definition.
Main differences with static proofs: (i) lines comprise a
condition and (ii) a marking definition is present.
A rule is a metalinguistic expression of the form Υ/A:Π – read
as “to derive A on the condition Π from Υ”, in which A is a
metalinguistic formula and Υ and Π are recursive sets of
metalinguistic formulas.
Rules specify that from formulas of a certain form, a formula of a
corresponding form may be derived on a condition, which is a set of
formulas of a further form.
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Aim: provide the theoretical backing for dynamic proofs (in
general, not specifically for ALs).
Central elements of annotated dynamic proofs: rules, lines,
lists of lines, and a marking definition.

Main differences with static proofs: (i) lines comprise a
condition and (ii) a marking definition is present.
A rule is a metalinguistic expression of the form Υ/A:Π – read
as “to derive A on the condition Π from Υ”, in which A is a
metalinguistic formula and Υ and Π are recursive sets of
metalinguistic formulas.
Rules specify that from formulas of a certain form, a formula of a
corresponding form may be derived on a condition, which is a set of
formulas of a further form.
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Aim: provide the theoretical backing for dynamic proofs (in
general, not specifically for ALs).
Central elements of annotated dynamic proofs: rules, lines,
lists of lines, and a marking definition.
Main differences with static proofs: (i) lines comprise a
condition and (ii) a marking definition is present.

A rule is a metalinguistic expression of the form Υ/A:Π – read
as “to derive A on the condition Π from Υ”, in which A is a
metalinguistic formula and Υ and Π are recursive sets of
metalinguistic formulas.
Rules specify that from formulas of a certain form, a formula of a
corresponding form may be derived on a condition, which is a set of
formulas of a further form.
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Aim: provide the theoretical backing for dynamic proofs (in
general, not specifically for ALs).
Central elements of annotated dynamic proofs: rules, lines,
lists of lines, and a marking definition.
Main differences with static proofs: (i) lines comprise a
condition and (ii) a marking definition is present.
A rule is a metalinguistic expression of the form Υ/A:Π – read
as “to derive A on the condition Π from Υ”, in which A is a
metalinguistic formula and Υ and Π are recursive sets of
metalinguistic formulas.

Rules specify that from formulas of a certain form, a formula of a
corresponding form may be derived on a condition, which is a set of
formulas of a further form.
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Aim: provide the theoretical backing for dynamic proofs (in
general, not specifically for ALs).
Central elements of annotated dynamic proofs: rules, lines,
lists of lines, and a marking definition.
Main differences with static proofs: (i) lines comprise a
condition and (ii) a marking definition is present.
A rule is a metalinguistic expression of the form Υ/A:Π – read
as “to derive A on the condition Π from Υ”, in which A is a
metalinguistic formula and Υ and Π are recursive sets of
metalinguistic formulas.
Rules specify that from formulas of a certain form, a formula of a
corresponding form may be derived on a condition, which is a set of
formulas of a further form.
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A rule is finitary iff Υ is finite. The condition is not required to be
finite. Yet I know no case where it need be infinite. Apparently the
matter is unimportant.

As for static proofs, a premise rule is supposed to be present,
but need not introduce premises on an empty condition.
Example: in the ‘direct proof theory’ for Rescher–Manor relations a
premise is introduced on the condition that it is consistent. The
underlying dynamic logic is not adaptive, but can be characterized by
an adaptive logic under a translation.

A line of a dynamic annotated proof will be a quadruple
comprising a line number, a formula, a justification, and a
condition. The first three elements are as for static proofs,
except that the justification now contains a rule instead of a
S-rule. As before Rl will denote the rule applied to add the line,
and Nl is the set of lines to which the rule is applied. The
condition is a set of formulas.
The application of a rule carries over conditions. If (formulas of
the form of) all members of Υ occur on lines of a list, and Π′ is
the union of the conditions of those lines, then the application
of the rule Υ/A:Π leads to adding a line that has A as its
formula and Π ∪ Π′ as its condition.
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A rule is finitary iff Υ is finite. The condition is not required to be
finite. Yet I know no case where it need be infinite. Apparently the
matter is unimportant.

As for static proofs, a premise rule is supposed to be present,
but need not introduce premises on an empty condition.
Example: in the ‘direct proof theory’ for Rescher–Manor relations a
premise is introduced on the condition that it is consistent. The
underlying dynamic logic is not adaptive, but can be characterized by
an adaptive logic under a translation.

A line of a dynamic annotated proof will be a quadruple
comprising a line number, a formula, a justification, and a
condition. The first three elements are as for static proofs,
except that the justification now contains a rule instead of a
S-rule. As before Rl will denote the rule applied to add the line,
and Nl is the set of lines to which the rule is applied. The
condition is a set of formulas.
The application of a rule carries over conditions. If (formulas of
the form of) all members of Υ occur on lines of a list, and Π′ is
the union of the conditions of those lines, then the application
of the rule Υ/A:Π leads to adding a line that has A as its
formula and Π ∪ Π′ as its condition.
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A rule is finitary iff Υ is finite. The condition is not required to be
finite. Yet I know no case where it need be infinite. Apparently the
matter is unimportant.

As for static proofs, a premise rule is supposed to be present,
but need not introduce premises on an empty condition.
Example: in the ‘direct proof theory’ for Rescher–Manor relations a
premise is introduced on the condition that it is consistent. The
underlying dynamic logic is not adaptive, but can be characterized by
an adaptive logic under a translation.

A line of a dynamic annotated proof will be a quadruple
comprising a line number, a formula, a justification, and a
condition. The first three elements are as for static proofs,
except that the justification now contains a rule instead of a
S-rule. As before Rl will denote the rule applied to add the line,
and Nl is the set of lines to which the rule is applied. The
condition is a set of formulas.

The application of a rule carries over conditions. If (formulas of
the form of) all members of Υ occur on lines of a list, and Π′ is
the union of the conditions of those lines, then the application
of the rule Υ/A:Π leads to adding a line that has A as its
formula and Π ∪ Π′ as its condition.
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A rule is finitary iff Υ is finite. The condition is not required to be
finite. Yet I know no case where it need be infinite. Apparently the
matter is unimportant.

As for static proofs, a premise rule is supposed to be present,
but need not introduce premises on an empty condition.
Example: in the ‘direct proof theory’ for Rescher–Manor relations a
premise is introduced on the condition that it is consistent. The
underlying dynamic logic is not adaptive, but can be characterized by
an adaptive logic under a translation.

A line of a dynamic annotated proof will be a quadruple
comprising a line number, a formula, a justification, and a
condition. The first three elements are as for static proofs,
except that the justification now contains a rule instead of a
S-rule. As before Rl will denote the rule applied to add the line,
and Nl is the set of lines to which the rule is applied. The
condition is a set of formulas.
The application of a rule carries over conditions. If (formulas of
the form of) all members of Υ occur on lines of a list, and Π′ is
the union of the conditions of those lines, then the application
of the rule Υ/A:Π leads to adding a line that has A as its
formula and Π ∪ Π′ as its condition.
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As for S-rules, a restriction may be attached to a rule, provided
that it can be decided whether the restriction is fulfilled by
inspecting the list of lines to which the application of the rule
belongs.
Given a set R of rules and a list L of lines, a line l of L is
R-correct iff
(i) it is the result of applying a rule Rl ∈ R to the formulas and
conditions of the members of Nl and
(ii) all members of Nl precede l in the list.

Definition
A marking definition determines, for every stage of a dynamic
proof, and for every line i of the stage whether it is marked or
unmarked. The definition proceeds in terms of a requirement
on the condition of line i and on the formulas unconditionally
derived at other lines of the stage.
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Rules may be applied to unmarked lines as well as to marked
ones. In the latter case, the added line at s will nearly always be
marked at s, but may be unmarked at a later stage.

In view of the previous comment: possible to construct a stage
of a ‘dynamic’ proof by applying the rules and only afterwards
to apply the marking definition. A chain of such lists differs only
from the static proofs in that the lines have a condition (that the
formulas are derived on a condition.)
So I first repeat adjusted Definitions for static proofs:

Definition
A R-stage from (the premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′.

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.

92 [97 110 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Rules may be applied to unmarked lines as well as to marked
ones. In the latter case, the added line at s will nearly always be
marked at s, but may be unmarked at a later stage.

In view of the previous comment: possible to construct a stage
of a ‘dynamic’ proof by applying the rules and only afterwards
to apply the marking definition. A chain of such lists differs only
from the static proofs in that the lines have a condition (that the
formulas are derived on a condition.)

So I first repeat adjusted Definitions for static proofs:

Definition
A R-stage from (the premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′.

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.

93 [97 110 115]



Defeasible reasoning
and Logic

Adaptive Logics

Static proofs

Dynamic proofs

Adaptive Dynamic
Proofs . . .

References

Rules may be applied to unmarked lines as well as to marked
ones. In the latter case, the added line at s will nearly always be
marked at s, but may be unmarked at a later stage.

In view of the previous comment: possible to construct a stage
of a ‘dynamic’ proof by applying the rules and only afterwards
to apply the marking definition. A chain of such lists differs only
from the static proofs in that the lines have a condition (that the
formulas are derived on a condition.)
So I first repeat adjusted Definitions for static proofs:

Definition
A R-stage from (the premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′.

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.
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Rules may be applied to unmarked lines as well as to marked
ones. In the latter case, the added line at s will nearly always be
marked at s, but may be unmarked at a later stage.

In view of the previous comment: possible to construct a stage
of a ‘dynamic’ proof by applying the rules and only afterwards
to apply the marking definition. A chain of such lists differs only
from the static proofs in that the lines have a condition (that the
formulas are derived on a condition.)
So I first repeat adjusted Definitions for static proofs:

Definition
A R-stage from (the premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′.

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.
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Rules may be applied to unmarked lines as well as to marked
ones. In the latter case, the added line at s will nearly always be
marked at s, but may be unmarked at a later stage.

In view of the previous comment: possible to construct a stage
of a ‘dynamic’ proof by applying the rules and only afterwards
to apply the marking definition. A chain of such lists differs only
from the static proofs in that the lines have a condition (that the
formulas are derived on a condition.)
So I first repeat adjusted Definitions for static proofs:

Definition
A R-stage from (the premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′.

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.
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Rules may be applied to unmarked lines as well as to marked
ones. In the latter case, the added line at s will nearly always be
marked at s, but may be unmarked at a later stage.

In view of the previous comment: possible to construct a stage
of a ‘dynamic’ proof by applying the rules and only afterwards
to apply the marking definition. A chain of such lists differs only
from the static proofs in that the lines have a condition (that the
formulas are derived on a condition.)
So I first repeat adjusted Definitions for static proofs:

Definition
A R-stage from (the premise set) Γ is a list of R-correct lines.

Definition
Where L and L′ are R-stages from Γ, L′ is an extension of L iff
all elements that occur in L occur in the same order in L′.

Definition
A static R-proof from Γ is a chain of R-stages from Γ, the first
element of which is the empty list and all other elements of
which are extensions of their predecessors.
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Definition
A static R-proof of A:∆ from Γ is a static R-proof from Γ in
which, from a certain stage on, there is a line that has A as its
formula and ∆ as its condition.

Definition
Γ ⊢R A:∆ (A:∆ is R-derivable from Γ) iff there is a static
R-proof of A:∆ from Γ.

Just like S-rules, nearly every rule Υ/A:Π has applications to
sets of formulas with a lower cardinality than that of Υ. In this
sense every infinitary rule R generates a recursive set of
finitary rules, say fin(R).

Theorem
If R is a recursive set of rules, then there is a recursive set R′

of finitary rules such that Γ ⊢R′ A:∆ iff Γ ⊢R A:∆.
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Definition
A static R-proof of A:∆ from Γ is a static R-proof from Γ in
which, from a certain stage on, there is a line that has A as its
formula and ∆ as its condition.

Definition
Γ ⊢R A:∆ (A:∆ is R-derivable from Γ) iff there is a static
R-proof of A:∆ from Γ.

Just like S-rules, nearly every rule Υ/A:Π has applications to
sets of formulas with a lower cardinality than that of Υ. In this
sense every infinitary rule R generates a recursive set of
finitary rules, say fin(R).

Theorem
If R is a recursive set of rules, then there is a recursive set R′

of finitary rules such that Γ ⊢R′ A:∆ iff Γ ⊢R A:∆.
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Definition
A static R-proof of A:∆ from Γ is a static R-proof from Γ in
which, from a certain stage on, there is a line that has A as its
formula and ∆ as its condition.

Definition
Γ ⊢R A:∆ (A:∆ is R-derivable from Γ) iff there is a static
R-proof of A:∆ from Γ.

Just like S-rules, nearly every rule Υ/A:Π has applications to
sets of formulas with a lower cardinality than that of Υ. In this
sense every infinitary rule R generates a recursive set of
finitary rules, say fin(R).

Theorem
If R is a recursive set of rules, then there is a recursive set R′

of finitary rules such that Γ ⊢R′ A:∆ iff Γ ⊢R A:∆.
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Definition
A static R-proof of A:∆ from Γ is a static R-proof from Γ in
which, from a certain stage on, there is a line that has A as its
formula and ∆ as its condition.

Definition
Γ ⊢R A:∆ (A:∆ is R-derivable from Γ) iff there is a static
R-proof of A:∆ from Γ.

Just like S-rules, nearly every rule Υ/A:Π has applications to
sets of formulas with a lower cardinality than that of Υ. In this
sense every infinitary rule R generates a recursive set of
finitary rules, say fin(R).

Theorem
If R is a recursive set of rules, then there is a recursive set R′

of finitary rules such that Γ ⊢R′ A:∆ iff Γ ⊢R A:∆.
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Let M refer to a marking definition. By a R-M-proof (from a Γ), I
shall mean a static R-proof (from Γ) to which the marking
definition M was applied.

Definition
A is R-M-derived from Γ at a stage s iff, for some ∆, s is a
stage of a R-M-proof from Γ and A is the formula of an
unmarked line of s.

Definition
A R-M-proof from Γ is stable with respect to line i from a stage
s on iff (i) line i occurs in s and (ii) if line i is marked,
respectively unmarked, at stage s, then it is marked,
respectively unmarked, in all extensions of s.

Definition
Γ ⊢M

R A (A is R-M-derivable from Γ) iff A is the formula of an
unmarked line i of a stage of an R-M-proof from Γ and the
proof is stable with respect to line i .
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Let M refer to a marking definition. By a R-M-proof (from a Γ), I
shall mean a static R-proof (from Γ) to which the marking
definition M was applied.

Definition
A is R-M-derived from Γ at a stage s iff, for some ∆, s is a
stage of a R-M-proof from Γ and A is the formula of an
unmarked line of s.

Definition
A R-M-proof from Γ is stable with respect to line i from a stage
s on iff (i) line i occurs in s and (ii) if line i is marked,
respectively unmarked, at stage s, then it is marked,
respectively unmarked, in all extensions of s.

Definition
Γ ⊢M

R A (A is R-M-derivable from Γ) iff A is the formula of an
unmarked line i of a stage of an R-M-proof from Γ and the
proof is stable with respect to line i .
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Let M refer to a marking definition. By a R-M-proof (from a Γ), I
shall mean a static R-proof (from Γ) to which the marking
definition M was applied.

Definition
A is R-M-derived from Γ at a stage s iff, for some ∆, s is a
stage of a R-M-proof from Γ and A is the formula of an
unmarked line of s.

Definition
A R-M-proof from Γ is stable with respect to line i from a stage
s on iff (i) line i occurs in s and (ii) if line i is marked,
respectively unmarked, at stage s, then it is marked,
respectively unmarked, in all extensions of s.

Definition
Γ ⊢M

R A (A is R-M-derivable from Γ) iff A is the formula of an
unmarked line i of a stage of an R-M-proof from Γ and the
proof is stable with respect to line i .
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Let M refer to a marking definition. By a R-M-proof (from a Γ), I
shall mean a static R-proof (from Γ) to which the marking
definition M was applied.

Definition
A is R-M-derived from Γ at a stage s iff, for some ∆, s is a
stage of a R-M-proof from Γ and A is the formula of an
unmarked line of s.

Definition
A R-M-proof from Γ is stable with respect to line i from a stage
s on iff (i) line i occurs in s and (ii) if line i is marked,
respectively unmarked, at stage s, then it is marked,
respectively unmarked, in all extensions of s.

Definition
Γ ⊢M

R A (A is R-M-derivable from Γ) iff A is the formula of an
unmarked line i of a stage of an R-M-proof from Γ and the
proof is stable with respect to line i .
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Definition
A logic L is defined by a recursive set R of rules and a marking
definition M iff Γ ⊢L A iff Γ ⊢M

R A.

Definition
A logic L has dynamic proofs iff it is defined by a recursive set
R of rules and a marking definition, and has no static proofs.

Theorem
If L is defined by a recursive set R of rules and a marking
definition, and Γ ⊢L A:∆, then there is a static R-proof of A:∆
from Γ in which A is the formula and ∆ the condition of the last
line of the last stage.

Definition
Where L1 has dynamic proofs and L2 has static proofs, L1
S-agrees with L2 iff there is a function f : W+ × ℘(W+) → W+

such that Γ ⊢L1
A:∆ iff Γ ⊢L2

f (A,∆).

Corollary
Every adaptive logic AL S-agrees with its lower limit logic LLL.
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Definition
A logic L is defined by a recursive set R of rules and a marking
definition M iff Γ ⊢L A iff Γ ⊢M

R A.

Definition
A logic L has dynamic proofs iff it is defined by a recursive set
R of rules and a marking definition, and has no static proofs.

Theorem
If L is defined by a recursive set R of rules and a marking
definition, and Γ ⊢L A:∆, then there is a static R-proof of A:∆
from Γ in which A is the formula and ∆ the condition of the last
line of the last stage.

Definition
Where L1 has dynamic proofs and L2 has static proofs, L1
S-agrees with L2 iff there is a function f : W+ × ℘(W+) → W+

such that Γ ⊢L1
A:∆ iff Γ ⊢L2

f (A,∆).

Corollary
Every adaptive logic AL S-agrees with its lower limit logic LLL.
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Definition
A logic L is defined by a recursive set R of rules and a marking
definition M iff Γ ⊢L A iff Γ ⊢M

R A.

Definition
A logic L has dynamic proofs iff it is defined by a recursive set
R of rules and a marking definition, and has no static proofs.

Theorem
If L is defined by a recursive set R of rules and a marking
definition, and Γ ⊢L A:∆, then there is a static R-proof of A:∆
from Γ in which A is the formula and ∆ the condition of the last
line of the last stage.

Definition
Where L1 has dynamic proofs and L2 has static proofs, L1
S-agrees with L2 iff there is a function f : W+ × ℘(W+) → W+

such that Γ ⊢L1
A:∆ iff Γ ⊢L2

f (A,∆).

Corollary
Every adaptive logic AL S-agrees with its lower limit logic LLL.
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Definition
A logic L is defined by a recursive set R of rules and a marking
definition M iff Γ ⊢L A iff Γ ⊢M

R A.

Definition
A logic L has dynamic proofs iff it is defined by a recursive set
R of rules and a marking definition, and has no static proofs.

Theorem
If L is defined by a recursive set R of rules and a marking
definition, and Γ ⊢L A:∆, then there is a static R-proof of A:∆
from Γ in which A is the formula and ∆ the condition of the last
line of the last stage.

Definition
Where L1 has dynamic proofs and L2 has static proofs, L1
S-agrees with L2 iff there is a function f : W+ × ℘(W+) → W+

such that Γ ⊢L1
A:∆ iff Γ ⊢L2

f (A,∆).

Corollary
Every adaptive logic AL S-agrees with its lower limit logic LLL.
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Definition
A logic L is defined by a recursive set R of rules and a marking
definition M iff Γ ⊢L A iff Γ ⊢M

R A.

Definition
A logic L has dynamic proofs iff it is defined by a recursive set
R of rules and a marking definition, and has no static proofs.

Theorem
If L is defined by a recursive set R of rules and a marking
definition, and Γ ⊢L A:∆, then there is a static R-proof of A:∆
from Γ in which A is the formula and ∆ the condition of the last
line of the last stage.

Definition
Where L1 has dynamic proofs and L2 has static proofs, L1
S-agrees with L2 iff there is a function f : W+ × ℘(W+) → W+

such that Γ ⊢L1
A:∆ iff Γ ⊢L2

f (A,∆).

Corollary
Every adaptive logic AL S-agrees with its lower limit logic LLL.
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The essential specificity concerns final derivability (as opposed
to derivability at a stage):

Definition
A is finally derived in line i of the finite stage s of a proof from Γ
iff (i) A is derived in line i of stage s and (ii) every extension of
the proof in which line i is marked may be further extended in
such a way that line i is unmarked.

cf. dialogues
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