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Defeasible Reasoning

- most actual reasoning is defeasible
- applications of methods require defeasible reasoning
- all knowledge ultimately results from defeasible reasoning

- logicians: almost exclusively deductive logics
- defeasible logics: fragmentary and disparate studies
(e.g., non-monotonic logics [Łukaszewicz, 1990])
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Pecularities of Defeasible Reasoning:
- always internal dynamics: conclusion drawn at some point in
the reasoning may be revoked later, but may be deemed
correct at a still later point, etc.

- sometimes external dynamics: non-monotonic consequence
relation: (Γ ⊢ A but Γ ∪∆ ⊬ A)

Rescher’s Weak Consequence relation: monotonic ⋇

internal dynamic caused by growing insight in the premises
⇒ conclusions revised

Historical note:

- a unifying framework: Adaptive logics
- First adaptive logic atypical not on known method

- plus new examples (creative)
- known methods (reconstructing): only later (students)
- integrating e.g. Rescher-Manor logics
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Computational Stuff

- CL and most predicative deductive logics:
semi-recursive but not recursive (positive, no negative test) ⋇

- idea behind defeasible logics: from ∆ derive A unless Γ ⊢L X
external dyn.: Mill on inductive generalization

- defeasible logics: no positive test
⇒ causes the internal dynamics

- negative test?
- A may be derivable in different ways:
- If ∆ ⊆ CnL(Γ), then derive A unless B ∈ CnL(Γ)
- If Θ ⊆ CnL(Γ), then derive A unless B ∈ CnL(Γ)

For some defeasible logics, neither CnL(Γ) nor W\CnL(Γ) is semi-recursive.
It was proved that, for some AL, CnAL(Γ) is Π1

1-complex.
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Avoiding Circularity

- reasoning (and derivations) proceed linearly
- “A is L-derivable from Γ unless B ∈ CnL(Γ)” is flatly circular

- even “If ∆ ⊆ CnL(Γ), then L allows one to derive A from Γ
unless B ∈ CnL(Γ)” easily causes circularity

Solution
- “If Γ ⊢LLL B, then AL allows one to derive A from Γ unless Γ ⊢LLL C”
- Γ ⊢AL A iff Γ ⊢LLL B and Γ ⊬LLL C.
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The Standard Format
large diversity of adaptive logics

every new adaptive logic requires: proof theory, semantics,
metatheory (study properties of the logic)

AL : ℘(W) → ℘(W) is defined by a triple:
(1) A lower limit logic LLL: a logic that is defined over some L

and is reflexive, transitive, monotonic, formal and compact.
All these logics have a proper semantics S phrased in a
CL-metalanguage.

(2) A decidable set of abnormalities Ω ⊆ W: a set of formulas
characterized by a (possibly restricted) logical form F; or a
union of such sets.

(3) An adaptive strategy: Reliability, Minimal Abnormality, . . .

ULL obtained by trivializing abnormalities
Convention
corrective adaptive logics: LLL weaker then CL; ex. inconsistency-adaptive
ampliative adaptive logics: LLL is CL; ex. compatibility, inductive generalisation
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Proof theory

· rules of inference (determined by LLL and Ω)
· a marking definition (determined by Ω and the stategy)

(Generic) Rules of inference
PREM If A ∈ Γ: . . . . . .

A ∅

RU If A1, . . . ,An ⊢LLL B: A1 ∆1
. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . ,An ⊢LLL B∨̌Dab(Θ) A1 ∆1
. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ
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Handling Inconsistency
dynamics caused by contradictions derived in the proofs
simplistic example: Γ = {p,q,¬q,¬p ∨ r ,¬q ∨ s}
minimally inconsistent interpretation: r derivable, s not

- LLL: CLuN ⋇
- Ω = {A ∧ ¬A | A ∈ W}
- strategy: any

example proof:

1 p Prem ∅
2 q Prem ∅
3 ¬q Prem ∅
4 ¬p ∨ r Prem ∅
5 ¬q ∨ s Prem ∅
6 (p ∧ ¬p) ∨ r 1, 4; RU ∅
7 r 1, 4; RC {p ∧ ¬p}
8 s 2, 5; RC {q ∧ ¬q}
9 q ∧ ¬q 2, 3; RU ∅

22 [27 39 51]
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Inductive Generalisation

Let the data comprise the following literals.

Pa Pb Pc
Qa Qd ¬Qe
Ra Rb ¬Rc

1 Pa Prem ∅
2 Ra Prem ∅
3 ∀x(Px ⊃ Qx) RC {¬∀x(Px ⊃ Qx)} ✓7

4.1 Qa 1, 6; RU {¬∀x(Px ⊃ Qx)} ✓7

5.2 ∀x(Px ⊃ ¬Qx) RC {¬∀x(Px ⊃ ¬Qx)} ✓7

6.3 ¬Qa 1, 6.2; RU {¬∀x(Px ⊃ ¬Qx)} ✓7

7 ¬∀x(Px ⊃ Qx) ∨ ¬∀x(Px ⊃ ¬Qx) 6.1, 6.3; RD ∅

Content guidance: obserations and experiments.
[Batens, 2011]

28 [28 39 51]



Strategies

Let Γ = {p ∨ q,¬p,¬q,¬p ∨ r ,¬q ∨ s}
Obviously Γ ⊢CLuN (p ∧ ¬p) ∨ (q ∧ ¬q), Γ ⊬CLuN (p ∧ ¬p) and Γ ⊬CLuN (q ∧ ¬q).

Dab(∆) is the classical disjunction of the members of a ∆ ⊆fin Ω.

If Γ ⊢LLL Dab(∆) and there is no ∆′ ⊂ ∆ such that Γ ⊢LLL Dab(∆′),
then Dab(∆) is a minimal Dab-consequence of Γ.

Where Dab(∆1), Dab(∆2), . . . – the ∆i may overlap – are the minimal
Dab-consequences of Γ:
U(Γ) =df ∆1 ∪∆2 ∪ . . . .
Φ(Γ) is the set of minimal choice sets of {∆1,∆2, . . .}.⋇

Marking for Reliability: where Θ is the condition of line l of a
proof from Γ, line l is marked iff Θ ∩ U(Γ) ̸= ∅.

Semantically: Ab(M) = {B ∈ Ω | M ⊩ B}; a LLL-model M of Γ
is reliable iff Ab(M) ⊆ U(Γ). Γ ⊨AL A iff, for every reliable model
of Γ, M ⊩ A.
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Strategies

Marking for Minimal Abnormality: Where A is derived in line l ,
on the condition Θ, line l is unmarked iff, (i) Θ ∩∆ = ∅ for some
∆ ∈ Φ(Γ) and (ii) for each ∆ ∈ Φ(Γ), A is derived in a line with
condition Θ′ such that Θ′ ∩∆ = ∅.

Semantically: a LLL-model M of Γ is Minimally Abnormal iff
there is no LLL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).
Γ ⊨AL A iff, for every minimally abnormal model of Γ, M ⊩ A.

Hint: it was proved that M is a minimally abnormal model of Γ iff
Ab(M) ∈ Φ(Γ).

32 [33 39 51]
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Illustrating Marking

Let Γ = {p ∨ q,¬p,¬q,¬p ∨ r ,¬q ∨ s}

1 p ∨ q Prem ∅
2 ¬p Prem ∅
3 ¬q Prem ∅
4 p ∨ r Prem ∅
5 q ∨ s Prem ∅
6 r 2, 4; DS {p ∧ ¬p}

✓8

7 s 3, 5; DS {q ∧ ¬q}

✓8

8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 3 ∅
9 r ∨ s 6; ADD {p ∧ ¬p}

10 r ∨ s 7; ADD {q ∧ ¬q}

U(Γ) = {p ∧ ¬p,q ∧ ¬q} and Φ(Γ) = {{p ∧ ¬p}, {q ∧ ¬q}}

34 [38 39 51]
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Illustrating Marking

Let Γ = {p ∨ q,¬p,¬q,¬p ∨ r ,¬q ∨ s}

1 p ∨ q Prem ∅
2 ¬p Prem ∅
3 ¬q Prem ∅
4 p ∨ r Prem ∅
5 q ∨ s Prem ∅
6 r 2, 4; DS {p ∧ ¬p} ✓8

7 s 3, 5; DS {q ∧ ¬q}✓8

8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 3 ∅
9 r ∨ s 6; ADD {p ∧ ¬p} ✓9

10 r ∨ s 7; ADD {q ∧ ¬q} ✓10

U(Γ) = {p ∧ ¬p,q ∧ ¬q} and Φ(Γ) = {{p ∧ ¬p}, {q ∧ ¬q}}

marking for Reliability
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4 p ∨ r Prem ∅
5 q ∨ s Prem ∅
6 r 2, 4; DS {p ∧ ¬p} ✓8

7 s 3, 5; DS {q ∧ ¬q}✓8

8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 3 ∅
9 r ∨ s 6; ADD {p ∧ ¬p}

10 r ∨ s 7; ADD {q ∧ ¬q}

U(Γ) = {p ∧ ¬p,q ∧ ¬q} and Φ(Γ) = {{p ∧ ¬p}, {q ∧ ¬q}}

marking for Minimal Abnormality from stage 10 on

37 [38 39 51]



Intro

computation

Circular?

Standard Format

Examples and details

Metatheory

References

Illustrating Marking

Let Γ = {p ∨ q,¬p,¬q,¬p ∨ r ,¬q ∨ s}

1 p ∨ q Prem ∅
2 ¬p Prem ∅
3 ¬q Prem ∅
4 p ∨ r Prem ∅
5 q ∨ s Prem ∅
6 r 2, 4; DS {p ∧ ¬p} ✓8

7 s 3, 5; DS {q ∧ ¬q}✓8

8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 3 ∅
9 r ∨ s 6; ADD {p ∧ ¬p}

10 r ∨ s 7; ADD {q ∧ ¬q}

U(Γ) = {p ∧ ¬p,q ∧ ¬q} and Φ(Γ) = {{p ∧ ¬p}, {q ∧ ¬q}}

marking for Minimal Abnormality from stage 10 on

Γ ⊢CLuNm r ∨ s but Γ ⊬CLuNr r ∨ s
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Final Derivability

if proponent can answer any move by the opponent, then she
can answer any (finite or infinite) set of consecutive moves by
the opponent
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Standard format and metatheory

Theorem
Γ ⊨ALr A iff Γ ⊨LLL A∨̌Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite
∆ ⊂ Ω.

. . .

Corollary
Γ ⊢ALr A iff Γ ⊨ALr A. (Soundness and Completeness)

Lemma
M ∈ Mm

Γ iff M ∈ MLLL
Γ and Ab(M) ∈ ΦΓ.

. . .

Theorem
Γ ⊢ALm A iff Γ ⊨ALm A. (Soundness and Completeness)
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Standard format and metatheory

Theorem
Γ ⊨ALr A iff Γ ⊨LLL A∨̌Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite
∆ ⊂ Ω.

. . .

Corollary
Γ ⊢ALr A iff Γ ⊨ALr A. (Soundness and Completeness)

Lemma
M ∈ Mm

Γ iff M ∈ MLLL
Γ and Ab(M) ∈ ΦΓ.

. . .

Theorem
Γ ⊢ALm A iff Γ ⊨ALm A. (Soundness and Completeness)
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Strong Reassurance (Stopperedness, Smoothness)

if a LLL- model M of Γ is not selected, this is justified by the fact that a
selected model of Γ is less abnormal than M REF

Theorem
If M ∈ MLLL

Γ −Mm
Γ , then there is a M ′ ∈ Mm

Γ such that
Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Minimal
Abnormality.)

Theorem
If M ∈ MLLL

Γ −Mr
Γ, then there is a M ′ ∈ Mr

Γ such that
Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Reliability.)
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Strong Reassurance (Stopperedness, Smoothness)

if a LLL- model M of Γ is not selected, this is justified by the fact that a
selected model of Γ is less abnormal than M REF

Theorem
If M ∈ MLLL

Γ −Mm
Γ , then there is a M ′ ∈ Mm

Γ such that
Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Minimal
Abnormality.)

Theorem
If M ∈ MLLL

Γ −Mr
Γ, then there is a M ′ ∈ Mr

Γ such that
Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Reliability.)
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Theorem each of the following obtains:

1. Mm
Γ ⊆ Mr

Γ. Hence CnALr (Γ) ⊆ CnALm(Γ). •
2. If A ∈ Ω− U(Γ), then ¬̌A ∈ CnALr (Γ).

3. If Dab(∆) is a minimal Dab-consequence of Γ and A ∈ ∆,
then some M ∈ Mm

Γ verifies A and falsifies all members (if
any) of ∆− {A}.

4. Mm
Γ = Mm

CnALm (Γ) whence
CnALm(Γ) = CnALm(CnALm(Γ)). •(Fixed Point.)

5. Mr
Γ = Mr

CnALr (Γ) whence
CnALr (Γ) = CnALr (CnALr (Γ)). •(Fixed Point.)

6. For all ∆ ⊆ Ω, Dab(∆) ∈ CnAL(Γ) iff Dab(∆) ∈ CnLLL(Γ).
(Immunity.)

7. If Γ′ ⊆ CnAL(Γ), then CnAL(Γ
′) ⊆ CnAL(Γ). •(Cautious Cut.)

8. If Γ′ ⊆ CnAL(Γ), then CnAL(Γ ∪ Γ′) ⊆ CnAL(Γ). •(Cautious
Monotonicity.)
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Theorem each of the following obtains:

1. If Γ is normal, then MULL
Γ = Mm

Γ = Mr
Γ whence

CnALr (Γ) = CnALm (Γ) = CnULL(Γ). •

2. If Γ is abnormal and MLLL
Γ ̸= ∅, then MULL

Γ ⊂ Mm
Γ and hence

CnALr (Γ) ⊆ CnALm (Γ) ⊂ CnULL(Γ).

3. MULL
Γ ⊆ Mm

Γ ⊆ Mr
Γ ⊆ MLLL

Γ whence
CnLLL(Γ) ⊆ CnALr (Γ) ⊆ CnALm (Γ) ⊆ CnULL(Γ). •

4. Mr
Γ ⊂ MLLL

Γ iff Γ∪ {A} is LLL-satisfiable for some A ∈ Ω− U(Γ).

5. CnLLL(Γ) ⊂ CnALr (Γ) iff Mr
Γ ⊂ MLLL

Γ .

6. Mm
Γ ⊂ MLLL

Γ iff there is a (possibly infinite) ∆ ⊆ Ω such that
Γ ∪∆ is LLL-satisfiable and there is no φ ∈ ΦΓ for which ∆ ⊆ φ.

7. If there are A1, . . . ,An ∈ Ω (n ≥ 1) such that Γ ∪ {A1, . . . ,An} is
LLL-satisfiable and, for every φ ∈ ΦΓ, {A1, . . . ,An} ⊈ φ, then
CnLLL(Γ) ⊂ CnALm (Γ).

8. CnALm (Γ) and CnALr (Γ) are non-trivial iff CnALm (Γ) is
non-trivial. • (Reassurance)

46 [46 49 51]



Intro

computation

Circular?

Standard Format

Examples and details

Metatheory

References

Theorem
If Γ′ ⊆ CnAL(Γ), then CnAL(Γ ∪ Γ′) = CnAL(Γ). (Cumulative
Indifference.)

Theorem
If Γ ⊢AL A, then every AL-proof from Γ can be extended in such
a way that A is finally derived in it. (Proof Invariance)

Theorem
If Γ′ ∈ CnAL(Γ) and Γ ∈ CnAL(Γ

′), then CnAL(Γ) = CnAL(Γ
′).

(Equivalent Premise Sets) REF

. . .
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Nog niet behandeld

-relatie met Graham
- meer voorbeelden (alleen tripels) cf. J18ALs
- referenties tussenvoegen
- geprioriteerde - theorieën
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Questions?
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