

Uniwersytet Warmińsko-Mazurski w Olsztynie 15 September 2022

A Unifying Program for Defeasible Reasoning Forms: Adaptive Logics

Diderik Batens

Centre for Logic and Philosophy of Science Ghent University, Belgium

diderik.batens@ugent.be
https://users.ugent.be/~dbatens
https://biblio.ugent.be/person/801000271859
https://www.clps.ugent.be/people/members/diderik-batens

Centre for Logic and

entrum voor Logica

Outline

Introduction

Computational Stuff

Avoiding Circularity

The Standard Format

Examples and details

Metatheory

References

Intro computation Circular? Standard Format Examples and detai Metatheory

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● りへぐ

Outline

Introduction

Computational Stuff

Avoiding Circularity

The Standard Format

Examples and details

Metatheory

References

Intro computation Circular? Standard Format Examples and de

Vetatheory

Defeasible Reasoning

- most actual reasoning is defeasible
- applications of methods require defeasible reasoning
- all knowledge ultimately results from defeasible reasoning

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Defeasible Reasoning

- most actual reasoning is defeasible
- applications of methods require defeasible reasoning
- all knowledge ultimately results from defeasible reasoning
- logicians: almost exclusively deductive logics
- defeasible logics: fragmentary and disparate studies (e.g., non-monotonic logics [Łukaszewicz, 1990])

- always *internal* dynamics: conclusion drawn at some point in the reasoning may be revoked later, but may be deemed correct at a still later point, etc.

- always *internal* dynamics: conclusion drawn at some point in the reasoning may be revoked later, but may be deemed correct at a still later point, etc.

- sometimes *external* dynamics: non-monotonic consequence relation: ($\Gamma \vdash A$ but $\Gamma \cup \Delta \nvDash A$)

Rescher's Weak Consequence relation: monotonic *

- always *internal* dynamics: conclusion drawn at some point in the reasoning may be revoked later, but may be deemed correct at a still later point, etc.

- sometimes *external* dynamics: non-monotonic consequence relation: ($\Gamma \vdash A$ but $\Gamma \cup \Delta \nvDash A$)

Rescher's Weak Consequence relation: monotonic *

internal dynamic caused by growing insight in the premises \Rightarrow conclusions revised

- always *internal* dynamics: conclusion drawn at some point in the reasoning may be revoked later, but may be deemed correct at a still later point, etc.

- sometimes *external* dynamics: non-monotonic consequence relation: ($\Gamma \vdash A$ but $\Gamma \cup \Delta \nvDash A$)

Rescher's Weak Consequence relation: monotonic *

internal dynamic caused by growing insight in the premises \Rightarrow conclusions revised

Historical note:

- a unifying framework: Adaptive logics
- First adaptive logic atypical not on known method
- plus new examples (creative)
- known methods (reconstructing): only later (students)
- integrating e.g. Rescher-Manor logics

Outline

Introduction

Computational Stuff

Avoiding Circularity

The Standard Format

Examples and details

Metatheory

References

computation

Jirculai :

Standard Format

Examples and details

Metatheory

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Computational Stuff

 CL and most predicative deductive logics: semi-recursive but not recursive (positive, no negative test) *

- idea behind defeasible logics: from Δ derive A unless $\Gamma \vdash_L X$ external dyn.: *Mill* on inductive generalization

◆□> ◆□> ◆目> ◆目> ◆日 ◆ ○ ◆

- defeasible logics: no positive test ⇒ causes the internal dynamics

Computational Stuff

 CL and most predicative deductive logics: semi-recursive but not recursive (positive, no negative test) *

- idea behind defeasible logics: from Δ derive A unless $\Gamma \vdash_L X$ external dyn.: *Mill* on inductive generalization

◆□> ◆□> ◆目> ◆目> ◆日 ◆ ○ ◆

- defeasible logics: no positive test ⇒ causes the internal dynamics

- negative test?
- A may be derivable in different ways:
- If $\Delta \subseteq \operatorname{Cn}_{\mathsf{L}}(\Gamma)$, then derive A unless $B \in \operatorname{Cn}_{\mathsf{L}}(\Gamma)$
- If $\Theta \subseteq \operatorname{Cn}_{\mathsf{L}}(\Gamma)$, then derive A unless $B \in \operatorname{Cn}_{\mathsf{L}}(\Gamma)$

Computational Stuff

 CL and most predicative deductive logics: semi-recursive but not recursive (positive, no negative test) *

- idea behind defeasible logics: from Δ derive A unless $\Gamma \vdash_L X$ external dyn.: *Mill* on inductive generalization

- defeasible logics: no positive test ⇒ causes the internal dynamics

- negative test?
- A may be derivable in different ways:
- If $\Delta \subseteq \operatorname{Cn}_{\mathsf{L}}(\Gamma)$, then derive A unless $B \in \operatorname{Cn}_{\mathsf{L}}(\Gamma)$
- If $\Theta \subseteq \operatorname{Cn}_{\mathsf{L}}(\Gamma)$, then derive A unless $B \in \operatorname{Cn}_{\mathsf{L}}(\Gamma)$

For some defeasible logics, neither $\operatorname{Cn}_{L}(\Gamma)$ nor $\mathcal{W}\setminus\operatorname{Cn}_{L}(\Gamma)$ is semi-recursive. It was proved that, for some **AL**, $\operatorname{Cn}_{AL}(\Gamma)$ is Π_{1}^{1} -complex.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Outline

Introduction

Computational Stuff

Avoiding Circularity

The Standard Format

Examples and details

Metatheory

References

intro

computatior

Circular?

Standard Format

Examples and details

Metatheory

Avoiding Circularity

- reasoning (and derivations) proceed linearly
- "A is L-derivable from Γ unless $B \in \operatorname{Cn}_{L}(\Gamma)$ " is flatly circular
- even "If $\Delta \subseteq Cn_L(\Gamma)$, then **L** allows one to derive *A* from Γ unless $B \in Cn_L(\Gamma)$ " easily causes circularity

Solution

- "If $\Gamma \vdash_{LLL} B$, then **AL** allows one to derive A from Γ unless $\Gamma \vdash_{LLL} C$ "

・ロト・西ト・ヨト・ヨト ヨー うへの

- $\Gamma \vdash_{AL} A$ iff $\Gamma \vdash_{LLL} B$ and $\Gamma \nvDash_{LLL} C$.

Outline

Introduction

Computational Stuff

Avoiding Circularity

The Standard Format

Examples and details

Metatheory

References

Intro

computation

Circular'

Standard Format

Examples and details

Metatheory

The Standard Format

large diversity of adaptive logics

every new adaptive logic requires: proof theory, semantics, metatheory (study properties of the logic)

AL: $\wp(\mathcal{W}) \to \wp(\mathcal{W})$ is defined by a triple:

- A *lower limit logic* LLL: a logic that is defined over some L and is reflexive, transitive, monotonic, formal and compact. All these logics have a proper semantics S phrased in a CL-metalanguage.
- (2) A decidable set of abnormalities Ω ⊆ W: a set of formulas characterized by a (possibly restricted) logical form F; or a union of such sets.
- (3) An adaptive strategy: Reliability, Minimal Abnormality, ...

```
Intro
computation
Circular?
Standard Format
Examples and details
Metatheory
References
```

The Standard Format

large diversity of adaptive logics

every new adaptive logic requires: proof theory, semantics, metatheory (study properties of the logic)

AL: $\wp(\mathcal{W}) \to \wp(\mathcal{W})$ is defined by a triple:

- A *lower limit logic* LLL: a logic that is defined over some L and is reflexive, transitive, monotonic, formal and compact. All these logics have a proper semantics S phrased in a CL-metalanguage.
- (2) A decidable set of abnormalities $\Omega \subseteq W$: a set of formulas characterized by a (possibly restricted) logical form F; or a union of such sets.
- (3) An adaptive strategy: Reliability, Minimal Abnormality, ...

ULL obtained by trivializing abnormalities

The Standard Format

large diversity of adaptive logics

every new adaptive logic requires: proof theory, semantics, metatheory (study properties of the logic)

AL: $\wp(\mathcal{W}) \to \wp(\mathcal{W})$ is defined by a triple:

- (1) A *lower limit logic* **LLL**: a logic that is defined over some \mathcal{L} and is reflexive, transitive, monotonic, formal and compact. All these logics have a proper semantics \mathbb{S} phrased in a **CL**-metalanguage.
- (2) A decidable set of abnormalities $\Omega \subseteq W$: a set of formulas characterized by a (possibly restricted) logical form F; or a union of such sets.
- (3) An adaptive strategy: Reliability, Minimal Abnormality, ...
- ULL obtained by trivializing abnormalities

Convention

corrective adaptive logics: LLL weaker then CL; ex. inconsistency-adaptive ampliative adaptive logics: LLL is CL; ex. compatibility, inductive generalisation

Proof theory

· rules of inference (determined by **LLL** and Ω) · a marking definition (determined by Ω and the stategy) Standard Format (Generic) Rules of inference _____Ø PREM If $A \in \Gamma$: . . . Α RU If $A_1, \ldots, A_n \vdash \prod B$: A_1 Δ_1 $\frac{A_n \quad \Delta_n}{B \quad \Delta_1 \cup \ldots \cup \Delta_n}$ RC If $A_1, \ldots, A_n \vdash_{\mathsf{LLL}} B \check{\lor} \mathrm{Dab}(\Theta)$ A_1 Δ_1 $\begin{array}{cc} A_n & \Delta_n \\ B & \Delta_1 \cup \ldots \cup \Delta_n \cup \Theta \end{array}$ ▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline

Introduction

Computational Stuff

Avoiding Circularity

The Standard Format

Examples and details

Metatheory

References

Intro

computatior

Circular?

Standard Format

Examples and details

Metatheory

dynamics caused by contradictions derived in the proofs simplistic example: $\Gamma = \{p, q, \neg q, \neg p \lor r, \neg q \lor s\}$ minimally inconsistent interpretation: *r* derivable, *s* not

- LLL: CLuN *

$$-\Omega = \{ A \land \neg A \mid A \in \mathcal{W} \}$$

- strategy: any

Intro computation Circular? Standard Format Examples and details

Metatheory

dynamics caused by contradictions derived in the proofs simplistic example: $\Gamma = \{p, q, \neg q, \neg p \lor r, \neg q \lor s\}$ minimally inconsistent interpretation: *r* derivable, *s* not

- LLL: CLuN *

$$-\Omega = \{ A \land \neg A \mid A \in \mathcal{W} \}$$

- strategy: any

example proof:

1	р	Prem	Ø
2	q	Prem	Ø
3	$ eg \boldsymbol{q}$	Prem	Ø
4	$\neg p \lor r$	Prem	Ø
5	$ eg q \lor s$	Prem	Ø

Vetatheory

dynamics caused by contradictions derived in the proofs simplistic example: $\Gamma = \{p, q, \neg q, \neg p \lor r, \neg q \lor s\}$ minimally inconsistent interpretation: *r* derivable, *s* not

- LLL: CLuN *

$$-\Omega = \{ A \land \neg A \mid A \in \mathcal{W} \}$$

- strategy: any

example proof:

1	р	Prem	Ø
2	q	Prem	Ø
3	eg q	Prem	Ø
4	$ eg p \lor r$	Prem	Ø
5	$ eg q \lor s$	Prem	Ø
6	$(p \land \neg p) \lor r$	1, 4; RU	Ø

dynamics caused by contradictions derived in the proofs simplistic example: $\Gamma = \{p, q, \neg q, \neg p \lor r, \neg q \lor s\}$ minimally inconsistent interpretation: *r* derivable, *s* not

- LLL: CLuN *

$$-\Omega = \{ A \land \neg A \mid A \in \mathcal{W} \}$$

- strategy: any

example proof:

1	p	Prem	Ø
2	q	Prem	Ø
3	eg q	Prem	Ø
4	$ eg p \lor r$	Prem	Ø
5	$ eg q \lor s$	Prem	Ø
6	$(p \land \neg p) \lor r$	1, 4; RU	Ø
7	r	1, 4; RC	$\{p \land \neg p\}$

dynamics caused by contradictions derived in the proofs simplistic example: $\Gamma = \{p, q, \neg q, \neg p \lor r, \neg q \lor s\}$ minimally inconsistent interpretation: *r* derivable, *s* not

- LLL: CLuN *

$$-\Omega = \{ A \land \neg A \mid A \in \mathcal{W} \}$$

- strategy: any

example proof:

. ¬ <i>p</i> }
$\neg q$

dynamics caused by contradictions derived in the proofs simplistic example: $\Gamma = \{p, q, \neg q, \neg p \lor r, \neg q \lor s\}$ minimally inconsistent interpretation: *r* derivable, *s* not

- LLL: CLuN *

$$-\Omega = \{ A \land \neg A \mid A \in \mathcal{W} \}$$

- strategy: any

example proof:

1	р	Prem	Ø
2	q	Prem	Ø
3	eg q	Prem	Ø
4	$\neg p \lor r$	Prem	Ø
5	$ eg q \lor s$	Prem	Ø
6	$(p \land \neg p) \lor r$	1, 4; RU	Ø
7	r	1, 4; RC	$\{ oldsymbol{ ho} \wedge eg oldsymbol{ ho} \}$
8	S	2, 5; RC	$\{q \wedge \neg q\} \checkmark^9$
9	$oldsymbol{q}\wedge eg oldsymbol{q}$	2, 3; RU	Ø

Intro computation Circular? Standard Format Examples and details Metatheory

Inductive Generalisation

Let the data comprise the following literals.

Pa Ph Pc Examples and details Qa Qd $\neg Oe$ Rb Ra $\neg Rc$ Pa Prem Ø 1 2 Ø Ra Prem $\begin{array}{l} 1 \neg \forall x (Px \supset Qx) \} & \sqrt{7} \\ 1, 6; \mathsf{RU} & \{ \neg \forall x (Px \supset Qx) \} & \sqrt{7} \\ \mathsf{RC} & \{ \neg \forall x (Px \supset \neg Qx) \} & \sqrt{7} \\ 1, 6.2; \mathsf{RU} & \{ \neg \forall x (Px \supset \neg Qx) \} & \sqrt{7} \\ 3.1, 6.3; \mathsf{RD} & \emptyset \end{array}$ 3 $\forall x(Px \supset Qx)$ 4.1 Qa 5.2 $\forall x(Px \supset \neg Qx)$ 6.3 *¬Qa* 7 $\neg \forall x (Px \supset Qx) \lor \neg \forall x (Px \supset \neg Qx)$ 6.1, 6.3; RD \emptyset

Content guidance: obserations and experiments. [Batens, 2011]

Let $\Gamma = \{p \lor q, \neg p, \neg q, \neg p \lor r, \neg q \lor s\}$ Obviously $\Gamma \vdash_{\mathsf{CLuN}} (p \land \neg p) \lor (q \land \neg q), \Gamma \nvDash_{\mathsf{CLuN}} (p \land \neg p) \text{ and } \Gamma \nvDash_{\mathsf{CLuN}} (q \land \neg q)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Let $\Gamma = \{ p \lor q, \neg p, \neg q, \neg p \lor r, \neg q \lor s \}$

Obviously $\Gamma \vdash_{\mathsf{CLuN}} (p \land \neg p) \lor (q \land \neg q)$, $\Gamma \nvDash_{\mathsf{CLuN}} (p \land \neg p)$ and $\Gamma \nvDash_{\mathsf{CLuN}} (q \land \neg q)$

◆□> ◆□> ◆目> ◆目> ◆日 ◆ ○ ◆

 $Dab(\Delta)$ is the classical disjunction of the members of a $\Delta \subseteq_{fin} \Omega$.

If $\Gamma \vdash_{\mathsf{LLL}} \operatorname{Dab}(\Delta)$ and there is no $\Delta' \subset \Delta$ such that $\Gamma \vdash_{\mathsf{LLL}} \operatorname{Dab}(\Delta')$, then $\operatorname{Dab}(\Delta)$ is a *minimal* Dab -consequence of Γ .

Where $Dab(\Delta_1)$, $Dab(\Delta_2)$, ... – the Δ_i may overlap – are the minimal Dab-consequences of Γ :

 $\begin{array}{l} U(\Gamma) =_{df} \Delta_1 \cup \Delta_2 \cup \dots \\ \Phi(\Gamma) \text{ is the set of } minimal \ choice \ sets \ of \ \{\Delta_1, \Delta_2, \dots\}. \ast \end{array}$

Marking for Reliability: where Θ is the condition of line *I* of a proof from Γ , line *I* is *marked* iff $\Theta \cap U(\Gamma) \neq \emptyset$.

Let $\Gamma = \{ p \lor q, \neg p, \neg q, \neg p \lor r, \neg q \lor s \}$

Obviously $\Gamma \vdash_{\mathsf{CLuN}} (p \land \neg p) \lor (q \land \neg q), \Gamma \nvDash_{\mathsf{CLuN}} (p \land \neg p) \text{ and } \Gamma \nvDash_{\mathsf{CLuN}} (q \land \neg q)$

 $Dab(\Delta)$ is the classical disjunction of the members of a $\Delta \subseteq_{fin} \Omega$.

If $\Gamma \vdash_{\mathsf{LLL}} \operatorname{Dab}(\Delta)$ and there is no $\Delta' \subset \Delta$ such that $\Gamma \vdash_{\mathsf{LLL}} \operatorname{Dab}(\Delta')$, then $\operatorname{Dab}(\Delta)$ is a *minimal* Dab -consequence of Γ .

Where $Dab(\Delta_1)$, $Dab(\Delta_2)$, ... – the Δ_i may overlap – are the *minimal* Dab-consequences of Γ :

 $\begin{array}{l} U(\Gamma) =_{df} \Delta_1 \cup \Delta_2 \cup \dots \\ \Phi(\Gamma) \text{ is the set of } minimal \ choice \ sets \ of \ \{\Delta_1, \Delta_2, \dots\}. \ast \end{array}$

Marking for Reliability: where Θ is the condition of line *I* of a proof from Γ , line *I* is *marked* iff $\Theta \cap U(\Gamma) \neq \emptyset$.

Semantically: Ab(M) = { $B \in \Omega \mid M \Vdash B$ }; a **LLL**-model $M \text{ of } \Gamma$ is reliable iff Ab(M) $\subseteq U(\Gamma)$. $\Gamma \vDash_{AL} A$ iff, for every reliable model of Γ , $M \Vdash A$.

◆□> ◆□> ◆目> ◆目> ◆日 ◆ ○ ◆

Marking for Minimal Abnormality: Where *A* is derived in line *I*, on the condition Θ , line *I* is *unmarked* iff, (i) $\Theta \cap \Delta = \emptyset$ for some $\Delta \in \Phi(\Gamma)$ and (ii) for each $\Delta \in \Phi(\Gamma)$, *A* is derived in a line with condition Θ' such that $\Theta' \cap \Delta = \emptyset$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Marking for Minimal Abnormality: Where *A* is derived in line *I*, on the condition Θ , line *I* is *unmarked* iff, (i) $\Theta \cap \Delta = \emptyset$ for some $\Delta \in \Phi(\Gamma)$ and (ii) for each $\Delta \in \Phi(\Gamma)$, *A* is derived in a line with condition Θ' such that $\Theta' \cap \Delta = \emptyset$.

Semantically: a **LLL**-model $M \text{ of } \Gamma$ is Minimally Abnormal iff there is no **LLL**-model M' of Γ such that $Ab(M') \subset Ab(M)$. $\Gamma \vDash_{AL} A$ iff, for every minimally abnormal model of Γ , $M \vDash A$.

Hint: it was proved that *M* is a minimally abnormal model of Γ iff $Ab(M) \in \Phi(\Gamma)$.

Illustrating Marking

Let
$$\Gamma = \{ p \lor q, \neg p, \neg q, \neg p \lor r, \neg q \lor s \}$$

1	$p \lor q$	Prem	Ø
2	$\neg p$	Prem	Ø
3	eg q	Prem	Ø
4	$p \lor r$	Prem	Ø
5	$q \lor s$	Prem	Ø
6	r	2, 4; DS	$\{p \land \neg p\}$
7	S	3, 5; DS	$\{\boldsymbol{q} \land \neg \boldsymbol{q}\}$

Intro computation Circular? Standard Format Examples and details Metatheory References

<ロト <回 > < 三 > < 三 > < 三 > の < で

Illustrating Marking

Let
$$\Gamma = \{p \lor q, \neg p, \neg q, \neg p \lor r, \neg q \lor s\}$$

1 $p \lor q$ Prem \emptyset
2 $\neg p$ Prem \emptyset
3 $\neg q$ Prem \emptyset
4 $p \lor r$ Prem \emptyset
5 $q \lor s$ Prem \emptyset
6 r 2, 4; DS $\{p \land \neg p\} \checkmark^8$
7 s 3, 5; DS $\{q \land \neg q\} \checkmark^8$
8 $(p \land \neg p) \lor (q \land \neg q)$ 1, 2, 3 \emptyset

Intro computation Circular? Standard Format Examples and details Metatheory References

 $U(\Gamma) = \{p \land \neg p, q \land \neg q\} \text{ and } \Phi(\Gamma) = \{\{p \land \neg p\}, \{q \land \neg q\}\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Illustrating Marking

Let
$$\Gamma = \{p \lor q, \neg p, \neg q, \neg p \lor r, \neg q \lor s\}$$

1 $p \lor q$ Prem Ø
2 $\neg p$ Prem Ø
3 $\neg q$ Prem Ø
4 $p \lor r$ Prem Ø
5 $q \lor s$ Prem Ø
6 r 2, 4; DS $\{p \land \neg p\} \checkmark^8$
7 s 3, 5; DS $\{q \land \neg q\} \checkmark^8$
8 $(p \land \neg p) \lor (q \land \neg q)$ 1, 2, 3 Ø
9 $r \lor s$ 6; ADD $\{p \land \neg p\} \checkmark^9$
10 $r \lor s$ 7; ADD $\{q \land \neg q\} \checkmark^{10}$

Intro computation Circular? Standard Format Examples and details Metatheory References

 $U(\Gamma) = \{p \land \neg p, q \land \neg q\}$ and $\Phi(\Gamma) = \{\{p \land \neg p\}, \{q \land \neg q\}\}$ marking for Reliability

36 [38 39 51]

Illustrating Marking

Let
$$\Gamma = \{p \lor q, \neg p, \neg q, \neg p \lor r, \neg q \lor s\}$$

1 $p \lor q$ Prem \emptyset
2 $\neg p$ Prem \emptyset
3 $\neg q$ Prem \emptyset
4 $p \lor r$ Prem \emptyset
5 $q \lor s$ Prem \emptyset
6 r 2, 4; DS $\{p \land \neg p\} \checkmark^8$
7 s 3, 5; DS $\{q \land \neg q\} \checkmark^8$
8 $(p \land \neg p) \lor (q \land \neg q)$ 1, 2, 3 \emptyset
9 $r \lor s$ 6; ADD $\{p \land \neg p\}$
10 $r \lor s$ 7; ADD $\{q \land \neg q\}$

Intro computation Circular? Standard Format Examples and details Metatheory References

 $U(\Gamma) = \{p \land \neg p, q \land \neg q\}$ and $\Phi(\Gamma) = \{\{p \land \neg p\}, \{q \land \neg q\}\}$ marking for Minimal Abnormality from stage 10 on

Illustrating Marking

Let
$$\Gamma = \{p \lor q, \neg p, \neg q, \neg p \lor r, \neg q \lor s\}$$

1 $p \lor q$ Prem \emptyset
2 $\neg p$ Prem \emptyset
3 $\neg q$ Prem \emptyset
4 $p \lor r$ Prem \emptyset
5 $q \lor s$ Prem \emptyset
6 r 2, 4; DS $\{p \land \neg p\} \checkmark^8$
7 s 3, 5; DS $\{q \land \neg q\} \checkmark^8$
8 $(p \land \neg p) \lor (q \land \neg q)$ 1, 2, 3 \emptyset
9 $r \lor s$ 6; ADD $\{p \land \neg p\}$
10 $r \lor s$ 7; ADD $\{q \land \neg q\}$

Intro computation Circular? Standard Format Examples and details Metatheory References

 $U(\Gamma) = \{p \land \neg p, q \land \neg q\} \text{ and } \Phi(\Gamma) = \{\{p \land \neg p\}, \{q \land \neg q\}\}$

marking for Minimal Abnormality from stage 10 on

 $\Gamma \vdash_{\mathsf{CLuN}^m} r \lor s$ but $\Gamma \nvDash_{\mathsf{CLuN}^r} r \lor s$

Final Derivability

if proponent can answer any move by the opponent, then she can answer any (finite or infinite) set of consecutive moves by the opponent

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Outline

Introduction

Computational Stuff

Avoiding Circularity

The Standard Format

Examples and details

Metatheory

References

40 [40 49 51]

computation Dircular?

Examples and details

Metatheory

References

Standard format and metatheory

Theorem $\Gamma \vDash_{\mathbf{AL}^r} A \text{ iff } \Gamma \vDash_{\mathbf{LLL}} A \check{\vee} \mathrm{Dab}(\Delta) \text{ and } \Delta \cap U(\Gamma) = \emptyset \text{ for a finite } \Delta \subset \Omega.$

Corollary $\Gamma \vdash_{AL^{r}} A \text{ iff } \Gamma \vDash_{AL^{r}} A.$ (Soundness and Completeness) Intro computation Circular? Standard Format Examples and details Metatheory

. . .

Standard format and metatheory

Theorem $\Gamma \vDash_{\mathbf{AL}^{r}} A \text{ iff } \Gamma \vDash_{\mathbf{LLL}} A \check{\vee} \mathrm{Dab}(\Delta) \text{ and } \Delta \cap U(\Gamma) = \emptyset \text{ for a finite}$ $\Delta \subset \Omega.$

Corollary $\Gamma \vdash_{AL^{r}} A$ iff $\Gamma \vDash_{AL^{r}} A$. (Soundness and Completeness)

```
Lemma M \in \mathcal{M}_{\Gamma}^{m} iff M \in \mathcal{M}_{\Gamma}^{\mathsf{LLL}} and \operatorname{Ab}(M) \in \Phi_{\Gamma}.
```

Theorem $\Gamma \vdash_{AL^m} A \text{ iff } \Gamma \vDash_{AL^m} A.$ (Soundness and Completeness) Intro computation Circular? Standard Format Examples and details Metatheory References

. . .

. . .

Strong Reassurance (Stopperedness, Smoothness)

if a LLL- model *M* of Γ is not selected, this is justified by the fact that a selected model of Γ is less abnormal than *M* REF

Intro computation Circular? Standard Format Examples and details Metatheory

Strong Reassurance (Stopperedness, Smoothness)

if a LLL- model M of Γ is not selected, this is justified by the fact that a selected model of Γ is less abnormal than M REF

Theorem

If $M \in \mathcal{M}_{\Gamma}^{\mathsf{LLL}} - \mathcal{M}_{\Gamma}^{m}$, then there is a $M' \in \mathcal{M}_{\Gamma}^{m}$ such that $\operatorname{Ab}(M') \subset \operatorname{Ab}(M)$. (Strong Reassurance for Minimal Abnormality.)

Theorem

If $M \in \mathcal{M}_{\Gamma}^{\mathsf{LLL}} - \mathcal{M}_{\Gamma}^{r}$, then there is a $M' \in \mathcal{M}_{\Gamma}^{r}$ such that $\operatorname{Ab}(M') \subset \operatorname{Ab}(M)$. (Strong Reassurance for Reliability.)

Intro computation Circular? Standard Format Examples and details Metatheory References **Theorem** each of the following obtains:

- 1. $\mathcal{M}_{\Gamma}^{m} \subseteq \mathcal{M}_{\Gamma}^{r}$. Hence $\operatorname{Cn}_{AL^{r}}(\Gamma) \subseteq \operatorname{Cn}_{AL^{m}}(\Gamma)$.
- 2. If $A \in \Omega U(\Gamma)$, then $\check{\neg} A \in \operatorname{Cn}_{\operatorname{AL}^{r}}(\Gamma)$.
- If Dab(Δ) is a minimal Dab-consequence of Γ and A ∈ Δ, then some M ∈ M^m_Γ verifies A and falsifies all members (if any) of Δ − {A}.
- 4. $\mathcal{M}_{\Gamma}^{m} = \mathcal{M}_{Cn_{\mathbf{AL}^{m}}(\Gamma)}^{m}$ whence $Cn_{\mathbf{AL}^{m}}(\Gamma) = Cn_{\mathbf{AL}^{m}}(Cn_{\mathbf{AL}^{m}}(\Gamma)). \bullet$ (Fixed Point.)
- 5. $\mathcal{M}_{\Gamma}^{r} = \mathcal{M}_{Cn_{AL^{r}}(\Gamma)}^{r}$ whence $Cn_{AL^{r}}(\Gamma) = Cn_{AL^{r}}(Cn_{AL^{r}}(\Gamma))$. •(Fixed Point.)
- 6. For all $\Delta \subseteq \Omega$, $Dab(\Delta) \in Cn_{AL}(\Gamma)$ iff $Dab(\Delta) \in Cn_{LLL}(\Gamma)$. (Immunity.)
- 7. If $\Gamma' \subseteq \operatorname{Cn}_{AL}(\Gamma)$, then $\operatorname{Cn}_{AL}(\Gamma') \subseteq \operatorname{Cn}_{AL}(\Gamma)$. •(Cautious Cut.)
- If Γ' ⊆ Cn_{AL}(Γ), then Cn_{AL}(Γ ∪ Γ') ⊆ Cn_{AL}(Γ). ●(Cautious Monotonicity.)

Intro computation Circular? Standard Format Examples and details Metatheory **Theorem** each of the following obtains:

- 1. If Γ is normal, then $\mathcal{M}_{\Gamma}^{ULL} = \mathcal{M}_{\Gamma}^{m} = \mathcal{M}_{\Gamma}^{r}$ whence $\operatorname{Cn}_{AL^{r}}(\Gamma) = \operatorname{Cn}_{AL^{m}}(\Gamma) = \operatorname{Cn}_{ULL}(\Gamma). \bullet$
- 2. If Γ is abnormal and $\mathcal{M}_{\Gamma}^{LLL} \neq \emptyset$, then $\mathcal{M}_{\Gamma}^{ULL} \subset \mathcal{M}_{\Gamma}^{m}$ and hence $\operatorname{Cn}_{AL^{r}}(\Gamma) \subseteq \operatorname{Cn}_{AL^{m}}(\Gamma) \subset \operatorname{Cn}_{ULL}(\Gamma)$.
- 3. $\mathcal{M}_{\Gamma}^{\text{ULL}} \subseteq \mathcal{M}_{\Gamma}^{m} \subseteq \mathcal{M}_{\Gamma}^{r} \subseteq \mathcal{M}_{\Gamma}^{\text{LLL}}$ whence $\operatorname{Cn}_{\text{LLL}}(\Gamma) \subseteq \operatorname{Cn}_{\text{AL}^{r}}(\Gamma) \subseteq \operatorname{Cn}_{\text{AL}^{m}}(\Gamma) \subseteq \operatorname{Cn}_{\text{ULL}}(\Gamma). \bullet$
- 4. $\mathcal{M}_{\Gamma}^{r} \subset \mathcal{M}_{\Gamma}^{\mathsf{LLL}}$ iff $\Gamma \cup \{A\}$ is **LLL**-satisfiable for some $A \in \Omega U(\Gamma)$.

5.
$$\operatorname{Cn}_{\operatorname{LLL}}(\Gamma) \subset \operatorname{Cn}_{\operatorname{AL}^{r}}(\Gamma)$$
 iff $\mathcal{M}_{\Gamma}^{r} \subset \mathcal{M}_{\Gamma}^{\operatorname{LLL}}$.

- M^m_Γ ⊂ M^{LLL} iff there is a (possibly infinite) Δ ⊆ Ω such that Γ ∪ Δ is LLL-satisfiable and there is no φ ∈ Φ_Γ for which Δ ⊆ φ.
- 7. If there are $A_1, \ldots, A_n \in \Omega$ $(n \ge 1)$ such that $\Gamma \cup \{A_1, \ldots, A_n\}$ is **LLL**-satisfiable and, for every $\varphi \in \Phi_{\Gamma}, \{A_1, \ldots, A_n\} \notin \varphi$, then $\operatorname{Cn}_{\mathsf{LLL}}(\Gamma) \subset \operatorname{Cn}_{\mathsf{AL}^m}(\Gamma)$.
- Cn_{AL}^m(Γ) and Cn_{AL}^r(Γ) are non-trivial iff Cn_{AL}^m(Γ) is non-trivial. • (Reassurance)

Intro computation Circular? Standard Format Examples and details Metatheory References

Theorem

If $\Gamma' \subseteq Cn_{AL}(\Gamma)$, then $Cn_{AL}(\Gamma \cup \Gamma') = Cn_{AL}(\Gamma)$. (Cumulative Indifference.)

Theorem

If $\Gamma \vdash_{AL} A$, then every **AL**-proof from Γ can be extended in such a way that A is finally derived in it. (Proof Invariance)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Theorem

If $\Gamma' \in Cn_{AL}(\Gamma)$ and $\Gamma \in Cn_{AL}(\Gamma')$, then $Cn_{AL}(\Gamma) = Cn_{AL}(\Gamma')$. (Equivalent Premise Sets) REF Intro computation Circular? Standard Format Examples and details Metatheory References

. . .

Nog niet behandeld

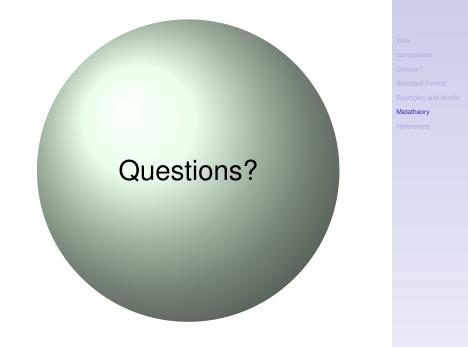
-relatie met Graham

- meer voorbeelden (alleen tripels) cf. J18ALs

Metatheory

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- referenties tussenvoegen
- geprioriteerde theorieën



Outline

Introduction

Computational Stuff

Avoiding Circularity

The Standard Format

Examples and details

Metatheory

References

computation Circular? Standard Format Examples and det Metatheory References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Batens, D. (2011).

Logics for qualitative inductive generalization. *Studia Logica*, 97(1):61–80. doi 10.1007/s11225-010-9297-8.

Łukaszewicz, W. (1990).

Non-Monotonic Reasoning. Formalization of Commonsense Reasoning. Ellis Horwood, New York. Circular? Standard Format Examples and detai

Metatheory

References

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで